Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.56.2.1
      1  1.56.2.1    cherry /*	$NetBSD: localtime.c,v 1.56.2.1 2011/06/23 14:18:37 cherry Exp $	*/
      2       1.7       jtc 
      3       1.7       jtc /*
      4       1.7       jtc ** This file is in the public domain, so clarified as of
      5      1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      6       1.7       jtc */
      7       1.2       jtc 
      8      1.11  christos #include <sys/cdefs.h>
      9      1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     10      1.11  christos #if 0
     11      1.45   mlelstv static char	elsieid[] = "@(#)localtime.c	8.9";
     12      1.11  christos #else
     13  1.56.2.1    cherry __RCSID("$NetBSD: localtime.c,v 1.56.2.1 2011/06/23 14:18:37 cherry Exp $");
     14      1.11  christos #endif
     15      1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     16       1.1       jtc 
     17       1.1       jtc /*
     18      1.45   mlelstv ** Leap second handling from Bradley White.
     19      1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     20       1.1       jtc */
     21       1.1       jtc 
     22       1.1       jtc /*LINTLIBRARY*/
     23       1.1       jtc 
     24      1.12       jtc #include "namespace.h"
     25       1.1       jtc #include "private.h"
     26       1.1       jtc #include "tzfile.h"
     27       1.1       jtc #include "fcntl.h"
     28      1.19    kleink #include "reentrant.h"
     29      1.12       jtc 
     30      1.42  christos #if defined(__weak_alias)
     31      1.25    kleink __weak_alias(daylight,_daylight)
     32      1.23   mycroft __weak_alias(tzname,_tzname)
     33      1.12       jtc #endif
     34       1.1       jtc 
     35      1.45   mlelstv #include "float.h"	/* for FLT_MAX and DBL_MAX */
     36      1.45   mlelstv 
     37      1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     38      1.45   mlelstv #define TZ_ABBR_MAX_LEN	16
     39      1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     40      1.45   mlelstv 
     41      1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     42      1.45   mlelstv #define TZ_ABBR_CHAR_SET \
     43      1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     44      1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     45      1.45   mlelstv 
     46      1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     47      1.45   mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     48      1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     49      1.45   mlelstv 
     50       1.1       jtc /*
     51       1.1       jtc ** SunOS 4.1.1 headers lack O_BINARY.
     52       1.1       jtc */
     53       1.1       jtc 
     54       1.1       jtc #ifdef O_BINARY
     55       1.1       jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     56       1.1       jtc #endif /* defined O_BINARY */
     57       1.1       jtc #ifndef O_BINARY
     58       1.1       jtc #define OPEN_MODE	O_RDONLY
     59       1.1       jtc #endif /* !defined O_BINARY */
     60       1.1       jtc 
     61       1.1       jtc #ifndef WILDABBR
     62       1.1       jtc /*
     63       1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     64       1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     65       1.1       jtc **		or implicitly).
     66       1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     67       1.1       jtc **		or implicitly).
     68       1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     69       1.1       jtc **		in which Daylight Saving Time is never observed.
     70       1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     71       1.1       jtc **		in which Standard Time is never observed.
     72       1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     73       1.1       jtc ** What's best to do in the above cases is open to debate;
     74       1.1       jtc ** for now, we just set things up so that in any of the five cases
     75      1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     76       1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     77      1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     78       1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     79       1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     80       1.1       jtc */
     81       1.1       jtc #define WILDABBR	"   "
     82       1.1       jtc #endif /* !defined WILDABBR */
     83       1.1       jtc 
     84      1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     85       1.1       jtc 
     86      1.49  christos static char		gmt[] = "GMT";
     87       1.1       jtc 
     88      1.22    kleink /*
     89      1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     90      1.22    kleink ** We default to US rules as of 1999-08-17.
     91      1.22    kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     92      1.22    kleink ** implementation dependent; for historical reasons, US rules are a
     93      1.22    kleink ** common default.
     94      1.22    kleink */
     95      1.22    kleink #ifndef TZDEFRULESTRING
     96      1.22    kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     97      1.22    kleink #endif /* !defined TZDEFDST */
     98      1.22    kleink 
     99       1.1       jtc struct ttinfo {				/* time type information */
    100      1.14       jtc 	long		tt_gmtoff;	/* UTC offset in seconds */
    101       1.1       jtc 	int		tt_isdst;	/* used to set tm_isdst */
    102       1.1       jtc 	int		tt_abbrind;	/* abbreviation list index */
    103       1.1       jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
    104      1.14       jtc 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    105       1.1       jtc };
    106       1.1       jtc 
    107       1.1       jtc struct lsinfo {				/* leap second information */
    108       1.1       jtc 	time_t		ls_trans;	/* transition time */
    109       1.1       jtc 	long		ls_corr;	/* correction to apply */
    110       1.1       jtc };
    111       1.1       jtc 
    112       1.1       jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    113       1.1       jtc 
    114       1.1       jtc #ifdef TZNAME_MAX
    115       1.1       jtc #define MY_TZNAME_MAX	TZNAME_MAX
    116       1.1       jtc #endif /* defined TZNAME_MAX */
    117       1.1       jtc #ifndef TZNAME_MAX
    118       1.1       jtc #define MY_TZNAME_MAX	255
    119       1.1       jtc #endif /* !defined TZNAME_MAX */
    120       1.1       jtc 
    121      1.49  christos struct __state {
    122       1.1       jtc 	int		leapcnt;
    123       1.1       jtc 	int		timecnt;
    124       1.1       jtc 	int		typecnt;
    125       1.1       jtc 	int		charcnt;
    126      1.45   mlelstv 	int		goback;
    127      1.45   mlelstv 	int		goahead;
    128      1.45   mlelstv 	time_t		ats[TZ_MAX_TIMES];
    129       1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    130       1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    131      1.37  christos 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    132       1.1       jtc 				(2 * (MY_TZNAME_MAX + 1)))];
    133       1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    134       1.1       jtc };
    135       1.1       jtc 
    136       1.1       jtc struct rule {
    137       1.1       jtc 	int		r_type;		/* type of rule--see below */
    138       1.1       jtc 	int		r_day;		/* day number of rule */
    139       1.1       jtc 	int		r_week;		/* week number of rule */
    140       1.1       jtc 	int		r_mon;		/* month number of rule */
    141       1.1       jtc 	long		r_time;		/* transition time of rule */
    142       1.1       jtc };
    143       1.1       jtc 
    144       1.1       jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    145       1.1       jtc #define DAY_OF_YEAR		1	/* n - day of year */
    146       1.1       jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    147       1.1       jtc 
    148      1.49  christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    149      1.49  christos 			       long offset, struct tm *tmp);
    150      1.49  christos 
    151       1.1       jtc /*
    152       1.1       jtc ** Prototypes for static functions.
    153       1.1       jtc */
    154       1.1       jtc 
    155      1.45   mlelstv static long		detzcode(const char * codep);
    156      1.45   mlelstv static time_t		detzcode64(const char * codep);
    157      1.45   mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    158      1.45   mlelstv static const char *	getzname(const char * strp);
    159      1.45   mlelstv static const char *	getqzname(const char * strp, const int delim);
    160      1.45   mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    161      1.45   mlelstv 				int max);
    162      1.45   mlelstv static const char *	getsecs(const char * strp, long * secsp);
    163      1.45   mlelstv static const char *	getoffset(const char * strp, long * offsetp);
    164      1.45   mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    165      1.49  christos static void		gmtload(timezone_t sp);
    166      1.49  christos static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    167      1.49  christos 				long offset, struct tm * tmp);
    168      1.49  christos static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    169      1.49  christos 				long offset, struct tm *tmp);
    170      1.45   mlelstv static int		increment_overflow(int * number, int delta);
    171      1.45   mlelstv static int		leaps_thru_end_of(int y);
    172      1.45   mlelstv static int		long_increment_overflow(long * number, int delta);
    173      1.45   mlelstv static int		long_normalize_overflow(long * tensptr,
    174      1.45   mlelstv 				int * unitsptr, int base);
    175      1.45   mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    176      1.45   mlelstv 				int base);
    177      1.45   mlelstv static void		settzname(void);
    178      1.49  christos static time_t		time1(const timezone_t sp, struct tm * const tmp,
    179      1.49  christos 				subfun_t funcp, long offset);
    180      1.49  christos static time_t		time2(const timezone_t sp, struct tm * const tmp,
    181      1.49  christos 				subfun_t funcp,
    182      1.49  christos 				const long offset, int *const okayp);
    183      1.49  christos static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
    184      1.49  christos 				subfun_t funcp, const long offset,
    185      1.49  christos 				int *const okayp, const int do_norm_secs);
    186      1.49  christos static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    187      1.49  christos 				long offset, struct tm * tmp);
    188      1.45   mlelstv static int		tmcomp(const struct tm * atmp,
    189      1.45   mlelstv 				const struct tm * btmp);
    190      1.45   mlelstv static time_t		transtime(time_t janfirst, int year,
    191      1.45   mlelstv 				const struct rule * rulep, long offset);
    192      1.49  christos static int		typesequiv(const timezone_t sp, int a, int b);
    193      1.49  christos static int		tzload(timezone_t sp, const char * name,
    194      1.45   mlelstv 				int doextend);
    195      1.49  christos static int		tzparse(timezone_t sp, const char * name,
    196      1.45   mlelstv 				int lastditch);
    197      1.45   mlelstv static void		tzset_unlocked(void);
    198      1.45   mlelstv static void		tzsetwall_unlocked(void);
    199      1.49  christos static long		leapcorr(const timezone_t sp, time_t * timep);
    200       1.1       jtc 
    201      1.49  christos static timezone_t lclptr;
    202      1.49  christos static timezone_t gmtptr;
    203       1.1       jtc 
    204       1.1       jtc #ifndef TZ_STRLEN_MAX
    205       1.1       jtc #define TZ_STRLEN_MAX 255
    206       1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    207       1.1       jtc 
    208      1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    209      1.45   mlelstv static int		lcl_is_set;
    210      1.45   mlelstv static int		gmt_is_set;
    211      1.42  christos 
    212      1.42  christos #if !defined(__LIBC12_SOURCE__)
    213       1.1       jtc 
    214      1.16   mycroft __aconst char *		tzname[2] = {
    215      1.37  christos 	(__aconst char *)__UNCONST(wildabbr),
    216      1.37  christos 	(__aconst char *)__UNCONST(wildabbr)
    217       1.1       jtc };
    218       1.1       jtc 
    219      1.42  christos #else
    220      1.42  christos 
    221      1.42  christos extern __aconst char *	tzname[2];
    222      1.42  christos 
    223      1.42  christos #endif
    224      1.42  christos 
    225      1.33  christos #ifdef _REENTRANT
    226      1.45   mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    227      1.19    kleink #endif
    228      1.19    kleink 
    229       1.1       jtc /*
    230       1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    231       1.1       jtc **	Except for the strftime function, these functions [asctime,
    232       1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    233       1.1       jtc **	objects: a broken-down time structure and an array of char.
    234      1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    235       1.1       jtc */
    236       1.1       jtc 
    237       1.1       jtc static struct tm	tm;
    238       1.1       jtc 
    239       1.1       jtc #ifdef USG_COMPAT
    240      1.42  christos #if !defined(__LIBC12_SOURCE__)
    241      1.42  christos long 			timezone = 0;
    242       1.1       jtc int			daylight = 0;
    243      1.42  christos #else
    244      1.42  christos extern int		daylight;
    245      1.42  christos extern long		timezone __RENAME(__timezone13);
    246      1.42  christos #endif
    247       1.1       jtc #endif /* defined USG_COMPAT */
    248       1.1       jtc 
    249       1.1       jtc #ifdef ALTZONE
    250       1.1       jtc time_t			altzone = 0;
    251       1.1       jtc #endif /* defined ALTZONE */
    252       1.1       jtc 
    253       1.1       jtc static long
    254      1.49  christos detzcode(const char *const codep)
    255       1.1       jtc {
    256      1.49  christos 	long	result;
    257      1.49  christos 	int	i;
    258      1.45   mlelstv 
    259      1.45   mlelstv 	result = (codep[0] & 0x80) ? ~0L : 0;
    260      1.45   mlelstv 	for (i = 0; i < 4; ++i)
    261      1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    262      1.45   mlelstv 	return result;
    263      1.45   mlelstv }
    264      1.45   mlelstv 
    265      1.45   mlelstv static time_t
    266      1.49  christos detzcode64(const char *const codep)
    267      1.45   mlelstv {
    268      1.49  christos 	time_t	result;
    269      1.49  christos 	int	i;
    270       1.1       jtc 
    271      1.45   mlelstv 	result = (codep[0] & 0x80) ? -1 : 0;
    272      1.45   mlelstv 	for (i = 0; i < 8; ++i)
    273      1.45   mlelstv 		result = result * 256 + (codep[i] & 0xff);
    274       1.1       jtc 	return result;
    275       1.1       jtc }
    276       1.1       jtc 
    277      1.49  christos const char *
    278      1.49  christos tzgetname(const timezone_t sp, int isdst)
    279      1.49  christos {
    280      1.49  christos 	int i;
    281      1.49  christos 	for (i = 0; i < sp->timecnt; ++i) {
    282      1.49  christos 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    283      1.49  christos 
    284      1.49  christos 		if (ttisp->tt_isdst == isdst)
    285      1.49  christos 			return &sp->chars[ttisp->tt_abbrind];
    286      1.49  christos 	}
    287      1.49  christos 	return NULL;
    288      1.49  christos }
    289      1.49  christos 
    290      1.49  christos static void
    291      1.49  christos settzname_z(timezone_t sp)
    292      1.49  christos {
    293      1.49  christos 	int			i;
    294      1.49  christos 
    295      1.49  christos 	/*
    296      1.49  christos 	** Scrub the abbreviations.
