localtime.c revision 1.70 1 1.70 christos /* $NetBSD: localtime.c,v 1.70 2012/10/26 23:23:23 christos Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.45 mlelstv ** 1996-06-05 by Arthur David Olson.
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
10 1.11 christos #if 0
11 1.58 christos static char elsieid[] = "@(#)localtime.c 8.17";
12 1.11 christos #else
13 1.70 christos __RCSID("$NetBSD: localtime.c,v 1.70 2012/10/26 23:23:23 christos Exp $");
14 1.11 christos #endif
15 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
16 1.1 jtc
17 1.1 jtc /*
18 1.45 mlelstv ** Leap second handling from Bradley White.
19 1.45 mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
20 1.1 jtc */
21 1.1 jtc
22 1.1 jtc /*LINTLIBRARY*/
23 1.1 jtc
24 1.12 jtc #include "namespace.h"
25 1.1 jtc #include "private.h"
26 1.1 jtc #include "tzfile.h"
27 1.1 jtc #include "fcntl.h"
28 1.19 kleink #include "reentrant.h"
29 1.12 jtc
30 1.42 christos #if defined(__weak_alias)
31 1.25 kleink __weak_alias(daylight,_daylight)
32 1.23 mycroft __weak_alias(tzname,_tzname)
33 1.12 jtc #endif
34 1.1 jtc
35 1.45 mlelstv #include "float.h" /* for FLT_MAX and DBL_MAX */
36 1.45 mlelstv
37 1.45 mlelstv #ifndef TZ_ABBR_MAX_LEN
38 1.45 mlelstv #define TZ_ABBR_MAX_LEN 16
39 1.45 mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
40 1.45 mlelstv
41 1.45 mlelstv #ifndef TZ_ABBR_CHAR_SET
42 1.45 mlelstv #define TZ_ABBR_CHAR_SET \
43 1.45 mlelstv "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 1.45 mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
45 1.45 mlelstv
46 1.45 mlelstv #ifndef TZ_ABBR_ERR_CHAR
47 1.45 mlelstv #define TZ_ABBR_ERR_CHAR '_'
48 1.45 mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
49 1.45 mlelstv
50 1.1 jtc /*
51 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
52 1.1 jtc */
53 1.1 jtc
54 1.1 jtc #ifdef O_BINARY
55 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
56 1.1 jtc #endif /* defined O_BINARY */
57 1.1 jtc #ifndef O_BINARY
58 1.1 jtc #define OPEN_MODE O_RDONLY
59 1.1 jtc #endif /* !defined O_BINARY */
60 1.1 jtc
61 1.1 jtc #ifndef WILDABBR
62 1.1 jtc /*
63 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
64 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
65 1.1 jtc ** or implicitly).
66 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
67 1.1 jtc ** or implicitly).
68 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
69 1.1 jtc ** in which Daylight Saving Time is never observed.
70 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
71 1.1 jtc ** in which Standard Time is never observed.
72 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
73 1.1 jtc ** What's best to do in the above cases is open to debate;
74 1.1 jtc ** for now, we just set things up so that in any of the five cases
75 1.45 mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
77 1.45 mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
79 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
80 1.1 jtc */
81 1.1 jtc #define WILDABBR " "
82 1.1 jtc #endif /* !defined WILDABBR */
83 1.1 jtc
84 1.45 mlelstv static const char wildabbr[] = WILDABBR;
85 1.1 jtc
86 1.49 christos static char gmt[] = "GMT";
87 1.1 jtc
88 1.22 kleink /*
89 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 1.22 kleink ** We default to US rules as of 1999-08-17.
91 1.22 kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 1.22 kleink ** implementation dependent; for historical reasons, US rules are a
93 1.22 kleink ** common default.
