localtime.c revision 1.67.2.2 1 1.67.2.2 tls /* $NetBSD: localtime.c,v 1.67.2.2 2013/06/23 06:21:06 tls Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.45 mlelstv ** 1996-06-05 by Arthur David Olson.
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
10 1.11 christos #if 0
11 1.58 christos static char elsieid[] = "@(#)localtime.c 8.17";
12 1.11 christos #else
13 1.67.2.2 tls __RCSID("$NetBSD: localtime.c,v 1.67.2.2 2013/06/23 06:21:06 tls Exp $");
14 1.11 christos #endif
15 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
16 1.1 jtc
17 1.1 jtc /*
18 1.45 mlelstv ** Leap second handling from Bradley White.
19 1.45 mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
20 1.1 jtc */
21 1.1 jtc
22 1.1 jtc /*LINTLIBRARY*/
23 1.1 jtc
24 1.12 jtc #include "namespace.h"
25 1.1 jtc #include "private.h"
26 1.1 jtc #include "tzfile.h"
27 1.1 jtc #include "fcntl.h"
28 1.19 kleink #include "reentrant.h"
29 1.12 jtc
30 1.42 christos #if defined(__weak_alias)
31 1.25 kleink __weak_alias(daylight,_daylight)
32 1.23 mycroft __weak_alias(tzname,_tzname)
33 1.12 jtc #endif
34 1.1 jtc
35 1.45 mlelstv #include "float.h" /* for FLT_MAX and DBL_MAX */
36 1.45 mlelstv
37 1.45 mlelstv #ifndef TZ_ABBR_MAX_LEN
38 1.45 mlelstv #define TZ_ABBR_MAX_LEN 16
39 1.45 mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
40 1.45 mlelstv
41 1.45 mlelstv #ifndef TZ_ABBR_CHAR_SET
42 1.45 mlelstv #define TZ_ABBR_CHAR_SET \
43 1.45 mlelstv "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 1.45 mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
45 1.45 mlelstv
46 1.45 mlelstv #ifndef TZ_ABBR_ERR_CHAR
47 1.45 mlelstv #define TZ_ABBR_ERR_CHAR '_'
48 1.45 mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
49 1.45 mlelstv
50 1.1 jtc /*
51 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
52 1.1 jtc */
53 1.1 jtc
54 1.1 jtc #ifdef O_BINARY
55 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
56 1.1 jtc #endif /* defined O_BINARY */
57 1.1 jtc #ifndef O_BINARY
58 1.1 jtc #define OPEN_MODE O_RDONLY
59 1.1 jtc #endif /* !defined O_BINARY */
60 1.1 jtc
61 1.1 jtc #ifndef WILDABBR
62 1.1 jtc /*
63 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
64 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
65 1.1 jtc ** or implicitly).
66 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
67 1.1 jtc ** or implicitly).
68 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
69 1.1 jtc ** in which Daylight Saving Time is never observed.
70 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
71 1.1 jtc ** in which Standard Time is never observed.
72 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
73 1.1 jtc ** What's best to do in the above cases is open to debate;
74 1.1 jtc ** for now, we just set things up so that in any of the five cases
75 1.45 mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
77 1.45 mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
79 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
80 1.1 jtc */
81 1.1 jtc #define WILDABBR " "
82 1.1 jtc #endif /* !defined WILDABBR */
83 1.1 jtc
84 1.45 mlelstv static const char wildabbr[] = WILDABBR;
85 1.1 jtc
86 1.67.2.1 tls static const char gmt[] = "GMT";
87 1.1 jtc
88 1.22 kleink /*
89 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 1.22 kleink ** We default to US rules as of 1999-08-17.
91 1.22 kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 1.22 kleink ** implementation dependent; for historical reasons, US rules are a
93 1.22 kleink ** common default.
94 1.22 kleink */
95 1.22 kleink #ifndef TZDEFRULESTRING
96 1.22 kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 1.22 kleink #endif /* !defined TZDEFDST */
98 1.22 kleink
99 1.1 jtc struct ttinfo { /* time type information */
100 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
101 1.1 jtc int tt_isdst; /* used to set tm_isdst */
102 1.1 jtc int tt_abbrind; /* abbreviation list index */
103 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
104 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
105 1.1 jtc };
106 1.1 jtc
107 1.1 jtc struct lsinfo { /* leap second information */
108 1.1 jtc time_t ls_trans; /* transition time */
109 1.1 jtc long ls_corr; /* correction to apply */
110 1.1 jtc };
111 1.1 jtc
112 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113 1.1 jtc
114 1.1 jtc #ifdef TZNAME_MAX
115 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
116 1.1 jtc #endif /* defined TZNAME_MAX */
117 1.1 jtc #ifndef TZNAME_MAX
118 1.1 jtc #define MY_TZNAME_MAX 255
119 1.1 jtc #endif /* !defined TZNAME_MAX */
120 1.1 jtc
121 1.49 christos struct __state {
122 1.1 jtc int leapcnt;
123 1.1 jtc int timecnt;
124 1.1 jtc int typecnt;
125 1.1 jtc int charcnt;
126 1.45 mlelstv int goback;
127 1.45 mlelstv int goahead;
128 1.45 mlelstv time_t ats[TZ_MAX_TIMES];
129 1.1 jtc unsigned char types[TZ_MAX_TIMES];
130 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
131 1.67.2.1 tls char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
132 1.67.2.1 tls sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
133 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
134 1.1 jtc };
135 1.1 jtc
136 1.1 jtc struct rule {
137 1.1 jtc int r_type; /* type of rule--see below */
138 1.1 jtc int r_day; /* day number of rule */
139 1.1 jtc int r_week; /* week number of rule */
140 1.1 jtc int r_mon; /* month number of rule */
141 1.1 jtc long r_time; /* transition time of rule */
142 1.1 jtc };
143 1.1 jtc
144 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
145 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
146 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
147 1.1 jtc
148 1.49 christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 1.49 christos long offset, struct tm *tmp);
150 1.49 christos
151 1.1 jtc /*
152 1.1 jtc ** Prototypes for static functions.
153 1.1 jtc */
154 1.1 jtc
155 1.45 mlelstv static long detzcode(const char * codep);
156 1.45 mlelstv static time_t detzcode64(const char * codep);
157 1.45 mlelstv static int differ_by_repeat(time_t t1, time_t t0);
158 1.67.2.1 tls static const char * getzname(const char * strp) __pure;
159 1.67.2.1 tls static const char * getqzname(const char * strp, const int delim) __pure;
160 1.45 mlelstv static const char * getnum(const char * strp, int * nump, int min,
161 1.45 mlelstv int max);
162 1.45 mlelstv static const char * getsecs(const char * strp, long * secsp);
163 1.45 mlelstv static const char * getoffset(const char * strp, long * offsetp);
164 1.45 mlelstv static const char * getrule(const char * strp, struct rule * rulep);
165 1.49 christos static void gmtload(timezone_t sp);
166 1.49 christos static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
167 1.49 christos long offset, struct tm * tmp);
168 1.49 christos static struct tm * localsub(const timezone_t sp, const time_t *timep,
169 1.49 christos long offset, struct tm *tmp);
170 1.45 mlelstv static int increment_overflow(int * number, int delta);
171 1.67.2.1 tls static int leaps_thru_end_of(int y) __pure;
172 1.45 mlelstv static int long_increment_overflow(long * number, int delta);
173 1.45 mlelstv static int long_normalize_overflow(long * tensptr,
174 1.45 mlelstv int * unitsptr, int base);
175 1.45 mlelstv static int normalize_overflow(int * tensptr, int * unitsptr,
176 1.45 mlelstv int base);
177 1.45 mlelstv static void settzname(void);
178 1.49 christos static time_t time1(const timezone_t sp, struct tm * const tmp,
179 1.67.2.1 tls subfun_t funcp, const long offset);
180 1.49 christos static time_t time2(const timezone_t sp, struct tm * const tmp,
181 1.49 christos subfun_t funcp,
182 1.49 christos const long offset, int *const okayp);
183 1.67.2.1 tls static time_t time2sub(const timezone_t sp, struct tm * const tmp,
184 1.49 christos subfun_t funcp, const long offset,
185 1.49 christos int *const okayp, const int do_norm_secs);
186 1.49 christos static struct tm * timesub(const timezone_t sp, const time_t * timep,
187 1.49 christos long offset, struct tm * tmp);
188 1.45 mlelstv static int tmcomp(const struct tm * atmp,
189 1.45 mlelstv const struct tm * btmp);
190 1.45 mlelstv static time_t transtime(time_t janfirst, int year,
191 1.67.2.1 tls const struct rule * rulep, long offset) __pure;
192 1.49 christos static int typesequiv(const timezone_t sp, int a, int b);
193 1.49 christos static int tzload(timezone_t sp, const char * name,
194 1.45 mlelstv int doextend);
195 1.49 christos static int tzparse(timezone_t sp, const char * name,
196 1.45 mlelstv int lastditch);
197 1.45 mlelstv static void tzset_unlocked(void);
198 1.45 mlelstv static void tzsetwall_unlocked(void);
199 1.49 christos static long leapcorr(const timezone_t sp, time_t * timep);
200 1.1 jtc
201 1.49 christos static timezone_t lclptr;
202 1.49 christos static timezone_t gmtptr;
203 1.1 jtc
204 1.1 jtc #ifndef TZ_STRLEN_MAX
205 1.1 jtc #define TZ_STRLEN_MAX 255
206 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
207 1.1 jtc
208 1.45 mlelstv static char lcl_TZname[TZ_STRLEN_MAX + 1];
209 1.45 mlelstv static int lcl_is_set;
210 1.45 mlelstv static int gmt_is_set;
211 1.42 christos
212 1.42 christos #if !defined(__LIBC12_SOURCE__)
213 1.1 jtc
214 1.16 mycroft __aconst char * tzname[2] = {
215 1.37 christos (__aconst char *)__UNCONST(wildabbr),
216 1.37 christos (__aconst char *)__UNCONST(wildabbr)
217 1.1 jtc };
218 1.1 jtc
219 1.42 christos #else
220 1.42 christos
221 1.42 christos extern __aconst char * tzname[2];
222 1.42 christos
223 1.42 christos #endif
224 1.42 christos
225 1.33 christos #ifdef _REENTRANT
226 1.45 mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 1.19 kleink #endif
228 1.19 kleink
229 1.1 jtc /*
230 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
231 1.1 jtc ** Except for the strftime function, these functions [asctime,
232 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
233 1.1 jtc ** objects: a broken-down time structure and an array of char.
234 1.45 mlelstv ** Thanks to Paul Eggert for noting this.
235 1.1 jtc */
236 1.1 jtc
237 1.1 jtc static struct tm tm;
238 1.1 jtc
239 1.1 jtc #ifdef USG_COMPAT
240 1.42 christos #if !defined(__LIBC12_SOURCE__)
241 1.42 christos long timezone = 0;
242 1.1 jtc int daylight = 0;
243 1.42 christos #else
244 1.42 christos extern int daylight;
245 1.42 christos extern long timezone __RENAME(__timezone13);
246 1.42 christos #endif
247 1.1 jtc #endif /* defined USG_COMPAT */
248 1.1 jtc
249 1.1 jtc #ifdef ALTZONE
250 1.1 jtc time_t altzone = 0;
251 1.1 jtc #endif /* defined ALTZONE */
252 1.1 jtc
253 1.1 jtc static long
254 1.49 christos detzcode(const char *const codep)
255 1.1 jtc {
256 1.49 christos long result;
257 1.49 christos int i;
258 1.45 mlelstv
259 1.45 mlelstv result = (codep[0] & 0x80) ? ~0L : 0;
260 1.45 mlelstv for (i = 0; i < 4; ++i)
261 1.45 mlelstv result = (result << 8) | (codep[i] & 0xff);
262 1.45 mlelstv return result;
263 1.45 mlelstv }
264 1.45 mlelstv
265 1.45 mlelstv static time_t
266 1.49 christos detzcode64(const char *const codep)
267 1.45 mlelstv {
268 1.49 christos time_t result;
269 1.49 christos int i;
270 1.1 jtc
271 1.67.2.1 tls result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
272 1.45 mlelstv for (i = 0; i < 8; ++i)
273 1.45 mlelstv result = result * 256 + (codep[i] & 0xff);
274 1.1 jtc return result;
275 1.1 jtc }
276 1.1 jtc
277 1.49 christos const char *
278 1.49 christos tzgetname(const timezone_t sp, int isdst)
279 1.49 christos {
280 1.49 christos int i;
281 1.49 christos for (i = 0; i < sp->timecnt; ++i) {
282 1.49 christos const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283 1.49 christos
284 1.49 christos if (ttisp->tt_isdst == isdst)
285 1.49 christos return &sp->chars[ttisp->tt_abbrind];
286 1.49 christos }
287 1.49 christos return NULL;
288 1.49 christos }
289 1.49 christos
290 1.49 christos static void
291 1.49 christos settzname_z(timezone_t sp)
292 1.49 christos {
293 1.49 christos int i;
294 1.49 christos
295 1.49 christos /*
296 1.49 christos ** Scrub the abbreviations.
