localtime.c revision 1.57 1 1.57 christos /* $NetBSD: localtime.c,v 1.57 2011/06/16 22:40:17 christos Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.45 mlelstv ** 1996-06-05 by Arthur David Olson.
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
10 1.11 christos #if 0
11 1.45 mlelstv static char elsieid[] = "@(#)localtime.c 8.9";
12 1.11 christos #else
13 1.57 christos __RCSID("$NetBSD: localtime.c,v 1.57 2011/06/16 22:40:17 christos Exp $");
14 1.11 christos #endif
15 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
16 1.1 jtc
17 1.1 jtc /*
18 1.45 mlelstv ** Leap second handling from Bradley White.
19 1.45 mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
20 1.1 jtc */
21 1.1 jtc
22 1.1 jtc /*LINTLIBRARY*/
23 1.1 jtc
24 1.12 jtc #include "namespace.h"
25 1.1 jtc #include "private.h"
26 1.1 jtc #include "tzfile.h"
27 1.1 jtc #include "fcntl.h"
28 1.19 kleink #include "reentrant.h"
29 1.12 jtc
30 1.42 christos #if defined(__weak_alias)
31 1.25 kleink __weak_alias(daylight,_daylight)
32 1.23 mycroft __weak_alias(tzname,_tzname)
33 1.12 jtc #endif
34 1.1 jtc
35 1.45 mlelstv #include "float.h" /* for FLT_MAX and DBL_MAX */
36 1.45 mlelstv
37 1.45 mlelstv #ifndef TZ_ABBR_MAX_LEN
38 1.45 mlelstv #define TZ_ABBR_MAX_LEN 16
39 1.45 mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
40 1.45 mlelstv
41 1.45 mlelstv #ifndef TZ_ABBR_CHAR_SET
42 1.45 mlelstv #define TZ_ABBR_CHAR_SET \
43 1.45 mlelstv "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 1.45 mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
45 1.45 mlelstv
46 1.45 mlelstv #ifndef TZ_ABBR_ERR_CHAR
47 1.45 mlelstv #define TZ_ABBR_ERR_CHAR '_'
48 1.45 mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
49 1.45 mlelstv
50 1.1 jtc /*
51 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
52 1.1 jtc */
53 1.1 jtc
54 1.1 jtc #ifdef O_BINARY
55 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
56 1.1 jtc #endif /* defined O_BINARY */
57 1.1 jtc #ifndef O_BINARY
58 1.1 jtc #define OPEN_MODE O_RDONLY
59 1.1 jtc #endif /* !defined O_BINARY */
60 1.1 jtc
61 1.1 jtc #ifndef WILDABBR
62 1.1 jtc /*
63 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
64 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
65 1.1 jtc ** or implicitly).
66 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
67 1.1 jtc ** or implicitly).
68 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
69 1.1 jtc ** in which Daylight Saving Time is never observed.
70 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
71 1.1 jtc ** in which Standard Time is never observed.
72 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
73 1.1 jtc ** What's best to do in the above cases is open to debate;
74 1.1 jtc ** for now, we just set things up so that in any of the five cases
75 1.45 mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
77 1.45 mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
79 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
80 1.1 jtc */
81 1.1 jtc #define WILDABBR " "
82 1.1 jtc #endif /* !defined WILDABBR */
83 1.1 jtc
84 1.45 mlelstv static const char wildabbr[] = WILDABBR;
85 1.1 jtc
86 1.49 christos static char gmt[] = "GMT";
87 1.1 jtc
88 1.22 kleink /*
89 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 1.22 kleink ** We default to US rules as of 1999-08-17.
91 1.22 kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 1.22 kleink ** implementation dependent; for historical reasons, US rules are a
93 1.22 kleink ** common default.
94 1.22 kleink */
95 1.22 kleink #ifndef TZDEFRULESTRING
96 1.22 kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 1.22 kleink #endif /* !defined TZDEFDST */
98 1.22 kleink
99 1.1 jtc struct ttinfo { /* time type information */
100 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
101 1.1 jtc int tt_isdst; /* used to set tm_isdst */
102 1.1 jtc int tt_abbrind; /* abbreviation list index */
103 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
104 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
105 1.1 jtc };
106 1.1 jtc
107 1.1 jtc struct lsinfo { /* leap second information */
108 1.1 jtc time_t ls_trans; /* transition time */
109 1.1 jtc long ls_corr; /* correction to apply */
110 1.1 jtc };
111 1.1 jtc
112 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113 1.1 jtc
114 1.1 jtc #ifdef TZNAME_MAX
115 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
116 1.1 jtc #endif /* defined TZNAME_MAX */
117 1.1 jtc #ifndef TZNAME_MAX
118 1.1 jtc #define MY_TZNAME_MAX 255
119 1.1 jtc #endif /* !defined TZNAME_MAX */
120 1.1 jtc
121 1.49 christos struct __state {
122 1.1 jtc int leapcnt;
123 1.1 jtc int timecnt;
124 1.1 jtc int typecnt;
125 1.1 jtc int charcnt;
126 1.45 mlelstv int goback;
127 1.45 mlelstv int goahead;
128 1.45 mlelstv time_t ats[TZ_MAX_TIMES];
129 1.1 jtc unsigned char types[TZ_MAX_TIMES];
130 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
131 1.37 christos char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
132 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
133 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
134 1.1 jtc };
135 1.1 jtc
136 1.1 jtc struct rule {
137 1.1 jtc int r_type; /* type of rule--see below */
138 1.1 jtc int r_day; /* day number of rule */
139 1.1 jtc int r_week; /* week number of rule */
140 1.1 jtc int r_mon; /* month number of rule */
141 1.1 jtc long r_time; /* transition time of rule */
142 1.1 jtc };
143 1.1 jtc
144 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
145 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
146 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
147 1.1 jtc
148 1.49 christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 1.49 christos long offset, struct tm *tmp);
150 1.49 christos
151 1.1 jtc /*
152 1.1 jtc ** Prototypes for static functions.
153 1.1 jtc */
154 1.1 jtc
155 1.45 mlelstv static long detzcode(const char * codep);
156 1.45 mlelstv static time_t detzcode64(const char * codep);
157 1.45 mlelstv static int differ_by_repeat(time_t t1, time_t t0);
158 1.45 mlelstv static const char * getzname(const char * strp);
159 1.45 mlelstv static const char * getqzname(const char * strp, const int delim);
160 1.45 mlelstv static const char * getnum(const char * strp, int * nump, int min,
161 1.45 mlelstv int max);
162 1.45 mlelstv static const char * getsecs(const char * strp, long * secsp);
163 1.45 mlelstv static const char * getoffset(const char * strp, long * offsetp);
164 1.45 mlelstv static const char * getrule(const char * strp, struct rule * rulep);
165 1.49 christos static void gmtload(timezone_t sp);
166 1.49 christos static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
167 1.49 christos long offset, struct tm * tmp);
168 1.49 christos static struct tm * localsub(const timezone_t sp, const time_t *timep,
169 1.49 christos long offset, struct tm *tmp);
170 1.45 mlelstv static int increment_overflow(int * number, int delta);
171 1.45 mlelstv static int leaps_thru_end_of(int y);
172 1.45 mlelstv static int long_increment_overflow(long * number, int delta);
173 1.45 mlelstv static int long_normalize_overflow(long * tensptr,
174 1.45 mlelstv int * unitsptr, int base);
175 1.45 mlelstv static int normalize_overflow(int * tensptr, int * unitsptr,
176 1.45 mlelstv int base);
177 1.45 mlelstv static void settzname(void);
178 1.49 christos static time_t time1(const timezone_t sp, struct tm * const tmp,
179 1.49 christos subfun_t funcp, long offset);
180 1.49 christos static time_t time2(const timezone_t sp, struct tm * const tmp,
181 1.49 christos subfun_t funcp,
182 1.49 christos const long offset, int *const okayp);
183 1.49 christos static time_t time2sub(const timezone_t sp, struct tm * consttmp,
184 1.49 christos subfun_t funcp, const long offset,
185 1.49 christos int *const okayp, const int do_norm_secs);
186 1.49 christos static struct tm * timesub(const timezone_t sp, const time_t * timep,
187 1.49 christos long offset, struct tm * tmp);
188 1.45 mlelstv static int tmcomp(const struct tm * atmp,
189 1.45 mlelstv const struct tm * btmp);
190 1.45 mlelstv static time_t transtime(time_t janfirst, int year,
191 1.45 mlelstv const struct rule * rulep, long offset);
192 1.49 christos static int typesequiv(const timezone_t sp, int a, int b);
193 1.49 christos static int tzload(timezone_t sp, const char * name,
194 1.45 mlelstv int doextend);
195 1.49 christos static int tzparse(timezone_t sp, const char * name,
196 1.45 mlelstv int lastditch);
197 1.45 mlelstv static void tzset_unlocked(void);
198 1.45 mlelstv static void tzsetwall_unlocked(void);
199 1.49 christos static long leapcorr(const timezone_t sp, time_t * timep);
200 1.1 jtc
201 1.49 christos static timezone_t lclptr;
202 1.49 christos static timezone_t gmtptr;
203 1.1 jtc
204 1.1 jtc #ifndef TZ_STRLEN_MAX
205 1.1 jtc #define TZ_STRLEN_MAX 255
206 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
207 1.1 jtc
208 1.45 mlelstv static char lcl_TZname[TZ_STRLEN_MAX + 1];
209 1.45 mlelstv static int lcl_is_set;
210 1.45 mlelstv static int gmt_is_set;
211 1.42 christos
212 1.42 christos #if !defined(__LIBC12_SOURCE__)
213 1.1 jtc
214 1.16 mycroft __aconst char * tzname[2] = {
215 1.37 christos (__aconst char *)__UNCONST(wildabbr),
216 1.37 christos (__aconst char *)__UNCONST(wildabbr)
217 1.1 jtc };
218 1.1 jtc
219 1.42 christos #else
220 1.42 christos
221 1.42 christos extern __aconst char * tzname[2];
222 1.42 christos
223 1.42 christos #endif
224 1.42 christos
225 1.33 christos #ifdef _REENTRANT
226 1.45 mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 1.19 kleink #endif
228 1.19 kleink
229 1.1 jtc /*
230 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
231 1.1 jtc ** Except for the strftime function, these functions [asctime,
232 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
233 1.1 jtc ** objects: a broken-down time structure and an array of char.
234 1.45 mlelstv ** Thanks to Paul Eggert for noting this.
235 1.1 jtc */
236 1.1 jtc
237 1.1 jtc static struct tm tm;
238 1.1 jtc
239 1.1 jtc #ifdef USG_COMPAT
240 1.42 christos #if !defined(__LIBC12_SOURCE__)
241 1.42 christos long timezone = 0;
242 1.1 jtc int daylight = 0;
243 1.42 christos #else
244 1.42 christos extern int daylight;
245 1.42 christos extern long timezone __RENAME(__timezone13);
246 1.42 christos #endif
247 1.1 jtc #endif /* defined USG_COMPAT */
248 1.1 jtc
249 1.1 jtc #ifdef ALTZONE
250 1.1 jtc time_t altzone = 0;
251 1.1 jtc #endif /* defined ALTZONE */
252 1.1 jtc
253 1.1 jtc static long
254 1.49 christos detzcode(const char *const codep)
255 1.1 jtc {
256 1.49 christos long result;
257 1.49 christos int i;
258 1.45 mlelstv
259 1.45 mlelstv result = (codep[0] & 0x80) ? ~0L : 0;
260 1.45 mlelstv for (i = 0; i < 4; ++i)
261 1.45 mlelstv result = (result << 8) | (codep[i] & 0xff);
262 1.45 mlelstv return result;
263 1.45 mlelstv }
264 1.45 mlelstv
265 1.45 mlelstv static time_t
266 1.49 christos detzcode64(const char *const codep)
267 1.45 mlelstv {
268 1.49 christos time_t result;
269 1.49 christos int i;
270 1.1 jtc
271 1.45 mlelstv result = (codep[0] & 0x80) ? -1 : 0;
272 1.45 mlelstv for (i = 0; i < 8; ++i)
273 1.45 mlelstv result = result * 256 + (codep[i] & 0xff);
274 1.1 jtc return result;
275 1.1 jtc }
276 1.1 jtc
277 1.49 christos const char *
278 1.49 christos tzgetname(const timezone_t sp, int isdst)
279 1.49 christos {
280 1.49 christos int i;
281 1.49 christos for (i = 0; i < sp->timecnt; ++i) {
282 1.49 christos const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283 1.49 christos
284 1.49 christos if (ttisp->tt_isdst == isdst)
285 1.49 christos return &sp->chars[ttisp->tt_abbrind];
286 1.49 christos }
287 1.49 christos return NULL;
288 1.49 christos }
289 1.49 christos
290 1.49 christos static void
291 1.49 christos settzname_z(timezone_t sp)
292 1.49 christos {
293 1.49 christos int i;
294 1.49 christos
295 1.49 christos /*
296 1.49 christos ** Scrub the abbreviations.