94 1.22 kleink */
95 1.22 kleink #ifndef TZDEFRULESTRING
96 1.22 kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 1.22 kleink #endif /* !defined TZDEFDST */
98 1.22 kleink
99 1.1 jtc struct ttinfo { /* time type information */
100 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
101 1.1 jtc int tt_isdst; /* used to set tm_isdst */
102 1.1 jtc int tt_abbrind; /* abbreviation list index */
103 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
104 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
105 1.1 jtc };
106 1.1 jtc
107 1.1 jtc struct lsinfo { /* leap second information */
108 1.1 jtc time_t ls_trans; /* transition time */
109 1.1 jtc long ls_corr; /* correction to apply */
110 1.1 jtc };
111 1.1 jtc
112 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113 1.1 jtc
114 1.1 jtc #ifdef TZNAME_MAX
115 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
116 1.1 jtc #endif /* defined TZNAME_MAX */
117 1.1 jtc #ifndef TZNAME_MAX
118 1.1 jtc #define MY_TZNAME_MAX 255
119 1.1 jtc #endif /* !defined TZNAME_MAX */
120 1.1 jtc
121 1.49 christos struct __state {
122 1.1 jtc int leapcnt;
123 1.1 jtc int timecnt;
124 1.1 jtc int typecnt;
125 1.1 jtc int charcnt;
126 1.45 mlelstv int goback;
127 1.45 mlelstv int goahead;
128 1.45 mlelstv time_t ats[TZ_MAX_TIMES];
129 1.1 jtc unsigned char types[TZ_MAX_TIMES];
130 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
131 1.69 christos char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
132 1.69 christos sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
133 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
134 1.1 jtc };
135 1.1 jtc
136 1.1 jtc struct rule {
137 1.1 jtc int r_type; /* type of rule--see below */
138 1.1 jtc int r_day; /* day number of rule */
139 1.1 jtc int r_week; /* week number of rule */
140 1.1 jtc int r_mon; /* month number of rule */
141 1.1 jtc long r_time; /* transition time of rule */
142 1.1 jtc };
143 1.1 jtc
144 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
145 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
146 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
147 1.1 jtc
148 1.49 christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 1.49 christos long offset, struct tm *tmp);
150 1.49 christos
151 1.1 jtc /*
152 1.1 jtc ** Prototypes for static functions.
153 1.1 jtc */
154 1.1 jtc
155 1.45 mlelstv static long detzcode(const char * codep);
156 1.45 mlelstv static time_t detzcode64(const char * codep);
157 1.45 mlelstv static int differ_by_repeat(time_t t1, time_t t0);
158 1.68 christos static const char * getzname(const char * strp) __pure;
159 1.68 christos static const char * getqzname(const char * strp, const int delim) __pure;
160 1.45 mlelstv static const char * getnum(const char * strp, int * nump, int min,
161 1.45 mlelstv int max);
162 1.45 mlelstv static const char * getsecs(const char * strp, long * secsp);
163 1.45 mlelstv static const char * getoffset(const char * strp, long * offsetp);
164 1.45 mlelstv static const char * getrule(const char * strp, struct rule * rulep);
165 1.49 christos static void gmtload(timezone_t sp);
166 1.49 christos static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
167 1.49 christos long offset, struct tm * tmp);
168 1.49 christos static struct tm * localsub(const timezone_t sp, const time_t *timep,
169 1.49 christos long offset, struct tm *tmp);
170 1.45 mlelstv static int increment_overflow(int * number, int delta);
171 1.68 christos static int leaps_thru_end_of(int y) __pure;
172 1.45 mlelstv static int long_increment_overflow(long * number, int delta);
173 1.45 mlelstv static int long_normalize_overflow(long * tensptr,
174 1.45 mlelstv int * unitsptr, int base);
175 1.45 mlelstv static int normalize_overflow(int * tensptr, int * unitsptr,
176 1.45 mlelstv int base);
177 1.45 mlelstv static void settzname(void);
178 1.49 christos static time_t time1(const timezone_t sp, struct tm * const tmp,
179 1.68 christos subfun_t funcp, const long offset);
180 1.49 christos static time_t time2(const timezone_t sp, struct tm * const tmp,
181 1.49 christos subfun_t funcp,
182 1.49 christos const long offset, int *const okayp);
183 1.69 christos static time_t time2sub(const timezone_t sp, struct tm * const tmp,