297 1.49 christos ** First, replace bogus characters.
298 1.49 christos */
299 1.49 christos for (i = 0; i < sp->charcnt; ++i)
300 1.49 christos if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 1.49 christos sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 1.49 christos /*
303 1.49 christos ** Second, truncate long abbreviations.
304 1.49 christos */
305 1.49 christos for (i = 0; i < sp->typecnt; ++i) {
306 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
307 1.49 christos char * cp = &sp->chars[ttisp->tt_abbrind];
308 1.49 christos
309 1.49 christos if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 1.49 christos strcmp(cp, GRANDPARENTED) != 0)
311 1.49 christos *(cp + TZ_ABBR_MAX_LEN) = '\0';
312 1.49 christos }
313 1.49 christos }
314 1.49 christos
315 1.45 mlelstv static void
316 1.45 mlelstv settzname(void)
317 1.1 jtc {
318 1.49 christos timezone_t const sp = lclptr;
319 1.49 christos int i;
320 1.1 jtc
321 1.37 christos tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 1.37 christos tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 1.1 jtc #ifdef USG_COMPAT
324 1.1 jtc daylight = 0;
325 1.1 jtc timezone = 0;
326 1.1 jtc #endif /* defined USG_COMPAT */
327 1.1 jtc #ifdef ALTZONE
328 1.1 jtc altzone = 0;
329 1.1 jtc #endif /* defined ALTZONE */
330 1.1 jtc if (sp == NULL) {
331 1.37 christos tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 1.1 jtc return;
333 1.1 jtc }
334 1.58 christos /*
335 1.58 christos ** And to get the latest zone names into tzname. . .
336 1.58 christos */
337 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
338 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
339 1.1 jtc
340 1.67.2.2 tls tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
341 1.45 mlelstv #ifdef USG_COMPAT
342 1.45 mlelstv if (ttisp->tt_isdst)
343 1.45 mlelstv daylight = 1;
344 1.58 christos if (!ttisp->tt_isdst)
345 1.45 mlelstv timezone = -(ttisp->tt_gmtoff);
346 1.45 mlelstv #endif /* defined USG_COMPAT */
347 1.45 mlelstv #ifdef ALTZONE
348 1.67.2.1 tls if (ttisp->tt_isdst)
349 1.45 mlelstv altzone = -(ttisp->tt_gmtoff);
350 1.45 mlelstv #endif /* defined ALTZONE */
351 1.1 jtc }
352 1.49 christos settzname_z(sp);
353 1.1 jtc }
354 1.1 jtc
355 1.45 mlelstv static int
356 1.49 christos differ_by_repeat(const time_t t1, const time_t t0)
357 1.45 mlelstv {
358 1.45 mlelstv if (TYPE_INTEGRAL(time_t) &&
359 1.45 mlelstv TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
360 1.45 mlelstv return 0;
361 1.45 mlelstv return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
362 1.45 mlelstv }
363 1.45 mlelstv
364 1.45 mlelstv static int
365 1.49 christos tzload(timezone_t sp, const char *name, const int doextend)
366 1.49 christos {
367 1.49 christos const char * p;
368 1.49 christos int i;
369 1.49 christos int fid;
370 1.49 christos int stored;
371 1.66 christos ssize_t nread;
372 1.58 christos typedef union {
373 1.45 mlelstv struct tzhead tzhead;
374 1.45 mlelstv char buf[2 * sizeof(struct tzhead) +
375 1.45 mlelstv 2 * sizeof *sp +
376 1.45 mlelstv 4 * TZ_MAX_TIMES];
377 1.58 christos } u_t;
378 1.58 christos u_t * up;
379 1.58 christos
380 1.58 christos up = calloc(1, sizeof *up);
381 1.58 christos if (up == NULL)
382 1.58 christos return -1;
383 1.1 jtc
384 1.47 christos sp->goback = sp->goahead = FALSE;
385 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
386 1.58 christos goto oops;
387 1.1 jtc {
388 1.49 christos int doaccess;
389 1.1 jtc /*
390 1.1 jtc ** Section 4.9.1 of the C standard says that
391 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
392 1.10 jtc ** that is the size needed for an array of char large enough
393 1.1 jtc ** to hold the longest file name string that the implementation
394 1.1 jtc ** guarantees can be opened."
395 1.1 jtc */
396 1.1 jtc char fullname[FILENAME_MAX + 1];
397 1.1 jtc
398 1.1 jtc if (name[0] == ':')
399 1.1 jtc ++name;
400 1.1 jtc doaccess = name[0] == '/';
401 1.1 jtc if (!doaccess) {
402 1.1 jtc if ((p = TZDIR) == NULL)
403 1.58 christos goto oops;
404 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
405 1.58 christos goto oops;
406 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
407 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
408 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
409 1.1 jtc /*
410 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
411 1.1 jtc */
412 1.1 jtc if (strchr(name, '.') != NULL)
413 1.1 jtc doaccess = TRUE;
414 1.1 jtc name = fullname;
415 1.1 jtc }
416 1.1 jtc if (doaccess && access(name, R_OK) != 0)
417 1.58 christos goto oops;
418 1.9 mrg /*
419 1.9 mrg * XXX potential security problem here if user of a set-id
420 1.9 mrg * program has set TZ (which is passed in as name) here,
421 1.9 mrg * and uses a race condition trick to defeat the access(2)
422 1.9 mrg * above.
423 1.9 mrg */
424 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
425 1.58 christos goto oops;
426 1.1 jtc }
427 1.58 christos nread = read(fid, up->buf, sizeof up->buf);
428 1.45 mlelstv if (close(fid) < 0 || nread <= 0)
429 1.58 christos goto oops;
430 1.45 mlelstv for (stored = 4; stored <= 8; stored *= 2) {
431 1.1 jtc int ttisstdcnt;
432 1.1 jtc int ttisgmtcnt;
433 1.1 jtc
434 1.58 christos ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
435 1.58 christos ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
436 1.58 christos sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
437 1.58 christos sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
438 1.58 christos sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
439 1.58 christos sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
440 1.58 christos p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
441 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
442 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
443 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
444 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
445 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
446 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
447 1.58 christos goto oops;
448 1.58 christos if (nread - (p - up->buf) <
449 1.45 mlelstv sp->timecnt * stored + /* ats */
450 1.1 jtc sp->timecnt + /* types */
451 1.45 mlelstv sp->typecnt * 6 + /* ttinfos */
452 1.1 jtc sp->charcnt + /* chars */
453 1.45 mlelstv sp->leapcnt * (stored + 4) + /* lsinfos */
454 1.1 jtc ttisstdcnt + /* ttisstds */
455 1.1 jtc ttisgmtcnt) /* ttisgmts */
456 1.58 christos goto oops;
457 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
458 1.66 christos sp->ats[i] = (time_t)((stored == 4) ?
459 1.66 christos detzcode(p) : detzcode64(p));
460 1.45 mlelstv p += stored;
461 1.1 jtc }
462 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
463 1.1 jtc sp->types[i] = (unsigned char) *p++;
464 1.1 jtc if (sp->types[i] >= sp->typecnt)
465 1.58 christos goto oops;
466 1.1 jtc }
467 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
468 1.49 christos struct ttinfo * ttisp;
469 1.1 jtc
470 1.1 jtc ttisp = &sp->ttis[i];
471 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
472 1.1 jtc p += 4;
473 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
474 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
475 1.58 christos goto oops;
476 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
477 1.1 jtc if (ttisp->tt_abbrind < 0 ||
478 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
479 1.58 christos goto oops;
480 1.1 jtc }
481 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
482 1.1 jtc sp->chars[i] = *p++;
483 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
484 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
485 1.49 christos struct lsinfo * lsisp;
486 1.1 jtc
487 1.1 jtc lsisp = &sp->lsis[i];
488 1.66 christos lsisp->ls_trans = (time_t)((stored == 4) ?
489 1.66 christos detzcode(p) : detzcode64(p));
490 1.45 mlelstv p += stored;
491 1.1 jtc lsisp->ls_corr = detzcode(p);
492 1.1 jtc p += 4;
493 1.1 jtc }
494 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
495 1.49 christos struct ttinfo * ttisp;
496 1.1 jtc
497 1.1 jtc ttisp = &sp->ttis[i];
498 1.1 jtc if (ttisstdcnt == 0)
499 1.1 jtc ttisp->tt_ttisstd = FALSE;
500 1.1 jtc else {
501 1.1 jtc ttisp->tt_ttisstd = *p++;
502 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
503 1.1 jtc ttisp->tt_ttisstd != FALSE)
504 1.58 christos goto oops;
505 1.1 jtc }
506 1.1 jtc }
507 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
508 1.49 christos struct ttinfo * ttisp;
509 1.1 jtc
510 1.1 jtc ttisp = &sp->ttis[i];
511 1.1 jtc if (ttisgmtcnt == 0)
512 1.1 jtc ttisp->tt_ttisgmt = FALSE;
513 1.1 jtc else {
514 1.1 jtc ttisp->tt_ttisgmt = *p++;
515 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
516 1.1 jtc ttisp->tt_ttisgmt != FALSE)
517 1.58 christos goto oops;
518 1.1 jtc }
519 1.1 jtc }
520 1.45 mlelstv /*
521 1.45 mlelstv ** Out-of-sort ats should mean we're running on a
522 1.45 mlelstv ** signed time_t system but using a data file with
523 1.45 mlelstv ** unsigned values (or vice versa).
524 1.45 mlelstv */
525 1.67.2.2 tls for (i = 0; i < sp->timecnt; ++i)
526 1.67.2.2 tls if ((i < sp->timecnt - 1 &&
527 1.67.2.2 tls sp->ats[i] > sp->ats[i + 1]) ||
528 1.67.2.2 tls (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) &&
529 1.67.2.2 tls sp->ats[i] >
530 1.67.2.2 tls ((stored == 4) ? INT32_MAX : INT64_MAX))) {
531 1.45 mlelstv if (TYPE_SIGNED(time_t)) {
532 1.45 mlelstv /*
533 1.45 mlelstv ** Ignore the end (easy).
534 1.45 mlelstv */
535 1.67.2.2 tls sp->timecnt = i + 1;
536 1.45 mlelstv } else {
537 1.45 mlelstv /*
538 1.45 mlelstv ** Ignore the beginning (harder).
539 1.45 mlelstv */
540 1.49 christos int j;
541 1.45 mlelstv
542 1.67.2.2 tls /*
543 1.67.2.2 tls ** Keep the record right before the
544 1.67.2.2 tls ** epoch boundary,
545 1.67.2.2 tls ** but tweak it so that it starts
546 1.67.2.2 tls ** right with the epoch
547 1.67.2.2 tls ** (thanks to Doug Bailey).
548 1.67.2.2 tls */
549 1.67.2.2 tls sp->ats[i] = 0;
550 1.45 mlelstv for (j = 0; j + i < sp->timecnt; ++j) {
551 1.45 mlelstv sp->ats[j] = sp->ats[j + i];
552 1.45 mlelstv sp->types[j] = sp->types[j + i];
553 1.45 mlelstv }
554 1.45 mlelstv sp->timecnt = j;
555 1.45 mlelstv }
556 1.45 mlelstv break;
557 1.45 mlelstv }
558 1.45 mlelstv /*
559 1.45 mlelstv ** If this is an old file, we're done.