    297      1.49  christos 	** First, replace bogus characters.
    298      1.49  christos 	*/
    299      1.49  christos 	for (i = 0; i < sp->charcnt; ++i)
    300      1.49  christos 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    301      1.49  christos 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    302      1.49  christos 	/*
    303      1.49  christos 	** Second, truncate long abbreviations.
    304      1.49  christos 	*/
    305      1.49  christos 	for (i = 0; i < sp->typecnt; ++i) {
    306      1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    307      1.49  christos 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    308      1.49  christos 
    309      1.49  christos 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    310      1.49  christos 			strcmp(cp, GRANDPARENTED) != 0)
    311      1.49  christos 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    312      1.49  christos 	}
    313      1.49  christos }
    314      1.49  christos 
    315      1.45   mlelstv static void
    316      1.45   mlelstv settzname(void)
    317       1.1       jtc {
    318      1.49  christos 	timezone_t const	sp = lclptr;
    319      1.49  christos 	int			i;
    320       1.1       jtc 
    321      1.37  christos 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    322      1.37  christos 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    323       1.1       jtc #ifdef USG_COMPAT
    324       1.1       jtc 	daylight = 0;
    325       1.1       jtc 	timezone = 0;
    326       1.1       jtc #endif /* defined USG_COMPAT */
    327       1.1       jtc #ifdef ALTZONE
    328       1.1       jtc 	altzone = 0;
    329       1.1       jtc #endif /* defined ALTZONE */
    330       1.1       jtc 	if (sp == NULL) {
    331      1.37  christos 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    332       1.1       jtc 		return;
    333       1.1       jtc 	}
    334       1.1       jtc 	for (i = 0; i < sp->typecnt; ++i) {
    335      1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    336       1.1       jtc 
    337       1.1       jtc 		tzname[ttisp->tt_isdst] =
    338       1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    339      1.45   mlelstv #ifdef USG_COMPAT
    340      1.45   mlelstv 		if (ttisp->tt_isdst)
    341      1.45   mlelstv 			daylight = 1;
    342      1.45   mlelstv 		if (i == 0 || !ttisp->tt_isdst)
    343      1.45   mlelstv 			timezone = -(ttisp->tt_gmtoff);
    344      1.45   mlelstv #endif /* defined USG_COMPAT */
    345      1.45   mlelstv #ifdef ALTZONE
    346      1.45   mlelstv 		if (i == 0 || ttisp->tt_isdst)
    347      1.45   mlelstv 			altzone = -(ttisp->tt_gmtoff);
    348      1.45   mlelstv #endif /* defined ALTZONE */
    349       1.1       jtc 	}
    350       1.1       jtc 	/*
    351       1.1       jtc 	** And to get the latest zone names into tzname. . .
    352       1.1       jtc 	*/
    353       1.1       jtc 	for (i = 0; i < sp->timecnt; ++i) {
    354       1.1       jtc 		register const struct ttinfo * const	ttisp =
    355       1.1       jtc 							&sp->ttis[
    356       1.1       jtc 								sp->types[i]];
    357       1.1       jtc 
    358       1.1       jtc 		tzname[ttisp->tt_isdst] =
    359       1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    360      1.45   mlelstv 	}
    361      1.49  christos 	settzname_z(sp);
    362       1.1       jtc }
    363       1.1       jtc 
    364      1.45   mlelstv static int
    365      1.49  christos differ_by_repeat(const time_t t1, const time_t t0)
    366      1.45   mlelstv {
    367      1.45   mlelstv /* CONSTCOND */
    368      1.45   mlelstv 	if (TYPE_INTEGRAL(time_t) &&
    369      1.45   mlelstv 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    370      1.45   mlelstv 			return 0;
    371      1.45   mlelstv 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    372      1.45   mlelstv }
    373      1.45   mlelstv 
    374      1.45   mlelstv static int
    375      1.49  christos tzload(timezone_t sp, const char *name, const int doextend)
    376      1.49  christos {
    377      1.49  christos 	const char *		p;
    378      1.49  christos 	int			i;
    379      1.49  christos 	int			fid;
    380      1.49  christos 	int			stored;
    381      1.49  christos 	int			nread;
    382      1.45   mlelstv 	union {
    383      1.45   mlelstv 		struct tzhead	tzhead;
    384      1.45   mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    385      1.45   mlelstv 					2 * sizeof *sp +
    386      1.45   mlelstv 					4 * TZ_MAX_TIMES];
    387      1.45   mlelstv 	} u;
    388       1.1       jtc 
    389      1.47  christos 	sp->goback = sp->goahead = FALSE;
    390       1.1       jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    391       1.1       jtc 		return -1;
    392       1.1       jtc 	{
    393      1.49  christos 		int	doaccess;
    394       1.1       jtc 		/*
    395       1.1       jtc 		** Section 4.9.1 of the C standard says that
    396       1.1       jtc 		** "FILENAME_MAX expands to an integral constant expression
    397      1.10       jtc 		** that is the size needed for an array of char large enough
    398       1.1       jtc 		** to hold the longest file name string that the implementation
    399       1.1       jtc 		** guarantees can be opened."
    400       1.1       jtc 		*/
    401       1.1       jtc 		char		fullname[FILENAME_MAX + 1];
    402       1.1       jtc 
    403       1.1       jtc 		if (name[0] == ':')
    404       1.1       jtc 			++name;
    405       1.1       jtc 		doaccess = name[0] == '/';
    406       1.1       jtc 		if (!doaccess) {
    407       1.1       jtc 			if ((p = TZDIR) == NULL)
    408       1.1       jtc 				return -1;
    409       1.1       jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    410       1.1       jtc 				return -1;
    411       1.8       mrg 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    412       1.8       mrg 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    413       1.8       mrg 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    414       1.1       jtc 			/*
    415       1.1       jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    416       1.1       jtc 			*/
    417       1.1       jtc 			if (strchr(name, '.') != NULL)
    418       1.1       jtc 				doaccess = TRUE;
    419       1.1       jtc 			name = fullname;
    420       1.1       jtc 		}
    421       1.1       jtc 		if (doaccess && access(name, R_OK) != 0)
    422       1.1       jtc 			return -1;
    423       1.9       mrg 		/*
    424       1.9       mrg 		 * XXX potential security problem here if user of a set-id
    425       1.9       mrg 		 * program has set TZ (which is passed in as name) here,
    426       1.9       mrg 		 * and uses a race condition trick to defeat the access(2)
    427       1.9       mrg 		 * above.
    428       1.9       mrg 		 */
    429       1.1       jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    430       1.1       jtc 			return -1;
    431       1.1       jtc 	}
    432      1.45   mlelstv 	nread = read(fid, u.buf, sizeof u.buf);
    433      1.45   mlelstv 	if (close(fid) < 0 || nread <= 0)
    434      1.45   mlelstv 		return -1;
    435      1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    436       1.1       jtc 		int		ttisstdcnt;
    437       1.1       jtc 		int		ttisgmtcnt;
    438       1.1       jtc 
    439      1.34    kleink 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    440      1.34    kleink 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    441      1.14       jtc 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    442      1.14       jtc 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    443      1.14       jtc 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    444      1.14       jtc 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    445      1.14       jtc 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    446       1.1       jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    447       1.1       jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    448       1.1       jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    449       1.1       jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    450       1.1       jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    451       1.1       jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    452       1.1       jtc 				return -1;
    453      1.45   mlelstv 		if (nread - (p - u.buf) <
    454      1.45   mlelstv 			sp->timecnt * stored +		/* ats */
    455       1.1       jtc 			sp->timecnt +			/* types */
    456      1.45   mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    457       1.1       jtc 			sp->charcnt +			/* chars */
    458      1.45   mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    459       1.1       jtc 			ttisstdcnt +			/* ttisstds */
    460       1.1       jtc 			ttisgmtcnt)			/* ttisgmts */
    461       1.1       jtc 				return -1;
    462       1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    463      1.45   mlelstv 			sp->ats[i] = (stored == 4) ?
    464      1.45   mlelstv 				detzcode(p) : detzcode64(p);
    465      1.45   mlelstv 			p += stored;
    466       1.1       jtc 		}
    467       1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    468       1.1       jtc 			sp->types[i] = (unsigned char) *p++;
    469       1.1       jtc 			if (sp->types[i] >= sp->typecnt)
    470       1.1       jtc 				return -1;
    471       1.1       jtc 		}
    472       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    473      1.49  christos 			struct ttinfo *	ttisp;
    474       1.1       jtc 
    475       1.1       jtc 			ttisp = &sp->ttis[i];
    476       1.1       jtc 			ttisp->tt_gmtoff = detzcode(p);
    477       1.1       jtc 			p += 4;
    478       1.1       jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    479       1.1       jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    480       1.1       jtc 				return -1;
    481       1.1       jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    482       1.1       jtc 			if (ttisp->tt_abbrind < 0 ||
    483       1.1       jtc 				ttisp->tt_abbrind > sp->charcnt)
    484       1.1       jtc 					return -1;
    485       1.1       jtc 		}
    486       1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    487       1.1       jtc 			sp->chars[i] = *p++;
    488       1.1       jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    489       1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    490      1.49  christos 			struct lsinfo *	lsisp;
    491       1.1       jtc 
    492       1.1       jtc 			lsisp = &sp->lsis[i];
    493      1.45   mlelstv 			lsisp->ls_trans = (stored == 4) ?
    494      1.45   mlelstv 				detzcode(p) : detzcode64(p);
    495      1.45   mlelstv 			p += stored;
    496       1.1       jtc 			lsisp->ls_corr = detzcode(p);
    497       1.1       jtc 			p += 4;
    498       1.1       jtc 		}
    499       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    500      1.49  christos 			struct ttinfo *	ttisp;
    501       1.1       jtc 
    502       1.1       jtc 			ttisp = &sp->ttis[i];
    503       1.1       jtc 			if (ttisstdcnt == 0)
    504       1.1       jtc 				ttisp->tt_ttisstd = FALSE;
    505       1.1       jtc 			else {
    506       1.1       jtc 				ttisp->tt_ttisstd = *p++;
    507       1.1       jtc 				if (ttisp->tt_ttisstd != TRUE &&
    508       1.1       jtc 					ttisp->tt_ttisstd != FALSE)
    509       1.1       jtc 						return -1;
    510       1.1       jtc 			}
    511       1.1       jtc 		}
    512       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    513      1.49  christos 			struct ttinfo *	ttisp;
    514       1.1       jtc 
    515       1.1       jtc 			ttisp = &sp->ttis[i];
    516       1.1       jtc 			if (ttisgmtcnt == 0)
    517       1.1       jtc 				ttisp->tt_ttisgmt = FALSE;
    518       1.1       jtc 			else {
    519       1.1       jtc 				ttisp->tt_ttisgmt = *p++;
    520       1.1       jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    521       1.1       jtc 					ttisp->tt_ttisgmt != FALSE)
    522       1.1       jtc 						return -1;
    523       1.1       jtc 			}
    524       1.1       jtc 		}
    525      1.45   mlelstv 		/*
    526      1.45   mlelstv 		** Out-of-sort ats should mean we're running on a
    527      1.45   mlelstv 		** signed time_t system but using a data file with
    528      1.45   mlelstv 		** unsigned values (or vice versa).
    529      1.45   mlelstv 		*/
    530      1.45   mlelstv 		for (i = 0; i < sp->timecnt - 2; ++i)
    531      1.45   mlelstv 			if (sp->ats[i] > sp->ats[i + 1]) {
    532      1.45   mlelstv 				++i;
    533      1.45   mlelstv /* CONSTCOND */
    534      1.45   mlelstv 				if (TYPE_SIGNED(time_t)) {
    535      1.45   mlelstv 					/*
    536      1.45   mlelstv 					** Ignore the end (easy).