297 1.49 christos ** First, replace bogus characters.
298 1.49 christos */
299 1.49 christos for (i = 0; i < sp->charcnt; ++i)
300 1.49 christos if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 1.49 christos sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 1.49 christos /*
303 1.49 christos ** Second, truncate long abbreviations.
304 1.49 christos */
305 1.49 christos for (i = 0; i < sp->typecnt; ++i) {
306 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
307 1.49 christos char * cp = &sp->chars[ttisp->tt_abbrind];
308 1.49 christos
309 1.49 christos if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 1.49 christos strcmp(cp, GRANDPARENTED) != 0)
311 1.49 christos *(cp + TZ_ABBR_MAX_LEN) = '\0';
312 1.49 christos }
313 1.49 christos }
314 1.49 christos
315 1.45 mlelstv static void
316 1.45 mlelstv settzname(void)
317 1.1 jtc {
318 1.49 christos timezone_t const sp = lclptr;
319 1.49 christos int i;
320 1.1 jtc
321 1.37 christos tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 1.37 christos tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 1.1 jtc #ifdef USG_COMPAT
324 1.1 jtc daylight = 0;
325 1.1 jtc timezone = 0;
326 1.1 jtc #endif /* defined USG_COMPAT */
327 1.1 jtc #ifdef ALTZONE
328 1.1 jtc altzone = 0;
329 1.1 jtc #endif /* defined ALTZONE */
330 1.1 jtc if (sp == NULL) {
331 1.37 christos tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 1.1 jtc return;
333 1.1 jtc }
334 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
335 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
336 1.1 jtc
337 1.1 jtc tzname[ttisp->tt_isdst] =
338 1.1 jtc &sp->chars[ttisp->tt_abbrind];
339 1.45 mlelstv #ifdef USG_COMPAT
340 1.45 mlelstv if (ttisp->tt_isdst)
341 1.45 mlelstv daylight = 1;
342 1.45 mlelstv if (i == 0 || !ttisp->tt_isdst)
343 1.45 mlelstv timezone = -(ttisp->tt_gmtoff);
344 1.45 mlelstv #endif /* defined USG_COMPAT */
345 1.45 mlelstv #ifdef ALTZONE
346 1.45 mlelstv if (i == 0 || ttisp->tt_isdst)
347 1.45 mlelstv altzone = -(ttisp->tt_gmtoff);
348 1.45 mlelstv #endif /* defined ALTZONE */
349 1.1 jtc }
350 1.1 jtc /*
351 1.1 jtc ** And to get the latest zone names into tzname. . .
352 1.1 jtc */
353 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
354 1.1 jtc register const struct ttinfo * const ttisp =
355 1.1 jtc &sp->ttis[
356 1.1 jtc sp->types[i]];
357 1.1 jtc
358 1.1 jtc tzname[ttisp->tt_isdst] =
359 1.1 jtc &sp->chars[ttisp->tt_abbrind];
360 1.45 mlelstv }
361 1.49 christos settzname_z(sp);
362 1.1 jtc }
363 1.1 jtc
364 1.45 mlelstv static int
365 1.49 christos differ_by_repeat(const time_t t1, const time_t t0)
366 1.45 mlelstv {
367 1.45 mlelstv /* CONSTCOND */
368 1.45 mlelstv if (TYPE_INTEGRAL(time_t) &&
369 1.45 mlelstv TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
370 1.45 mlelstv return 0;
371 1.45 mlelstv return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
372 1.45 mlelstv }
373 1.45 mlelstv
374 1.45 mlelstv static int
375 1.49 christos tzload(timezone_t sp, const char *name, const int doextend)
376 1.49 christos {
377 1.49 christos const char * p;
378 1.49 christos int i;
379 1.49 christos int fid;
380 1.49 christos int stored;
381 1.49 christos int nread;
382 1.45 mlelstv union {
383 1.45 mlelstv struct tzhead tzhead;
384 1.45 mlelstv char buf[2 * sizeof(struct tzhead) +
385 1.45 mlelstv 2 * sizeof *sp +
386 1.45 mlelstv 4 * TZ_MAX_TIMES];
387 1.45 mlelstv } u;
388 1.1 jtc
389 1.47 christos sp->goback = sp->goahead = FALSE;
390 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
391 1.1 jtc return -1;
392 1.1 jtc {
393 1.49 christos int doaccess;
394 1.1 jtc /*
395 1.1 jtc ** Section 4.9.1 of the C standard says that
396 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
397 1.10 jtc ** that is the size needed for an array of char large enough
398 1.1 jtc ** to hold the longest file name string that the implementation
399 1.1 jtc ** guarantees can be opened."
400 1.1 jtc */
401 1.1 jtc char fullname[FILENAME_MAX + 1];
402 1.1 jtc
403 1.1 jtc if (name[0] == ':')
404 1.1 jtc ++name;
405 1.1 jtc doaccess = name[0] == '/';
406 1.1 jtc if (!doaccess) {
407 1.1 jtc if ((p = TZDIR) == NULL)
408 1.1 jtc return -1;
409 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
410 1.1 jtc return -1;
411 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
412 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
413 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
414 1.1 jtc /*
415 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
416 1.1 jtc */
417 1.1 jtc if (strchr(name, '.') != NULL)
418 1.1 jtc doaccess = TRUE;
419 1.1 jtc name = fullname;
420 1.1 jtc }
421 1.1 jtc if (doaccess && access(name, R_OK) != 0)
422 1.1 jtc return -1;
423 1.9 mrg /*
424 1.9 mrg * XXX potential security problem here if user of a set-id
425 1.9 mrg * program has set TZ (which is passed in as name) here,
426 1.9 mrg * and uses a race condition trick to defeat the access(2)
427 1.9 mrg * above.
428 1.9 mrg */
429 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
430 1.1 jtc return -1;
431 1.1 jtc }
432 1.45 mlelstv nread = read(fid, u.buf, sizeof u.buf);
433 1.45 mlelstv if (close(fid) < 0 || nread <= 0)
434 1.45 mlelstv return -1;
435 1.45 mlelstv for (stored = 4; stored <= 8; stored *= 2) {
436 1.1 jtc int ttisstdcnt;
437 1.1 jtc int ttisgmtcnt;
438 1.1 jtc
439 1.34 kleink ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
440 1.34 kleink ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
441 1.14 jtc sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
442 1.14 jtc sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
443 1.14 jtc sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
444 1.14 jtc sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
445 1.14 jtc p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
446 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
447 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
448 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
449 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
450 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
451 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
452 1.1 jtc return -1;
453 1.45 mlelstv if (nread - (p - u.buf) <
454 1.45 mlelstv sp->timecnt * stored + /* ats */
455 1.1 jtc sp->timecnt + /* types */
456 1.45 mlelstv sp->typecnt * 6 + /* ttinfos */
457 1.1 jtc sp->charcnt + /* chars */
458 1.45 mlelstv sp->leapcnt * (stored + 4) + /* lsinfos */
459 1.1 jtc ttisstdcnt + /* ttisstds */
460 1.1 jtc ttisgmtcnt) /* ttisgmts */
461 1.1 jtc return -1;
462 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
463 1.45 mlelstv sp->ats[i] = (stored == 4) ?
464 1.45 mlelstv detzcode(p) : detzcode64(p);
465 1.45 mlelstv p += stored;
466 1.1 jtc }
467 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
468 1.1 jtc sp->types[i] = (unsigned char) *p++;
469 1.1 jtc if (sp->types[i] >= sp->typecnt)
470 1.1 jtc return -1;
471 1.1 jtc }
472 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
473 1.49 christos struct ttinfo * ttisp;
474 1.1 jtc
475 1.1 jtc ttisp = &sp->ttis[i];
476 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
477 1.1 jtc p += 4;
478 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
479 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
480 1.1 jtc return -1;
481 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
482 1.1 jtc if (ttisp->tt_abbrind < 0 ||
483 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
484 1.1 jtc return -1;
485 1.1 jtc }
486 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
487 1.1 jtc sp->chars[i] = *p++;
488 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
489 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
490 1.49 christos struct lsinfo * lsisp;
491 1.1 jtc
492 1.1 jtc lsisp = &sp->lsis[i];
493 1.45 mlelstv lsisp->ls_trans = (stored == 4) ?
494 1.45 mlelstv detzcode(p) : detzcode64(p);
495 1.45 mlelstv p += stored;
496 1.1 jtc lsisp->ls_corr = detzcode(p);
497 1.1 jtc p += 4;
498 1.1 jtc }
499 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
500 1.49 christos struct ttinfo * ttisp;
501 1.1 jtc
502 1.1 jtc ttisp = &sp->ttis[i];
503 1.1 jtc if (ttisstdcnt == 0)
504 1.1 jtc ttisp->tt_ttisstd = FALSE;
505 1.1 jtc else {
506 1.1 jtc ttisp->tt_ttisstd = *p++;
507 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
508 1.1 jtc ttisp->tt_ttisstd != FALSE)
509 1.1 jtc return -1;
510 1.1 jtc }
511 1.1 jtc }
512 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
513 1.49 christos struct ttinfo * ttisp;
514 1.1 jtc
515 1.1 jtc ttisp = &sp->ttis[i];
516 1.1 jtc if (ttisgmtcnt == 0)
517 1.1 jtc ttisp->tt_ttisgmt = FALSE;
518 1.1 jtc else {
519 1.1 jtc ttisp->tt_ttisgmt = *p++;
520 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
521 1.1 jtc ttisp->tt_ttisgmt != FALSE)
522 1.1 jtc return -1;
523 1.1 jtc }
524 1.1 jtc }
525 1.45 mlelstv /*
526 1.45 mlelstv ** Out-of-sort ats should mean we're running on a
527 1.45 mlelstv ** signed time_t system but using a data file with
528 1.45 mlelstv ** unsigned values (or vice versa).
529 1.45 mlelstv */
530 1.45 mlelstv for (i = 0; i < sp->timecnt - 2; ++i)
531 1.45 mlelstv if (sp->ats[i] > sp->ats[i + 1]) {
532 1.45 mlelstv ++i;
533 1.45 mlelstv /* CONSTCOND */
534 1.45 mlelstv if (TYPE_SIGNED(time_t)) {
535 1.45 mlelstv /*
536 1.45 mlelstv ** Ignore the end (easy).
537 1.45 mlelstv */
538 1.45 mlelstv sp->timecnt = i;
539 1.45 mlelstv } else {
540 1.45 mlelstv /*
541 1.45 mlelstv ** Ignore the beginning (harder).