560 1.45 mlelstv */
561 1.58 christos if (up->tzhead.tzh_version[0] == '\0')
562 1.45 mlelstv break;
563 1.58 christos nread -= p - up->buf;
564 1.45 mlelstv for (i = 0; i < nread; ++i)
565 1.58 christos up->buf[i] = p[i];
566 1.45 mlelstv /*
567 1.45 mlelstv ** If this is a narrow integer time_t system, we're done.
568 1.45 mlelstv */
569 1.45 mlelstv if (stored >= (int) sizeof(time_t)
570 1.45 mlelstv /* CONSTCOND */
571 1.45 mlelstv && TYPE_INTEGRAL(time_t))
572 1.45 mlelstv break;
573 1.45 mlelstv }
574 1.45 mlelstv if (doextend && nread > 2 &&
575 1.58 christos up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
576 1.45 mlelstv sp->typecnt + 2 <= TZ_MAX_TYPES) {
577 1.49 christos struct __state ts;
578 1.49 christos int result;
579 1.45 mlelstv
580 1.58 christos up->buf[nread - 1] = '\0';
581 1.58 christos result = tzparse(&ts, &up->buf[1], FALSE);
582 1.45 mlelstv if (result == 0 && ts.typecnt == 2 &&
583 1.45 mlelstv sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
584 1.45 mlelstv for (i = 0; i < 2; ++i)
585 1.45 mlelstv ts.ttis[i].tt_abbrind +=
586 1.45 mlelstv sp->charcnt;
587 1.45 mlelstv for (i = 0; i < ts.charcnt; ++i)
588 1.45 mlelstv sp->chars[sp->charcnt++] =
589 1.45 mlelstv ts.chars[i];
590 1.45 mlelstv i = 0;
591 1.45 mlelstv while (i < ts.timecnt &&
592 1.45 mlelstv ts.ats[i] <=
593 1.45 mlelstv sp->ats[sp->timecnt - 1])
594 1.45 mlelstv ++i;
595 1.45 mlelstv while (i < ts.timecnt &&
596 1.45 mlelstv sp->timecnt < TZ_MAX_TIMES) {
597 1.45 mlelstv sp->ats[sp->timecnt] =
598 1.45 mlelstv ts.ats[i];
599 1.45 mlelstv sp->types[sp->timecnt] =
600 1.45 mlelstv sp->typecnt +
601 1.45 mlelstv ts.types[i];
602 1.45 mlelstv ++sp->timecnt;
603 1.45 mlelstv ++i;
604 1.45 mlelstv }
605 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[0];
606 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[1];
607 1.45 mlelstv }
608 1.45 mlelstv }
609 1.45 mlelstv if (sp->timecnt > 1) {
610 1.45 mlelstv for (i = 1; i < sp->timecnt; ++i)
611 1.45 mlelstv if (typesequiv(sp, sp->types[i], sp->types[0]) &&
612 1.45 mlelstv differ_by_repeat(sp->ats[i], sp->ats[0])) {
613 1.45 mlelstv sp->goback = TRUE;
614 1.45 mlelstv break;
615 1.45 mlelstv }
616 1.45 mlelstv for (i = sp->timecnt - 2; i >= 0; --i)
617 1.45 mlelstv if (typesequiv(sp, sp->types[sp->timecnt - 1],
618 1.45 mlelstv sp->types[i]) &&
619 1.45 mlelstv differ_by_repeat(sp->ats[sp->timecnt - 1],
620 1.45 mlelstv sp->ats[i])) {
621 1.45 mlelstv sp->goahead = TRUE;
622 1.45 mlelstv break;
623 1.45 mlelstv }
624 1.1 jtc }
625 1.58 christos free(up);
626 1.1 jtc return 0;
627 1.58 christos oops:
628 1.58 christos free(up);
629 1.58 christos return -1;
630 1.1 jtc }
631 1.1 jtc
632 1.45 mlelstv static int
633 1.49 christos typesequiv(const timezone_t sp, const int a, const int b)
634 1.45 mlelstv {
635 1.49 christos int result;
636 1.45 mlelstv
637 1.45 mlelstv if (sp == NULL ||
638 1.45 mlelstv a < 0 || a >= sp->typecnt ||
639 1.45 mlelstv b < 0 || b >= sp->typecnt)
640 1.45 mlelstv result = FALSE;
641 1.45 mlelstv else {
642 1.49 christos const struct ttinfo * ap = &sp->ttis[a];
643 1.49 christos const struct ttinfo * bp = &sp->ttis[b];
644 1.45 mlelstv result = ap->tt_gmtoff == bp->tt_gmtoff &&
645 1.45 mlelstv ap->tt_isdst == bp->tt_isdst &&
646 1.45 mlelstv ap->tt_ttisstd == bp->tt_ttisstd &&
647 1.45 mlelstv ap->tt_ttisgmt == bp->tt_ttisgmt &&
648 1.45 mlelstv strcmp(&sp->chars[ap->tt_abbrind],
649 1.45 mlelstv &sp->chars[bp->tt_abbrind]) == 0;
650 1.45 mlelstv }
651 1.45 mlelstv return result;
652 1.45 mlelstv }
653 1.45 mlelstv
654 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
655 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
656 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
657 1.1 jtc };
658 1.1 jtc
659 1.1 jtc static const int year_lengths[2] = {
660 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
661 1.1 jtc };
662 1.1 jtc
663 1.1 jtc /*
664 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
665 1.45 mlelstv ** a valid character in a zone name is found. Return a pointer to that
666 1.1 jtc ** character.
667 1.1 jtc */
668 1.1 jtc
669 1.1 jtc static const char *
670 1.67 matt getzname(const char *strp)
671 1.1 jtc {
672 1.49 christos char c;
673 1.1 jtc
674 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
675 1.1 jtc c != '+')
676 1.1 jtc ++strp;
677 1.1 jtc return strp;
678 1.1 jtc }
679 1.1 jtc
680 1.1 jtc /*
681 1.45 mlelstv ** Given a pointer into an extended time zone string, scan until the ending
682 1.45 mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
683 1.45 mlelstv **
684 1.45 mlelstv ** As with getzname above, the legal character set is actually quite
685 1.45 mlelstv ** restricted, with other characters producing undefined results.
686 1.45 mlelstv ** We don't do any checking here; checking is done later in common-case code.
687 1.45 mlelstv */
688 1.45 mlelstv
689 1.45 mlelstv static const char *
690 1.49 christos getqzname(const char *strp, const int delim)
691 1.45 mlelstv {
692 1.49 christos int c;
693 1.45 mlelstv
694 1.45 mlelstv while ((c = *strp) != '\0' && c != delim)
695 1.45 mlelstv ++strp;
696 1.45 mlelstv return strp;
697 1.45 mlelstv }
698 1.45 mlelstv
699 1.45 mlelstv /*
700 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
701 1.1 jtc ** Check that the number is within a specified range; if it is not, return
702 1.1 jtc ** NULL.
703 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
704 1.1 jtc */
705 1.1 jtc
706 1.1 jtc static const char *
707 1.67.2.1 tls getnum(const char *strp, int *const nump, const int min, const int max)
708 1.1 jtc {
709 1.49 christos char c;
710 1.49 christos int num;
711 1.1 jtc
712 1.46 christos if (strp == NULL || !is_digit(c = *strp)) {
713 1.46 christos errno = EINVAL;
714 1.1 jtc return NULL;
715 1.46 christos }
716 1.1 jtc num = 0;
717 1.5 jtc do {
718 1.1 jtc num = num * 10 + (c - '0');
719 1.46 christos if (num > max) {
720 1.46 christos errno = EOVERFLOW;
721 1.1 jtc return NULL; /* illegal value */
722 1.46 christos }
723 1.5 jtc c = *++strp;
724 1.5 jtc } while (is_digit(c));
725 1.46 christos if (num < min) {
726 1.46 christos errno = EINVAL;
727 1.1 jtc return NULL; /* illegal value */
728 1.46 christos }
729 1.1 jtc *nump = num;
730 1.1 jtc return strp;
731 1.1 jtc }
732 1.1 jtc
733 1.1 jtc /*
734 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
735 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
736 1.1 jtc ** If any error occurs, return NULL.
737 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
738 1.1 jtc ** of seconds.
739 1.1 jtc */
740 1.1 jtc
741 1.1 jtc static const char *
742 1.49 christos getsecs(const char *strp, long *const secsp)
743 1.1 jtc {
744 1.1 jtc int num;
745 1.1 jtc
746 1.1 jtc /*
747 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
748 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
749 1.1 jtc ** but which specifies the equivalent of
750 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
751 1.1 jtc */
752 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
753 1.1 jtc if (strp == NULL)
754 1.1 jtc return NULL;
755 1.1 jtc *secsp = num * (long) SECSPERHOUR;
756 1.1 jtc if (*strp == ':') {
757 1.1 jtc ++strp;
758 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
759 1.1 jtc if (strp == NULL)
760 1.1 jtc return NULL;
761 1.1 jtc *secsp += num * SECSPERMIN;
762 1.1 jtc if (*strp == ':') {
763 1.1 jtc ++strp;
764 1.45 mlelstv /* `SECSPERMIN' allows for leap seconds. */
765 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
766 1.1 jtc if (strp == NULL)
767 1.1 jtc return NULL;
768 1.1 jtc *secsp += num;
769 1.1 jtc }
770 1.1 jtc }
771 1.1 jtc return strp;
772 1.1 jtc }
773 1.1 jtc
774 1.1 jtc /*
775 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
776 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
777 1.1 jtc ** If any error occurs, return NULL.
778 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
779 1.1 jtc */
780 1.1 jtc
781 1.1 jtc static const char *
782 1.49 christos getoffset(const char *strp, long *const offsetp)
783 1.1 jtc {
784 1.49 christos int neg = 0;
785 1.1 jtc
786 1.1 jtc if (*strp == '-') {
787 1.1 jtc neg = 1;
788 1.1 jtc ++strp;
789 1.5 jtc } else if (*strp == '+')
790 1.5 jtc ++strp;
791 1.1 jtc strp = getsecs(strp, offsetp);
792 1.1 jtc if (strp == NULL)
793 1.1 jtc return NULL; /* illegal time */
794 1.1 jtc if (neg)
795 1.1 jtc *offsetp = -*offsetp;
796 1.1 jtc return strp;
797 1.1 jtc }
798 1.1 jtc
799 1.1 jtc /*
800 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
801 1.45 mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
802 1.1 jtc ** If a valid rule is not found, return NULL.
803 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
804 1.1 jtc */
805 1.1 jtc
806 1.1 jtc static const char *
807 1.49 christos getrule(const char *strp, struct rule *const rulep)
808 1.1 jtc {
809 1.1 jtc if (*strp == 'J') {
810 1.1 jtc /*
811 1.1 jtc ** Julian day.
812 1.1 jtc */
813 1.1 jtc rulep->r_type = JULIAN_DAY;
814 1.1 jtc ++strp;
815 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
816 1.1 jtc } else if (*strp == 'M') {
817 1.1 jtc /*
818 1.1 jtc ** Month, week, day.
819 1.1 jtc */
820 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
821 1.1 jtc ++strp;
822 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
823 1.1 jtc if (strp == NULL)
824 1.1 jtc return NULL;
825 1.1 jtc if (*strp++ != '.')
826 1.1 jtc return NULL;
827 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
828 1.1 jtc if (strp == NULL)
829 1.1 jtc return NULL;
830 1.1 jtc if (*strp++ != '.')
831 1.1 jtc return NULL;
832 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
833 1.5 jtc } else if (is_digit(*strp)) {
834 1.1 jtc /*
835 1.1 jtc ** Day of year.
836 1.1 jtc */
837 1.1 jtc rulep->r_type = DAY_OF_YEAR;
838 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
839 1.1 jtc } else return NULL; /* invalid format */
840 1.1 jtc if (strp == NULL)
841 1.1 jtc return NULL;
842 1.1 jtc if (*strp == '/') {
843 1.1 jtc /*
844 1.1 jtc ** Time specified.