    537      1.45   mlelstv 					*/
    538      1.45   mlelstv 					sp->timecnt = i;
    539      1.45   mlelstv 				} else {
    540      1.45   mlelstv 					/*
    541      1.45   mlelstv 					** Ignore the beginning (harder).
    542      1.45   mlelstv 					*/
    543      1.49  christos 					int	j;
    544      1.45   mlelstv 
    545      1.45   mlelstv 					for (j = 0; j + i < sp->timecnt; ++j) {
    546      1.45   mlelstv 						sp->ats[j] = sp->ats[j + i];
    547      1.45   mlelstv 						sp->types[j] = sp->types[j + i];
    548      1.45   mlelstv 					}
    549      1.45   mlelstv 					sp->timecnt = j;
    550      1.45   mlelstv 				}
    551      1.45   mlelstv 				break;
    552      1.45   mlelstv 			}
    553      1.45   mlelstv 		/*
    554      1.45   mlelstv 		** If this is an old file, we're done.
    555      1.45   mlelstv 		*/
    556      1.45   mlelstv 		if (u.tzhead.tzh_version[0] == '\0')
    557      1.45   mlelstv 			break;
    558      1.45   mlelstv 		nread -= p - u.buf;
    559      1.45   mlelstv 		for (i = 0; i < nread; ++i)
    560      1.45   mlelstv 			u.buf[i] = p[i];
    561      1.45   mlelstv 		/*
    562      1.45   mlelstv 		** If this is a narrow integer time_t system, we're done.
    563      1.45   mlelstv 		*/
    564      1.45   mlelstv 		if (stored >= (int) sizeof(time_t)
    565      1.45   mlelstv /* CONSTCOND */
    566      1.45   mlelstv 				&& TYPE_INTEGRAL(time_t))
    567      1.45   mlelstv 			break;
    568      1.45   mlelstv 	}
    569      1.45   mlelstv 	if (doextend && nread > 2 &&
    570      1.45   mlelstv 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    571      1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    572      1.49  christos 			struct __state ts;
    573      1.49  christos 			int	result;
    574      1.45   mlelstv 
    575      1.45   mlelstv 			u.buf[nread - 1] = '\0';
    576      1.49  christos 			result = tzparse(&ts, &u.buf[1], FALSE);
    577      1.45   mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    578      1.45   mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    579      1.45   mlelstv 					for (i = 0; i < 2; ++i)
    580      1.45   mlelstv 						ts.ttis[i].tt_abbrind +=
    581      1.45   mlelstv 							sp->charcnt;
    582      1.45   mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    583      1.45   mlelstv 						sp->chars[sp->charcnt++] =
    584      1.45   mlelstv 							ts.chars[i];
    585      1.45   mlelstv 					i = 0;
    586      1.45   mlelstv 					while (i < ts.timecnt &&
    587      1.45   mlelstv 						ts.ats[i] <=
    588      1.45   mlelstv 						sp->ats[sp->timecnt - 1])
    589      1.45   mlelstv 							++i;
    590      1.45   mlelstv 					while (i < ts.timecnt &&
    591      1.45   mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    592      1.45   mlelstv 						sp->ats[sp->timecnt] =
    593      1.45   mlelstv 							ts.ats[i];
    594      1.45   mlelstv 						sp->types[sp->timecnt] =
    595      1.45   mlelstv 							sp->typecnt +
    596      1.45   mlelstv 							ts.types[i];
    597      1.45   mlelstv 						++sp->timecnt;
    598      1.45   mlelstv 						++i;
    599      1.45   mlelstv 					}
    600      1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    601      1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    602      1.45   mlelstv 			}
    603      1.45   mlelstv 	}
    604      1.45   mlelstv 	if (sp->timecnt > 1) {
    605      1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    606      1.45   mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    607      1.45   mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    608      1.45   mlelstv 					sp->goback = TRUE;
    609      1.45   mlelstv 					break;
    610      1.45   mlelstv 				}
    611      1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    612      1.45   mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    613      1.45   mlelstv 				sp->types[i]) &&
    614      1.45   mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    615      1.45   mlelstv 				sp->ats[i])) {
    616      1.45   mlelstv 					sp->goahead = TRUE;
    617      1.45   mlelstv 					break;
    618      1.45   mlelstv 		}
    619       1.1       jtc 	}
    620       1.1       jtc 	return 0;
    621       1.1       jtc }
    622       1.1       jtc 
    623      1.45   mlelstv static int
    624      1.49  christos typesequiv(const timezone_t sp, const int a, const int b)
    625      1.45   mlelstv {
    626      1.49  christos 	int	result;
    627      1.45   mlelstv 
    628      1.45   mlelstv 	if (sp == NULL ||
    629      1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    630      1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    631      1.45   mlelstv 			result = FALSE;
    632      1.45   mlelstv 	else {
    633      1.49  christos 		const struct ttinfo *	ap = &sp->ttis[a];
    634      1.49  christos 		const struct ttinfo *	bp = &sp->ttis[b];
    635      1.45   mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    636      1.45   mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    637      1.45   mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    638      1.45   mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    639      1.45   mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    640      1.45   mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    641      1.45   mlelstv 	}
    642      1.45   mlelstv 	return result;
    643      1.45   mlelstv }
    644      1.45   mlelstv 
    645       1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    646       1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    647       1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    648       1.1       jtc };
    649       1.1       jtc 
    650       1.1       jtc static const int	year_lengths[2] = {
    651       1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    652       1.1       jtc };
    653       1.1       jtc 
    654       1.1       jtc /*
    655       1.1       jtc ** Given a pointer into a time zone string, scan until a character that is not
    656      1.45   mlelstv ** a valid character in a zone name is found. Return a pointer to that
    657       1.1       jtc ** character.
    658       1.1       jtc */
    659       1.1       jtc 
    660       1.1       jtc static const char *
    661      1.45   mlelstv getzname(strp)
    662      1.49  christos const char *	strp;
    663       1.1       jtc {
    664      1.49  christos 	char	c;
    665       1.1       jtc 
    666       1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    667       1.1       jtc 		c != '+')
    668       1.1       jtc 			++strp;
    669       1.1       jtc 	return strp;
    670       1.1       jtc }
    671       1.1       jtc 
    672       1.1       jtc /*
    673      1.45   mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    674      1.45   mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    675      1.45   mlelstv **
    676      1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    677      1.45   mlelstv ** restricted, with other characters producing undefined results.
    678      1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    679      1.45   mlelstv */
    680      1.45   mlelstv 
    681      1.45   mlelstv static const char *
    682      1.49  christos getqzname(const char *strp, const int delim)
    683      1.45   mlelstv {
    684      1.49  christos 	int	c;
    685      1.45   mlelstv 
    686      1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    687      1.45   mlelstv 		++strp;
    688      1.45   mlelstv 	return strp;
    689      1.45   mlelstv }
    690      1.45   mlelstv 
    691      1.45   mlelstv /*
    692       1.1       jtc ** Given a pointer into a time zone string, extract a number from that string.
    693       1.1       jtc ** Check that the number is within a specified range; if it is not, return
    694       1.1       jtc ** NULL.
    695       1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    696       1.1       jtc */
    697       1.1       jtc 
    698       1.1       jtc static const char *
    699       1.1       jtc getnum(strp, nump, min, max)
    700      1.49  christos const char *	strp;
    701       1.1       jtc int * const		nump;
    702       1.1       jtc const int		min;
    703       1.1       jtc const int		max;
    704       1.1       jtc {
    705      1.49  christos 	char	c;
    706      1.49  christos 	int	num;
    707       1.1       jtc 
    708      1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    709      1.46  christos 		errno = EINVAL;
    710       1.1       jtc 		return NULL;
    711      1.46  christos 	}
    712       1.1       jtc 	num = 0;
    713       1.5       jtc 	do {
    714       1.1       jtc 		num = num * 10 + (c - '0');
    715      1.46  christos 		if (num > max) {
    716      1.46  christos 			errno = EOVERFLOW;
    717       1.1       jtc 			return NULL;	/* illegal value */
    718      1.46  christos 		}
    719       1.5       jtc 		c = *++strp;
    720       1.5       jtc 	} while (is_digit(c));
    721      1.46  christos 	if (num < min) {
    722      1.46  christos 		errno = EINVAL;
    723       1.1       jtc 		return NULL;		/* illegal value */
    724      1.46  christos 	}
    725       1.1       jtc 	*nump = num;
    726       1.1       jtc 	return strp;
    727       1.1       jtc }
    728       1.1       jtc 
    729       1.1       jtc /*
    730       1.1       jtc ** Given a pointer into a time zone string, extract a number of seconds,
    731       1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    732       1.1       jtc ** If any error occurs, return NULL.
    733       1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    734       1.1       jtc ** of seconds.
    735       1.1       jtc */
    736       1.1       jtc 
    737       1.1       jtc static const char *
    738      1.49  christos getsecs(const char *strp, long *const secsp)
    739       1.1       jtc {
    740       1.1       jtc 	int	num;
    741       1.1       jtc 
    742       1.1       jtc 	/*
    743       1.1       jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    744       1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    745       1.1       jtc 	** but which specifies the equivalent of
    746       1.1       jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    747       1.1       jtc 	*/
    748       1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    749       1.1       jtc 	if (strp == NULL)
    750       1.1       jtc 		return NULL;
    751       1.1       jtc 	*secsp = num * (long) SECSPERHOUR;
    752       1.1       jtc 	if (*strp == ':') {
    753       1.1       jtc 		++strp;
    754       1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    755       1.1       jtc 		if (strp == NULL)
    756       1.1       jtc 			return NULL;
    757       1.1       jtc 		*secsp += num * SECSPERMIN;
    758       1.1       jtc 		if (*strp == ':') {
    759       1.1       jtc 			++strp;
    760      1.45   mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    761       1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    762       1.1       jtc 			if (strp == NULL)
    763       1.1       jtc 				return NULL;
    764       1.1       jtc 			*secsp += num;
    765       1.1       jtc 		}
    766       1.1       jtc 	}
    767       1.1       jtc 	return strp;
    768       1.1       jtc }
    769       1.1       jtc 
    770       1.1       jtc /*
    771       1.1       jtc ** Given a pointer into a time zone string, extract an offset, in
    772       1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
    773       1.1       jtc ** If any error occurs, return NULL.
    774       1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
    775       1.1       jtc */
    776       1.1       jtc 
    777       1.1       jtc static const char *
    778      1.49  christos getoffset(const char *strp, long *const offsetp)
    779       1.1       jtc {
    780      1.49  christos 	int	neg = 0;
    781       1.1       jtc 
    782       1.1       jtc 	if (*strp == '-') {
    783       1.1       jtc 		neg = 1;
    784       1.1       jtc 		++strp;
    785       1.5       jtc 	} else if (*strp == '+')
    786       1.5       jtc 		++strp;
    787       1.1       jtc 	strp = getsecs(strp, offsetp);
    788       1.1       jtc 	if (strp == NULL)
    789       1.1       jtc 		return NULL;		/* illegal time */
    790       1.1       jtc 	if (neg)
    791       1.1       jtc 		*offsetp = -*offsetp;
    792       1.1       jtc 	return strp;
    793       1.1       jtc }
    794       1.1       jtc 
    795       1.1       jtc /*
    796       1.1       jtc ** Given a pointer into a time zone string, extract a rule in the form
    797      1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    798       1.1       jtc ** If a valid rule is not found, return NULL.
    799       1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
    800       1.1       jtc */
    801       1.1       jtc 
    802       1.1       jtc static const char *
    803      1.49  christos getrule(const char *strp, struct rule *const rulep)
    804       1.1       jtc {
    805       1.1       jtc 	if (*strp == 'J') {
    806       1.1       jtc 		/*
    807       1.1       jtc 		** Julian day.
    808       1.1       jtc 		*/
    809       1.1       jtc 		rulep->r_type = JULIAN_DAY;
    810       1.1       jtc 		++strp;
    811       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    812       1.1       jtc 	} else if (*strp == 'M') {
    813       1.1       jtc 		/*
    814       1.1       jtc 		** Month, week, day.
    815       1.1       jtc 		*/
    816       1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    817       1.1       jtc 		++strp;
    818       1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    819       1.1       jtc 		if (strp == NULL)
    820       1.1       jtc 			return NULL;
    821       1.1       jtc 		if (*strp++ != '.')
    822       1.1       jtc 			return NULL;
    823       1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    824       1.1       jtc 		if (strp == NULL)
    825       1.1       jtc 			return NULL;
    826       1.1       jtc 		if (*strp++ != '.')
    827       1.1       jtc 			return NULL;
    828       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    829       1.5       jtc 	} else if (is_digit(*strp)) {
    830       1.1       jtc 		/*
    831       1.1       jtc 		** Day of year.