184 1.49 christos subfun_t funcp, const long offset,
185 1.49 christos int *const okayp, const int do_norm_secs);
186 1.49 christos static struct tm * timesub(const timezone_t sp, const time_t * timep,
187 1.49 christos long offset, struct tm * tmp);
188 1.45 mlelstv static int tmcomp(const struct tm * atmp,
189 1.45 mlelstv const struct tm * btmp);
190 1.45 mlelstv static time_t transtime(time_t janfirst, int year,
191 1.68 christos const struct rule * rulep, long offset) __pure;
192 1.49 christos static int typesequiv(const timezone_t sp, int a, int b);
193 1.49 christos static int tzload(timezone_t sp, const char * name,
194 1.45 mlelstv int doextend);
195 1.49 christos static int tzparse(timezone_t sp, const char * name,
196 1.45 mlelstv int lastditch);
197 1.45 mlelstv static void tzset_unlocked(void);
198 1.45 mlelstv static void tzsetwall_unlocked(void);
199 1.49 christos static long leapcorr(const timezone_t sp, time_t * timep);
200 1.1 jtc
201 1.49 christos static timezone_t lclptr;
202 1.49 christos static timezone_t gmtptr;
203 1.1 jtc
204 1.1 jtc #ifndef TZ_STRLEN_MAX
205 1.1 jtc #define TZ_STRLEN_MAX 255
206 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
207 1.1 jtc
208 1.45 mlelstv static char lcl_TZname[TZ_STRLEN_MAX + 1];
209 1.45 mlelstv static int lcl_is_set;
210 1.45 mlelstv static int gmt_is_set;
211 1.42 christos
212 1.42 christos #if !defined(__LIBC12_SOURCE__)
213 1.1 jtc
214 1.16 mycroft __aconst char * tzname[2] = {
215 1.37 christos (__aconst char *)__UNCONST(wildabbr),
216 1.37 christos (__aconst char *)__UNCONST(wildabbr)
217 1.1 jtc };
218 1.1 jtc
219 1.42 christos #else
220 1.42 christos
221 1.42 christos extern __aconst char * tzname[2];
222 1.42 christos
223 1.42 christos #endif
224 1.42 christos
225 1.33 christos #ifdef _REENTRANT
226 1.45 mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 1.19 kleink #endif
228 1.19 kleink
229 1.1 jtc /*
230 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
231 1.1 jtc ** Except for the strftime function, these functions [asctime,
232 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
233 1.1 jtc ** objects: a broken-down time structure and an array of char.
234 1.45 mlelstv ** Thanks to Paul Eggert for noting this.
235 1.1 jtc */
236 1.1 jtc
237 1.1 jtc static struct tm tm;
238 1.1 jtc
239 1.1 jtc #ifdef USG_COMPAT
240 1.42 christos #if !defined(__LIBC12_SOURCE__)
241 1.42 christos long timezone = 0;
242 1.1 jtc int daylight = 0;
243 1.42 christos #else
244 1.42 christos extern int daylight;
245 1.42 christos extern long timezone __RENAME(__timezone13);
246 1.42 christos #endif
247 1.1 jtc #endif /* defined USG_COMPAT */
248 1.1 jtc
249 1.1 jtc #ifdef ALTZONE
250 1.1 jtc time_t altzone = 0;
251 1.1 jtc #endif /* defined ALTZONE */
252 1.1 jtc
253 1.1 jtc static long
254 1.49 christos detzcode(const char *const codep)
255 1.1 jtc {
256 1.49 christos long result;
257 1.49 christos int i;
258 1.45 mlelstv
259 1.45 mlelstv result = (codep[0] & 0x80) ? ~0L : 0;
260 1.45 mlelstv for (i = 0; i < 4; ++i)
261 1.45 mlelstv result = (result << 8) | (codep[i] & 0xff);
262 1.45 mlelstv return result;
263 1.45 mlelstv }
264 1.45 mlelstv
265 1.45 mlelstv static time_t
266 1.49 christos detzcode64(const char *const codep)
267 1.45 mlelstv {
268 1.49 christos time_t result;
269 1.49 christos int i;
270 1.1 jtc
271 1.45 mlelstv result = (codep[0] & 0x80) ? -1 : 0;
272 1.45 mlelstv for (i = 0; i < 8; ++i)
273 1.45 mlelstv result = result * 256 + (codep[i] & 0xff);
274 1.1 jtc return result;
275 1.1 jtc }
276 1.1 jtc
277 1.49 christos const char *
278 1.49 christos tzgetname(const timezone_t sp, int isdst)
279 1.49 christos {
280 1.49 christos int i;
281 1.49 christos for (i = 0; i < sp->timecnt; ++i) {
282 1.49 christos const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283 1.49 christos
284 1.49 christos if (ttisp->tt_isdst == isdst)
285 1.49 christos return &sp->chars[ttisp->tt_abbrind];
286 1.49 christos }
287 1.49 christos return NULL;
288 1.49 christos }
289 1.49 christos
290 1.49 christos static void
291 1.49 christos settzname_z(timezone_t sp)
292 1.49 christos {
293 1.49 christos int i;
294 1.49 christos
295 1.49 christos /*
296 1.49 christos ** Scrub the abbreviations.