845 1.1 jtc */
846 1.1 jtc ++strp;
847 1.1 jtc strp = getsecs(strp, &rulep->r_time);
848 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
849 1.1 jtc return strp;
850 1.1 jtc }
851 1.1 jtc
852 1.1 jtc /*
853 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
854 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
855 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
856 1.1 jtc */
857 1.1 jtc
858 1.1 jtc static time_t
859 1.49 christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
860 1.49 christos const long offset)
861 1.49 christos {
862 1.49 christos int leapyear;
863 1.49 christos time_t value;
864 1.49 christos int i;
865 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
866 1.1 jtc
867 1.1 jtc INITIALIZE(value);
868 1.1 jtc leapyear = isleap(year);
869 1.1 jtc switch (rulep->r_type) {
870 1.1 jtc
871 1.1 jtc case JULIAN_DAY:
872 1.1 jtc /*
873 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
874 1.1 jtc ** years.
875 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
876 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
877 1.1 jtc ** January 1, midnight, to get the day.
878 1.1 jtc */
879 1.66 christos value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
880 1.1 jtc if (leapyear && rulep->r_day >= 60)
881 1.1 jtc value += SECSPERDAY;
882 1.1 jtc break;
883 1.1 jtc
884 1.1 jtc case DAY_OF_YEAR:
885 1.1 jtc /*
886 1.1 jtc ** n - day of year.
887 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
888 1.1 jtc ** January 1, midnight, to get the day.
889 1.1 jtc */
890 1.66 christos value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
891 1.1 jtc break;
892 1.1 jtc
893 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
894 1.1 jtc /*
895 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
896 1.1 jtc */
897 1.1 jtc value = janfirst;
898 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
899 1.66 christos value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
900 1.1 jtc
901 1.1 jtc /*
902 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
903 1.1 jtc ** month.
904 1.1 jtc */
905 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
906 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
907 1.1 jtc yy1 = yy0 / 100;
908 1.1 jtc yy2 = yy0 % 100;
909 1.1 jtc dow = ((26 * m1 - 2) / 10 +
910 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
911 1.1 jtc if (dow < 0)
912 1.1 jtc dow += DAYSPERWEEK;
913 1.1 jtc
914 1.1 jtc /*
915 1.45 mlelstv ** "dow" is the day-of-week of the first day of the month. Get
916 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
917 1.1 jtc ** month.
918 1.1 jtc */
919 1.1 jtc d = rulep->r_day - dow;
920 1.1 jtc if (d < 0)
921 1.1 jtc d += DAYSPERWEEK;
922 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
923 1.1 jtc if (d + DAYSPERWEEK >=
924 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
925 1.1 jtc break;
926 1.1 jtc d += DAYSPERWEEK;
927 1.1 jtc }
928 1.1 jtc
929 1.1 jtc /*
930 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
931 1.1 jtc */
932 1.66 christos value += (time_t)(d * SECSPERDAY);
933 1.1 jtc break;
934 1.1 jtc }
935 1.1 jtc
936 1.1 jtc /*
937 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
938 1.45 mlelstv ** question. To get the Epoch-relative time of the specified local
939 1.1 jtc ** time on that day, add the transition time and the current offset
940 1.14 jtc ** from UTC.
941 1.1 jtc */
942 1.66 christos return (time_t)(value + rulep->r_time + offset);
943 1.1 jtc }
944 1.1 jtc
945 1.1 jtc /*
946 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
947 1.1 jtc ** appropriate.
948 1.1 jtc */
949 1.1 jtc
950 1.1 jtc static int
951 1.49 christos tzparse(timezone_t sp, const char *name, const int lastditch)
952 1.1 jtc {
953 1.1 jtc const char * stdname;
954 1.1 jtc const char * dstname;
955 1.1 jtc size_t stdlen;
956 1.1 jtc size_t dstlen;
957 1.1 jtc long stdoffset;
958 1.1 jtc long dstoffset;
959 1.49 christos time_t * atp;
960 1.49 christos unsigned char * typep;
961 1.49 christos char * cp;
962 1.49 christos int load_result;
963 1.1 jtc
964 1.1 jtc INITIALIZE(dstname);
965 1.1 jtc stdname = name;
966 1.1 jtc if (lastditch) {
967 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
968 1.1 jtc name += stdlen;
969 1.1 jtc if (stdlen >= sizeof sp->chars)
970 1.1 jtc stdlen = (sizeof sp->chars) - 1;
971 1.10 jtc stdoffset = 0;
972 1.1 jtc } else {
973 1.45 mlelstv if (*name == '<') {
974 1.45 mlelstv name++;
975 1.45 mlelstv stdname = name;
976 1.45 mlelstv name = getqzname(name, '>');
977 1.45 mlelstv if (*name != '>')
978 1.45 mlelstv return (-1);
979 1.45 mlelstv stdlen = name - stdname;
980 1.45 mlelstv name++;
981 1.45 mlelstv } else {
982 1.45 mlelstv name = getzname(name);
983 1.45 mlelstv stdlen = name - stdname;
984 1.45 mlelstv }
985 1.10 jtc if (*name == '\0')
986 1.10 jtc return -1;
987 1.45 mlelstv name = getoffset(name, &stdoffset);
988 1.1 jtc if (name == NULL)
989 1.1 jtc return -1;
990 1.1 jtc }
991 1.49 christos load_result = tzload(sp, TZDEFRULES, FALSE);
992 1.1 jtc if (load_result != 0)
993 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
994 1.1 jtc if (*name != '\0') {
995 1.45 mlelstv if (*name == '<') {
996 1.45 mlelstv dstname = ++name;
997 1.45 mlelstv name = getqzname(name, '>');
998 1.45 mlelstv if (*name != '>')
999 1.45 mlelstv return -1;
1000 1.45 mlelstv dstlen = name - dstname;
1001 1.45 mlelstv name++;
1002 1.45 mlelstv } else {
1003 1.45 mlelstv dstname = name;
1004 1.45 mlelstv name = getzname(name);
1005 1.45 mlelstv dstlen = name - dstname; /* length of DST zone name */
1006 1.45 mlelstv }
1007 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
1008 1.45 mlelstv name = getoffset(name, &dstoffset);
1009 1.1 jtc if (name == NULL)
1010 1.1 jtc return -1;
1011 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
1012 1.22 kleink if (*name == '\0' && load_result != 0)
1013 1.22 kleink name = TZDEFRULESTRING;
1014 1.1 jtc if (*name == ',' || *name == ';') {
1015 1.1 jtc struct rule start;
1016 1.1 jtc struct rule end;
1017 1.49 christos int year;
1018 1.49 christos time_t janfirst;
1019 1.1 jtc time_t starttime;
1020 1.1 jtc time_t endtime;
1021 1.1 jtc
1022 1.1 jtc ++name;
1023 1.45 mlelstv if ((name = getrule(name, &start)) == NULL)
1024 1.1 jtc return -1;
1025 1.1 jtc if (*name++ != ',')
1026 1.1 jtc return -1;
1027 1.45 mlelstv if ((name = getrule(name, &end)) == NULL)
1028 1.1 jtc return -1;
1029 1.1 jtc if (*name != '\0')
1030 1.1 jtc return -1;
1031 1.1 jtc sp->typecnt = 2; /* standard time and DST */
1032 1.1 jtc /*
1033 1.45 mlelstv ** Two transitions per year, from EPOCH_YEAR forward.
1034 1.1 jtc */
1035 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1036 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
1037 1.1 jtc sp->ttis[0].tt_isdst = 1;
1038 1.66 christos sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1039 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
1040 1.1 jtc sp->ttis[1].tt_isdst = 0;
1041 1.1 jtc sp->ttis[1].tt_abbrind = 0;
1042 1.1 jtc atp = sp->ats;
1043 1.1 jtc typep = sp->types;
1044 1.1 jtc janfirst = 0;
1045 1.45 mlelstv sp->timecnt = 0;
1046 1.45 mlelstv for (year = EPOCH_YEAR;
1047 1.45 mlelstv sp->timecnt + 2 <= TZ_MAX_TIMES;
1048 1.45 mlelstv ++year) {
1049 1.45 mlelstv time_t newfirst;
1050 1.45 mlelstv
1051 1.45 mlelstv starttime = transtime(janfirst, year, &start,
1052 1.1 jtc stdoffset);
1053 1.45 mlelstv endtime = transtime(janfirst, year, &end,
1054 1.1 jtc dstoffset);
1055 1.1 jtc if (starttime > endtime) {
1056 1.1 jtc *atp++ = endtime;
1057 1.1 jtc *typep++ = 1; /* DST ends */
1058 1.1 jtc *atp++ = starttime;
1059 1.1 jtc *typep++ = 0; /* DST begins */
1060 1.1 jtc } else {
1061 1.1 jtc *atp++ = starttime;
1062 1.1 jtc *typep++ = 0; /* DST begins */
1063 1.1 jtc *atp++ = endtime;
1064 1.1 jtc *typep++ = 1; /* DST ends */
1065 1.1 jtc }
1066 1.45 mlelstv sp->timecnt += 2;
1067 1.45 mlelstv newfirst = janfirst;
1068 1.66 christos newfirst += (time_t)
1069 1.66 christos (year_lengths[isleap(year)] * SECSPERDAY);
1070 1.45 mlelstv if (newfirst <= janfirst)
1071 1.45 mlelstv break;
1072 1.45 mlelstv janfirst = newfirst;
1073 1.1 jtc }
1074 1.1 jtc } else {
1075 1.49 christos long theirstdoffset;
1076 1.49 christos long theirdstoffset;
1077 1.49 christos long theiroffset;
1078 1.49 christos int isdst;
1079 1.49 christos int i;
1080 1.49 christos int j;
1081 1.1 jtc
1082 1.1 jtc if (*name != '\0')
1083 1.1 jtc return -1;
1084 1.1 jtc /*
1085 1.67.2.1 tls ** Initial values of theirstdoffset and theirdstoffset.
1086 1.1 jtc */
1087 1.1 jtc theirstdoffset = 0;
1088 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1089 1.1 jtc j = sp->types[i];
1090 1.1 jtc if (!sp->ttis[j].tt_isdst) {
1091 1.5 jtc theirstdoffset =
1092 1.5 jtc -sp->ttis[j].tt_gmtoff;
1093 1.1 jtc break;
1094 1.1 jtc }
1095 1.1 jtc }
1096 1.45 mlelstv theirdstoffset = 0;
1097 1.45 mlelstv for (i = 0; i < sp->timecnt; ++i) {
1098 1.45 mlelstv j = sp->types[i];
1099 1.45 mlelstv if (sp->ttis[j].tt_isdst) {
1100 1.45 mlelstv theirdstoffset =
1101 1.45 mlelstv -sp->ttis[j].tt_gmtoff;
1102 1.45 mlelstv break;
1103 1.45 mlelstv }
1104 1.45 mlelstv }
1105 1.1 jtc /*
1106 1.1 jtc ** Initially we're assumed to be in standard time.
1107 1.1 jtc */
1108 1.45 mlelstv isdst = FALSE;
1109 1.1 jtc theiroffset = theirstdoffset;
1110 1.1 jtc /*
1111 1.1 jtc ** Now juggle transition times and types
1112 1.1 jtc ** tracking offsets as you do.
1113 1.1 jtc */
1114 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1115 1.1 jtc j = sp->types[i];
1116 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
1117 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
1118 1.1 jtc /* No adjustment to transition time */
1119 1.1 jtc } else {
1120 1.1 jtc /*
1121 1.1 jtc ** If summer time is in effect, and the
1122 1.1 jtc ** transition time was not specified as
1123 1.1 jtc ** standard time, add the summer time
1124 1.1 jtc ** offset to the transition time;
1125 1.1 jtc ** otherwise, add the standard time
1126 1.1 jtc ** offset to the transition time.
1127 1.1 jtc */
1128 1.1 jtc /*
1129 1.1 jtc ** Transitions from DST to DDST
1130 1.1 jtc ** will effectively disappear since
1131 1.1 jtc ** POSIX provides for only one DST
1132 1.1 jtc ** offset.