    832       1.1       jtc 		*/
    833       1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
    834       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    835       1.1       jtc 	} else	return NULL;		/* invalid format */
    836       1.1       jtc 	if (strp == NULL)
    837       1.1       jtc 		return NULL;
    838       1.1       jtc 	if (*strp == '/') {
    839       1.1       jtc 		/*
    840       1.1       jtc 		** Time specified.
    841       1.1       jtc 		*/
    842       1.1       jtc 		++strp;
    843       1.1       jtc 		strp = getsecs(strp, &rulep->r_time);
    844       1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    845       1.1       jtc 	return strp;
    846       1.1       jtc }
    847       1.1       jtc 
    848       1.1       jtc /*
    849      1.14       jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    850      1.14       jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
    851       1.1       jtc ** calculate the Epoch-relative time that rule takes effect.
    852       1.1       jtc */
    853       1.1       jtc 
    854       1.1       jtc static time_t
    855      1.49  christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    856      1.49  christos     const long offset)
    857      1.49  christos {
    858      1.49  christos 	int	leapyear;
    859      1.49  christos 	time_t	value;
    860      1.49  christos 	int	i;
    861       1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
    862       1.1       jtc 
    863       1.1       jtc 	INITIALIZE(value);
    864       1.1       jtc 	leapyear = isleap(year);
    865       1.1       jtc 	switch (rulep->r_type) {
    866       1.1       jtc 
    867       1.1       jtc 	case JULIAN_DAY:
    868       1.1       jtc 		/*
    869       1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    870       1.1       jtc 		** years.
    871       1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
    872       1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
    873       1.1       jtc 		** January 1, midnight, to get the day.
    874       1.1       jtc 		*/
    875       1.1       jtc 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    876       1.1       jtc 		if (leapyear && rulep->r_day >= 60)
    877       1.1       jtc 			value += SECSPERDAY;
    878       1.1       jtc 		break;
    879       1.1       jtc 
    880       1.1       jtc 	case DAY_OF_YEAR:
    881       1.1       jtc 		/*
    882       1.1       jtc 		** n - day of year.
    883       1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
    884       1.1       jtc 		** January 1, midnight, to get the day.
    885       1.1       jtc 		*/
    886       1.1       jtc 		value = janfirst + rulep->r_day * SECSPERDAY;
    887       1.1       jtc 		break;
    888       1.1       jtc 
    889       1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
    890       1.1       jtc 		/*
    891       1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
    892       1.1       jtc 		*/
    893       1.1       jtc 		value = janfirst;
    894       1.1       jtc 		for (i = 0; i < rulep->r_mon - 1; ++i)
    895       1.1       jtc 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    896       1.1       jtc 
    897       1.1       jtc 		/*
    898       1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    899       1.1       jtc 		** month.
    900       1.1       jtc 		*/
    901       1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    902       1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    903       1.1       jtc 		yy1 = yy0 / 100;
    904       1.1       jtc 		yy2 = yy0 % 100;
    905       1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
    906       1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    907       1.1       jtc 		if (dow < 0)
    908       1.1       jtc 			dow += DAYSPERWEEK;
    909       1.1       jtc 
    910       1.1       jtc 		/*
    911      1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    912       1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    913       1.1       jtc 		** month.
    914       1.1       jtc 		*/
    915       1.1       jtc 		d = rulep->r_day - dow;
    916       1.1       jtc 		if (d < 0)
    917       1.1       jtc 			d += DAYSPERWEEK;
    918       1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
    919       1.1       jtc 			if (d + DAYSPERWEEK >=
    920       1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    921       1.1       jtc 					break;
    922       1.1       jtc 			d += DAYSPERWEEK;
    923       1.1       jtc 		}
    924       1.1       jtc 
    925       1.1       jtc 		/*
    926       1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    927       1.1       jtc 		*/
    928       1.1       jtc 		value += d * SECSPERDAY;
    929       1.1       jtc 		break;
    930       1.1       jtc 	}
    931       1.1       jtc 
    932       1.1       jtc 	/*
    933      1.14       jtc 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    934      1.45   mlelstv 	** question. To get the Epoch-relative time of the specified local
    935       1.1       jtc 	** time on that day, add the transition time and the current offset
    936      1.14       jtc 	** from UTC.
    937       1.1       jtc 	*/
    938       1.1       jtc 	return value + rulep->r_time + offset;
    939       1.1       jtc }
    940       1.1       jtc 
    941       1.1       jtc /*
    942       1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    943       1.1       jtc ** appropriate.
    944       1.1       jtc */
    945       1.1       jtc 
    946       1.1       jtc static int
    947      1.49  christos tzparse(timezone_t sp, const char *name, const int lastditch)
    948       1.1       jtc {
    949       1.1       jtc 	const char *			stdname;
    950       1.1       jtc 	const char *			dstname;
    951       1.1       jtc 	size_t				stdlen;
    952       1.1       jtc 	size_t				dstlen;
    953       1.1       jtc 	long				stdoffset;
    954       1.1       jtc 	long				dstoffset;
    955      1.49  christos 	time_t *		atp;
    956      1.49  christos 	unsigned char *	typep;
    957      1.49  christos 	char *			cp;
    958      1.49  christos 	int			load_result;
    959       1.1       jtc 
    960       1.1       jtc 	INITIALIZE(dstname);
    961       1.1       jtc 	stdname = name;
    962       1.1       jtc 	if (lastditch) {
    963       1.1       jtc 		stdlen = strlen(name);	/* length of standard zone name */
    964       1.1       jtc 		name += stdlen;
    965       1.1       jtc 		if (stdlen >= sizeof sp->chars)
    966       1.1       jtc 			stdlen = (sizeof sp->chars) - 1;
    967      1.10       jtc 		stdoffset = 0;
    968       1.1       jtc 	} else {
    969      1.45   mlelstv 		if (*name == '<') {
    970      1.45   mlelstv 			name++;
    971      1.45   mlelstv 			stdname = name;
    972      1.45   mlelstv 			name = getqzname(name, '>');
    973      1.45   mlelstv 			if (*name != '>')
    974      1.45   mlelstv 				return (-1);
    975      1.45   mlelstv 			stdlen = name - stdname;
    976      1.45   mlelstv 			name++;
    977      1.45   mlelstv 		} else {
    978      1.45   mlelstv 			name = getzname(name);
    979      1.45   mlelstv 			stdlen = name - stdname;
    980      1.45   mlelstv 		}
    981      1.10       jtc 		if (*name == '\0')
    982      1.10       jtc 			return -1;
    983      1.45   mlelstv 		name = getoffset(name, &stdoffset);
    984       1.1       jtc 		if (name == NULL)
    985       1.1       jtc 			return -1;
    986       1.1       jtc 	}
    987      1.49  christos 	load_result = tzload(sp, TZDEFRULES, FALSE);
    988       1.1       jtc 	if (load_result != 0)
    989       1.1       jtc 		sp->leapcnt = 0;		/* so, we're off a little */
    990       1.1       jtc 	if (*name != '\0') {
    991      1.45   mlelstv 		if (*name == '<') {
    992      1.45   mlelstv 			dstname = ++name;
    993      1.45   mlelstv 			name = getqzname(name, '>');
    994      1.45   mlelstv 			if (*name != '>')
    995      1.45   mlelstv 				return -1;
    996      1.45   mlelstv 			dstlen = name - dstname;
    997      1.45   mlelstv 			name++;
    998      1.45   mlelstv 		} else {
    999      1.45   mlelstv 			dstname = name;
   1000      1.45   mlelstv 			name = getzname(name);
   1001      1.45   mlelstv 			dstlen = name - dstname; /* length of DST zone name */
   1002      1.45   mlelstv 		}
   1003       1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1004      1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1005       1.1       jtc 			if (name == NULL)
   1006       1.1       jtc 				return -1;
   1007       1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1008      1.22    kleink 		if (*name == '\0' && load_result != 0)
   1009      1.22    kleink 			name = TZDEFRULESTRING;
   1010       1.1       jtc 		if (*name == ',' || *name == ';') {
   1011       1.1       jtc 			struct rule	start;
   1012       1.1       jtc 			struct rule	end;
   1013      1.49  christos 			int	year;
   1014      1.49  christos 			time_t	janfirst;
   1015       1.1       jtc 			time_t		starttime;
   1016       1.1       jtc 			time_t		endtime;
   1017       1.1       jtc 
   1018       1.1       jtc 			++name;
   1019      1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1020       1.1       jtc 				return -1;
   1021       1.1       jtc 			if (*name++ != ',')
   1022       1.1       jtc 				return -1;
   1023      1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1024       1.1       jtc 				return -1;
   1025       1.1       jtc 			if (*name != '\0')
   1026       1.1       jtc 				return -1;
   1027       1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1028       1.1       jtc 			/*
   1029      1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1030       1.1       jtc 			*/
   1031       1.1       jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1032       1.1       jtc 			sp->ttis[0].tt_isdst = 1;
   1033       1.1       jtc 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1034       1.1       jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1035       1.1       jtc 			sp->ttis[1].tt_isdst = 0;
   1036       1.1       jtc 			sp->ttis[1].tt_abbrind = 0;
   1037       1.1       jtc 			atp = sp->ats;
   1038       1.1       jtc 			typep = sp->types;
   1039       1.1       jtc 			janfirst = 0;
   1040      1.45   mlelstv 			sp->timecnt = 0;
   1041      1.45   mlelstv 			for (year = EPOCH_YEAR;
   1042      1.45   mlelstv 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1043      1.45   mlelstv 			    ++year) {
   1044      1.45   mlelstv 			    	time_t	newfirst;
   1045      1.45   mlelstv 
   1046      1.45   mlelstv 				starttime = transtime(janfirst, year, &start,
   1047       1.1       jtc 					stdoffset);
   1048      1.45   mlelstv 				endtime = transtime(janfirst, year, &end,
   1049       1.1       jtc 					dstoffset);
   1050       1.1       jtc 				if (starttime > endtime) {
   1051       1.1       jtc 					*atp++ = endtime;
   1052       1.1       jtc 					*typep++ = 1;	/* DST ends */
   1053       1.1       jtc 					*atp++ = starttime;
   1054       1.1       jtc 					*typep++ = 0;	/* DST begins */
   1055       1.1       jtc 				} else {
   1056       1.1       jtc 					*atp++ = starttime;
   1057       1.1       jtc 					*typep++ = 0;	/* DST begins */
   1058       1.1       jtc 					*atp++ = endtime;
   1059       1.1       jtc 					*typep++ = 1;	/* DST ends */
   1060       1.1       jtc 				}
   1061      1.45   mlelstv 				sp->timecnt += 2;
   1062      1.45   mlelstv 				newfirst = janfirst;
   1063      1.45   mlelstv 				newfirst += year_lengths[isleap(year)] *
   1064       1.1       jtc 					SECSPERDAY;
   1065      1.45   mlelstv 				if (newfirst <= janfirst)
   1066      1.45   mlelstv 					break;
   1067      1.45   mlelstv 				janfirst = newfirst;
   1068       1.1       jtc 			}
   1069       1.1       jtc 		} else {
   1070      1.49  christos 			long	theirstdoffset;
   1071      1.49  christos 			long	theirdstoffset;
   1072      1.49  christos 			long	theiroffset;
   1073      1.49  christos 			int	isdst;
   1074      1.49  christos 			int	i;
   1075      1.49  christos 			int	j;
   1076       1.1       jtc 
   1077       1.1       jtc 			if (*name != '\0')
   1078       1.1       jtc 				return -1;
   1079       1.1       jtc 			/*
   1080      1.39  christos 			** Initial values of theirstdoffset
   1081       1.1       jtc 			*/
   1082       1.1       jtc 			theirstdoffset = 0;
   1083       1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1084       1.1       jtc 				j = sp->types[i];
   1085       1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1086       1.5       jtc 					theirstdoffset =
   1087       1.5       jtc 						-sp->ttis[j].tt_gmtoff;
   1088       1.1       jtc 					break;
   1089       1.1       jtc 				}
   1090       1.1       jtc 			}
   1091      1.45   mlelstv 			theirdstoffset = 0;
   1092      1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1093      1.45   mlelstv 				j = sp->types[i];
   1094      1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1095      1.45   mlelstv 					theirdstoffset =
   1096      1.45   mlelstv 						-sp->ttis[j].tt_gmtoff;
   1097      1.45   mlelstv 					break;
   1098      1.45   mlelstv 				}
   1099      1.45   mlelstv 			}
   1100       1.1       jtc 			/*
   1101       1.1       jtc 			** Initially we're assumed to be in standard time.
   1102       1.1       jtc 			*/
   1103      1.45   mlelstv 			isdst = FALSE;
   1104       1.1       jtc 			theiroffset = theirstdoffset;
   1105       1.1       jtc 			/*
   1106       1.1       jtc 			** Now juggle transition times and types
   1107       1.1       jtc 			** tracking offsets as you do.