542 1.45 mlelstv */
543 1.49 christos int j;
544 1.45 mlelstv
545 1.45 mlelstv for (j = 0; j + i < sp->timecnt; ++j) {
546 1.45 mlelstv sp->ats[j] = sp->ats[j + i];
547 1.45 mlelstv sp->types[j] = sp->types[j + i];
548 1.45 mlelstv }
549 1.45 mlelstv sp->timecnt = j;
550 1.45 mlelstv }
551 1.45 mlelstv break;
552 1.45 mlelstv }
553 1.45 mlelstv /*
554 1.45 mlelstv ** If this is an old file, we're done.
555 1.45 mlelstv */
556 1.45 mlelstv if (u.tzhead.tzh_version[0] == '\0')
557 1.45 mlelstv break;
558 1.45 mlelstv nread -= p - u.buf;
559 1.45 mlelstv for (i = 0; i < nread; ++i)
560 1.45 mlelstv u.buf[i] = p[i];
561 1.45 mlelstv /*
562 1.45 mlelstv ** If this is a narrow integer time_t system, we're done.
563 1.45 mlelstv */
564 1.45 mlelstv if (stored >= (int) sizeof(time_t)
565 1.45 mlelstv /* CONSTCOND */
566 1.45 mlelstv && TYPE_INTEGRAL(time_t))
567 1.45 mlelstv break;
568 1.45 mlelstv }
569 1.45 mlelstv if (doextend && nread > 2 &&
570 1.45 mlelstv u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
571 1.45 mlelstv sp->typecnt + 2 <= TZ_MAX_TYPES) {
572 1.49 christos struct __state ts;
573 1.49 christos int result;
574 1.45 mlelstv
575 1.45 mlelstv u.buf[nread - 1] = '\0';
576 1.49 christos result = tzparse(&ts, &u.buf[1], FALSE);
577 1.45 mlelstv if (result == 0 && ts.typecnt == 2 &&
578 1.45 mlelstv sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
579 1.45 mlelstv for (i = 0; i < 2; ++i)
580 1.45 mlelstv ts.ttis[i].tt_abbrind +=
581 1.45 mlelstv sp->charcnt;
582 1.45 mlelstv for (i = 0; i < ts.charcnt; ++i)
583 1.45 mlelstv sp->chars[sp->charcnt++] =
584 1.45 mlelstv ts.chars[i];
585 1.45 mlelstv i = 0;
586 1.45 mlelstv while (i < ts.timecnt &&
587 1.45 mlelstv ts.ats[i] <=
588 1.45 mlelstv sp->ats[sp->timecnt - 1])
589 1.45 mlelstv ++i;
590 1.45 mlelstv while (i < ts.timecnt &&
591 1.45 mlelstv sp->timecnt < TZ_MAX_TIMES) {
592 1.45 mlelstv sp->ats[sp->timecnt] =
593 1.45 mlelstv ts.ats[i];
594 1.45 mlelstv sp->types[sp->timecnt] =
595 1.45 mlelstv sp->typecnt +
596 1.45 mlelstv ts.types[i];
597 1.45 mlelstv ++sp->timecnt;
598 1.45 mlelstv ++i;
599 1.45 mlelstv }
600 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[0];
601 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[1];
602 1.45 mlelstv }
603 1.45 mlelstv }
604 1.45 mlelstv if (sp->timecnt > 1) {
605 1.45 mlelstv for (i = 1; i < sp->timecnt; ++i)
606 1.45 mlelstv if (typesequiv(sp, sp->types[i], sp->types[0]) &&
607 1.45 mlelstv differ_by_repeat(sp->ats[i], sp->ats[0])) {
608 1.45 mlelstv sp->goback = TRUE;
609 1.45 mlelstv break;
610 1.45 mlelstv }
611 1.45 mlelstv for (i = sp->timecnt - 2; i >= 0; --i)
612 1.45 mlelstv if (typesequiv(sp, sp->types[sp->timecnt - 1],
613 1.45 mlelstv sp->types[i]) &&
614 1.45 mlelstv differ_by_repeat(sp->ats[sp->timecnt - 1],
615 1.45 mlelstv sp->ats[i])) {
616 1.45 mlelstv sp->goahead = TRUE;
617 1.45 mlelstv break;
618 1.45 mlelstv }
619 1.1 jtc }
620 1.1 jtc return 0;
621 1.1 jtc }
622 1.1 jtc
623 1.45 mlelstv static int
624 1.49 christos typesequiv(const timezone_t sp, const int a, const int b)
625 1.45 mlelstv {
626 1.49 christos int result;
627 1.45 mlelstv
628 1.45 mlelstv if (sp == NULL ||
629 1.45 mlelstv a < 0 || a >= sp->typecnt ||
630 1.45 mlelstv b < 0 || b >= sp->typecnt)
631 1.45 mlelstv result = FALSE;
632 1.45 mlelstv else {
633 1.49 christos const struct ttinfo * ap = &sp->ttis[a];
634 1.49 christos const struct ttinfo * bp = &sp->ttis[b];
635 1.45 mlelstv result = ap->tt_gmtoff == bp->tt_gmtoff &&
636 1.45 mlelstv ap->tt_isdst == bp->tt_isdst &&
637 1.45 mlelstv ap->tt_ttisstd == bp->tt_ttisstd &&
638 1.45 mlelstv ap->tt_ttisgmt == bp->tt_ttisgmt &&
639 1.45 mlelstv strcmp(&sp->chars[ap->tt_abbrind],
640 1.45 mlelstv &sp->chars[bp->tt_abbrind]) == 0;
641 1.45 mlelstv }
642 1.45 mlelstv return result;
643 1.45 mlelstv }
644 1.45 mlelstv
645 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
646 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
647 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
648 1.1 jtc };
649 1.1 jtc
650 1.1 jtc static const int year_lengths[2] = {
651 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
652 1.1 jtc };
653 1.1 jtc
654 1.1 jtc /*
655 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
656 1.45 mlelstv ** a valid character in a zone name is found. Return a pointer to that
657 1.1 jtc ** character.
658 1.1 jtc */
659 1.1 jtc
660 1.1 jtc static const char *
661 1.45 mlelstv getzname(strp)
662 1.49 christos const char * strp;
663 1.1 jtc {
664 1.49 christos char c;
665 1.1 jtc
666 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
667 1.1 jtc c != '+')
668 1.1 jtc ++strp;
669 1.1 jtc return strp;
670 1.1 jtc }
671 1.1 jtc
672 1.1 jtc /*
673 1.45 mlelstv ** Given a pointer into an extended time zone string, scan until the ending
674 1.45 mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
675 1.45 mlelstv **
676 1.45 mlelstv ** As with getzname above, the legal character set is actually quite
677 1.45 mlelstv ** restricted, with other characters producing undefined results.
678 1.45 mlelstv ** We don't do any checking here; checking is done later in common-case code.
679 1.45 mlelstv */
680 1.45 mlelstv
681 1.45 mlelstv static const char *
682 1.49 christos getqzname(const char *strp, const int delim)
683 1.45 mlelstv {
684 1.49 christos int c;
685 1.45 mlelstv
686 1.45 mlelstv while ((c = *strp) != '\0' && c != delim)
687 1.45 mlelstv ++strp;
688 1.45 mlelstv return strp;
689 1.45 mlelstv }
690 1.45 mlelstv
691 1.45 mlelstv /*
692 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
693 1.1 jtc ** Check that the number is within a specified range; if it is not, return
694 1.1 jtc ** NULL.
695 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
696 1.1 jtc */
697 1.1 jtc
698 1.1 jtc static const char *
699 1.1 jtc getnum(strp, nump, min, max)
700 1.49 christos const char * strp;
701 1.1 jtc int * const nump;
702 1.1 jtc const int min;
703 1.1 jtc const int max;
704 1.1 jtc {
705 1.49 christos char c;
706 1.49 christos int num;
707 1.1 jtc
708 1.46 christos if (strp == NULL || !is_digit(c = *strp)) {
709 1.46 christos errno = EINVAL;
710 1.1 jtc return NULL;
711 1.46 christos }
712 1.1 jtc num = 0;
713 1.5 jtc do {
714 1.1 jtc num = num * 10 + (c - '0');
715 1.46 christos if (num > max) {
716 1.46 christos errno = EOVERFLOW;
717 1.1 jtc return NULL; /* illegal value */
718 1.46 christos }
719 1.5 jtc c = *++strp;
720 1.5 jtc } while (is_digit(c));
721 1.46 christos if (num < min) {
722 1.46 christos errno = EINVAL;
723 1.1 jtc return NULL; /* illegal value */
724 1.46 christos }
725 1.1 jtc *nump = num;
726 1.1 jtc return strp;
727 1.1 jtc }
728 1.1 jtc
729 1.1 jtc /*
730 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
731 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
732 1.1 jtc ** If any error occurs, return NULL.
733 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
734 1.1 jtc ** of seconds.
735 1.1 jtc */
736 1.1 jtc
737 1.1 jtc static const char *
738 1.49 christos getsecs(const char *strp, long *const secsp)
739 1.1 jtc {
740 1.1 jtc int num;
741 1.1 jtc
742 1.1 jtc /*
743 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
744 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
745 1.1 jtc ** but which specifies the equivalent of
746 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
747 1.1 jtc */
748 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
749 1.1 jtc if (strp == NULL)
750 1.1 jtc return NULL;
751 1.1 jtc *secsp = num * (long) SECSPERHOUR;
752 1.1 jtc if (*strp == ':') {
753 1.1 jtc ++strp;
754 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
755 1.1 jtc if (strp == NULL)
756 1.1 jtc return NULL;
757 1.1 jtc *secsp += num * SECSPERMIN;
758 1.1 jtc if (*strp == ':') {
759 1.1 jtc ++strp;
760 1.45 mlelstv /* `SECSPERMIN' allows for leap seconds. */
761 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
762 1.1 jtc if (strp == NULL)
763 1.1 jtc return NULL;
764 1.1 jtc *secsp += num;
765 1.1 jtc }
766 1.1 jtc }
767 1.1 jtc return strp;
768 1.1 jtc }
769 1.1 jtc
770 1.1 jtc /*
771 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
772 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
773 1.1 jtc ** If any error occurs, return NULL.
774 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
775 1.1 jtc */
776 1.1 jtc
777 1.1 jtc static const char *
778 1.49 christos getoffset(const char *strp, long *const offsetp)
779 1.1 jtc {
780 1.49 christos int neg = 0;
781 1.1 jtc
782 1.1 jtc if (*strp == '-') {
783 1.1 jtc neg = 1;
784 1.1 jtc ++strp;
785 1.5 jtc } else if (*strp == '+')
786 1.5 jtc ++strp;
787 1.1 jtc strp = getsecs(strp, offsetp);
788 1.1 jtc if (strp == NULL)
789 1.1 jtc return NULL; /* illegal time */
790 1.1 jtc if (neg)
791 1.1 jtc *offsetp = -*offsetp;
792 1.1 jtc return strp;
793 1.1 jtc }
794 1.1 jtc
795 1.1 jtc /*
796 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
797 1.45 mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
798 1.1 jtc ** If a valid rule is not found, return NULL.
799 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
800 1.1 jtc */
801 1.1 jtc
802 1.1 jtc static const char *
803 1.49 christos getrule(const char *strp, struct rule *const rulep)
804 1.1 jtc {
805 1.1 jtc if (*strp == 'J') {
806 1.1 jtc /*
807 1.1 jtc ** Julian day.
808 1.1 jtc */
809 1.1 jtc rulep->r_type = JULIAN_DAY;
810 1.1 jtc ++strp;
811 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
812 1.1 jtc } else if (*strp == 'M') {
813 1.1 jtc /*
814 1.1 jtc ** Month, week, day.
815 1.1 jtc */
816 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
817 1.1 jtc ++strp;
818 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
819 1.1 jtc if (strp == NULL)
820 1.1 jtc return NULL;
821 1.1 jtc if (*strp++ != '.')
822 1.1 jtc return NULL;
823 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
824 1.1 jtc if (strp == NULL)
825 1.1 jtc return NULL;
826 1.1 jtc if (*strp++ != '.')