1133 1.1 jtc */
1134 1.45 mlelstv if (isdst && !sp->ttis[j].tt_ttisstd) {
1135 1.66 christos sp->ats[i] += (time_t)
1136 1.66 christos (dstoffset - theirdstoffset);
1137 1.45 mlelstv } else {
1138 1.66 christos sp->ats[i] += (time_t)
1139 1.66 christos (stdoffset - theirstdoffset);
1140 1.45 mlelstv }
1141 1.1 jtc }
1142 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
1143 1.39 christos if (!sp->ttis[j].tt_isdst)
1144 1.39 christos theirstdoffset = theiroffset;
1145 1.45 mlelstv else theirdstoffset = theiroffset;
1146 1.1 jtc }
1147 1.1 jtc /*
1148 1.1 jtc ** Finally, fill in ttis.
1149 1.67.2.1 tls ** ttisstd and ttisgmt need not be handled
1150 1.1 jtc */
1151 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1152 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1153 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
1154 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1155 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
1156 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
1157 1.66 christos sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1158 1.7 jtc sp->typecnt = 2;
1159 1.1 jtc }
1160 1.1 jtc } else {
1161 1.1 jtc dstlen = 0;
1162 1.1 jtc sp->typecnt = 1; /* only standard time */
1163 1.1 jtc sp->timecnt = 0;
1164 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1165 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1166 1.1 jtc sp->ttis[0].tt_isdst = 0;
1167 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1168 1.1 jtc }
1169 1.66 christos sp->charcnt = (int)(stdlen + 1);
1170 1.1 jtc if (dstlen != 0)
1171 1.66 christos sp->charcnt += (int)(dstlen + 1);
1172 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
1173 1.1 jtc return -1;
1174 1.1 jtc cp = sp->chars;
1175 1.1 jtc (void) strncpy(cp, stdname, stdlen);
1176 1.1 jtc cp += stdlen;
1177 1.1 jtc *cp++ = '\0';
1178 1.1 jtc if (dstlen != 0) {
1179 1.1 jtc (void) strncpy(cp, dstname, dstlen);
1180 1.1 jtc *(cp + dstlen) = '\0';
1181 1.1 jtc }
1182 1.1 jtc return 0;
1183 1.1 jtc }
1184 1.1 jtc
1185 1.1 jtc static void
1186 1.49 christos gmtload(timezone_t sp)
1187 1.49 christos {
1188 1.49 christos if (tzload(sp, gmt, TRUE) != 0)
1189 1.49 christos (void) tzparse(sp, gmt, TRUE);
1190 1.49 christos }
1191 1.49 christos
1192 1.49 christos timezone_t
1193 1.49 christos tzalloc(const char *name)
1194 1.49 christos {
1195 1.49 christos timezone_t sp = calloc(1, sizeof *sp);
1196 1.49 christos if (sp == NULL)
1197 1.49 christos return NULL;
1198 1.49 christos if (tzload(sp, name, TRUE) != 0) {
1199 1.49 christos free(sp);
1200 1.49 christos return NULL;
1201 1.49 christos }
1202 1.49 christos settzname_z(sp);
1203 1.49 christos return sp;
1204 1.49 christos }
1205 1.49 christos
1206 1.49 christos void
1207 1.49 christos tzfree(const timezone_t sp)
1208 1.1 jtc {
1209 1.49 christos free(sp);
1210 1.1 jtc }
1211 1.1 jtc
1212 1.19 kleink static void
1213 1.45 mlelstv tzsetwall_unlocked(void)
1214 1.1 jtc {
1215 1.45 mlelstv if (lcl_is_set < 0)
1216 1.1 jtc return;
1217 1.45 mlelstv lcl_is_set = -1;
1218 1.1 jtc
1219 1.1 jtc if (lclptr == NULL) {
1220 1.41 christos int saveerrno = errno;
1221 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1222 1.41 christos errno = saveerrno;
1223 1.1 jtc if (lclptr == NULL) {
1224 1.45 mlelstv settzname(); /* all we can do */
1225 1.1 jtc return;
1226 1.1 jtc }
1227 1.1 jtc }
1228 1.49 christos if (tzload(lclptr, NULL, TRUE) != 0)
1229 1.45 mlelstv gmtload(lclptr);
1230 1.45 mlelstv settzname();
1231 1.1 jtc }
1232 1.1 jtc
1233 1.19 kleink #ifndef STD_INSPIRED
1234 1.19 kleink /*
1235 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
1236 1.19 kleink ** may cause a warning about this upcoming static declaration...
1237 1.19 kleink */
1238 1.19 kleink static
1239 1.19 kleink #endif /* !defined STD_INSPIRED */
1240 1.1 jtc void
1241 1.45 mlelstv tzsetwall(void)
1242 1.19 kleink {
1243 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1244 1.45 mlelstv tzsetwall_unlocked();
1245 1.45 mlelstv rwlock_unlock(&lcl_lock);
1246 1.19 kleink }
1247 1.19 kleink
1248 1.45 mlelstv #ifndef STD_INSPIRED
1249 1.45 mlelstv /*
1250 1.45 mlelstv ** A non-static declaration of tzsetwall in a system header file
1251 1.45 mlelstv ** may cause a warning about this upcoming static declaration...
1252 1.45 mlelstv */
1253 1.45 mlelstv static
1254 1.45 mlelstv #endif /* !defined STD_INSPIRED */
1255 1.45 mlelstv void
1256 1.45 mlelstv tzset_unlocked(void)
1257 1.1 jtc {
1258 1.49 christos const char * name;
1259 1.1 jtc
1260 1.1 jtc name = getenv("TZ");
1261 1.1 jtc if (name == NULL) {
1262 1.45 mlelstv tzsetwall_unlocked();
1263 1.1 jtc return;
1264 1.1 jtc }
1265 1.1 jtc
1266 1.45 mlelstv if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1267 1.1 jtc return;
1268 1.45 mlelstv lcl_is_set = strlen(name) < sizeof lcl_TZname;
1269 1.45 mlelstv if (lcl_is_set)
1270 1.45 mlelstv (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1271 1.1 jtc
1272 1.1 jtc if (lclptr == NULL) {
1273 1.67.2.1 tls int saveerrno = errno;
1274 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1275 1.41 christos errno = saveerrno;
1276 1.1 jtc if (lclptr == NULL) {
1277 1.45 mlelstv settzname(); /* all we can do */
1278 1.1 jtc return;
1279 1.1 jtc }
1280 1.1 jtc }
1281 1.1 jtc if (*name == '\0') {
1282 1.1 jtc /*
1283 1.1 jtc ** User wants it fast rather than right.
1284 1.1 jtc */
1285 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1286 1.1 jtc lclptr->timecnt = 0;
1287 1.27 atatat lclptr->typecnt = 0;
1288 1.27 atatat lclptr->ttis[0].tt_isdst = 0;
1289 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1290 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1291 1.45 mlelstv (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1292 1.49 christos } else if (tzload(lclptr, name, TRUE) != 0)
1293 1.49 christos if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1294 1.45 mlelstv (void) gmtload(lclptr);
1295 1.45 mlelstv settzname();
1296 1.1 jtc }
1297 1.1 jtc
1298 1.19 kleink void
1299 1.45 mlelstv tzset(void)
1300 1.19 kleink {
1301 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1302 1.45 mlelstv tzset_unlocked();
1303 1.45 mlelstv rwlock_unlock(&lcl_lock);
1304 1.19 kleink }
1305 1.19 kleink
1306 1.1 jtc /*
1307 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1308 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1309 1.45 mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
1310 1.1 jtc ** but it *is* desirable.)
1311 1.1 jtc **
1312 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1313 1.1 jtc */
1314 1.1 jtc
1315 1.1 jtc /*ARGSUSED*/
1316 1.45 mlelstv static struct tm *
1317 1.49 christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
1318 1.49 christos struct tm *const tmp)
1319 1.49 christos {
1320 1.49 christos const struct ttinfo * ttisp;
1321 1.49 christos int i;
1322 1.49 christos struct tm * result;
1323 1.1 jtc const time_t t = *timep;
1324 1.1 jtc
1325 1.45 mlelstv if ((sp->goback && t < sp->ats[0]) ||
1326 1.45 mlelstv (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1327 1.45 mlelstv time_t newt = t;
1328 1.49 christos time_t seconds;
1329 1.49 christos time_t tcycles;
1330 1.49 christos int_fast64_t icycles;
1331 1.45 mlelstv
1332 1.45 mlelstv if (t < sp->ats[0])
1333 1.45 mlelstv seconds = sp->ats[0] - t;
1334 1.45 mlelstv else seconds = t - sp->ats[sp->timecnt - 1];
1335 1.45 mlelstv --seconds;
1336 1.66 christos tcycles = (time_t)
1337 1.66 christos (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1338 1.45 mlelstv ++tcycles;
1339 1.45 mlelstv icycles = tcycles;
1340 1.45 mlelstv if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1341 1.45 mlelstv return NULL;
1342 1.45 mlelstv seconds = (time_t) icycles;
1343 1.45 mlelstv seconds *= YEARSPERREPEAT;
1344 1.45 mlelstv seconds *= AVGSECSPERYEAR;
1345 1.45 mlelstv if (t < sp->ats[0])
1346 1.45 mlelstv newt += seconds;
1347 1.45 mlelstv else newt -= seconds;
1348 1.45 mlelstv if (newt < sp->ats[0] ||
1349 1.51 christos newt > sp->ats[sp->timecnt - 1])
1350 1.45 mlelstv return NULL; /* "cannot happen" */
1351 1.49 christos result = localsub(sp, &newt, offset, tmp);
1352 1.45 mlelstv if (result == tmp) {
1353 1.49 christos time_t newy;
1354 1.45 mlelstv
1355 1.45 mlelstv newy = tmp->tm_year;
1356 1.45 mlelstv if (t < sp->ats[0])
1357 1.45 mlelstv newy -= (time_t)icycles * YEARSPERREPEAT;
1358 1.45 mlelstv else newy += (time_t)icycles * YEARSPERREPEAT;
1359 1.45 mlelstv tmp->tm_year = (int)newy;
1360 1.51 christos if (tmp->tm_year != newy)
1361 1.45 mlelstv return NULL;
1362 1.45 mlelstv }
1363 1.45 mlelstv return result;
1364 1.1 jtc }
1365 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1366 1.1 jtc i = 0;
1367 1.1 jtc while (sp->ttis[i].tt_isdst)
1368 1.1 jtc if (++i >= sp->typecnt) {
1369 1.1 jtc i = 0;
1370 1.1 jtc break;
1371 1.1 jtc }
1372 1.1 jtc } else {
1373 1.49 christos int lo = 1;
1374 1.49 christos int hi = sp->timecnt;
1375 1.45 mlelstv
1376 1.45 mlelstv while (lo < hi) {
1377 1.49 christos int mid = (lo + hi) / 2;
1378 1.45 mlelstv
1379 1.45 mlelstv if (t < sp->ats[mid])
1380 1.45 mlelstv hi = mid;
1381 1.45 mlelstv else lo = mid + 1;
1382 1.45 mlelstv }
1383 1.45 mlelstv i = (int) sp->types[lo - 1];
1384 1.1 jtc }
1385 1.1 jtc ttisp = &sp->ttis[i];
1386 1.1 jtc /*
1387 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1388 1.1 jtc ** you'd replace the statement below with
1389 1.1 jtc ** t += ttisp->tt_gmtoff;
1390 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1391 1.1 jtc */
1392 1.49 christos result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1393 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1394 1.57 christos if (sp == lclptr)
1395 1.57 christos tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1396 1.1 jtc #ifdef TM_ZONE
1397 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1398 1.1 jtc #endif /* defined TM_ZONE */
1399 1.45 mlelstv return result;
1400 1.1 jtc }
1401 1.1 jtc
1402 1.49 christos /*
1403 1.49 christos ** Re-entrant version of localtime.