297 1.49 christos ** First, replace bogus characters.
298 1.49 christos */
299 1.49 christos for (i = 0; i < sp->charcnt; ++i)
300 1.49 christos if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 1.49 christos sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 1.49 christos /*
303 1.49 christos ** Second, truncate long abbreviations.
304 1.49 christos */
305 1.49 christos for (i = 0; i < sp->typecnt; ++i) {
306 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
307 1.49 christos char * cp = &sp->chars[ttisp->tt_abbrind];
308 1.49 christos
309 1.49 christos if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 1.49 christos strcmp(cp, GRANDPARENTED) != 0)
311 1.49 christos *(cp + TZ_ABBR_MAX_LEN) = '\0';
312 1.49 christos }
313 1.49 christos }
314 1.49 christos
315 1.45 mlelstv static void
316 1.45 mlelstv settzname(void)
317 1.1 jtc {
318 1.49 christos timezone_t const sp = lclptr;
319 1.49 christos int i;
320 1.1 jtc
321 1.37 christos tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 1.37 christos tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 1.1 jtc #ifdef USG_COMPAT
324 1.1 jtc daylight = 0;
325 1.1 jtc timezone = 0;
326 1.1 jtc #endif /* defined USG_COMPAT */
327 1.1 jtc #ifdef ALTZONE
328 1.1 jtc altzone = 0;
329 1.1 jtc #endif /* defined ALTZONE */
330 1.1 jtc if (sp == NULL) {
331 1.37 christos tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 1.1 jtc return;
333 1.1 jtc }
334 1.58 christos /*
335 1.58 christos ** And to get the latest zone names into tzname. . .
336 1.58 christos */
337 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
338 1.49 christos const struct ttinfo * const ttisp = &sp->ttis[i];
339 1.1 jtc
340 1.1 jtc tzname[ttisp->tt_isdst] =
341 1.1 jtc &sp->chars[ttisp->tt_abbrind];
342 1.45 mlelstv #ifdef USG_COMPAT
343 1.45 mlelstv if (ttisp->tt_isdst)
344 1.45 mlelstv daylight = 1;
345 1.58 christos if (!ttisp->tt_isdst)
346 1.45 mlelstv timezone = -(ttisp->tt_gmtoff);
347 1.45 mlelstv #endif /* defined USG_COMPAT */
348 1.45 mlelstv #ifdef ALTZONE
349 1.45 mlelstv if (i == 0 || ttisp->tt_isdst)
350 1.45 mlelstv altzone = -(ttisp->tt_gmtoff);
351 1.45 mlelstv #endif /* defined ALTZONE */
352 1.1 jtc }
353 1.49 christos settzname_z(sp);
354 1.1 jtc }
355 1.1 jtc
356 1.45 mlelstv static int
357 1.49 christos differ_by_repeat(const time_t t1, const time_t t0)
358 1.45 mlelstv {
359 1.45 mlelstv if (TYPE_INTEGRAL(time_t) &&
360 1.45 mlelstv TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
361 1.45 mlelstv return 0;
362 1.45 mlelstv return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
363 1.45 mlelstv }
364 1.45 mlelstv
365 1.45 mlelstv static int
366 1.49 christos tzload(timezone_t sp, const char *name, const int doextend)
367 1.49 christos {
368 1.49 christos const char * p;
369 1.49 christos int i;
370 1.49 christos int fid;
371 1.49 christos int stored;
372 1.66 christos ssize_t nread;
373 1.58 christos typedef union {
374 1.45 mlelstv struct tzhead tzhead;
375 1.45 mlelstv char buf[2 * sizeof(struct tzhead) +
376 1.45 mlelstv 2 * sizeof *sp +
377 1.45 mlelstv 4 * TZ_MAX_TIMES];
378 1.58 christos } u_t;
379 1.58 christos u_t * up;
380 1.58 christos
381 1.58 christos up = calloc(1, sizeof *up);
382 1.58 christos if (up == NULL)
383 1.58 christos return -1;
384 1.1 jtc
385 1.47 christos sp->goback = sp->goahead = FALSE;
386 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
387 1.58 christos goto oops;
388 1.1 jtc {
389 1.49 christos int doaccess;
390 1.1 jtc /*
391 1.1 jtc ** Section 4.9.1 of the C standard says that
392 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
393 1.10 jtc ** that is the size needed for an array of char large enough
394 1.1 jtc ** to hold the longest file name string that the implementation
395 1.1 jtc ** guarantees can be opened."