827 1.1 jtc return NULL;
828 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
829 1.5 jtc } else if (is_digit(*strp)) {
830 1.1 jtc /*
831 1.1 jtc ** Day of year.
832 1.1 jtc */
833 1.1 jtc rulep->r_type = DAY_OF_YEAR;
834 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
835 1.1 jtc } else return NULL; /* invalid format */
836 1.1 jtc if (strp == NULL)
837 1.1 jtc return NULL;
838 1.1 jtc if (*strp == '/') {
839 1.1 jtc /*
840 1.1 jtc ** Time specified.
841 1.1 jtc */
842 1.1 jtc ++strp;
843 1.1 jtc strp = getsecs(strp, &rulep->r_time);
844 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
845 1.1 jtc return strp;
846 1.1 jtc }
847 1.1 jtc
848 1.1 jtc /*
849 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
850 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
851 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
852 1.1 jtc */
853 1.1 jtc
854 1.1 jtc static time_t
855 1.49 christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
856 1.49 christos const long offset)
857 1.49 christos {
858 1.49 christos int leapyear;
859 1.49 christos time_t value;
860 1.49 christos int i;
861 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
862 1.1 jtc
863 1.1 jtc INITIALIZE(value);
864 1.1 jtc leapyear = isleap(year);
865 1.1 jtc switch (rulep->r_type) {
866 1.1 jtc
867 1.1 jtc case JULIAN_DAY:
868 1.1 jtc /*
869 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
870 1.1 jtc ** years.
871 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
872 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
873 1.1 jtc ** January 1, midnight, to get the day.
874 1.1 jtc */
875 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
876 1.1 jtc if (leapyear && rulep->r_day >= 60)
877 1.1 jtc value += SECSPERDAY;
878 1.1 jtc break;
879 1.1 jtc
880 1.1 jtc case DAY_OF_YEAR:
881 1.1 jtc /*
882 1.1 jtc ** n - day of year.
883 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
884 1.1 jtc ** January 1, midnight, to get the day.
885 1.1 jtc */
886 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
887 1.1 jtc break;
888 1.1 jtc
889 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
890 1.1 jtc /*
891 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
892 1.1 jtc */
893 1.1 jtc value = janfirst;
894 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
895 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
896 1.1 jtc
897 1.1 jtc /*
898 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
899 1.1 jtc ** month.
900 1.1 jtc */
901 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
902 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
903 1.1 jtc yy1 = yy0 / 100;
904 1.1 jtc yy2 = yy0 % 100;
905 1.1 jtc dow = ((26 * m1 - 2) / 10 +
906 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
907 1.1 jtc if (dow < 0)
908 1.1 jtc dow += DAYSPERWEEK;
909 1.1 jtc
910 1.1 jtc /*
911 1.45 mlelstv ** "dow" is the day-of-week of the first day of the month. Get
912 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
913 1.1 jtc ** month.
914 1.1 jtc */
915 1.1 jtc d = rulep->r_day - dow;
916 1.1 jtc if (d < 0)
917 1.1 jtc d += DAYSPERWEEK;
918 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
919 1.1 jtc if (d + DAYSPERWEEK >=
920 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
921 1.1 jtc break;
922 1.1 jtc d += DAYSPERWEEK;
923 1.1 jtc }
924 1.1 jtc
925 1.1 jtc /*
926 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
927 1.1 jtc */
928 1.1 jtc value += d * SECSPERDAY;
929 1.1 jtc break;
930 1.1 jtc }
931 1.1 jtc
932 1.1 jtc /*
933 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
934 1.45 mlelstv ** question. To get the Epoch-relative time of the specified local
935 1.1 jtc ** time on that day, add the transition time and the current offset
936 1.14 jtc ** from UTC.
937 1.1 jtc */
938 1.1 jtc return value + rulep->r_time + offset;
939 1.1 jtc }
940 1.1 jtc
941 1.1 jtc /*
942 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
943 1.1 jtc ** appropriate.
944 1.1 jtc */
945 1.1 jtc
946 1.1 jtc static int
947 1.49 christos tzparse(timezone_t sp, const char *name, const int lastditch)
948 1.1 jtc {
949 1.1 jtc const char * stdname;
950 1.1 jtc const char * dstname;
951 1.1 jtc size_t stdlen;
952 1.1 jtc size_t dstlen;
953 1.1 jtc long stdoffset;
954 1.1 jtc long dstoffset;
955 1.49 christos time_t * atp;
956 1.49 christos unsigned char * typep;
957 1.49 christos char * cp;
958 1.49 christos int load_result;
959 1.1 jtc
960 1.1 jtc INITIALIZE(dstname);
961 1.1 jtc stdname = name;
962 1.1 jtc if (lastditch) {
963 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
964 1.1 jtc name += stdlen;
965 1.1 jtc if (stdlen >= sizeof sp->chars)
966 1.1 jtc stdlen = (sizeof sp->chars) - 1;
967 1.10 jtc stdoffset = 0;
968 1.1 jtc } else {
969 1.45 mlelstv if (*name == '<') {
970 1.45 mlelstv name++;
971 1.45 mlelstv stdname = name;
972 1.45 mlelstv name = getqzname(name, '>');
973 1.45 mlelstv if (*name != '>')
974 1.45 mlelstv return (-1);
975 1.45 mlelstv stdlen = name - stdname;
976 1.45 mlelstv name++;
977 1.45 mlelstv } else {
978 1.45 mlelstv name = getzname(name);
979 1.45 mlelstv stdlen = name - stdname;
980 1.45 mlelstv }
981 1.10 jtc if (*name == '\0')
982 1.10 jtc return -1;
983 1.45 mlelstv name = getoffset(name, &stdoffset);
984 1.1 jtc if (name == NULL)
985 1.1 jtc return -1;
986 1.1 jtc }
987 1.49 christos load_result = tzload(sp, TZDEFRULES, FALSE);
988 1.1 jtc if (load_result != 0)
989 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
990 1.1 jtc if (*name != '\0') {
991 1.45 mlelstv if (*name == '<') {
992 1.45 mlelstv dstname = ++name;
993 1.45 mlelstv name = getqzname(name, '>');
994 1.45 mlelstv if (*name != '>')
995 1.45 mlelstv return -1;
996 1.45 mlelstv dstlen = name - dstname;
997 1.45 mlelstv name++;
998 1.45 mlelstv } else {
999 1.45 mlelstv dstname = name;
1000 1.45 mlelstv name = getzname(name);
1001 1.45 mlelstv dstlen = name - dstname; /* length of DST zone name */
1002 1.45 mlelstv }
1003 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
1004 1.45 mlelstv name = getoffset(name, &dstoffset);
1005 1.1 jtc if (name == NULL)
1006 1.1 jtc return -1;
1007 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
1008 1.22 kleink if (*name == '\0' && load_result != 0)
1009 1.22 kleink name = TZDEFRULESTRING;
1010 1.1 jtc if (*name == ',' || *name == ';') {
1011 1.1 jtc struct rule start;
1012 1.1 jtc struct rule end;
1013 1.49 christos int year;
1014 1.49 christos time_t janfirst;
1015 1.1 jtc time_t starttime;
1016 1.1 jtc time_t endtime;
1017 1.1 jtc
1018 1.1 jtc ++name;
1019 1.45 mlelstv if ((name = getrule(name, &start)) == NULL)
1020 1.1 jtc return -1;
1021 1.1 jtc if (*name++ != ',')
1022 1.1 jtc return -1;
1023 1.45 mlelstv if ((name = getrule(name, &end)) == NULL)
1024 1.1 jtc return -1;
1025 1.1 jtc if (*name != '\0')
1026 1.1 jtc return -1;
1027 1.1 jtc sp->typecnt = 2; /* standard time and DST */
1028 1.1 jtc /*
1029 1.45 mlelstv ** Two transitions per year, from EPOCH_YEAR forward.
1030 1.1 jtc */
1031 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
1032 1.1 jtc sp->ttis[0].tt_isdst = 1;
1033 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
1034 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
1035 1.1 jtc sp->ttis[1].tt_isdst = 0;
1036 1.1 jtc sp->ttis[1].tt_abbrind = 0;
1037 1.1 jtc atp = sp->ats;
1038 1.1 jtc typep = sp->types;
1039 1.1 jtc janfirst = 0;
1040 1.45 mlelstv sp->timecnt = 0;
1041 1.45 mlelstv for (year = EPOCH_YEAR;
1042 1.45 mlelstv sp->timecnt + 2 <= TZ_MAX_TIMES;
1043 1.45 mlelstv ++year) {
1044 1.45 mlelstv time_t newfirst;
1045 1.45 mlelstv
1046 1.45 mlelstv starttime = transtime(janfirst, year, &start,
1047 1.1 jtc stdoffset);
1048 1.45 mlelstv endtime = transtime(janfirst, year, &end,
1049 1.1 jtc dstoffset);
1050 1.1 jtc if (starttime > endtime) {
1051 1.1 jtc *atp++ = endtime;
1052 1.1 jtc *typep++ = 1; /* DST ends */
1053 1.1 jtc *atp++ = starttime;
1054 1.1 jtc *typep++ = 0; /* DST begins */
1055 1.1 jtc } else {
1056 1.1 jtc *atp++ = starttime;
1057 1.1 jtc *typep++ = 0; /* DST begins */
1058 1.1 jtc *atp++ = endtime;
1059 1.1 jtc *typep++ = 1; /* DST ends */
1060 1.1 jtc }
1061 1.45 mlelstv sp->timecnt += 2;
1062 1.45 mlelstv newfirst = janfirst;
1063 1.45 mlelstv newfirst += year_lengths[isleap(year)] *
1064 1.1 jtc SECSPERDAY;
1065 1.45 mlelstv if (newfirst <= janfirst)
1066 1.45 mlelstv break;
1067 1.45 mlelstv janfirst = newfirst;
1068 1.1 jtc }
1069 1.1 jtc } else {
1070 1.49 christos long theirstdoffset;
1071 1.49 christos long theirdstoffset;
1072 1.49 christos long theiroffset;
1073 1.49 christos int isdst;
1074 1.49 christos int i;
1075 1.49 christos int j;
1076 1.1 jtc
1077 1.1 jtc if (*name != '\0')
1078 1.1 jtc return -1;
1079 1.1 jtc /*
1080 1.39 christos ** Initial values of theirstdoffset
1081 1.1 jtc */
1082 1.1 jtc theirstdoffset = 0;
1083 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1084 1.1 jtc j = sp->types[i];
1085 1.1 jtc if (!sp->ttis[j].tt_isdst) {
1086 1.5 jtc theirstdoffset =
1087 1.5 jtc -sp->ttis[j].tt_gmtoff;
1088 1.1 jtc break;
1089 1.1 jtc }
1090 1.1 jtc }
1091 1.45 mlelstv theirdstoffset = 0;
1092 1.45 mlelstv for (i = 0; i < sp->timecnt; ++i) {
1093 1.45 mlelstv j = sp->types[i];
1094 1.45 mlelstv if (sp->ttis[j].tt_isdst) {
1095 1.45 mlelstv theirdstoffset =
1096 1.45 mlelstv -sp->ttis[j].tt_gmtoff;
1097 1.45 mlelstv break;
1098 1.45 mlelstv }
1099 1.45 mlelstv }
1100 1.1 jtc /*
1101 1.1 jtc ** Initially we're assumed to be in standard time.
1102 1.1 jtc */
1103 1.45 mlelstv isdst = FALSE;
1104 1.1 jtc theiroffset = theirstdoffset;
1105 1.1 jtc /*
1106 1.1 jtc ** Now juggle transition times and types
1107 1.1 jtc ** tracking offsets as you do.