1404 1.49 christos */
1405 1.49 christos
1406 1.1 jtc struct tm *
1407 1.49 christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
1408 1.1 jtc {
1409 1.49 christos rwlock_rdlock(&lcl_lock);
1410 1.45 mlelstv tzset_unlocked();
1411 1.49 christos tmp = localtime_rz(lclptr, timep, tmp);
1412 1.45 mlelstv rwlock_unlock(&lcl_lock);
1413 1.49 christos return tmp;
1414 1.1 jtc }
1415 1.1 jtc
1416 1.49 christos struct tm *
1417 1.49 christos localtime(const time_t *const timep)
1418 1.49 christos {
1419 1.49 christos return localtime_r(timep, &tm);
1420 1.49 christos }
1421 1.35 kleink
1422 1.18 kleink struct tm *
1423 1.49 christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1424 1.18 kleink {
1425 1.49 christos if (sp == NULL)
1426 1.51 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1427 1.49 christos else
1428 1.51 christos tmp = localsub(sp, timep, 0L, tmp);
1429 1.51 christos if (tmp == NULL)
1430 1.51 christos errno = EOVERFLOW;
1431 1.51 christos return tmp;
1432 1.18 kleink }
1433 1.18 kleink
1434 1.18 kleink /*
1435 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1436 1.1 jtc */
1437 1.1 jtc
1438 1.45 mlelstv static struct tm *
1439 1.67.2.1 tls gmtsub(const timezone_t sp, const time_t *const timep, const long offset,
1440 1.49 christos struct tm *const tmp)
1441 1.1 jtc {
1442 1.49 christos struct tm * result;
1443 1.33 christos #ifdef _REENTRANT
1444 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1445 1.19 kleink #endif
1446 1.19 kleink
1447 1.19 kleink mutex_lock(&gmt_mutex);
1448 1.45 mlelstv if (!gmt_is_set) {
1449 1.41 christos int saveerrno;
1450 1.45 mlelstv gmt_is_set = TRUE;
1451 1.41 christos saveerrno = errno;
1452 1.47 christos gmtptr = calloc(1, sizeof *gmtptr);
1453 1.41 christos errno = saveerrno;
1454 1.1 jtc if (gmtptr != NULL)
1455 1.45 mlelstv gmtload(gmtptr);
1456 1.1 jtc }
1457 1.19 kleink mutex_unlock(&gmt_mutex);
1458 1.49 christos result = timesub(gmtptr, timep, offset, tmp);
1459 1.1 jtc #ifdef TM_ZONE
1460 1.1 jtc /*
1461 1.1 jtc ** Could get fancy here and deliver something such as
1462 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1463 1.1 jtc ** but this is no time for a treasure hunt.
1464 1.1 jtc */
1465 1.1 jtc if (offset != 0)
1466 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1467 1.1 jtc else {
1468 1.1 jtc if (gmtptr == NULL)
1469 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1470 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1471 1.1 jtc }
1472 1.1 jtc #endif /* defined TM_ZONE */
1473 1.45 mlelstv return result;
1474 1.1 jtc }
1475 1.1 jtc
1476 1.1 jtc struct tm *
1477 1.49 christos gmtime(const time_t *const timep)
1478 1.1 jtc {
1479 1.55 christos struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1480 1.55 christos
1481 1.55 christos if (tmp == NULL)
1482 1.55 christos errno = EOVERFLOW;
1483 1.55 christos
1484 1.55 christos return tmp;
1485 1.1 jtc }
1486 1.1 jtc
1487 1.18 kleink /*
1488 1.35 kleink ** Re-entrant version of gmtime.
1489 1.35 kleink */
1490 1.35 kleink
1491 1.18 kleink struct tm *
1492 1.49 christos gmtime_r(const time_t * const timep, struct tm *tmp)
1493 1.18 kleink {
1494 1.55 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1495 1.55 christos
1496 1.55 christos if (tmp == NULL)
1497 1.55 christos errno = EOVERFLOW;
1498 1.55 christos
1499 1.55 christos return tmp;
1500 1.18 kleink }
1501 1.18 kleink
1502 1.1 jtc #ifdef STD_INSPIRED
1503 1.1 jtc
1504 1.1 jtc struct tm *
1505 1.49 christos offtime(const time_t *const timep, long offset)
1506 1.1 jtc {
1507 1.55 christos struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1508 1.55 christos
1509 1.55 christos if (tmp == NULL)
1510 1.55 christos errno = EOVERFLOW;
1511 1.55 christos
1512 1.55 christos return tmp;
1513 1.49 christos }
1514 1.49 christos
1515 1.49 christos struct tm *
1516 1.49 christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
1517 1.49 christos {
1518 1.55 christos tmp = gmtsub(NULL, timep, offset, tmp);
1519 1.55 christos
1520 1.55 christos if (tmp == NULL)
1521 1.55 christos errno = EOVERFLOW;
1522 1.55 christos
1523 1.55 christos return tmp;
1524 1.1 jtc }
1525 1.1 jtc
1526 1.1 jtc #endif /* defined STD_INSPIRED */
1527 1.1 jtc
1528 1.45 mlelstv /*
1529 1.45 mlelstv ** Return the number of leap years through the end of the given year
1530 1.45 mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
1531 1.45 mlelstv */
1532 1.45 mlelstv
1533 1.45 mlelstv static int
1534 1.49 christos leaps_thru_end_of(const int y)
1535 1.45 mlelstv {
1536 1.45 mlelstv return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1537 1.45 mlelstv -(leaps_thru_end_of(-(y + 1)) + 1);
1538 1.45 mlelstv }
1539 1.45 mlelstv
1540 1.45 mlelstv static struct tm *
1541 1.49 christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
1542 1.49 christos struct tm *const tmp)
1543 1.49 christos {
1544 1.49 christos const struct lsinfo * lp;
1545 1.49 christos time_t tdays;
1546 1.49 christos int idays; /* unsigned would be so 2003 */
1547 1.49 christos long rem;
1548 1.49 christos int y;
1549 1.49 christos const int * ip;
1550 1.49 christos long corr;
1551 1.49 christos int hit;
1552 1.49 christos int i;
1553 1.1 jtc
1554 1.1 jtc corr = 0;
1555 1.1 jtc hit = 0;
1556 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1557 1.1 jtc while (--i >= 0) {
1558 1.1 jtc lp = &sp->lsis[i];
1559 1.1 jtc if (*timep >= lp->ls_trans) {
1560 1.1 jtc if (*timep == lp->ls_trans) {
1561 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1562 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1563 1.1 jtc if (hit)
1564 1.1 jtc while (i > 0 &&
1565 1.1 jtc sp->lsis[i].ls_trans ==
1566 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1567 1.1 jtc sp->lsis[i].ls_corr ==
1568 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1569 1.1 jtc ++hit;
1570 1.1 jtc --i;
1571 1.1 jtc }
1572 1.1 jtc }
1573 1.1 jtc corr = lp->ls_corr;
1574 1.1 jtc break;
1575 1.1 jtc }
1576 1.1 jtc }
1577 1.45 mlelstv y = EPOCH_YEAR;
1578 1.66 christos tdays = (time_t)(*timep / SECSPERDAY);
1579 1.45 mlelstv rem = (long) (*timep - tdays * SECSPERDAY);
1580 1.45 mlelstv while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1581 1.45 mlelstv int newy;
1582 1.49 christos time_t tdelta;
1583 1.49 christos int idelta;
1584 1.49 christos int leapdays;
1585 1.45 mlelstv
1586 1.45 mlelstv tdelta = tdays / DAYSPERLYEAR;
1587 1.45 mlelstv idelta = (int) tdelta;
1588 1.51 christos if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1589 1.45 mlelstv return NULL;
1590 1.45 mlelstv if (idelta == 0)
1591 1.45 mlelstv idelta = (tdays < 0) ? -1 : 1;
1592 1.45 mlelstv newy = y;
1593 1.51 christos if (increment_overflow(&newy, idelta))
1594 1.45 mlelstv return NULL;
1595 1.45 mlelstv leapdays = leaps_thru_end_of(newy - 1) -
1596 1.45 mlelstv leaps_thru_end_of(y - 1);
1597 1.45 mlelstv tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1598 1.45 mlelstv tdays -= leapdays;
1599 1.45 mlelstv y = newy;
1600 1.45 mlelstv }
1601 1.45 mlelstv {
1602 1.49 christos long seconds;
1603 1.45 mlelstv
1604 1.45 mlelstv seconds = tdays * SECSPERDAY + 0.5;
1605 1.66 christos tdays = (time_t)(seconds / SECSPERDAY);
1606 1.45 mlelstv rem += (long) (seconds - tdays * SECSPERDAY);
1607 1.1 jtc }
1608 1.45 mlelstv /*
1609 1.45 mlelstv ** Given the range, we can now fearlessly cast...
1610 1.45 mlelstv */
1611 1.45 mlelstv idays = (int) tdays;
1612 1.45 mlelstv rem += offset - corr;
1613 1.1 jtc while (rem < 0) {
1614 1.1 jtc rem += SECSPERDAY;
1615 1.45 mlelstv --idays;
1616 1.1 jtc }
1617 1.1 jtc while (rem >= SECSPERDAY) {
1618 1.1 jtc rem -= SECSPERDAY;
1619 1.45 mlelstv ++idays;
1620 1.45 mlelstv }
1621 1.45 mlelstv while (idays < 0) {
1622 1.51 christos if (increment_overflow(&y, -1))
1623 1.45 mlelstv return NULL;
1624 1.45 mlelstv idays += year_lengths[isleap(y)];
1625 1.1 jtc }
1626 1.45 mlelstv while (idays >= year_lengths[isleap(y)]) {
1627 1.45 mlelstv idays -= year_lengths[isleap(y)];
1628 1.51 christos if (increment_overflow(&y, 1))
1629 1.45 mlelstv return NULL;
1630 1.45 mlelstv }
1631 1.45 mlelstv tmp->tm_year = y;
1632 1.51 christos if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1633 1.45 mlelstv return NULL;
1634 1.45 mlelstv tmp->tm_yday = idays;
1635 1.45 mlelstv /*
1636 1.45 mlelstv ** The "extra" mods below avoid overflow problems.
1637 1.45 mlelstv */
1638 1.45 mlelstv tmp->tm_wday = EPOCH_WDAY +
1639 1.45 mlelstv ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1640 1.45 mlelstv (DAYSPERNYEAR % DAYSPERWEEK) +
1641 1.45 mlelstv leaps_thru_end_of(y - 1) -
1642 1.45 mlelstv leaps_thru_end_of(EPOCH_YEAR - 1) +
1643 1.45 mlelstv idays;
1644 1.45 mlelstv tmp->tm_wday %= DAYSPERWEEK;
1645 1.45 mlelstv if (tmp->tm_wday < 0)
1646 1.45 mlelstv tmp->tm_wday += DAYSPERWEEK;
1647 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1648 1.45 mlelstv rem %= SECSPERHOUR;
1649 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1650 1.6 jtc /*
1651 1.6 jtc ** A positive leap second requires a special
1652 1.45 mlelstv ** representation. This uses "... ??:59:60" et seq.
1653 1.6 jtc */
1654 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1655 1.45 mlelstv ip = mon_lengths[isleap(y)];
1656 1.45 mlelstv for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1657 1.45 mlelstv idays -= ip[tmp->tm_mon];
1658 1.45 mlelstv tmp->tm_mday = (int) (idays + 1);
1659 1.1 jtc tmp->tm_isdst = 0;
1660 1.1 jtc #ifdef TM_GMTOFF
1661 1.1 jtc tmp->TM_GMTOFF = offset;
1662 1.1 jtc #endif /* defined TM_GMTOFF */
1663 1.45 mlelstv return tmp;
1664 1.1 jtc }
1665 1.1 jtc
1666 1.1 jtc char *
1667 1.49 christos ctime(const time_t *const timep)
1668 1.1 jtc {
1669 1.1 jtc /*
1670 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1671 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1672 1.45 mlelstv ** to local time in the form of a string. It is equivalent to
1673 1.1 jtc ** asctime(localtime(timer))
1674 1.1 jtc */
1675 1.46 christos struct tm *rtm = localtime(timep);
1676 1.46 christos if (rtm == NULL)
1677 1.46 christos return NULL;
1678 1.46 christos return asctime(rtm);
1679 1.18 kleink }
1680 1.18 kleink
1681 1.18 kleink char *
1682 1.49 christos ctime_r(const time_t *const timep, char *buf)
1683 1.18 kleink {
1684 1.46 christos struct tm mytm, *rtm;
1685 1.18 kleink
1686 1.46 christos rtm = localtime_r(timep, &mytm);
1687 1.46 christos if (rtm == NULL)
1688 1.46 christos return NULL;
1689 1.46 christos return asctime_r(rtm, buf);
1690 1.1 jtc }
1691 1.1 jtc
1692 1.49 christos char *
1693 1.49 christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1694 1.49 christos {
1695 1.49 christos struct tm mytm, *rtm;
1696 1.49 christos
1697 1.49 christos rtm = localtime_rz(sp, timep, &mytm);
1698 1.49 christos if (rtm == NULL)
1699 1.49 christos return NULL;
1700 1.49 christos return asctime_r(rtm, buf);
1701 1.49 christos }
1702 1.49 christos
1703 1.1 jtc /*
1704 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1705 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1706 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1707 1.45 mlelstv ** It does a binary search of the time_t space. Since time_t's are
1708 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1709 1.1 jtc ** would still be very reasonable).