   1108       1.1       jtc 			*/
   1109       1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1110       1.1       jtc 				j = sp->types[i];
   1111       1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1112       1.1       jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1113       1.1       jtc 					/* No adjustment to transition time */
   1114       1.1       jtc 				} else {
   1115       1.1       jtc 					/*
   1116       1.1       jtc 					** If summer time is in effect, and the
   1117       1.1       jtc 					** transition time was not specified as
   1118       1.1       jtc 					** standard time, add the summer time
   1119       1.1       jtc 					** offset to the transition time;
   1120       1.1       jtc 					** otherwise, add the standard time
   1121       1.1       jtc 					** offset to the transition time.
   1122       1.1       jtc 					*/
   1123       1.1       jtc 					/*
   1124       1.1       jtc 					** Transitions from DST to DDST
   1125       1.1       jtc 					** will effectively disappear since
   1126       1.1       jtc 					** POSIX provides for only one DST
   1127       1.1       jtc 					** offset.
   1128       1.1       jtc 					*/
   1129      1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1130      1.45   mlelstv 						sp->ats[i] += dstoffset -
   1131      1.45   mlelstv 							theirdstoffset;
   1132      1.45   mlelstv 					} else {
   1133      1.45   mlelstv 						sp->ats[i] += stdoffset -
   1134      1.45   mlelstv 							theirstdoffset;
   1135      1.45   mlelstv 					}
   1136       1.1       jtc 				}
   1137       1.1       jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1138      1.39  christos 				if (!sp->ttis[j].tt_isdst)
   1139      1.39  christos 					theirstdoffset = theiroffset;
   1140      1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1141       1.1       jtc 			}
   1142       1.1       jtc 			/*
   1143       1.1       jtc 			** Finally, fill in ttis.
   1144       1.1       jtc 			** ttisstd and ttisgmt need not be handled.
   1145       1.1       jtc 			*/
   1146       1.1       jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1147       1.1       jtc 			sp->ttis[0].tt_isdst = FALSE;
   1148       1.1       jtc 			sp->ttis[0].tt_abbrind = 0;
   1149       1.1       jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1150       1.1       jtc 			sp->ttis[1].tt_isdst = TRUE;
   1151       1.1       jtc 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1152       1.7       jtc 			sp->typecnt = 2;
   1153       1.1       jtc 		}
   1154       1.1       jtc 	} else {
   1155       1.1       jtc 		dstlen = 0;
   1156       1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1157       1.1       jtc 		sp->timecnt = 0;
   1158       1.1       jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1159       1.1       jtc 		sp->ttis[0].tt_isdst = 0;
   1160       1.1       jtc 		sp->ttis[0].tt_abbrind = 0;
   1161       1.1       jtc 	}
   1162       1.1       jtc 	sp->charcnt = stdlen + 1;
   1163       1.1       jtc 	if (dstlen != 0)
   1164       1.1       jtc 		sp->charcnt += dstlen + 1;
   1165      1.10       jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1166       1.1       jtc 		return -1;
   1167       1.1       jtc 	cp = sp->chars;
   1168       1.1       jtc 	(void) strncpy(cp, stdname, stdlen);
   1169       1.1       jtc 	cp += stdlen;
   1170       1.1       jtc 	*cp++ = '\0';
   1171       1.1       jtc 	if (dstlen != 0) {
   1172       1.1       jtc 		(void) strncpy(cp, dstname, dstlen);
   1173       1.1       jtc 		*(cp + dstlen) = '\0';
   1174       1.1       jtc 	}
   1175       1.1       jtc 	return 0;
   1176       1.1       jtc }
   1177       1.1       jtc 
   1178       1.1       jtc static void
   1179      1.49  christos gmtload(timezone_t sp)
   1180      1.49  christos {
   1181      1.49  christos 	if (tzload(sp, gmt, TRUE) != 0)
   1182      1.49  christos 		(void) tzparse(sp, gmt, TRUE);
   1183      1.49  christos }
   1184      1.49  christos 
   1185      1.49  christos timezone_t
   1186      1.49  christos tzalloc(const char *name)
   1187      1.49  christos {
   1188      1.49  christos 	timezone_t sp = calloc(1, sizeof *sp);
   1189      1.49  christos 	if (sp == NULL)
   1190      1.49  christos 		return NULL;
   1191      1.49  christos 	if (tzload(sp, name, TRUE) != 0) {
   1192      1.49  christos 		free(sp);
   1193      1.49  christos 		return NULL;
   1194      1.49  christos 	}
   1195      1.49  christos 	settzname_z(sp);
   1196      1.49  christos 	return sp;
   1197      1.49  christos }
   1198      1.49  christos 
   1199      1.49  christos void
   1200      1.49  christos tzfree(const timezone_t sp)
   1201       1.1       jtc {
   1202      1.49  christos 	free(sp);
   1203       1.1       jtc }
   1204       1.1       jtc 
   1205      1.19    kleink static void
   1206      1.45   mlelstv tzsetwall_unlocked(void)
   1207       1.1       jtc {
   1208      1.45   mlelstv 	if (lcl_is_set < 0)
   1209       1.1       jtc 		return;
   1210      1.45   mlelstv 	lcl_is_set = -1;
   1211       1.1       jtc 
   1212       1.1       jtc 	if (lclptr == NULL) {
   1213      1.41  christos 		int saveerrno = errno;
   1214      1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1215      1.41  christos 		errno = saveerrno;
   1216       1.1       jtc 		if (lclptr == NULL) {
   1217      1.45   mlelstv 			settzname();	/* all we can do */
   1218       1.1       jtc 			return;
   1219       1.1       jtc 		}
   1220       1.1       jtc 	}
   1221      1.49  christos 	if (tzload(lclptr, NULL, TRUE) != 0)
   1222      1.45   mlelstv 		gmtload(lclptr);
   1223      1.45   mlelstv 	settzname();
   1224       1.1       jtc }
   1225       1.1       jtc 
   1226      1.19    kleink #ifndef STD_INSPIRED
   1227      1.19    kleink /*
   1228      1.19    kleink ** A non-static declaration of tzsetwall in a system header file
   1229      1.19    kleink ** may cause a warning about this upcoming static declaration...
   1230      1.19    kleink */
   1231      1.19    kleink static
   1232      1.19    kleink #endif /* !defined STD_INSPIRED */
   1233       1.1       jtc void
   1234      1.45   mlelstv tzsetwall(void)
   1235      1.19    kleink {
   1236      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1237      1.45   mlelstv 	tzsetwall_unlocked();
   1238      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1239      1.19    kleink }
   1240      1.19    kleink 
   1241      1.45   mlelstv #ifndef STD_INSPIRED
   1242      1.45   mlelstv /*
   1243      1.45   mlelstv ** A non-static declaration of tzsetwall in a system header file
   1244      1.45   mlelstv ** may cause a warning about this upcoming static declaration...
   1245      1.45   mlelstv */
   1246      1.45   mlelstv static
   1247      1.45   mlelstv #endif /* !defined STD_INSPIRED */
   1248      1.45   mlelstv void
   1249      1.45   mlelstv tzset_unlocked(void)
   1250       1.1       jtc {
   1251      1.49  christos 	const char *	name;
   1252      1.41  christos 	int saveerrno;
   1253       1.1       jtc 
   1254      1.41  christos 	saveerrno = errno;
   1255       1.1       jtc 	name = getenv("TZ");
   1256      1.41  christos 	errno = saveerrno;
   1257       1.1       jtc 	if (name == NULL) {
   1258      1.45   mlelstv 		tzsetwall_unlocked();
   1259       1.1       jtc 		return;
   1260       1.1       jtc 	}
   1261       1.1       jtc 
   1262      1.45   mlelstv 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1263       1.1       jtc 		return;
   1264      1.45   mlelstv 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1265      1.45   mlelstv 	if (lcl_is_set)
   1266      1.45   mlelstv 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1267       1.1       jtc 
   1268       1.1       jtc 	if (lclptr == NULL) {
   1269      1.41  christos 		saveerrno = errno;
   1270      1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1271      1.41  christos 		errno = saveerrno;
   1272       1.1       jtc 		if (lclptr == NULL) {
   1273      1.45   mlelstv 			settzname();	/* all we can do */
   1274       1.1       jtc 			return;
   1275       1.1       jtc 		}
   1276       1.1       jtc 	}
   1277       1.1       jtc 	if (*name == '\0') {
   1278       1.1       jtc 		/*
   1279       1.1       jtc 		** User wants it fast rather than right.
   1280       1.1       jtc 		*/
   1281       1.1       jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1282       1.1       jtc 		lclptr->timecnt = 0;
   1283      1.27    atatat 		lclptr->typecnt = 0;
   1284      1.27    atatat 		lclptr->ttis[0].tt_isdst = 0;
   1285       1.1       jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1286       1.1       jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1287      1.45   mlelstv 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1288      1.49  christos 	} else if (tzload(lclptr, name, TRUE) != 0)
   1289      1.49  christos 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1290      1.45   mlelstv 			(void) gmtload(lclptr);
   1291      1.45   mlelstv 	settzname();
   1292       1.1       jtc }
   1293       1.1       jtc 
   1294      1.19    kleink void
   1295      1.45   mlelstv tzset(void)
   1296      1.19    kleink {
   1297      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1298      1.45   mlelstv 	tzset_unlocked();
   1299      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1300      1.19    kleink }
   1301      1.19    kleink 
   1302       1.1       jtc /*
   1303       1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1304       1.1       jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1305      1.45   mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1306       1.1       jtc ** but it *is* desirable.)
   1307       1.1       jtc **
   1308       1.1       jtc ** The unused offset argument is for the benefit of mktime variants.
   1309       1.1       jtc */
   1310       1.1       jtc 
   1311       1.1       jtc /*ARGSUSED*/
   1312      1.45   mlelstv static struct tm *
   1313      1.49  christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1314      1.49  christos     struct tm *const tmp)
   1315      1.49  christos {
   1316      1.49  christos 	const struct ttinfo *	ttisp;
   1317      1.49  christos 	int			i;
   1318      1.49  christos 	struct tm *		result;
   1319       1.1       jtc 	const time_t			t = *timep;
   1320       1.1       jtc 
   1321      1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1322      1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1323      1.45   mlelstv 			time_t			newt = t;
   1324      1.49  christos 			time_t		seconds;
   1325      1.49  christos 			time_t		tcycles;
   1326      1.49  christos 			int_fast64_t	icycles;
   1327      1.45   mlelstv 
   1328      1.45   mlelstv 			if (t < sp->ats[0])
   1329      1.45   mlelstv 				seconds = sp->ats[0] - t;
   1330      1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1331      1.45   mlelstv 			--seconds;
   1332      1.45   mlelstv 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1333      1.45   mlelstv 			++tcycles;
   1334      1.45   mlelstv 			icycles = tcycles;
   1335      1.45   mlelstv 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1336      1.45   mlelstv 				return NULL;
   1337      1.45   mlelstv 			seconds = (time_t) icycles;
   1338      1.45   mlelstv 			seconds *= YEARSPERREPEAT;
   1339      1.45   mlelstv 			seconds *= AVGSECSPERYEAR;
   1340      1.45   mlelstv 			if (t < sp->ats[0])
   1341      1.45   mlelstv 				newt += seconds;
   1342      1.45   mlelstv 			else	newt -= seconds;
   1343      1.45   mlelstv 			if (newt < sp->ats[0] ||
   1344      1.51  christos 				newt > sp->ats[sp->timecnt - 1])
   1345      1.45   mlelstv 					return NULL;	/* "cannot happen" */
   1346      1.49  christos 			result = localsub(sp, &newt, offset, tmp);
   1347      1.45   mlelstv 			if (result == tmp) {
   1348      1.49  christos 				time_t	newy;
   1349      1.45   mlelstv 
   1350      1.45   mlelstv 				newy = tmp->tm_year;
   1351      1.45   mlelstv 				if (t < sp->ats[0])
   1352      1.45   mlelstv 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1353      1.45   mlelstv 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1354      1.45   mlelstv 				tmp->tm_year = (int)newy;
   1355      1.51  christos 				if (tmp->tm_year != newy)
   1356      1.45   mlelstv 					return NULL;
   1357      1.45   mlelstv 			}
   1358      1.45   mlelstv 			return result;
   1359       1.1       jtc 	}
   1360       1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1361       1.1       jtc 		i = 0;
   1362       1.1       jtc 		while (sp->ttis[i].tt_isdst)
   1363       1.1       jtc 			if (++i >= sp->typecnt) {
   1364       1.1       jtc 				i = 0;
   1365       1.1       jtc 				break;
   1366       1.1       jtc 			}
   1367       1.1       jtc 	} else {
   1368      1.49  christos 		int	lo = 1;
   1369      1.49  christos 		int	hi = sp->timecnt;
   1370      1.45   mlelstv 
   1371      1.45   mlelstv 		while (lo < hi) {
   1372      1.49  christos 			int	mid = (lo + hi) / 2;
   1373      1.45   mlelstv 
   1374      1.45   mlelstv 			if (t < sp->ats[mid])
   1375      1.45   mlelstv 				hi = mid;
   1376      1.45   mlelstv 			else	lo = mid + 1;
   1377      1.45   mlelstv 		}
   1378      1.45   mlelstv 		i = (int) sp->types[lo - 1];
   1379       1.1       jtc 	}
   1380       1.1       jtc 	ttisp = &sp->ttis[i];
   1381       1.1       jtc 	/*
   1382       1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1383       1.1       jtc 	** you'd replace the statement below with
   1384       1.1       jtc 	**	t += ttisp->tt_gmtoff;
   1385       1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1386       1.1       jtc 	*/
   1387      1.49  christos 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1388       1.1       jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1389  1.56.2.1    cherry 	if (sp == lclptr)
   1390  1.56.2.1    cherry 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1391       1.1       jtc #ifdef TM_ZONE
   1392       1.1       jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1393       1.1       jtc #endif /* defined TM_ZONE */
   1394      1.45   mlelstv 	return result;
   1395       1.1       jtc }
   1396       1.1       jtc 
   1397      1.49  christos /*
   1398      1.49  christos ** Re-entrant version of localtime.