1108 1.1 jtc */
1109 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1110 1.1 jtc j = sp->types[i];
1111 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
1112 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
1113 1.1 jtc /* No adjustment to transition time */
1114 1.1 jtc } else {
1115 1.1 jtc /*
1116 1.1 jtc ** If summer time is in effect, and the
1117 1.1 jtc ** transition time was not specified as
1118 1.1 jtc ** standard time, add the summer time
1119 1.1 jtc ** offset to the transition time;
1120 1.1 jtc ** otherwise, add the standard time
1121 1.1 jtc ** offset to the transition time.
1122 1.1 jtc */
1123 1.1 jtc /*
1124 1.1 jtc ** Transitions from DST to DDST
1125 1.1 jtc ** will effectively disappear since
1126 1.1 jtc ** POSIX provides for only one DST
1127 1.1 jtc ** offset.
1128 1.1 jtc */
1129 1.45 mlelstv if (isdst && !sp->ttis[j].tt_ttisstd) {
1130 1.45 mlelstv sp->ats[i] += dstoffset -
1131 1.45 mlelstv theirdstoffset;
1132 1.45 mlelstv } else {
1133 1.45 mlelstv sp->ats[i] += stdoffset -
1134 1.45 mlelstv theirstdoffset;
1135 1.45 mlelstv }
1136 1.1 jtc }
1137 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
1138 1.39 christos if (!sp->ttis[j].tt_isdst)
1139 1.39 christos theirstdoffset = theiroffset;
1140 1.45 mlelstv else theirdstoffset = theiroffset;
1141 1.1 jtc }
1142 1.1 jtc /*
1143 1.1 jtc ** Finally, fill in ttis.
1144 1.1 jtc ** ttisstd and ttisgmt need not be handled.
1145 1.1 jtc */
1146 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1147 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
1148 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1149 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
1150 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
1151 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
1152 1.7 jtc sp->typecnt = 2;
1153 1.1 jtc }
1154 1.1 jtc } else {
1155 1.1 jtc dstlen = 0;
1156 1.1 jtc sp->typecnt = 1; /* only standard time */
1157 1.1 jtc sp->timecnt = 0;
1158 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1159 1.1 jtc sp->ttis[0].tt_isdst = 0;
1160 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1161 1.1 jtc }
1162 1.1 jtc sp->charcnt = stdlen + 1;
1163 1.1 jtc if (dstlen != 0)
1164 1.1 jtc sp->charcnt += dstlen + 1;
1165 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
1166 1.1 jtc return -1;
1167 1.1 jtc cp = sp->chars;
1168 1.1 jtc (void) strncpy(cp, stdname, stdlen);
1169 1.1 jtc cp += stdlen;
1170 1.1 jtc *cp++ = '\0';
1171 1.1 jtc if (dstlen != 0) {
1172 1.1 jtc (void) strncpy(cp, dstname, dstlen);
1173 1.1 jtc *(cp + dstlen) = '\0';
1174 1.1 jtc }
1175 1.1 jtc return 0;
1176 1.1 jtc }
1177 1.1 jtc
1178 1.1 jtc static void
1179 1.49 christos gmtload(timezone_t sp)
1180 1.49 christos {
1181 1.49 christos if (tzload(sp, gmt, TRUE) != 0)
1182 1.49 christos (void) tzparse(sp, gmt, TRUE);
1183 1.49 christos }
1184 1.49 christos
1185 1.49 christos timezone_t
1186 1.49 christos tzalloc(const char *name)
1187 1.49 christos {
1188 1.49 christos timezone_t sp = calloc(1, sizeof *sp);
1189 1.49 christos if (sp == NULL)
1190 1.49 christos return NULL;
1191 1.49 christos if (tzload(sp, name, TRUE) != 0) {
1192 1.49 christos free(sp);
1193 1.49 christos return NULL;
1194 1.49 christos }
1195 1.49 christos settzname_z(sp);
1196 1.49 christos return sp;
1197 1.49 christos }
1198 1.49 christos
1199 1.49 christos void
1200 1.49 christos tzfree(const timezone_t sp)
1201 1.1 jtc {
1202 1.49 christos free(sp);
1203 1.1 jtc }
1204 1.1 jtc
1205 1.19 kleink static void
1206 1.45 mlelstv tzsetwall_unlocked(void)
1207 1.1 jtc {
1208 1.45 mlelstv if (lcl_is_set < 0)
1209 1.1 jtc return;
1210 1.45 mlelstv lcl_is_set = -1;
1211 1.1 jtc
1212 1.1 jtc if (lclptr == NULL) {
1213 1.41 christos int saveerrno = errno;
1214 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1215 1.41 christos errno = saveerrno;
1216 1.1 jtc if (lclptr == NULL) {
1217 1.45 mlelstv settzname(); /* all we can do */
1218 1.1 jtc return;
1219 1.1 jtc }
1220 1.1 jtc }
1221 1.49 christos if (tzload(lclptr, NULL, TRUE) != 0)
1222 1.45 mlelstv gmtload(lclptr);
1223 1.45 mlelstv settzname();
1224 1.1 jtc }
1225 1.1 jtc
1226 1.19 kleink #ifndef STD_INSPIRED
1227 1.19 kleink /*
1228 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
1229 1.19 kleink ** may cause a warning about this upcoming static declaration...
1230 1.19 kleink */
1231 1.19 kleink static
1232 1.19 kleink #endif /* !defined STD_INSPIRED */
1233 1.1 jtc void
1234 1.45 mlelstv tzsetwall(void)
1235 1.19 kleink {
1236 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1237 1.45 mlelstv tzsetwall_unlocked();
1238 1.45 mlelstv rwlock_unlock(&lcl_lock);
1239 1.19 kleink }
1240 1.19 kleink
1241 1.45 mlelstv #ifndef STD_INSPIRED
1242 1.45 mlelstv /*
1243 1.45 mlelstv ** A non-static declaration of tzsetwall in a system header file
1244 1.45 mlelstv ** may cause a warning about this upcoming static declaration...
1245 1.45 mlelstv */
1246 1.45 mlelstv static
1247 1.45 mlelstv #endif /* !defined STD_INSPIRED */
1248 1.45 mlelstv void
1249 1.45 mlelstv tzset_unlocked(void)
1250 1.1 jtc {
1251 1.49 christos const char * name;
1252 1.41 christos int saveerrno;
1253 1.1 jtc
1254 1.41 christos saveerrno = errno;
1255 1.1 jtc name = getenv("TZ");
1256 1.41 christos errno = saveerrno;
1257 1.1 jtc if (name == NULL) {
1258 1.45 mlelstv tzsetwall_unlocked();
1259 1.1 jtc return;
1260 1.1 jtc }
1261 1.1 jtc
1262 1.45 mlelstv if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1263 1.1 jtc return;
1264 1.45 mlelstv lcl_is_set = strlen(name) < sizeof lcl_TZname;
1265 1.45 mlelstv if (lcl_is_set)
1266 1.45 mlelstv (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1267 1.1 jtc
1268 1.1 jtc if (lclptr == NULL) {
1269 1.41 christos saveerrno = errno;
1270 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1271 1.41 christos errno = saveerrno;
1272 1.1 jtc if (lclptr == NULL) {
1273 1.45 mlelstv settzname(); /* all we can do */
1274 1.1 jtc return;
1275 1.1 jtc }
1276 1.1 jtc }
1277 1.1 jtc if (*name == '\0') {
1278 1.1 jtc /*
1279 1.1 jtc ** User wants it fast rather than right.
1280 1.1 jtc */
1281 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1282 1.1 jtc lclptr->timecnt = 0;
1283 1.27 atatat lclptr->typecnt = 0;
1284 1.27 atatat lclptr->ttis[0].tt_isdst = 0;
1285 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1286 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1287 1.45 mlelstv (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1288 1.49 christos } else if (tzload(lclptr, name, TRUE) != 0)
1289 1.49 christos if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1290 1.45 mlelstv (void) gmtload(lclptr);
1291 1.45 mlelstv settzname();
1292 1.1 jtc }
1293 1.1 jtc
1294 1.19 kleink void
1295 1.45 mlelstv tzset(void)
1296 1.19 kleink {
1297 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1298 1.45 mlelstv tzset_unlocked();
1299 1.45 mlelstv rwlock_unlock(&lcl_lock);
1300 1.19 kleink }
1301 1.19 kleink
1302 1.1 jtc /*
1303 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1304 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1305 1.45 mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
1306 1.1 jtc ** but it *is* desirable.)
1307 1.1 jtc **
1308 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1309 1.1 jtc */
1310 1.1 jtc
1311 1.1 jtc /*ARGSUSED*/
1312 1.45 mlelstv static struct tm *
1313 1.49 christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
1314 1.49 christos struct tm *const tmp)
1315 1.49 christos {
1316 1.49 christos const struct ttinfo * ttisp;
1317 1.49 christos int i;
1318 1.49 christos struct tm * result;
1319 1.1 jtc const time_t t = *timep;
1320 1.1 jtc
1321 1.45 mlelstv if ((sp->goback && t < sp->ats[0]) ||
1322 1.45 mlelstv (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1323 1.45 mlelstv time_t newt = t;
1324 1.49 christos time_t seconds;
1325 1.49 christos time_t tcycles;
1326 1.49 christos int_fast64_t icycles;
1327 1.45 mlelstv
1328 1.45 mlelstv if (t < sp->ats[0])
1329 1.45 mlelstv seconds = sp->ats[0] - t;
1330 1.45 mlelstv else seconds = t - sp->ats[sp->timecnt - 1];
1331 1.45 mlelstv --seconds;
1332 1.45 mlelstv tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1333 1.45 mlelstv ++tcycles;
1334 1.45 mlelstv icycles = tcycles;
1335 1.45 mlelstv if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1336 1.45 mlelstv return NULL;
1337 1.45 mlelstv seconds = (time_t) icycles;
1338 1.45 mlelstv seconds *= YEARSPERREPEAT;
1339 1.45 mlelstv seconds *= AVGSECSPERYEAR;
1340 1.45 mlelstv if (t < sp->ats[0])
1341 1.45 mlelstv newt += seconds;
1342 1.45 mlelstv else newt -= seconds;
1343 1.45 mlelstv if (newt < sp->ats[0] ||
1344 1.51 christos newt > sp->ats[sp->timecnt - 1])
1345 1.45 mlelstv return NULL; /* "cannot happen" */
1346 1.49 christos result = localsub(sp, &newt, offset, tmp);
1347 1.45 mlelstv if (result == tmp) {
1348 1.49 christos time_t newy;
1349 1.45 mlelstv
1350 1.45 mlelstv newy = tmp->tm_year;
1351 1.45 mlelstv if (t < sp->ats[0])
1352 1.45 mlelstv newy -= (time_t)icycles * YEARSPERREPEAT;
1353 1.45 mlelstv else newy += (time_t)icycles * YEARSPERREPEAT;
1354 1.45 mlelstv tmp->tm_year = (int)newy;
1355 1.51 christos if (tmp->tm_year != newy)
1356 1.45 mlelstv return NULL;
1357 1.45 mlelstv }
1358 1.45 mlelstv return result;
1359 1.1 jtc }
1360 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1361 1.1 jtc i = 0;
1362 1.1 jtc while (sp->ttis[i].tt_isdst)
1363 1.1 jtc if (++i >= sp->typecnt) {
1364 1.1 jtc i = 0;
1365 1.1 jtc break;
1366 1.1 jtc }
1367 1.1 jtc } else {
1368 1.49 christos int lo = 1;
1369 1.49 christos int hi = sp->timecnt;
1370 1.45 mlelstv
1371 1.45 mlelstv while (lo < hi) {
1372 1.49 christos int mid = (lo + hi) / 2;
1373 1.45 mlelstv
1374 1.45 mlelstv if (t < sp->ats[mid])
1375 1.45 mlelstv hi = mid;
1376 1.45 mlelstv else lo = mid + 1;
1377 1.45 mlelstv }
1378 1.45 mlelstv i = (int) sp->types[lo - 1];
1379 1.1 jtc }
1380 1.1 jtc ttisp = &sp->ttis[i];
1381 1.1 jtc /*
1382 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1383 1.1 jtc ** you'd replace the statement below with
1384 1.1 jtc ** t += ttisp->tt_gmtoff;
1385 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1386 1.1 jtc */
1387 1.49 christos result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1388 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1389 1.57 christos if (sp == lclptr)
1390 1.57 christos tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1391 1.1 jtc #ifdef TM_ZONE
1392 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1393 1.1 jtc #endif /* defined TM_ZONE */
1394 1.45 mlelstv return result;
1395 1.1 jtc }
1396 1.1 jtc
1397 1.49 christos /*
1398 1.49 christos ** Re-entrant version of localtime.