396 1.1 jtc */
397 1.1 jtc char fullname[FILENAME_MAX + 1];
398 1.1 jtc
399 1.1 jtc if (name[0] == ':')
400 1.1 jtc ++name;
401 1.1 jtc doaccess = name[0] == '/';
402 1.1 jtc if (!doaccess) {
403 1.1 jtc if ((p = TZDIR) == NULL)
404 1.58 christos goto oops;
405 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
406 1.58 christos goto oops;
407 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
408 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
409 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
410 1.1 jtc /*
411 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
412 1.1 jtc */
413 1.1 jtc if (strchr(name, '.') != NULL)
414 1.1 jtc doaccess = TRUE;
415 1.1 jtc name = fullname;
416 1.1 jtc }
417 1.1 jtc if (doaccess && access(name, R_OK) != 0)
418 1.58 christos goto oops;
419 1.9 mrg /*
420 1.9 mrg * XXX potential security problem here if user of a set-id
421 1.9 mrg * program has set TZ (which is passed in as name) here,
422 1.9 mrg * and uses a race condition trick to defeat the access(2)
423 1.9 mrg * above.
424 1.9 mrg */
425 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
426 1.58 christos goto oops;
427 1.1 jtc }
428 1.58 christos nread = read(fid, up->buf, sizeof up->buf);
429 1.45 mlelstv if (close(fid) < 0 || nread <= 0)
430 1.58 christos goto oops;
431 1.45 mlelstv for (stored = 4; stored <= 8; stored *= 2) {
432 1.1 jtc int ttisstdcnt;
433 1.1 jtc int ttisgmtcnt;
434 1.1 jtc
435 1.58 christos ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
436 1.58 christos ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
437 1.58 christos sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
438 1.58 christos sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
439 1.58 christos sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
440 1.58 christos sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
441 1.58 christos p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
442 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
443 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
444 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
445 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
446 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
447 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
448 1.58 christos goto oops;
449 1.58 christos if (nread - (p - up->buf) <
450 1.45 mlelstv sp->timecnt * stored + /* ats */
451 1.1 jtc sp->timecnt + /* types */
452 1.45 mlelstv sp->typecnt * 6 + /* ttinfos */
453 1.1 jtc sp->charcnt + /* chars */
454 1.45 mlelstv sp->leapcnt * (stored + 4) + /* lsinfos */
455 1.1 jtc ttisstdcnt + /* ttisstds */
456 1.1 jtc ttisgmtcnt) /* ttisgmts */
457 1.58 christos goto oops;
458 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
459 1.66 christos sp->ats[i] = (time_t)((stored == 4) ?
460 1.66 christos detzcode(p) : detzcode64(p));
461 1.45 mlelstv p += stored;
462 1.1 jtc }
463 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
464 1.1 jtc sp->types[i] = (unsigned char) *p++;
465 1.1 jtc if (sp->types[i] >= sp->typecnt)
466 1.58 christos goto oops;
467 1.1 jtc }
468 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
469 1.49 christos struct ttinfo * ttisp;
470 1.1 jtc
471 1.1 jtc ttisp = &sp->ttis[i];
472 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
473 1.1 jtc p += 4;
474 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
475 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
476 1.58 christos goto oops;
477 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
478 1.1 jtc if (ttisp->tt_abbrind < 0 ||
479 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
480 1.58 christos goto oops;
481 1.1 jtc }
482 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
483 1.1 jtc sp->chars[i] = *p++;
484 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
485 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
486 1.49 christos struct lsinfo * lsisp;
487 1.1 jtc
488 1.1 jtc lsisp = &sp->lsis[i];
489 1.66 christos lsisp->ls_trans = (time_t)((stored == 4) ?