   1399      1.49  christos */
   1400      1.49  christos 
   1401       1.1       jtc struct tm *
   1402      1.49  christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1403       1.1       jtc {
   1404      1.49  christos 	rwlock_rdlock(&lcl_lock);
   1405      1.45   mlelstv 	tzset_unlocked();
   1406      1.49  christos 	tmp = localtime_rz(lclptr, timep, tmp);
   1407      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1408      1.49  christos 	return tmp;
   1409       1.1       jtc }
   1410       1.1       jtc 
   1411      1.49  christos struct tm *
   1412      1.49  christos localtime(const time_t *const timep)
   1413      1.49  christos {
   1414      1.49  christos 	return localtime_r(timep, &tm);
   1415      1.49  christos }
   1416      1.35    kleink 
   1417      1.18    kleink struct tm *
   1418      1.49  christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1419      1.18    kleink {
   1420      1.49  christos 	if (sp == NULL)
   1421      1.51  christos 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1422      1.49  christos 	else
   1423      1.51  christos 		tmp = localsub(sp, timep, 0L, tmp);
   1424      1.51  christos 	if (tmp == NULL)
   1425      1.51  christos 		errno = EOVERFLOW;
   1426      1.51  christos 	return tmp;
   1427      1.18    kleink }
   1428      1.18    kleink 
   1429      1.18    kleink /*
   1430       1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1431       1.1       jtc */
   1432       1.1       jtc 
   1433      1.45   mlelstv static struct tm *
   1434      1.49  christos gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
   1435      1.49  christos     struct tm *const tmp)
   1436       1.1       jtc {
   1437      1.49  christos 	struct tm *	result;
   1438      1.33  christos #ifdef _REENTRANT
   1439      1.19    kleink 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1440      1.19    kleink #endif
   1441      1.19    kleink 
   1442      1.19    kleink 	mutex_lock(&gmt_mutex);
   1443      1.45   mlelstv 	if (!gmt_is_set) {
   1444      1.41  christos 		int saveerrno;
   1445      1.45   mlelstv 		gmt_is_set = TRUE;
   1446      1.41  christos 		saveerrno = errno;
   1447      1.47  christos 		gmtptr = calloc(1, sizeof *gmtptr);
   1448      1.41  christos 		errno = saveerrno;
   1449       1.1       jtc 		if (gmtptr != NULL)
   1450      1.45   mlelstv 			gmtload(gmtptr);
   1451       1.1       jtc 	}
   1452      1.19    kleink 	mutex_unlock(&gmt_mutex);
   1453      1.49  christos 	result = timesub(gmtptr, timep, offset, tmp);
   1454       1.1       jtc #ifdef TM_ZONE
   1455       1.1       jtc 	/*
   1456       1.1       jtc 	** Could get fancy here and deliver something such as
   1457      1.14       jtc 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1458       1.1       jtc 	** but this is no time for a treasure hunt.
   1459       1.1       jtc 	*/
   1460       1.1       jtc 	if (offset != 0)
   1461      1.37  christos 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1462       1.1       jtc 	else {
   1463       1.1       jtc 		if (gmtptr == NULL)
   1464      1.37  christos 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1465       1.1       jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1466       1.1       jtc 	}
   1467       1.1       jtc #endif /* defined TM_ZONE */
   1468      1.45   mlelstv 	return result;
   1469       1.1       jtc }
   1470       1.1       jtc 
   1471       1.1       jtc struct tm *
   1472      1.49  christos gmtime(const time_t *const timep)
   1473       1.1       jtc {
   1474      1.55  christos 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
   1475      1.55  christos 
   1476      1.55  christos 	if (tmp == NULL)
   1477      1.55  christos 		errno = EOVERFLOW;
   1478      1.55  christos 
   1479      1.55  christos 	return tmp;
   1480       1.1       jtc }
   1481       1.1       jtc 
   1482      1.18    kleink /*
   1483      1.35    kleink ** Re-entrant version of gmtime.
   1484      1.35    kleink */
   1485      1.35    kleink 
   1486      1.18    kleink struct tm *
   1487      1.49  christos gmtime_r(const time_t * const timep, struct tm *tmp)
   1488      1.18    kleink {
   1489      1.55  christos 	tmp = gmtsub(NULL, timep, 0L, tmp);
   1490      1.55  christos 
   1491      1.55  christos 	if (tmp == NULL)
   1492      1.55  christos 		errno = EOVERFLOW;
   1493      1.55  christos 
   1494      1.55  christos 	return tmp;
   1495      1.18    kleink }
   1496      1.18    kleink 
   1497       1.1       jtc #ifdef STD_INSPIRED
   1498       1.1       jtc 
   1499       1.1       jtc struct tm *
   1500      1.49  christos offtime(const time_t *const timep, long offset)
   1501       1.1       jtc {
   1502      1.55  christos 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
   1503      1.55  christos 
   1504      1.55  christos 	if (tmp == NULL)
   1505      1.55  christos 		errno = EOVERFLOW;
   1506      1.55  christos 
   1507      1.55  christos 	return tmp;
   1508      1.49  christos }
   1509      1.49  christos 
   1510      1.49  christos struct tm *
   1511      1.49  christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1512      1.49  christos {
   1513      1.55  christos 	tmp = gmtsub(NULL, timep, offset, tmp);
   1514      1.55  christos 
   1515      1.55  christos 	if (tmp == NULL)
   1516      1.55  christos 		errno = EOVERFLOW;
   1517      1.55  christos 
   1518      1.55  christos 	return tmp;
   1519       1.1       jtc }
   1520       1.1       jtc 
   1521       1.1       jtc #endif /* defined STD_INSPIRED */
   1522       1.1       jtc 
   1523      1.45   mlelstv /*
   1524      1.45   mlelstv ** Return the number of leap years through the end of the given year
   1525      1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1526      1.45   mlelstv */
   1527      1.45   mlelstv 
   1528      1.45   mlelstv static int
   1529      1.49  christos leaps_thru_end_of(const int y)
   1530      1.45   mlelstv {
   1531      1.45   mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1532      1.45   mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1533      1.45   mlelstv }
   1534      1.45   mlelstv 
   1535      1.45   mlelstv static struct tm *
   1536      1.49  christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1537      1.49  christos     struct tm *const tmp)
   1538      1.49  christos {
   1539      1.49  christos 	const struct lsinfo *	lp;
   1540      1.49  christos 	time_t			tdays;
   1541      1.49  christos 	int			idays;	/* unsigned would be so 2003 */
   1542      1.49  christos 	long			rem;
   1543      1.49  christos 	int			y;
   1544      1.49  christos 	const int *		ip;
   1545      1.49  christos 	long			corr;
   1546      1.49  christos 	int			hit;
   1547      1.49  christos 	int			i;
   1548       1.1       jtc 
   1549       1.1       jtc 	corr = 0;
   1550       1.1       jtc 	hit = 0;
   1551       1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1552       1.1       jtc 	while (--i >= 0) {
   1553       1.1       jtc 		lp = &sp->lsis[i];
   1554       1.1       jtc 		if (*timep >= lp->ls_trans) {
   1555       1.1       jtc 			if (*timep == lp->ls_trans) {
   1556       1.1       jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1557       1.1       jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1558       1.1       jtc 				if (hit)
   1559       1.1       jtc 					while (i > 0 &&
   1560       1.1       jtc 						sp->lsis[i].ls_trans ==
   1561       1.1       jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1562       1.1       jtc 						sp->lsis[i].ls_corr ==
   1563       1.1       jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1564       1.1       jtc 							++hit;
   1565       1.1       jtc 							--i;
   1566       1.1       jtc 					}
   1567       1.1       jtc 			}
   1568       1.1       jtc 			corr = lp->ls_corr;
   1569       1.1       jtc 			break;
   1570       1.1       jtc 		}
   1571       1.1       jtc 	}
   1572      1.45   mlelstv 	y = EPOCH_YEAR;
   1573      1.45   mlelstv 	tdays = *timep / SECSPERDAY;
   1574      1.45   mlelstv 	rem = (long) (*timep - tdays * SECSPERDAY);
   1575      1.45   mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1576      1.45   mlelstv 		int		newy;
   1577      1.49  christos 		time_t	tdelta;
   1578      1.49  christos 		int	idelta;
   1579      1.49  christos 		int	leapdays;
   1580      1.45   mlelstv 
   1581      1.45   mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1582      1.45   mlelstv 		idelta = (int) tdelta;
   1583      1.51  christos 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1584      1.45   mlelstv 			return NULL;
   1585      1.45   mlelstv 		if (idelta == 0)
   1586      1.45   mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1587      1.45   mlelstv 		newy = y;
   1588      1.51  christos 		if (increment_overflow(&newy, idelta))
   1589      1.45   mlelstv 			return NULL;
   1590      1.45   mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1591      1.45   mlelstv 			leaps_thru_end_of(y - 1);
   1592      1.45   mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1593      1.45   mlelstv 		tdays -= leapdays;
   1594      1.45   mlelstv 		y = newy;
   1595      1.45   mlelstv 	}
   1596      1.45   mlelstv 	{
   1597      1.49  christos 		long	seconds;
   1598      1.45   mlelstv 
   1599      1.45   mlelstv 		seconds = tdays * SECSPERDAY + 0.5;
   1600      1.45   mlelstv 		tdays = seconds / SECSPERDAY;
   1601      1.45   mlelstv 		rem += (long) (seconds - tdays * SECSPERDAY);
   1602       1.1       jtc 	}
   1603      1.45   mlelstv 	/*
   1604      1.45   mlelstv 	** Given the range, we can now fearlessly cast...