1399 1.49 christos */
1400 1.49 christos
1401 1.1 jtc struct tm *
1402 1.49 christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
1403 1.1 jtc {
1404 1.49 christos rwlock_rdlock(&lcl_lock);
1405 1.45 mlelstv tzset_unlocked();
1406 1.49 christos tmp = localtime_rz(lclptr, timep, tmp);
1407 1.45 mlelstv rwlock_unlock(&lcl_lock);
1408 1.49 christos return tmp;
1409 1.1 jtc }
1410 1.1 jtc
1411 1.49 christos struct tm *
1412 1.49 christos localtime(const time_t *const timep)
1413 1.49 christos {
1414 1.49 christos return localtime_r(timep, &tm);
1415 1.49 christos }
1416 1.35 kleink
1417 1.18 kleink struct tm *
1418 1.49 christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1419 1.18 kleink {
1420 1.49 christos if (sp == NULL)
1421 1.51 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1422 1.49 christos else
1423 1.51 christos tmp = localsub(sp, timep, 0L, tmp);
1424 1.51 christos if (tmp == NULL)
1425 1.51 christos errno = EOVERFLOW;
1426 1.51 christos return tmp;
1427 1.18 kleink }
1428 1.18 kleink
1429 1.18 kleink /*
1430 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1431 1.1 jtc */
1432 1.1 jtc
1433 1.45 mlelstv static struct tm *
1434 1.49 christos gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
1435 1.49 christos struct tm *const tmp)
1436 1.1 jtc {
1437 1.49 christos struct tm * result;
1438 1.33 christos #ifdef _REENTRANT
1439 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1440 1.19 kleink #endif
1441 1.19 kleink
1442 1.19 kleink mutex_lock(&gmt_mutex);
1443 1.45 mlelstv if (!gmt_is_set) {
1444 1.41 christos int saveerrno;
1445 1.45 mlelstv gmt_is_set = TRUE;
1446 1.41 christos saveerrno = errno;
1447 1.47 christos gmtptr = calloc(1, sizeof *gmtptr);
1448 1.41 christos errno = saveerrno;
1449 1.1 jtc if (gmtptr != NULL)
1450 1.45 mlelstv gmtload(gmtptr);
1451 1.1 jtc }
1452 1.19 kleink mutex_unlock(&gmt_mutex);
1453 1.49 christos result = timesub(gmtptr, timep, offset, tmp);
1454 1.1 jtc #ifdef TM_ZONE
1455 1.1 jtc /*
1456 1.1 jtc ** Could get fancy here and deliver something such as
1457 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1458 1.1 jtc ** but this is no time for a treasure hunt.
1459 1.1 jtc */
1460 1.1 jtc if (offset != 0)
1461 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1462 1.1 jtc else {
1463 1.1 jtc if (gmtptr == NULL)
1464 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1465 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1466 1.1 jtc }
1467 1.1 jtc #endif /* defined TM_ZONE */
1468 1.45 mlelstv return result;
1469 1.1 jtc }
1470 1.1 jtc
1471 1.1 jtc struct tm *
1472 1.49 christos gmtime(const time_t *const timep)
1473 1.1 jtc {
1474 1.55 christos struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1475 1.55 christos
1476 1.55 christos if (tmp == NULL)
1477 1.55 christos errno = EOVERFLOW;
1478 1.55 christos
1479 1.55 christos return tmp;
1480 1.1 jtc }
1481 1.1 jtc
1482 1.18 kleink /*
1483 1.35 kleink ** Re-entrant version of gmtime.
1484 1.35 kleink */
1485 1.35 kleink
1486 1.18 kleink struct tm *
1487 1.49 christos gmtime_r(const time_t * const timep, struct tm *tmp)
1488 1.18 kleink {
1489 1.55 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1490 1.55 christos
1491 1.55 christos if (tmp == NULL)
1492 1.55 christos errno = EOVERFLOW;
1493 1.55 christos
1494 1.55 christos return tmp;
1495 1.18 kleink }
1496 1.18 kleink
1497 1.1 jtc #ifdef STD_INSPIRED
1498 1.1 jtc
1499 1.1 jtc struct tm *
1500 1.49 christos offtime(const time_t *const timep, long offset)
1501 1.1 jtc {
1502 1.55 christos struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1503 1.55 christos
1504 1.55 christos if (tmp == NULL)
1505 1.55 christos errno = EOVERFLOW;
1506 1.55 christos
1507 1.55 christos return tmp;
1508 1.49 christos }
1509 1.49 christos
1510 1.49 christos struct tm *
1511 1.49 christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
1512 1.49 christos {
1513 1.55 christos tmp = gmtsub(NULL, timep, offset, tmp);
1514 1.55 christos
1515 1.55 christos if (tmp == NULL)
1516 1.55 christos errno = EOVERFLOW;
1517 1.55 christos
1518 1.55 christos return tmp;
1519 1.1 jtc }
1520 1.1 jtc
1521 1.1 jtc #endif /* defined STD_INSPIRED */
1522 1.1 jtc
1523 1.45 mlelstv /*
1524 1.45 mlelstv ** Return the number of leap years through the end of the given year
1525 1.45 mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
1526 1.45 mlelstv */
1527 1.45 mlelstv
1528 1.45 mlelstv static int
1529 1.49 christos leaps_thru_end_of(const int y)
1530 1.45 mlelstv {
1531 1.45 mlelstv return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1532 1.45 mlelstv -(leaps_thru_end_of(-(y + 1)) + 1);
1533 1.45 mlelstv }
1534 1.45 mlelstv
1535 1.45 mlelstv static struct tm *
1536 1.49 christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
1537 1.49 christos struct tm *const tmp)
1538 1.49 christos {
1539 1.49 christos const struct lsinfo * lp;
1540 1.49 christos time_t tdays;
1541 1.49 christos int idays; /* unsigned would be so 2003 */
1542 1.49 christos long rem;
1543 1.49 christos int y;
1544 1.49 christos const int * ip;
1545 1.49 christos long corr;
1546 1.49 christos int hit;
1547 1.49 christos int i;
1548 1.1 jtc
1549 1.1 jtc corr = 0;
1550 1.1 jtc hit = 0;
1551 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1552 1.1 jtc while (--i >= 0) {
1553 1.1 jtc lp = &sp->lsis[i];
1554 1.1 jtc if (*timep >= lp->ls_trans) {
1555 1.1 jtc if (*timep == lp->ls_trans) {
1556 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1557 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1558 1.1 jtc if (hit)
1559 1.1 jtc while (i > 0 &&
1560 1.1 jtc sp->lsis[i].ls_trans ==
1561 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1562 1.1 jtc sp->lsis[i].ls_corr ==
1563 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1564 1.1 jtc ++hit;
1565 1.1 jtc --i;
1566 1.1 jtc }
1567 1.1 jtc }
1568 1.1 jtc corr = lp->ls_corr;
1569 1.1 jtc break;
1570 1.1 jtc }
1571 1.1 jtc }
1572 1.45 mlelstv y = EPOCH_YEAR;
1573 1.45 mlelstv tdays = *timep / SECSPERDAY;
1574 1.45 mlelstv rem = (long) (*timep - tdays * SECSPERDAY);
1575 1.45 mlelstv while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1576 1.45 mlelstv int newy;
1577 1.49 christos time_t tdelta;
1578 1.49 christos int idelta;
1579 1.49 christos int leapdays;
1580 1.45 mlelstv
1581 1.45 mlelstv tdelta = tdays / DAYSPERLYEAR;
1582 1.45 mlelstv idelta = (int) tdelta;
1583 1.51 christos if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1584 1.45 mlelstv return NULL;
1585 1.45 mlelstv if (idelta == 0)
1586 1.45 mlelstv idelta = (tdays < 0) ? -1 : 1;
1587 1.45 mlelstv newy = y;
1588 1.51 christos if (increment_overflow(&newy, idelta))
1589 1.45 mlelstv return NULL;
1590 1.45 mlelstv leapdays = leaps_thru_end_of(newy - 1) -
1591 1.45 mlelstv leaps_thru_end_of(y - 1);
1592 1.45 mlelstv tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1593 1.45 mlelstv tdays -= leapdays;
1594 1.45 mlelstv y = newy;
1595 1.45 mlelstv }
1596 1.45 mlelstv {
1597 1.49 christos long seconds;
1598 1.45 mlelstv
1599 1.45 mlelstv seconds = tdays * SECSPERDAY + 0.5;
1600 1.45 mlelstv tdays = seconds / SECSPERDAY;
1601 1.45 mlelstv rem += (long) (seconds - tdays * SECSPERDAY);
1602 1.1 jtc }
1603 1.45 mlelstv /*
1604 1.45 mlelstv ** Given the range, we can now fearlessly cast...
1605 1.45 mlelstv */
1606 1.45 mlelstv idays = (int) tdays;
1607 1.45 mlelstv rem += offset - corr;
1608 1.1 jtc while (rem < 0) {
1609 1.1 jtc rem += SECSPERDAY;
1610 1.45 mlelstv --idays;
1611 1.1 jtc }
1612 1.1 jtc while (rem >= SECSPERDAY) {
1613 1.1 jtc rem -= SECSPERDAY;
1614 1.45 mlelstv ++idays;
1615 1.45 mlelstv }
1616 1.45 mlelstv while (idays < 0) {
1617 1.51 christos if (increment_overflow(&y, -1))
1618 1.45 mlelstv return NULL;
1619 1.45 mlelstv idays += year_lengths[isleap(y)];
1620 1.1 jtc }
1621 1.45 mlelstv while (idays >= year_lengths[isleap(y)]) {
1622 1.45 mlelstv idays -= year_lengths[isleap(y)];
1623 1.51 christos if (increment_overflow(&y, 1))
1624 1.45 mlelstv return NULL;
1625 1.45 mlelstv }
1626 1.45 mlelstv tmp->tm_year = y;
1627 1.51 christos if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1628 1.45 mlelstv return NULL;
1629 1.45 mlelstv tmp->tm_yday = idays;
1630 1.45 mlelstv /*
1631 1.45 mlelstv ** The "extra" mods below avoid overflow problems.
1632 1.45 mlelstv */
1633 1.45 mlelstv tmp->tm_wday = EPOCH_WDAY +
1634 1.45 mlelstv ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1635 1.45 mlelstv (DAYSPERNYEAR % DAYSPERWEEK) +
1636 1.45 mlelstv leaps_thru_end_of(y - 1) -
1637 1.45 mlelstv leaps_thru_end_of(EPOCH_YEAR - 1) +
1638 1.45 mlelstv idays;
1639 1.45 mlelstv tmp->tm_wday %= DAYSPERWEEK;
1640 1.45 mlelstv if (tmp->tm_wday < 0)
1641 1.45 mlelstv tmp->tm_wday += DAYSPERWEEK;
1642 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1643 1.45 mlelstv rem %= SECSPERHOUR;
1644 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1645 1.6 jtc /*
1646 1.6 jtc ** A positive leap second requires a special
1647 1.45 mlelstv ** representation. This uses "... ??:59:60" et seq.