490 1.66 christos detzcode(p) : detzcode64(p));
491 1.45 mlelstv p += stored;
492 1.1 jtc lsisp->ls_corr = detzcode(p);
493 1.1 jtc p += 4;
494 1.1 jtc }
495 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
496 1.49 christos struct ttinfo * ttisp;
497 1.1 jtc
498 1.1 jtc ttisp = &sp->ttis[i];
499 1.1 jtc if (ttisstdcnt == 0)
500 1.1 jtc ttisp->tt_ttisstd = FALSE;
501 1.1 jtc else {
502 1.1 jtc ttisp->tt_ttisstd = *p++;
503 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
504 1.1 jtc ttisp->tt_ttisstd != FALSE)
505 1.58 christos goto oops;
506 1.1 jtc }
507 1.1 jtc }
508 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
509 1.49 christos struct ttinfo * ttisp;
510 1.1 jtc
511 1.1 jtc ttisp = &sp->ttis[i];
512 1.1 jtc if (ttisgmtcnt == 0)
513 1.1 jtc ttisp->tt_ttisgmt = FALSE;
514 1.1 jtc else {
515 1.1 jtc ttisp->tt_ttisgmt = *p++;
516 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
517 1.1 jtc ttisp->tt_ttisgmt != FALSE)
518 1.58 christos goto oops;
519 1.1 jtc }
520 1.1 jtc }
521 1.45 mlelstv /*
522 1.45 mlelstv ** Out-of-sort ats should mean we're running on a
523 1.45 mlelstv ** signed time_t system but using a data file with
524 1.45 mlelstv ** unsigned values (or vice versa).
525 1.45 mlelstv */
526 1.45 mlelstv for (i = 0; i < sp->timecnt - 2; ++i)
527 1.45 mlelstv if (sp->ats[i] > sp->ats[i + 1]) {
528 1.45 mlelstv ++i;
529 1.45 mlelstv if (TYPE_SIGNED(time_t)) {
530 1.45 mlelstv /*
531 1.45 mlelstv ** Ignore the end (easy).
532 1.45 mlelstv */
533 1.45 mlelstv sp->timecnt = i;
534 1.45 mlelstv } else {
535 1.45 mlelstv /*
536 1.45 mlelstv ** Ignore the beginning (harder).
537 1.45 mlelstv */
538 1.49 christos int j;
539 1.45 mlelstv
540 1.45 mlelstv for (j = 0; j + i < sp->timecnt; ++j) {
541 1.45 mlelstv sp->ats[j] = sp->ats[j + i];
542 1.45 mlelstv sp->types[j] = sp->types[j + i];
543 1.45 mlelstv }
544 1.45 mlelstv sp->timecnt = j;
545 1.45 mlelstv }
546 1.45 mlelstv break;
547 1.45 mlelstv }
548 1.45 mlelstv /*
549 1.45 mlelstv ** If this is an old file, we're done.
550 1.45 mlelstv */
551 1.58 christos if (up->tzhead.tzh_version[0] == '\0')
552 1.45 mlelstv break;
553 1.58 christos nread -= p - up->buf;
554 1.45 mlelstv for (i = 0; i < nread; ++i)
555 1.58 christos up->buf[i] = p[i];
556 1.45 mlelstv /*
557 1.45 mlelstv ** If this is a narrow integer time_t system, we're done.