   1605      1.45   mlelstv 	*/
   1606      1.45   mlelstv 	idays = (int) tdays;
   1607      1.45   mlelstv 	rem += offset - corr;
   1608       1.1       jtc 	while (rem < 0) {
   1609       1.1       jtc 		rem += SECSPERDAY;
   1610      1.45   mlelstv 		--idays;
   1611       1.1       jtc 	}
   1612       1.1       jtc 	while (rem >= SECSPERDAY) {
   1613       1.1       jtc 		rem -= SECSPERDAY;
   1614      1.45   mlelstv 		++idays;
   1615      1.45   mlelstv 	}
   1616      1.45   mlelstv 	while (idays < 0) {
   1617      1.51  christos 		if (increment_overflow(&y, -1))
   1618      1.45   mlelstv 			return NULL;
   1619      1.45   mlelstv 		idays += year_lengths[isleap(y)];
   1620       1.1       jtc 	}
   1621      1.45   mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1622      1.45   mlelstv 		idays -= year_lengths[isleap(y)];
   1623      1.51  christos 		if (increment_overflow(&y, 1))
   1624      1.45   mlelstv 			return NULL;
   1625      1.45   mlelstv 	}
   1626      1.45   mlelstv 	tmp->tm_year = y;
   1627      1.51  christos 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1628      1.45   mlelstv 		return NULL;
   1629      1.45   mlelstv 	tmp->tm_yday = idays;
   1630      1.45   mlelstv 	/*
   1631      1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1632      1.45   mlelstv 	*/
   1633      1.45   mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1634      1.45   mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1635      1.45   mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1636      1.45   mlelstv 		leaps_thru_end_of(y - 1) -
   1637      1.45   mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1638      1.45   mlelstv 		idays;
   1639      1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1640      1.45   mlelstv 	if (tmp->tm_wday < 0)
   1641      1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1642       1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1643      1.45   mlelstv 	rem %= SECSPERHOUR;
   1644       1.1       jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1645       1.6       jtc 	/*
   1646       1.6       jtc 	** A positive leap second requires a special
   1647      1.45   mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1648       1.6       jtc 	*/
   1649       1.6       jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1650      1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1651      1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1652      1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1653      1.45   mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1654       1.1       jtc 	tmp->tm_isdst = 0;
   1655       1.1       jtc #ifdef TM_GMTOFF
   1656       1.1       jtc 	tmp->TM_GMTOFF = offset;
   1657       1.1       jtc #endif /* defined TM_GMTOFF */
   1658      1.45   mlelstv 	return tmp;
   1659       1.1       jtc }
   1660       1.1       jtc 
   1661       1.1       jtc char *
   1662      1.49  christos ctime(const time_t *const timep)
   1663       1.1       jtc {
   1664       1.1       jtc /*
   1665       1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1666      1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1667      1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1668       1.1       jtc **		asctime(localtime(timer))
   1669       1.1       jtc */
   1670      1.46  christos 	struct tm *rtm = localtime(timep);
   1671      1.46  christos 	if (rtm == NULL)
   1672      1.46  christos 		return NULL;
   1673      1.46  christos 	return asctime(rtm);
   1674      1.18    kleink }
   1675      1.18    kleink 
   1676      1.18    kleink char *
   1677      1.49  christos ctime_r(const time_t *const timep, char *buf)
   1678      1.18    kleink {
   1679      1.46  christos 	struct tm	mytm, *rtm;
   1680      1.18    kleink 
   1681      1.46  christos 	rtm = localtime_r(timep, &mytm);
   1682      1.46  christos 	if (rtm == NULL)
   1683      1.46  christos 		return NULL;
   1684      1.46  christos 	return asctime_r(rtm, buf);
   1685       1.1       jtc }
   1686       1.1       jtc 
   1687      1.49  christos char *
   1688      1.49  christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1689      1.49  christos {
   1690      1.49  christos 	struct tm	mytm, *rtm;
   1691      1.49  christos 
   1692      1.49  christos 	rtm = localtime_rz(sp, timep, &mytm);
   1693      1.49  christos 	if (rtm == NULL)
   1694      1.49  christos 		return NULL;
   1695      1.49  christos 	return asctime_r(rtm, buf);
   1696      1.49  christos }
   1697      1.49  christos 
   1698       1.1       jtc /*
   1699       1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1700       1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1701       1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1702      1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1703       1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1704       1.1       jtc **	would still be very reasonable).
   1705       1.1       jtc */
   1706       1.1       jtc 
   1707       1.1       jtc #ifndef WRONG
   1708      1.51  christos #define WRONG	((time_t)-1)
   1709       1.1       jtc #endif /* !defined WRONG */
   1710       1.1       jtc 
   1711       1.1       jtc /*
   1712      1.45   mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1713       1.1       jtc */
   1714       1.1       jtc 
   1715       1.1       jtc static int
   1716      1.49  christos increment_overflow(int *number, int delta)
   1717       1.1       jtc {
   1718       1.1       jtc 	int	number0;
   1719       1.1       jtc 
   1720       1.1       jtc 	number0 = *number;
   1721      1.54  christos 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
   1722      1.54  christos 		  return 1;
   1723       1.1       jtc 	*number += delta;
   1724      1.54  christos 	return 0;
   1725       1.1       jtc }
   1726       1.1       jtc 
   1727       1.1       jtc static int
   1728      1.49  christos long_increment_overflow(long *number, int delta)
   1729      1.45   mlelstv {
   1730      1.45   mlelstv 	long	number0;
   1731      1.45   mlelstv 
   1732      1.45   mlelstv 	number0 = *number;
   1733      1.54  christos 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
   1734      1.54  christos 		  return 1;
   1735      1.45   mlelstv 	*number += delta;
   1736      1.54  christos 	return 0;
   1737      1.45   mlelstv }
   1738      1.45   mlelstv 
   1739      1.45   mlelstv static int
   1740      1.49  christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1741       1.1       jtc {
   1742      1.49  christos 	int	tensdelta;
   1743       1.1       jtc 
   1744       1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   1745       1.1       jtc 		(*unitsptr / base) :
   1746       1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   1747       1.1       jtc 	*unitsptr -= tensdelta * base;
   1748       1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   1749       1.1       jtc }
   1750       1.1       jtc 
   1751       1.1       jtc static int
   1752      1.49  christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1753      1.49  christos     const int base)
   1754      1.45   mlelstv {
   1755      1.49  christos 	int	tensdelta;
   1756      1.45   mlelstv 
   1757      1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1758      1.45   mlelstv 		(*unitsptr / base) :
   1759      1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1760      1.45   mlelstv 	*unitsptr -= tensdelta * base;
   1761      1.45   mlelstv 	return long_increment_overflow(tensptr, tensdelta);
   1762      1.45   mlelstv }
   1763      1.45   mlelstv 
   1764      1.45   mlelstv static int
   1765      1.49  christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1766       1.1       jtc {
   1767      1.49  christos 	int	result;
   1768       1.1       jtc 
   1769       1.1       jtc 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1770       1.1       jtc 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1771       1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1772       1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1773       1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1774       1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1775       1.1       jtc 	return result;
   1776       1.1       jtc }
   1777       1.1       jtc 
   1778       1.1       jtc static time_t
   1779      1.49  christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1780      1.49  christos     const long offset, int *const okayp, const int do_norm_secs)
   1781      1.49  christos {
   1782      1.49  christos 	int			dir;
   1783      1.49  christos 	int			i, j;
   1784      1.49  christos 	int			saved_seconds;
   1785      1.49  christos 	long			li;
   1786      1.49  christos 	time_t			lo;
   1787      1.49  christos 	time_t			hi;
   1788      1.45   mlelstv 	long				y;
   1789       1.1       jtc 	time_t				newt;
   1790       1.1       jtc 	time_t				t;
   1791       1.1       jtc 	struct tm			yourtm, mytm;
   1792       1.1       jtc 
   1793       1.1       jtc 	*okayp = FALSE;
   1794       1.1       jtc 	yourtm = *tmp;
   1795      1.13       jtc 	if (do_norm_secs) {
   1796      1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1797      1.13       jtc 			SECSPERMIN))
   1798      1.13       jtc 				return WRONG;
   1799      1.13       jtc 	}
   1800       1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1801       1.1       jtc 		return WRONG;
   1802       1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1803       1.1       jtc 		return WRONG;
   1804      1.45   mlelstv 	y = yourtm.tm_year;
   1805      1.45   mlelstv 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1806       1.1       jtc 		return WRONG;
   1807       1.1       jtc 	/*
   1808      1.45   mlelstv 	** Turn y into an actual year number for now.
   1809       1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1810       1.1       jtc 	*/
   1811      1.45   mlelstv 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1812       1.1       jtc 		return WRONG;
   1813       1.1       jtc 	while (yourtm.tm_mday <= 0) {
   1814      1.45   mlelstv 		if (long_increment_overflow(&y, -1))
   1815       1.1       jtc 			return WRONG;
   1816      1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1817      1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1818       1.1       jtc 	}
   1819       1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1820      1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1821      1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1822      1.45   mlelstv 		if (long_increment_overflow(&y, 1))
   1823       1.1       jtc 			return WRONG;
   1824       1.1       jtc 	}
   1825       1.1       jtc 	for ( ; ; ) {
   1826      1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1827       1.1       jtc 		if (yourtm.tm_mday <= i)
   1828       1.1       jtc 			break;
   1829       1.1       jtc 		yourtm.tm_mday -= i;
   1830       1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1831       1.1       jtc 			yourtm.tm_mon = 0;
   1832      1.45   mlelstv 			if (long_increment_overflow(&y, 1))
   1833       1.1       jtc 				return WRONG;
   1834       1.1       jtc 		}
   1835       1.1       jtc 	}
   1836      1.45   mlelstv 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1837      1.45   mlelstv 		return WRONG;
   1838      1.45   mlelstv 	yourtm.tm_year = y;
   1839      1.45   mlelstv 	if (yourtm.tm_year != y)
   1840       1.1       jtc 		return WRONG;
   1841      1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1842      1.29    kleink 		saved_seconds = 0;
   1843      1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1844       1.1       jtc 		/*
   1845       1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   1846       1.1       jtc 		** time below the minimum representable time.
   1847       1.1       jtc 		** Set tm_sec to 59 instead.
   1848       1.1       jtc 		** This assumes that the minimum representable time is
   1849       1.1       jtc 		** not in the same minute that a leap second was deleted from,
   1850       1.1       jtc 		** which is a safer assumption than using 58 would be.
   1851       1.1       jtc 		*/
   1852       1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1853       1.1       jtc 			return WRONG;
   1854       1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1855       1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1856       1.1       jtc 	} else {
   1857       1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1858       1.1       jtc 		yourtm.tm_sec = 0;
   1859       1.1       jtc 	}
   1860       1.1       jtc 	/*
   1861      1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1862       1.1       jtc 	*/
   1863      1.45   mlelstv /* LINTED constant */
   1864      1.45   mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1865      1.45   mlelstv 		lo = 0;
   1866      1.45   mlelstv 		hi = lo - 1;
   1867      1.45   mlelstv /* LINTED constant */
   1868      1.45   mlelstv 	} else if (!TYPE_INTEGRAL(time_t)) {
   1869      1.45   mlelstv /* CONSTCOND */
   1870      1.45   mlelstv 		if (sizeof(time_t) > sizeof(float))
   1871      1.45   mlelstv /* LINTED assumed double */
   1872      1.45   mlelstv 			hi = (time_t) DBL_MAX;
   1873      1.45   mlelstv /* LINTED assumed float */
   1874      1.45   mlelstv 		else	hi = (time_t) FLT_MAX;
   1875      1.45   mlelstv 		lo = -hi;
   1876      1.45   mlelstv 	} else {
   1877      1.45   mlelstv 		lo = 1;
   1878      1.45   mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1879      1.45   mlelstv 			lo *= 2;
   1880      1.45   mlelstv 		hi = -(lo + 1);
   1881      1.45   mlelstv 	}
   1882       1.1       jtc 	for ( ; ; ) {
   1883      1.45   mlelstv 		t = lo / 2 + hi / 2;
   1884      1.45   mlelstv 		if (t < lo)
   1885      1.45   mlelstv 			t = lo;
   1886      1.45   mlelstv 		else if (t > hi)
   1887      1.45   mlelstv 			t = hi;
   1888      1.49  christos 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1889      1.45   mlelstv 			/*
   1890      1.45   mlelstv 			** Assume that t is too extreme to be represented in
   1891      1.45   mlelstv 			** a struct tm; arrange things so that it is less
   1892      1.45   mlelstv 			** extreme on the next pass.
   1893      1.45   mlelstv 			*/
   1894      1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   1895      1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1896       1.1       jtc 		if (dir != 0) {
   1897      1.45   mlelstv 			if (t == lo) {
   1898      1.45   mlelstv 				++t;
   1899      1.45   mlelstv 				if (t <= lo)
   1900      1.45   mlelstv 					return WRONG;
   1901      1.45   mlelstv 				++lo;
   1902      1.45   mlelstv 			} else if (t == hi) {
   1903      1.45   mlelstv 				--t;
   1904      1.45   mlelstv 				if (t >= hi)
   1905      1.45   mlelstv 					return WRONG;
   1906      1.45   mlelstv 				--hi;
   1907      1.45   mlelstv 			}
   1908      1.45   mlelstv 			if (lo > hi)
   1909       1.1       jtc 				return WRONG;
   1910      1.45   mlelstv 			if (dir > 0)
   1911      1.45   mlelstv 				hi = t;
   1912      1.45   mlelstv 			else	lo = t;
   1913       1.1       jtc 			continue;
   1914       1.1       jtc 		}
   1915       1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1916       1.1       jtc 			break;
   1917       1.1       jtc 		/*
   1918       1.1       jtc 		** Right time, wrong type.
   1919       1.1       jtc 		** Hunt for right time, right type.
   1920       1.1       jtc 		** It's okay to guess wrong since the guess
   1921       1.1       jtc 		** gets checked.
   1922       1.1       jtc 		*/
   1923       1.1       jtc 		if (sp == NULL)
   1924       1.1       jtc 			return WRONG;
   1925       1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1926       1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1927       1.1       jtc 				continue;
   1928       1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1929       1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1930       1.1       jtc 					continue;
   1931       1.1       jtc 				newt = t + sp->ttis[j].tt_gmtoff -
   1932       1.1       jtc 					sp->ttis[i].tt_gmtoff;
   1933      1.49  christos 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1934      1.45   mlelstv 					continue;
   1935       1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   1936       1.1       jtc 					continue;
   1937       1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1938       1.1       jtc 					continue;
   1939       1.1       jtc 				/*
   1940       1.1       jtc 				** We have a match.