1648 1.6 jtc */
1649 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1650 1.45 mlelstv ip = mon_lengths[isleap(y)];
1651 1.45 mlelstv for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1652 1.45 mlelstv idays -= ip[tmp->tm_mon];
1653 1.45 mlelstv tmp->tm_mday = (int) (idays + 1);
1654 1.1 jtc tmp->tm_isdst = 0;
1655 1.1 jtc #ifdef TM_GMTOFF
1656 1.1 jtc tmp->TM_GMTOFF = offset;
1657 1.1 jtc #endif /* defined TM_GMTOFF */
1658 1.45 mlelstv return tmp;
1659 1.1 jtc }
1660 1.1 jtc
1661 1.1 jtc char *
1662 1.49 christos ctime(const time_t *const timep)
1663 1.1 jtc {
1664 1.1 jtc /*
1665 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1666 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1667 1.45 mlelstv ** to local time in the form of a string. It is equivalent to
1668 1.1 jtc ** asctime(localtime(timer))
1669 1.1 jtc */
1670 1.46 christos struct tm *rtm = localtime(timep);
1671 1.46 christos if (rtm == NULL)
1672 1.46 christos return NULL;
1673 1.46 christos return asctime(rtm);
1674 1.18 kleink }
1675 1.18 kleink
1676 1.18 kleink char *
1677 1.49 christos ctime_r(const time_t *const timep, char *buf)
1678 1.18 kleink {
1679 1.46 christos struct tm mytm, *rtm;
1680 1.18 kleink
1681 1.46 christos rtm = localtime_r(timep, &mytm);
1682 1.46 christos if (rtm == NULL)
1683 1.46 christos return NULL;
1684 1.46 christos return asctime_r(rtm, buf);
1685 1.1 jtc }
1686 1.1 jtc
1687 1.49 christos char *
1688 1.49 christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1689 1.49 christos {
1690 1.49 christos struct tm mytm, *rtm;
1691 1.49 christos
1692 1.49 christos rtm = localtime_rz(sp, timep, &mytm);
1693 1.49 christos if (rtm == NULL)
1694 1.49 christos return NULL;
1695 1.49 christos return asctime_r(rtm, buf);
1696 1.49 christos }
1697 1.49 christos
1698 1.1 jtc /*
1699 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1700 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1701 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1702 1.45 mlelstv ** It does a binary search of the time_t space. Since time_t's are
1703 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1704 1.1 jtc ** would still be very reasonable).
1705 1.1 jtc */
1706 1.1 jtc
1707 1.1 jtc #ifndef WRONG
1708 1.51 christos #define WRONG ((time_t)-1)
1709 1.1 jtc #endif /* !defined WRONG */
1710 1.1 jtc
1711 1.1 jtc /*
1712 1.45 mlelstv ** Simplified normalize logic courtesy Paul Eggert.
1713 1.1 jtc */
1714 1.1 jtc
1715 1.1 jtc static int
1716 1.49 christos increment_overflow(int *number, int delta)
1717 1.1 jtc {
1718 1.1 jtc int number0;
1719 1.1 jtc
1720 1.1 jtc number0 = *number;
1721 1.54 christos if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
1722 1.54 christos return 1;
1723 1.1 jtc *number += delta;
1724 1.54 christos return 0;
1725 1.1 jtc }
1726 1.1 jtc
1727 1.1 jtc static int
1728 1.49 christos long_increment_overflow(long *number, int delta)
1729 1.45 mlelstv {
1730 1.45 mlelstv long number0;
1731 1.45 mlelstv
1732 1.45 mlelstv number0 = *number;
1733 1.54 christos if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
1734 1.54 christos return 1;
1735 1.45 mlelstv *number += delta;
1736 1.54 christos return 0;
1737 1.45 mlelstv }
1738 1.45 mlelstv
1739 1.45 mlelstv static int
1740 1.49 christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1741 1.1 jtc {
1742 1.49 christos int tensdelta;
1743 1.1 jtc
1744 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1745 1.1 jtc (*unitsptr / base) :
1746 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1747 1.1 jtc *unitsptr -= tensdelta * base;
1748 1.1 jtc return increment_overflow(tensptr, tensdelta);
1749 1.1 jtc }
1750 1.1 jtc
1751 1.1 jtc static int
1752 1.49 christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
1753 1.49 christos const int base)
1754 1.45 mlelstv {
1755 1.49 christos int tensdelta;
1756 1.45 mlelstv
1757 1.45 mlelstv tensdelta = (*unitsptr >= 0) ?
1758 1.45 mlelstv (*unitsptr / base) :
1759 1.45 mlelstv (-1 - (-1 - *unitsptr) / base);
1760 1.45 mlelstv *unitsptr -= tensdelta * base;
1761 1.45 mlelstv return long_increment_overflow(tensptr, tensdelta);
1762 1.45 mlelstv }
1763 1.45 mlelstv
1764 1.45 mlelstv static int
1765 1.49 christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1766 1.1 jtc {
1767 1.49 christos int result;
1768 1.1 jtc
1769 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1770 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1771 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1772 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1773 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1774 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1775 1.1 jtc return result;
1776 1.1 jtc }
1777 1.1 jtc
1778 1.1 jtc static time_t
1779 1.49 christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1780 1.49 christos const long offset, int *const okayp, const int do_norm_secs)
1781 1.49 christos {
1782 1.49 christos int dir;
1783 1.49 christos int i, j;
1784 1.49 christos int saved_seconds;
1785 1.49 christos long li;
1786 1.49 christos time_t lo;
1787 1.49 christos time_t hi;
1788 1.45 mlelstv long y;
1789 1.1 jtc time_t newt;
1790 1.1 jtc time_t t;
1791 1.1 jtc struct tm yourtm, mytm;
1792 1.1 jtc
1793 1.1 jtc *okayp = FALSE;
1794 1.1 jtc yourtm = *tmp;
1795 1.13 jtc if (do_norm_secs) {
1796 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1797 1.13 jtc SECSPERMIN))
1798 1.13 jtc return WRONG;
1799 1.13 jtc }
1800 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1801 1.1 jtc return WRONG;
1802 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1803 1.1 jtc return WRONG;
1804 1.45 mlelstv y = yourtm.tm_year;
1805 1.45 mlelstv if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1806 1.1 jtc return WRONG;
1807 1.1 jtc /*
1808 1.45 mlelstv ** Turn y into an actual year number for now.
1809 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1810 1.1 jtc */
1811 1.45 mlelstv if (long_increment_overflow(&y, TM_YEAR_BASE))
1812 1.1 jtc return WRONG;
1813 1.1 jtc while (yourtm.tm_mday <= 0) {
1814 1.45 mlelstv if (long_increment_overflow(&y, -1))
1815 1.1 jtc return WRONG;
1816 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1817 1.45 mlelstv yourtm.tm_mday += year_lengths[isleap(li)];
1818 1.1 jtc }
1819 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1820 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1821 1.45 mlelstv yourtm.tm_mday -= year_lengths[isleap(li)];
1822 1.45 mlelstv if (long_increment_overflow(&y, 1))
1823 1.1 jtc return WRONG;
1824 1.1 jtc }
1825 1.1 jtc for ( ; ; ) {
1826 1.45 mlelstv i = mon_lengths[isleap(y)][yourtm.tm_mon];
1827 1.1 jtc if (yourtm.tm_mday <= i)
1828 1.1 jtc break;
1829 1.1 jtc yourtm.tm_mday -= i;
1830 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1831 1.1 jtc yourtm.tm_mon = 0;
1832 1.45 mlelstv if (long_increment_overflow(&y, 1))
1833 1.1 jtc return WRONG;
1834 1.1 jtc }
1835 1.1 jtc }
1836 1.45 mlelstv if (long_increment_overflow(&y, -TM_YEAR_BASE))
1837 1.45 mlelstv return WRONG;
1838 1.45 mlelstv yourtm.tm_year = y;
1839 1.45 mlelstv if (yourtm.tm_year != y)
1840 1.1 jtc return WRONG;
1841 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1842 1.29 kleink saved_seconds = 0;
1843 1.45 mlelstv else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1844 1.1 jtc /*
1845 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1846 1.1 jtc ** time below the minimum representable time.
1847 1.1 jtc ** Set tm_sec to 59 instead.
1848 1.1 jtc ** This assumes that the minimum representable time is
1849 1.1 jtc ** not in the same minute that a leap second was deleted from,
1850 1.1 jtc ** which is a safer assumption than using 58 would be.
1851 1.1 jtc */
1852 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1853 1.1 jtc return WRONG;
1854 1.1 jtc saved_seconds = yourtm.tm_sec;
1855 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1856 1.1 jtc } else {
1857 1.1 jtc saved_seconds = yourtm.tm_sec;
1858 1.1 jtc yourtm.tm_sec = 0;
1859 1.1 jtc }
1860 1.1 jtc /*
1861 1.45 mlelstv ** Do a binary search (this works whatever time_t's type is).
1862 1.1 jtc */
1863 1.45 mlelstv /* LINTED constant */
1864 1.45 mlelstv if (!TYPE_SIGNED(time_t)) {
1865 1.45 mlelstv lo = 0;
1866 1.45 mlelstv hi = lo - 1;
1867 1.45 mlelstv /* LINTED constant */
1868 1.45 mlelstv } else if (!TYPE_INTEGRAL(time_t)) {
1869 1.45 mlelstv /* CONSTCOND */
1870 1.45 mlelstv if (sizeof(time_t) > sizeof(float))
1871 1.45 mlelstv /* LINTED assumed double */
1872 1.45 mlelstv hi = (time_t) DBL_MAX;
1873 1.45 mlelstv /* LINTED assumed float */
1874 1.45 mlelstv else hi = (time_t) FLT_MAX;
1875 1.45 mlelstv lo = -hi;
1876 1.45 mlelstv } else {
1877 1.45 mlelstv lo = 1;
1878 1.45 mlelstv for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1879 1.45 mlelstv lo *= 2;
1880 1.45 mlelstv hi = -(lo + 1);
1881 1.45 mlelstv }
1882 1.1 jtc for ( ; ; ) {
1883 1.45 mlelstv t = lo / 2 + hi / 2;
1884 1.45 mlelstv if (t < lo)
1885 1.45 mlelstv t = lo;
1886 1.45 mlelstv else if (t > hi)
1887 1.45 mlelstv t = hi;
1888 1.49 christos if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1889 1.45 mlelstv /*
1890 1.45 mlelstv ** Assume that t is too extreme to be represented in
1891 1.45 mlelstv ** a struct tm; arrange things so that it is less
1892 1.45 mlelstv ** extreme on the next pass.
1893 1.45 mlelstv */
1894 1.45 mlelstv dir = (t > 0) ? 1 : -1;
1895 1.45 mlelstv } else dir = tmcomp(&mytm, &yourtm);
1896 1.1 jtc if (dir != 0) {
1897 1.45 mlelstv if (t == lo) {
1898 1.45 mlelstv ++t;
1899 1.45 mlelstv if (t <= lo)
1900 1.45 mlelstv return WRONG;
1901 1.45 mlelstv ++lo;
1902 1.45 mlelstv } else if (t == hi) {
1903 1.45 mlelstv --t;
1904 1.45 mlelstv if (t >= hi)
1905 1.45 mlelstv return WRONG;
1906 1.45 mlelstv --hi;
1907 1.45 mlelstv }
1908 1.45 mlelstv if (lo > hi)
1909 1.1 jtc return WRONG;
1910 1.45 mlelstv if (dir > 0)
1911 1.45 mlelstv hi = t;
1912 1.45 mlelstv else lo = t;
1913 1.1 jtc continue;
1914 1.1 jtc }
1915 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1916 1.1 jtc break;
1917 1.1 jtc /*
1918 1.1 jtc ** Right time, wrong type.
1919 1.1 jtc ** Hunt for right time, right type.
1920 1.1 jtc ** It's okay to guess wrong since the guess
1921 1.1 jtc ** gets checked.