1710 1.1 jtc */
1711 1.1 jtc
1712 1.1 jtc #ifndef WRONG
1713 1.51 christos #define WRONG ((time_t)-1)
1714 1.1 jtc #endif /* !defined WRONG */
1715 1.1 jtc
1716 1.1 jtc /*
1717 1.45 mlelstv ** Simplified normalize logic courtesy Paul Eggert.
1718 1.1 jtc */
1719 1.1 jtc
1720 1.1 jtc static int
1721 1.67.2.1 tls increment_overflow(int *const ip, int j)
1722 1.1 jtc {
1723 1.58 christos int i = *ip;
1724 1.1 jtc
1725 1.58 christos /*
1726 1.58 christos ** If i >= 0 there can only be overflow if i + j > INT_MAX
1727 1.58 christos ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1728 1.58 christos ** If i < 0 there can only be overflow if i + j < INT_MIN
1729 1.58 christos ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1730 1.58 christos */
1731 1.58 christos if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1732 1.58 christos return TRUE;
1733 1.58 christos *ip += j;
1734 1.58 christos return FALSE;
1735 1.1 jtc }
1736 1.1 jtc
1737 1.1 jtc static int
1738 1.67.2.1 tls long_increment_overflow(long *const lp, int m)
1739 1.45 mlelstv {
1740 1.58 christos long l = *lp;
1741 1.45 mlelstv
1742 1.58 christos if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1743 1.58 christos return TRUE;
1744 1.58 christos *lp += m;
1745 1.58 christos return FALSE;
1746 1.45 mlelstv }
1747 1.45 mlelstv
1748 1.45 mlelstv static int
1749 1.49 christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1750 1.1 jtc {
1751 1.49 christos int tensdelta;
1752 1.1 jtc
1753 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1754 1.1 jtc (*unitsptr / base) :
1755 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1756 1.1 jtc *unitsptr -= tensdelta * base;
1757 1.1 jtc return increment_overflow(tensptr, tensdelta);
1758 1.1 jtc }
1759 1.1 jtc
1760 1.1 jtc static int
1761 1.49 christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
1762 1.49 christos const int base)
1763 1.45 mlelstv {
1764 1.49 christos int tensdelta;
1765 1.45 mlelstv
1766 1.45 mlelstv tensdelta = (*unitsptr >= 0) ?
1767 1.45 mlelstv (*unitsptr / base) :
1768 1.45 mlelstv (-1 - (-1 - *unitsptr) / base);
1769 1.45 mlelstv *unitsptr -= tensdelta * base;
1770 1.45 mlelstv return long_increment_overflow(tensptr, tensdelta);
1771 1.45 mlelstv }
1772 1.45 mlelstv
1773 1.45 mlelstv static int
1774 1.49 christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1775 1.1 jtc {
1776 1.49 christos int result;
1777 1.1 jtc
1778 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1779 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1780 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1781 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1782 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1783 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1784 1.1 jtc return result;
1785 1.1 jtc }
1786 1.1 jtc
1787 1.1 jtc static time_t
1788 1.49 christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1789 1.49 christos const long offset, int *const okayp, const int do_norm_secs)
1790 1.49 christos {
1791 1.49 christos int dir;
1792 1.49 christos int i, j;
1793 1.49 christos int saved_seconds;
1794 1.49 christos long li;
1795 1.49 christos time_t lo;
1796 1.49 christos time_t hi;
1797 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
1798 1.61 christos time_t ilo;
1799 1.61 christos #endif
1800 1.45 mlelstv long y;
1801 1.1 jtc time_t newt;
1802 1.1 jtc time_t t;
1803 1.1 jtc struct tm yourtm, mytm;
1804 1.1 jtc
1805 1.1 jtc *okayp = FALSE;
1806 1.1 jtc yourtm = *tmp;
1807 1.64 christos #ifdef NO_ERROR_IN_DST_GAP
1808 1.64 christos again:
1809 1.64 christos #endif
1810 1.13 jtc if (do_norm_secs) {
1811 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1812 1.60 christos SECSPERMIN))
1813 1.60 christos goto overflow;
1814 1.13 jtc }
1815 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1816 1.60 christos goto overflow;
1817 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1818 1.60 christos goto overflow;
1819 1.45 mlelstv y = yourtm.tm_year;
1820 1.45 mlelstv if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1821 1.60 christos goto overflow;
1822 1.1 jtc /*
1823 1.45 mlelstv ** Turn y into an actual year number for now.
1824 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1825 1.1 jtc */
1826 1.45 mlelstv if (long_increment_overflow(&y, TM_YEAR_BASE))
1827 1.60 christos goto overflow;
1828 1.1 jtc while (yourtm.tm_mday <= 0) {
1829 1.45 mlelstv if (long_increment_overflow(&y, -1))
1830 1.60 christos goto overflow;
1831 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1832 1.45 mlelstv yourtm.tm_mday += year_lengths[isleap(li)];
1833 1.1 jtc }
1834 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1835 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1836 1.45 mlelstv yourtm.tm_mday -= year_lengths[isleap(li)];
1837 1.45 mlelstv if (long_increment_overflow(&y, 1))
1838 1.60 christos goto overflow;
1839 1.1 jtc }
1840 1.1 jtc for ( ; ; ) {
1841 1.45 mlelstv i = mon_lengths[isleap(y)][yourtm.tm_mon];
1842 1.1 jtc if (yourtm.tm_mday <= i)
1843 1.1 jtc break;
1844 1.1 jtc yourtm.tm_mday -= i;
1845 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1846 1.1 jtc yourtm.tm_mon = 0;
1847 1.45 mlelstv if (long_increment_overflow(&y, 1))
1848 1.60 christos goto overflow;
1849 1.1 jtc }
1850 1.1 jtc }
1851 1.45 mlelstv if (long_increment_overflow(&y, -TM_YEAR_BASE))
1852 1.60 christos goto overflow;
1853 1.66 christos yourtm.tm_year = (int)y;
1854 1.45 mlelstv if (yourtm.tm_year != y)
1855 1.60 christos goto overflow;
1856 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1857 1.29 kleink saved_seconds = 0;
1858 1.45 mlelstv else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1859 1.1 jtc /*
1860 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1861 1.1 jtc ** time below the minimum representable time.
1862 1.1 jtc ** Set tm_sec to 59 instead.
1863 1.1 jtc ** This assumes that the minimum representable time is
1864 1.1 jtc ** not in the same minute that a leap second was deleted from,
1865 1.1 jtc ** which is a safer assumption than using 58 would be.
1866 1.1 jtc */
1867 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1868 1.60 christos goto overflow;
1869 1.1 jtc saved_seconds = yourtm.tm_sec;
1870 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1871 1.1 jtc } else {
1872 1.1 jtc saved_seconds = yourtm.tm_sec;
1873 1.1 jtc yourtm.tm_sec = 0;
1874 1.1 jtc }
1875 1.1 jtc /*
1876 1.45 mlelstv ** Do a binary search (this works whatever time_t's type is).
1877 1.1 jtc */
1878 1.67.2.1 tls /* LINTED const not */
1879 1.45 mlelstv if (!TYPE_SIGNED(time_t)) {
1880 1.45 mlelstv lo = 0;
1881 1.45 mlelstv hi = lo - 1;
1882 1.67.2.1 tls /* LINTED const not */
1883 1.45 mlelstv } else if (!TYPE_INTEGRAL(time_t)) {
1884 1.67.2.1 tls /* CONSTCOND */
1885 1.45 mlelstv if (sizeof(time_t) > sizeof(float))
1886 1.67.2.1 tls /* LINTED assumed double */
1887 1.45 mlelstv hi = (time_t) DBL_MAX;
1888 1.67.2.1 tls /* LINTED assumed float */
1889 1.45 mlelstv else hi = (time_t) FLT_MAX;
1890 1.45 mlelstv lo = -hi;
1891 1.45 mlelstv } else {
1892 1.45 mlelstv lo = 1;
1893 1.45 mlelstv for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1894 1.45 mlelstv lo *= 2;
1895 1.45 mlelstv hi = -(lo + 1);
1896 1.45 mlelstv }
1897 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
1898 1.61 christos ilo = lo;
1899 1.61 christos #endif
1900 1.1 jtc for ( ; ; ) {
1901 1.45 mlelstv t = lo / 2 + hi / 2;
1902 1.45 mlelstv if (t < lo)
1903 1.45 mlelstv t = lo;
1904 1.45 mlelstv else if (t > hi)
1905 1.45 mlelstv t = hi;
1906 1.49 christos if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1907 1.45 mlelstv /*
1908 1.45 mlelstv ** Assume that t is too extreme to be represented in
1909 1.45 mlelstv ** a struct tm; arrange things so that it is less
1910 1.45 mlelstv ** extreme on the next pass.
1911 1.45 mlelstv */
1912 1.45 mlelstv dir = (t > 0) ? 1 : -1;
1913 1.45 mlelstv } else dir = tmcomp(&mytm, &yourtm);
1914 1.1 jtc if (dir != 0) {
1915 1.45 mlelstv if (t == lo) {
1916 1.45 mlelstv ++t;
1917 1.45 mlelstv if (t <= lo)
1918 1.60 christos goto overflow;
1919 1.45 mlelstv ++lo;
1920 1.45 mlelstv } else if (t == hi) {
1921 1.45 mlelstv --t;
1922 1.45 mlelstv if (t >= hi)
1923 1.60 christos goto overflow;
1924 1.45 mlelstv --hi;
1925 1.45 mlelstv }
1926 1.59 christos #ifdef NO_ERROR_IN_DST_GAP
1927 1.64 christos if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1928 1.64 christos do_norm_secs) {
1929 1.59 christos for (i = sp->typecnt - 1; i >= 0; --i) {
1930 1.59 christos for (j = sp->typecnt - 1; j >= 0; --j) {
1931 1.64 christos time_t off;
1932 1.59 christos if (sp->ttis[j].tt_isdst ==
1933 1.59 christos sp->ttis[i].tt_isdst)
1934 1.59 christos continue;
1935 1.59 christos off = sp->ttis[j].tt_gmtoff -
1936 1.59 christos sp->ttis[i].tt_gmtoff;
1937 1.64 christos yourtm.tm_sec += off < 0 ?
1938 1.64 christos -off : off;
1939 1.64 christos goto again;
1940 1.59 christos }
1941 1.59 christos }
1942 1.59 christos }
1943 1.59 christos #endif
1944 1.45 mlelstv if (lo > hi)
1945 1.60 christos goto invalid;
1946 1.45 mlelstv if (dir > 0)
1947 1.45 mlelstv hi = t;
1948 1.45 mlelstv else lo = t;
1949 1.1 jtc continue;
1950 1.1 jtc }
1951 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1952 1.1 jtc break;
1953 1.1 jtc /*
1954 1.1 jtc ** Right time, wrong type.
1955 1.1 jtc ** Hunt for right time, right type.
1956 1.1 jtc ** It's okay to guess wrong since the guess
1957 1.1 jtc ** gets checked.