   1941       1.1       jtc 				*/
   1942       1.1       jtc 				t = newt;
   1943       1.1       jtc 				goto label;
   1944       1.1       jtc 			}
   1945       1.1       jtc 		}
   1946       1.1       jtc 		return WRONG;
   1947       1.1       jtc 	}
   1948       1.1       jtc label:
   1949       1.1       jtc 	newt = t + saved_seconds;
   1950       1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   1951       1.1       jtc 		return WRONG;
   1952       1.1       jtc 	t = newt;
   1953      1.51  christos 	if ((*funcp)(sp, &t, offset, tmp)) {
   1954      1.45   mlelstv 		*okayp = TRUE;
   1955      1.51  christos 		return t;
   1956      1.51  christos 	} else
   1957      1.51  christos 		return WRONG;
   1958      1.13       jtc }
   1959      1.13       jtc 
   1960      1.13       jtc static time_t
   1961      1.49  christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1962      1.49  christos     const long offset, int *const okayp)
   1963      1.13       jtc {
   1964      1.13       jtc 	time_t	t;
   1965      1.13       jtc 
   1966      1.13       jtc 	/*
   1967      1.13       jtc 	** First try without normalization of seconds
   1968      1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   1969      1.13       jtc 	** If that fails, try with normalization of seconds.
   1970      1.13       jtc 	*/
   1971      1.49  christos 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   1972      1.49  christos 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   1973       1.1       jtc }
   1974       1.1       jtc 
   1975       1.1       jtc static time_t
   1976      1.49  christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1977      1.49  christos     long offset)
   1978      1.49  christos {
   1979      1.49  christos 	time_t			t;
   1980      1.49  christos 	int			samei, otheri;
   1981      1.49  christos 	int			sameind, otherind;
   1982      1.49  christos 	int			i;
   1983      1.49  christos 	int			nseen;
   1984      1.35    kleink 	int				seen[TZ_MAX_TYPES];
   1985      1.35    kleink 	int				types[TZ_MAX_TYPES];
   1986       1.1       jtc 	int				okay;
   1987       1.1       jtc 
   1988       1.1       jtc 	if (tmp->tm_isdst > 1)
   1989       1.1       jtc 		tmp->tm_isdst = 1;
   1990      1.49  christos 	t = time2(sp, tmp, funcp, offset, &okay);
   1991       1.1       jtc #ifdef PCTS
   1992       1.1       jtc 	/*
   1993      1.45   mlelstv 	** PCTS code courtesy Grant Sullivan.
   1994       1.1       jtc 	*/
   1995       1.1       jtc 	if (okay)
   1996       1.1       jtc 		return t;
   1997       1.1       jtc 	if (tmp->tm_isdst < 0)
   1998       1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1999       1.1       jtc #endif /* defined PCTS */
   2000       1.1       jtc #ifndef PCTS
   2001       1.1       jtc 	if (okay || tmp->tm_isdst < 0)
   2002       1.1       jtc 		return t;
   2003       1.1       jtc #endif /* !defined PCTS */
   2004       1.1       jtc 	/*
   2005       1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   2006       1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   2007       1.1       jtc 	** We try to divine the type they started from and adjust to the
   2008       1.1       jtc 	** type they need.
   2009       1.1       jtc 	*/
   2010       1.1       jtc 	if (sp == NULL)
   2011       1.1       jtc 		return WRONG;
   2012      1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   2013      1.35    kleink 		seen[i] = FALSE;
   2014      1.35    kleink 	nseen = 0;
   2015      1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2016      1.35    kleink 		if (!seen[sp->types[i]]) {
   2017      1.35    kleink 			seen[sp->types[i]] = TRUE;
   2018      1.35    kleink 			types[nseen++] = sp->types[i];
   2019      1.35    kleink 		}
   2020      1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2021      1.35    kleink 		samei = types[sameind];
   2022       1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2023       1.1       jtc 			continue;
   2024      1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2025      1.35    kleink 			otheri = types[otherind];
   2026       1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2027       1.1       jtc 				continue;
   2028      1.21  christos 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2029      1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2030       1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2031      1.49  christos 			t = time2(sp, tmp, funcp, offset, &okay);
   2032       1.1       jtc 			if (okay)
   2033       1.1       jtc 				return t;
   2034      1.21  christos 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2035      1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2036       1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2037       1.1       jtc 		}
   2038       1.1       jtc 	}
   2039       1.1       jtc 	return WRONG;
   2040       1.1       jtc }
   2041       1.1       jtc 
   2042       1.1       jtc time_t
   2043      1.49  christos mktime_z(const timezone_t sp, struct tm *tmp)
   2044      1.49  christos {
   2045      1.51  christos 	time_t t;
   2046      1.49  christos 	if (sp == NULL)
   2047      1.51  christos 		t = time1(NULL, tmp, gmtsub, 0L);
   2048      1.49  christos 	else
   2049      1.51  christos 		t = time1(sp, tmp, localsub, 0L);
   2050      1.51  christos 	if (t == WRONG)
   2051      1.51  christos 		errno = EOVERFLOW;
   2052      1.51  christos 	return t;
   2053      1.49  christos }
   2054      1.49  christos 
   2055      1.49  christos time_t
   2056      1.49  christos mktime(struct tm * const	tmp)
   2057       1.1       jtc {
   2058      1.19    kleink 	time_t result;
   2059      1.19    kleink 
   2060      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2061      1.45   mlelstv 	tzset_unlocked();
   2062      1.49  christos 	result = mktime_z(lclptr, tmp);
   2063      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2064      1.49  christos 	return result;
   2065       1.1       jtc }
   2066       1.1       jtc 
   2067       1.1       jtc #ifdef STD_INSPIRED
   2068       1.1       jtc 
   2069       1.1       jtc time_t
   2070      1.49  christos timelocal_z(const timezone_t sp, struct tm *tmp)
   2071      1.49  christos {
   2072      1.49  christos 	if (tmp != NULL)
   2073      1.49  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2074      1.49  christos 	return mktime_z(sp, tmp);
   2075      1.49  christos }
   2076      1.49  christos 
   2077      1.49  christos time_t
   2078      1.49  christos timelocal(struct tm *const tmp)
   2079       1.1       jtc {
   2080       1.1       jtc 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2081       1.1       jtc 	return mktime(tmp);
   2082       1.1       jtc }
   2083       1.1       jtc 
   2084       1.1       jtc time_t
   2085      1.49  christos timegm(struct tm *const tmp)
   2086       1.1       jtc {
   2087      1.51  christos 	time_t t;
   2088      1.51  christos 
   2089       1.1       jtc 	tmp->tm_isdst = 0;
   2090      1.51  christos 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2091      1.51  christos 	if (t == WRONG)
   2092      1.51  christos 		errno = EOVERFLOW;
   2093      1.51  christos 	return t;
   2094       1.1       jtc }
   2095       1.1       jtc 
   2096       1.1       jtc time_t
   2097      1.49  christos timeoff(struct tm *const tmp, const long offset)
   2098       1.1       jtc {
   2099      1.51  christos 	time_t t;
   2100      1.51  christos 
   2101       1.1       jtc 	tmp->tm_isdst = 0;
   2102      1.51  christos 	t = time1(gmtptr, tmp, gmtsub, offset);
   2103      1.51  christos 	if (t == WRONG)
   2104      1.51  christos 		errno = EOVERFLOW;
   2105      1.51  christos 	return t;
   2106       1.1       jtc }
   2107       1.1       jtc 
   2108       1.1       jtc #endif /* defined STD_INSPIRED */
   2109       1.1       jtc 
   2110       1.1       jtc #ifdef CMUCS
   2111       1.1       jtc 
   2112       1.1       jtc /*
   2113       1.1       jtc ** The following is supplied for compatibility with
   2114       1.1       jtc ** previous versions of the CMUCS runtime library.
   2115       1.1       jtc */
   2116       1.1       jtc 
   2117       1.1       jtc long
   2118      1.49  christos gtime(struct tm *const tmp)
   2119       1.1       jtc {
   2120      1.49  christos 	const time_t t = mktime(tmp);
   2121       1.1       jtc 
   2122       1.1       jtc 	if (t == WRONG)
   2123       1.1       jtc 		return -1;
   2124       1.1       jtc 	return t;
   2125       1.1       jtc }
   2126       1.1       jtc 
   2127       1.1       jtc #endif /* defined CMUCS */
   2128       1.1       jtc 
   2129       1.1       jtc /*
   2130       1.1       jtc ** XXX--is the below the right way to conditionalize??
   2131       1.1       jtc */
   2132       1.1       jtc 
   2133       1.1       jtc #ifdef STD_INSPIRED
   2134       1.1       jtc 
   2135       1.1       jtc /*
   2136       1.1       jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2137      1.14       jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2138       1.1       jtc ** is not the case if we are accounting for leap seconds.
   2139       1.1       jtc ** So, we provide the following conversion routines for use
   2140       1.1       jtc ** when exchanging timestamps with POSIX conforming systems.
   2141       1.1       jtc */
   2142       1.1       jtc 
   2143       1.1       jtc static long
   2144      1.49  christos leapcorr(const timezone_t sp, time_t *timep)
   2145       1.1       jtc {
   2146      1.49  christos 	struct lsinfo * lp;
   2147      1.49  christos 	int		i;
   2148       1.1       jtc 
   2149       1.1       jtc 	i = sp->leapcnt;
   2150       1.1       jtc 	while (--i >= 0) {
   2151       1.1       jtc 		lp = &sp->lsis[i];
   2152       1.1       jtc 		if (*timep >= lp->ls_trans)
   2153       1.1       jtc 			return lp->ls_corr;
   2154       1.1       jtc 	}
   2155       1.1       jtc 	return 0;
   2156       1.1       jtc }
   2157       1.1       jtc 
   2158       1.1       jtc time_t
   2159      1.49  christos time2posix_z(const timezone_t sp, time_t t)
   2160      1.49  christos {
   2161      1.49  christos 	return t - leapcorr(sp, &t);
   2162      1.49  christos }
   2163      1.49  christos 
   2164      1.49  christos time_t
   2165      1.49  christos time2posix(time_t t)
   2166       1.1       jtc {
   2167      1.19    kleink 	time_t result;
   2168      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2169      1.45   mlelstv 	tzset_unlocked();
   2170      1.49  christos 	result = t - leapcorr(lclptr, &t);
   2171      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2172      1.19    kleink 	return (result);
   2173       1.1       jtc }
   2174       1.1       jtc 
   2175       1.1       jtc time_t
   2176      1.49  christos posix2time_z(const timezone_t sp, time_t t)
   2177       1.1       jtc {
   2178       1.1       jtc 	time_t	x;
   2179       1.1       jtc 	time_t	y;
   2180       1.1       jtc 
   2181       1.1       jtc 	/*
   2182       1.1       jtc 	** For a positive leap second hit, the result
   2183      1.45   mlelstv 	** is not unique. For a negative leap second
   2184       1.1       jtc 	** hit, the corresponding time doesn't exist,
   2185       1.1       jtc 	** so we return an adjacent second.
   2186       1.1       jtc 	*/
   2187      1.49  christos 	x = t + leapcorr(sp, &t);
   2188      1.49  christos 	y = x - leapcorr(sp, &x);
   2189       1.1       jtc 	if (y < t) {
   2190       1.1       jtc 		do {
   2191       1.1       jtc 			x++;
   2192      1.49  christos 			y = x - leapcorr(sp, &x);
   2193       1.1       jtc 		} while (y < t);
   2194      1.19    kleink 		if (t != y) {
   2195       1.1       jtc 			return x - 1;
   2196      1.19    kleink 		}
   2197       1.1       jtc 	} else if (y > t) {
   2198       1.1       jtc 		do {
   2199       1.1       jtc 			--x;
   2200      1.49  christos 			y = x - leapcorr(sp, &x);
   2201       1.1       jtc 		} while (y > t);
   2202      1.19    kleink 		if (t != y) {
   2203       1.1       jtc 			return x + 1;
   2204      1.19    kleink 		}
   2205       1.1       jtc 	}
   2206      1.49  christos 	return x;
   2207      1.49  christos }
   2208      1.49  christos 
   2209      1.49  christos 
   2210      1.49  christos 
   2211      1.49  christos time_t
   2212      1.49  christos posix2time(time_t t)
   2213      1.49  christos {
   2214      1.49  christos 	time_t result;
   2215      1.49  christos 
   2216      1.49  christos 	rwlock_wrlock(&lcl_lock);
   2217      1.49  christos 	tzset_unlocked();
   2218      1.49  christos 	result = posix2time_z(lclptr, t);
   2219      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2220      1.49  christos 	return result;
   2221       1.1       jtc }
   2222       1.1       jtc 
   2223       1.1       jtc #endif /* defined STD_INSPIRED */
   2224