1922 1.1 jtc */
1923 1.1 jtc if (sp == NULL)
1924 1.1 jtc return WRONG;
1925 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1926 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1927 1.1 jtc continue;
1928 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1929 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1930 1.1 jtc continue;
1931 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1932 1.1 jtc sp->ttis[i].tt_gmtoff;
1933 1.49 christos if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1934 1.45 mlelstv continue;
1935 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1936 1.1 jtc continue;
1937 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1938 1.1 jtc continue;
1939 1.1 jtc /*
1940 1.1 jtc ** We have a match.
1941 1.1 jtc */
1942 1.1 jtc t = newt;
1943 1.1 jtc goto label;
1944 1.1 jtc }
1945 1.1 jtc }
1946 1.1 jtc return WRONG;
1947 1.1 jtc }
1948 1.1 jtc label:
1949 1.1 jtc newt = t + saved_seconds;
1950 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1951 1.1 jtc return WRONG;
1952 1.1 jtc t = newt;
1953 1.51 christos if ((*funcp)(sp, &t, offset, tmp)) {
1954 1.45 mlelstv *okayp = TRUE;
1955 1.51 christos return t;
1956 1.51 christos } else
1957 1.51 christos return WRONG;
1958 1.13 jtc }
1959 1.13 jtc
1960 1.13 jtc static time_t
1961 1.49 christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1962 1.49 christos const long offset, int *const okayp)
1963 1.13 jtc {
1964 1.13 jtc time_t t;
1965 1.13 jtc
1966 1.13 jtc /*
1967 1.13 jtc ** First try without normalization of seconds
1968 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
1969 1.13 jtc ** If that fails, try with normalization of seconds.
1970 1.13 jtc */
1971 1.49 christos t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
1972 1.49 christos return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
1973 1.1 jtc }
1974 1.1 jtc
1975 1.1 jtc static time_t
1976 1.49 christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1977 1.49 christos long offset)
1978 1.49 christos {
1979 1.49 christos time_t t;
1980 1.49 christos int samei, otheri;
1981 1.49 christos int sameind, otherind;
1982 1.49 christos int i;
1983 1.49 christos int nseen;
1984 1.35 kleink int seen[TZ_MAX_TYPES];
1985 1.35 kleink int types[TZ_MAX_TYPES];
1986 1.1 jtc int okay;
1987 1.1 jtc
1988 1.1 jtc if (tmp->tm_isdst > 1)
1989 1.1 jtc tmp->tm_isdst = 1;
1990 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
1991 1.1 jtc #ifdef PCTS
1992 1.1 jtc /*
1993 1.45 mlelstv ** PCTS code courtesy Grant Sullivan.
1994 1.1 jtc */
1995 1.1 jtc if (okay)
1996 1.1 jtc return t;
1997 1.1 jtc if (tmp->tm_isdst < 0)
1998 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1999 1.1 jtc #endif /* defined PCTS */
2000 1.1 jtc #ifndef PCTS
2001 1.1 jtc if (okay || tmp->tm_isdst < 0)
2002 1.1 jtc return t;
2003 1.1 jtc #endif /* !defined PCTS */
2004 1.1 jtc /*
2005 1.1 jtc ** We're supposed to assume that somebody took a time of one type
2006 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
2007 1.1 jtc ** We try to divine the type they started from and adjust to the
2008 1.1 jtc ** type they need.
2009 1.1 jtc */
2010 1.1 jtc if (sp == NULL)
2011 1.1 jtc return WRONG;
2012 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
2013 1.35 kleink seen[i] = FALSE;
2014 1.35 kleink nseen = 0;
2015 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
2016 1.35 kleink if (!seen[sp->types[i]]) {
2017 1.35 kleink seen[sp->types[i]] = TRUE;
2018 1.35 kleink types[nseen++] = sp->types[i];
2019 1.35 kleink }
2020 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
2021 1.35 kleink samei = types[sameind];
2022 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2023 1.1 jtc continue;
2024 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
2025 1.35 kleink otheri = types[otherind];
2026 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2027 1.1 jtc continue;
2028 1.21 christos tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2029 1.21 christos sp->ttis[samei].tt_gmtoff);
2030 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2031 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
2032 1.1 jtc if (okay)
2033 1.1 jtc return t;
2034 1.21 christos tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2035 1.21 christos sp->ttis[samei].tt_gmtoff);
2036 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2037 1.1 jtc }
2038 1.1 jtc }
2039 1.1 jtc return WRONG;
2040 1.1 jtc }
2041 1.1 jtc
2042 1.1 jtc time_t
2043 1.49 christos mktime_z(const timezone_t sp, struct tm *tmp)
2044 1.49 christos {
2045 1.51 christos time_t t;
2046 1.49 christos if (sp == NULL)
2047 1.51 christos t = time1(NULL, tmp, gmtsub, 0L);
2048 1.49 christos else
2049 1.51 christos t = time1(sp, tmp, localsub, 0L);
2050 1.51 christos if (t == WRONG)
2051 1.51 christos errno = EOVERFLOW;
2052 1.51 christos return t;
2053 1.49 christos }
2054 1.49 christos
2055 1.49 christos time_t
2056 1.49 christos mktime(struct tm * const tmp)
2057 1.1 jtc {
2058 1.19 kleink time_t result;
2059 1.19 kleink
2060 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2061 1.45 mlelstv tzset_unlocked();
2062 1.49 christos result = mktime_z(lclptr, tmp);
2063 1.45 mlelstv rwlock_unlock(&lcl_lock);
2064 1.49 christos return result;
2065 1.1 jtc }
2066 1.1 jtc
2067 1.1 jtc #ifdef STD_INSPIRED
2068 1.1 jtc
2069 1.1 jtc time_t
2070 1.49 christos timelocal_z(const timezone_t sp, struct tm *tmp)
2071 1.49 christos {
2072 1.49 christos if (tmp != NULL)
2073 1.49 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2074 1.49 christos return mktime_z(sp, tmp);
2075 1.49 christos }
2076 1.49 christos
2077 1.49 christos time_t
2078 1.49 christos timelocal(struct tm *const tmp)
2079 1.1 jtc {
2080 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
2081 1.1 jtc return mktime(tmp);
2082 1.1 jtc }
2083 1.1 jtc
2084 1.1 jtc time_t
2085 1.49 christos timegm(struct tm *const tmp)
2086 1.1 jtc {
2087 1.51 christos time_t t;
2088 1.51 christos
2089 1.1 jtc tmp->tm_isdst = 0;
2090 1.51 christos t = time1(gmtptr, tmp, gmtsub, 0L);
2091 1.51 christos if (t == WRONG)
2092 1.51 christos errno = EOVERFLOW;
2093 1.51 christos return t;
2094 1.1 jtc }
2095 1.1 jtc
2096 1.1 jtc time_t
2097 1.49 christos timeoff(struct tm *const tmp, const long offset)
2098 1.1 jtc {
2099 1.51 christos time_t t;
2100 1.51 christos
2101 1.1 jtc tmp->tm_isdst = 0;
2102 1.51 christos t = time1(gmtptr, tmp, gmtsub, offset);
2103 1.51 christos if (t == WRONG)
2104 1.51 christos errno = EOVERFLOW;
2105 1.51 christos return t;
2106 1.1 jtc }
2107 1.1 jtc
2108 1.1 jtc #endif /* defined STD_INSPIRED */
2109 1.1 jtc
2110 1.1 jtc #ifdef CMUCS
2111 1.1 jtc
2112 1.1 jtc /*
2113 1.1 jtc ** The following is supplied for compatibility with
2114 1.1 jtc ** previous versions of the CMUCS runtime library.
2115 1.1 jtc */
2116 1.1 jtc
2117 1.1 jtc long
2118 1.49 christos gtime(struct tm *const tmp)
2119 1.1 jtc {
2120 1.49 christos const time_t t = mktime(tmp);
2121 1.1 jtc
2122 1.1 jtc if (t == WRONG)
2123 1.1 jtc return -1;
2124 1.1 jtc return t;
2125 1.1 jtc }
2126 1.1 jtc
2127 1.1 jtc #endif /* defined CMUCS */
2128 1.1 jtc
2129 1.1 jtc /*
2130 1.1 jtc ** XXX--is the below the right way to conditionalize??
2131 1.1 jtc */
2132 1.1 jtc
2133 1.1 jtc #ifdef STD_INSPIRED
2134 1.1 jtc
2135 1.1 jtc /*
2136 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2137 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2138 1.1 jtc ** is not the case if we are accounting for leap seconds.
2139 1.1 jtc ** So, we provide the following conversion routines for use
2140 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
2141 1.1 jtc */
2142 1.1 jtc
2143 1.1 jtc static long
2144 1.49 christos leapcorr(const timezone_t sp, time_t *timep)
2145 1.1 jtc {
2146 1.49 christos struct lsinfo * lp;
2147 1.49 christos int i;
2148 1.1 jtc
2149 1.1 jtc i = sp->leapcnt;
2150 1.1 jtc while (--i >= 0) {
2151 1.1 jtc lp = &sp->lsis[i];
2152 1.1 jtc if (*timep >= lp->ls_trans)
2153 1.1 jtc return lp->ls_corr;
2154 1.1 jtc }
2155 1.1 jtc return 0;
2156 1.1 jtc }
2157 1.1 jtc
2158 1.1 jtc time_t
2159 1.49 christos time2posix_z(const timezone_t sp, time_t t)
2160 1.49 christos {
2161 1.49 christos return t - leapcorr(sp, &t);
2162 1.49 christos }
2163 1.49 christos
2164 1.49 christos time_t
2165 1.49 christos time2posix(time_t t)
2166 1.1 jtc {
2167 1.19 kleink time_t result;
2168 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2169 1.45 mlelstv tzset_unlocked();
2170 1.49 christos result = t - leapcorr(lclptr, &t);
2171 1.45 mlelstv rwlock_unlock(&lcl_lock);
2172 1.19 kleink return (result);
2173 1.1 jtc }
2174 1.1 jtc
2175 1.1 jtc time_t
2176 1.49 christos posix2time_z(const timezone_t sp, time_t t)
2177 1.1 jtc {
2178 1.1 jtc time_t x;
2179 1.1 jtc time_t y;
2180 1.1 jtc
2181 1.1 jtc /*
2182 1.1 jtc ** For a positive leap second hit, the result
2183 1.45 mlelstv ** is not unique. For a negative leap second
2184 1.1 jtc ** hit, the corresponding time doesn't exist,
2185 1.1 jtc ** so we return an adjacent second.
2186 1.1 jtc */
2187 1.49 christos x = t + leapcorr(sp, &t);
2188 1.49 christos y = x - leapcorr(sp, &x);
2189 1.1 jtc if (y < t) {
2190 1.1 jtc do {
2191 1.1 jtc x++;
2192 1.49 christos y = x - leapcorr(sp, &x);
2193 1.1 jtc } while (y < t);
2194 1.19 kleink if (t != y) {
2195 1.1 jtc return x - 1;
2196 1.19 kleink }
2197 1.1 jtc } else if (y > t) {
2198 1.1 jtc do {
2199 1.1 jtc --x;
2200 1.49 christos y = x - leapcorr(sp, &x);
2201 1.1 jtc } while (y > t);
2202 1.19 kleink if (t != y) {
2203 1.1 jtc return x + 1;
2204 1.19 kleink }
2205 1.1 jtc }
2206 1.49 christos return x;
2207 1.49 christos }
2208 1.49 christos
2209 1.49 christos
2210 1.49 christos
2211 1.49 christos time_t
2212 1.49 christos posix2time(time_t t)
2213 1.49 christos {
2214 1.49 christos time_t result;
2215 1.49 christos
2216 1.49 christos rwlock_wrlock(&lcl_lock);
2217 1.49 christos tzset_unlocked();
2218 1.49 christos result = posix2time_z(lclptr, t);
2219 1.45 mlelstv rwlock_unlock(&lcl_lock);
2220 1.49 christos return result;
2221 1.1 jtc }
2222 1.1 jtc
2223 1.1 jtc #endif /* defined STD_INSPIRED */
2224