1958 1.1 jtc */
1959 1.1 jtc if (sp == NULL)
1960 1.60 christos goto invalid;
1961 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1962 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1963 1.1 jtc continue;
1964 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1965 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1966 1.1 jtc continue;
1967 1.66 christos newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
1968 1.66 christos sp->ttis[i].tt_gmtoff);
1969 1.49 christos if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1970 1.45 mlelstv continue;
1971 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1972 1.1 jtc continue;
1973 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1974 1.1 jtc continue;
1975 1.1 jtc /*
1976 1.1 jtc ** We have a match.
1977 1.1 jtc */
1978 1.1 jtc t = newt;
1979 1.1 jtc goto label;
1980 1.1 jtc }
1981 1.1 jtc }
1982 1.60 christos goto invalid;
1983 1.1 jtc }
1984 1.1 jtc label:
1985 1.1 jtc newt = t + saved_seconds;
1986 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1987 1.60 christos goto overflow;
1988 1.1 jtc t = newt;
1989 1.51 christos if ((*funcp)(sp, &t, offset, tmp)) {
1990 1.45 mlelstv *okayp = TRUE;
1991 1.51 christos return t;
1992 1.60 christos }
1993 1.60 christos overflow:
1994 1.60 christos errno = EOVERFLOW;
1995 1.60 christos return WRONG;
1996 1.60 christos invalid:
1997 1.60 christos errno = EINVAL;
1998 1.60 christos return WRONG;
1999 1.13 jtc }
2000 1.13 jtc
2001 1.13 jtc static time_t
2002 1.49 christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2003 1.49 christos const long offset, int *const okayp)
2004 1.13 jtc {
2005 1.13 jtc time_t t;
2006 1.13 jtc
2007 1.13 jtc /*
2008 1.13 jtc ** First try without normalization of seconds
2009 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
2010 1.13 jtc ** If that fails, try with normalization of seconds.
2011 1.13 jtc */
2012 1.49 christos t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2013 1.49 christos return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2014 1.1 jtc }
2015 1.1 jtc
2016 1.1 jtc static time_t
2017 1.49 christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2018 1.67.2.1 tls const long offset)
2019 1.49 christos {
2020 1.49 christos time_t t;
2021 1.49 christos int samei, otheri;
2022 1.49 christos int sameind, otherind;
2023 1.49 christos int i;
2024 1.49 christos int nseen;
2025 1.35 kleink int seen[TZ_MAX_TYPES];
2026 1.35 kleink int types[TZ_MAX_TYPES];
2027 1.1 jtc int okay;
2028 1.1 jtc
2029 1.58 christos if (tmp == NULL) {
2030 1.58 christos errno = EINVAL;
2031 1.58 christos return WRONG;
2032 1.58 christos }
2033 1.1 jtc if (tmp->tm_isdst > 1)
2034 1.1 jtc tmp->tm_isdst = 1;
2035 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
2036 1.1 jtc #ifdef PCTS
2037 1.1 jtc /*
2038 1.45 mlelstv ** PCTS code courtesy Grant Sullivan.
2039 1.1 jtc */
2040 1.1 jtc if (okay)
2041 1.1 jtc return t;
2042 1.1 jtc if (tmp->tm_isdst < 0)
2043 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
2044 1.1 jtc #endif /* defined PCTS */
2045 1.1 jtc #ifndef PCTS
2046 1.1 jtc if (okay || tmp->tm_isdst < 0)
2047 1.1 jtc return t;
2048 1.1 jtc #endif /* !defined PCTS */
2049 1.1 jtc /*
2050 1.1 jtc ** We're supposed to assume that somebody took a time of one type
2051 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
2052 1.1 jtc ** We try to divine the type they started from and adjust to the
2053 1.1 jtc ** type they need.
2054 1.1 jtc */
2055 1.60 christos if (sp == NULL) {
2056 1.60 christos errno = EINVAL;
2057 1.1 jtc return WRONG;
2058 1.60 christos }
2059 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
2060 1.35 kleink seen[i] = FALSE;
2061 1.35 kleink nseen = 0;
2062 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
2063 1.35 kleink if (!seen[sp->types[i]]) {
2064 1.35 kleink seen[sp->types[i]] = TRUE;
2065 1.35 kleink types[nseen++] = sp->types[i];
2066 1.35 kleink }
2067 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
2068 1.35 kleink samei = types[sameind];
2069 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2070 1.1 jtc continue;
2071 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
2072 1.35 kleink otheri = types[otherind];
2073 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2074 1.1 jtc continue;
2075 1.21 christos tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2076 1.21 christos sp->ttis[samei].tt_gmtoff);
2077 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2078 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
2079 1.1 jtc if (okay)
2080 1.1 jtc return t;
2081 1.21 christos tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2082 1.21 christos sp->ttis[samei].tt_gmtoff);
2083 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2084 1.1 jtc }
2085 1.1 jtc }
2086 1.60 christos errno = EOVERFLOW;
2087 1.1 jtc return WRONG;
2088 1.1 jtc }
2089 1.1 jtc
2090 1.1 jtc time_t
2091 1.67.2.1 tls mktime_z(const timezone_t sp, struct tm *const tmp)
2092 1.49 christos {
2093 1.51 christos time_t t;
2094 1.49 christos if (sp == NULL)
2095 1.51 christos t = time1(NULL, tmp, gmtsub, 0L);
2096 1.49 christos else
2097 1.51 christos t = time1(sp, tmp, localsub, 0L);
2098 1.51 christos return t;
2099 1.49 christos }
2100 1.49 christos
2101 1.49 christos time_t
2102 1.67.2.1 tls mktime(struct tm *const tmp)
2103 1.1 jtc {
2104 1.19 kleink time_t result;
2105 1.19 kleink
2106 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2107 1.45 mlelstv tzset_unlocked();
2108 1.49 christos result = mktime_z(lclptr, tmp);
2109 1.45 mlelstv rwlock_unlock(&lcl_lock);
2110 1.49 christos return result;
2111 1.1 jtc }
2112 1.1 jtc
2113 1.1 jtc #ifdef STD_INSPIRED
2114 1.1 jtc
2115 1.1 jtc time_t
2116 1.67.2.1 tls timelocal_z(const timezone_t sp, struct tm *const tmp)
2117 1.49 christos {
2118 1.49 christos if (tmp != NULL)
2119 1.49 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2120 1.49 christos return mktime_z(sp, tmp);
2121 1.49 christos }
2122 1.49 christos
2123 1.49 christos time_t
2124 1.49 christos timelocal(struct tm *const tmp)
2125 1.1 jtc {
2126 1.58 christos if (tmp != NULL)
2127 1.58 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2128 1.1 jtc return mktime(tmp);
2129 1.1 jtc }
2130 1.1 jtc
2131 1.1 jtc time_t
2132 1.49 christos timegm(struct tm *const tmp)
2133 1.1 jtc {
2134 1.51 christos time_t t;
2135 1.51 christos
2136 1.58 christos if (tmp != NULL)
2137 1.58 christos tmp->tm_isdst = 0;
2138 1.51 christos t = time1(gmtptr, tmp, gmtsub, 0L);
2139 1.51 christos return t;
2140 1.1 jtc }
2141 1.1 jtc
2142 1.1 jtc time_t
2143 1.49 christos timeoff(struct tm *const tmp, const long offset)
2144 1.1 jtc {
2145 1.51 christos time_t t;
2146 1.51 christos
2147 1.58 christos if (tmp != NULL)
2148 1.58 christos tmp->tm_isdst = 0;
2149 1.51 christos t = time1(gmtptr, tmp, gmtsub, offset);
2150 1.51 christos return t;
2151 1.1 jtc }
2152 1.1 jtc
2153 1.1 jtc #endif /* defined STD_INSPIRED */
2154 1.1 jtc
2155 1.1 jtc #ifdef CMUCS
2156 1.1 jtc
2157 1.1 jtc /*
2158 1.1 jtc ** The following is supplied for compatibility with
2159 1.1 jtc ** previous versions of the CMUCS runtime library.
2160 1.1 jtc */
2161 1.1 jtc
2162 1.1 jtc long
2163 1.49 christos gtime(struct tm *const tmp)
2164 1.1 jtc {
2165 1.49 christos const time_t t = mktime(tmp);
2166 1.1 jtc
2167 1.1 jtc if (t == WRONG)
2168 1.1 jtc return -1;
2169 1.1 jtc return t;
2170 1.1 jtc }
2171 1.1 jtc
2172 1.1 jtc #endif /* defined CMUCS */
2173 1.1 jtc
2174 1.1 jtc /*
2175 1.1 jtc ** XXX--is the below the right way to conditionalize??
2176 1.1 jtc */
2177 1.1 jtc
2178 1.1 jtc #ifdef STD_INSPIRED
2179 1.1 jtc
2180 1.1 jtc /*
2181 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2182 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2183 1.1 jtc ** is not the case if we are accounting for leap seconds.
2184 1.1 jtc ** So, we provide the following conversion routines for use
2185 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
2186 1.1 jtc */
2187 1.1 jtc
2188 1.1 jtc static long
2189 1.49 christos leapcorr(const timezone_t sp, time_t *timep)
2190 1.1 jtc {
2191 1.49 christos struct lsinfo * lp;
2192 1.49 christos int i;
2193 1.1 jtc
2194 1.1 jtc i = sp->leapcnt;
2195 1.1 jtc while (--i >= 0) {
2196 1.1 jtc lp = &sp->lsis[i];
2197 1.1 jtc if (*timep >= lp->ls_trans)
2198 1.1 jtc return lp->ls_corr;
2199 1.1 jtc }
2200 1.1 jtc return 0;
2201 1.1 jtc }
2202 1.1 jtc
2203 1.1 jtc time_t
2204 1.49 christos time2posix_z(const timezone_t sp, time_t t)
2205 1.49 christos {
2206 1.66 christos return (time_t)(t - leapcorr(sp, &t));
2207 1.49 christos }
2208 1.49 christos
2209 1.49 christos time_t
2210 1.49 christos time2posix(time_t t)
2211 1.1 jtc {
2212 1.19 kleink time_t result;
2213 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2214 1.45 mlelstv tzset_unlocked();
2215 1.66 christos result = (time_t)(t - leapcorr(lclptr, &t));
2216 1.45 mlelstv rwlock_unlock(&lcl_lock);
2217 1.19 kleink return (result);
2218 1.1 jtc }
2219 1.1 jtc
2220 1.1 jtc time_t
2221 1.49 christos posix2time_z(const timezone_t sp, time_t t)
2222 1.1 jtc {
2223 1.1 jtc time_t x;
2224 1.1 jtc time_t y;
2225 1.1 jtc
2226 1.1 jtc /*
2227 1.1 jtc ** For a positive leap second hit, the result
2228 1.45 mlelstv ** is not unique. For a negative leap second
2229 1.1 jtc ** hit, the corresponding time doesn't exist,
2230 1.1 jtc ** so we return an adjacent second.
2231 1.1 jtc */
2232 1.66 christos x = (time_t)(t + leapcorr(sp, &t));
2233 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2234 1.1 jtc if (y < t) {
2235 1.1 jtc do {
2236 1.1 jtc x++;
2237 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2238 1.1 jtc } while (y < t);
2239 1.19 kleink if (t != y) {
2240 1.1 jtc return x - 1;
2241 1.19 kleink }
2242 1.1 jtc } else if (y > t) {
2243 1.1 jtc do {
2244 1.1 jtc --x;
2245 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2246 1.1 jtc } while (y > t);
2247 1.19 kleink if (t != y) {
2248 1.1 jtc return x + 1;
2249 1.19 kleink }
2250 1.1 jtc }
2251 1.49 christos return x;
2252 1.49 christos }
2253 1.49 christos
2254 1.49 christos
2255 1.49 christos
2256 1.49 christos time_t
2257 1.49 christos posix2time(time_t t)
2258 1.49 christos {
2259 1.49 christos time_t result;
2260 1.49 christos
2261 1.49 christos rwlock_wrlock(&lcl_lock);
2262 1.49 christos tzset_unlocked();
2263 1.49 christos result = posix2time_z(lclptr, t);
2264 1.45 mlelstv rwlock_unlock(&lcl_lock);
2265 1.49 christos return result;
2266 1.1 jtc }
2267 1.1 jtc
2268 1.1 jtc #endif /* defined STD_INSPIRED */
2269