558 1.45 mlelstv */
559 1.45 mlelstv if (stored >= (int) sizeof(time_t)
560 1.45 mlelstv /* CONSTCOND */
561 1.45 mlelstv && TYPE_INTEGRAL(time_t))
562 1.45 mlelstv break;
563 1.45 mlelstv }
564 1.45 mlelstv if (doextend && nread > 2 &&
565 1.58 christos up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
566 1.45 mlelstv sp->typecnt + 2 <= TZ_MAX_TYPES) {
567 1.49 christos struct __state ts;
568 1.49 christos int result;
569 1.45 mlelstv
570 1.58 christos up->buf[nread - 1] = '\0';
571 1.58 christos result = tzparse(&ts, &up->buf[1], FALSE);
572 1.45 mlelstv if (result == 0 && ts.typecnt == 2 &&
573 1.45 mlelstv sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
574 1.45 mlelstv for (i = 0; i < 2; ++i)
575 1.45 mlelstv ts.ttis[i].tt_abbrind +=
576 1.45 mlelstv sp->charcnt;
577 1.45 mlelstv for (i = 0; i < ts.charcnt; ++i)
578 1.45 mlelstv sp->chars[sp->charcnt++] =
579 1.45 mlelstv ts.chars[i];
580 1.45 mlelstv i = 0;
581 1.45 mlelstv while (i < ts.timecnt &&
582 1.45 mlelstv ts.ats[i] <=
583 1.45 mlelstv sp->ats[sp->timecnt - 1])
584 1.45 mlelstv ++i;
585 1.45 mlelstv while (i < ts.timecnt &&
586 1.45 mlelstv sp->timecnt < TZ_MAX_TIMES) {
587 1.45 mlelstv sp->ats[sp->timecnt] =
588 1.45 mlelstv ts.ats[i];
589 1.45 mlelstv sp->types[sp->timecnt] =
590 1.45 mlelstv sp->typecnt +
591 1.45 mlelstv ts.types[i];
592 1.45 mlelstv ++sp->timecnt;
593 1.45 mlelstv ++i;
594 1.45 mlelstv }
595 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[0];
596 1.45 mlelstv sp->ttis[sp->typecnt++] = ts.ttis[1];
597 1.45 mlelstv }
598 1.45 mlelstv }
599 1.45 mlelstv if (sp->timecnt > 1) {
600 1.45 mlelstv for (i = 1; i < sp->timecnt; ++i)
601 1.45 mlelstv if (typesequiv(sp, sp->types[i], sp->types[0]) &&
602 1.45 mlelstv differ_by_repeat(sp->ats[i], sp->ats[0])) {
603 1.45 mlelstv sp->goback = TRUE;
604 1.45 mlelstv break;
605 1.45 mlelstv }
606 1.45 mlelstv for (i = sp->timecnt - 2; i >= 0; --i)
607 1.45 mlelstv if (typesequiv(sp, sp->types[sp->timecnt - 1],
608 1.45 mlelstv sp->types[i]) &&
609 1.45 mlelstv differ_by_repeat(sp->ats[sp->timecnt - 1],
610 1.45 mlelstv sp->ats[i])) {
611 1.45 mlelstv sp->goahead = TRUE;
612 1.45 mlelstv break;
613 1.45 mlelstv }
614 1.1 jtc }
615 1.58 christos free(up);
616 1.1 jtc return 0;
617 1.58 christos oops:
618 1.58 christos free(up);
619 1.58 christos return -1;
620 1.1 jtc }
621 1.1 jtc
622 1.45 mlelstv static int
623 1.49 christos typesequiv(const timezone_t sp, const int a, const int b)
624 1.45 mlelstv {
625 1.49 christos int result;
626 1.45 mlelstv
627 1.45 mlelstv if (sp == NULL ||
628 1.45 mlelstv a < 0 || a >= sp->typecnt ||
629 1.45 mlelstv b < 0 || b >= sp->typecnt)
630 1.45 mlelstv result = FALSE;
631 1.45 mlelstv else {
632 1.49 christos const struct ttinfo * ap = &sp->ttis[a];
633 1.49 christos const struct ttinfo * bp = &sp->ttis[b];
634 1.45 mlelstv result = ap->tt_gmtoff == bp->tt_gmtoff &&
635 1.45 mlelstv ap->tt_isdst == bp->tt_isdst &&
636 1.45 mlelstv ap->tt_ttisstd == bp->tt_ttisstd &&
637 1.45 mlelstv ap->tt_ttisgmt == bp->tt_ttisgmt &&
638 1.45 mlelstv strcmp(&sp->chars[ap->tt_abbrind],
639 1.45 mlelstv &sp->chars[bp->tt_abbrind]) == 0;
640 1.45 mlelstv }
641 1.45 mlelstv return result;
642 1.45 mlelstv }
643 1.45 mlelstv
644 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
645 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
646 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
647 1.1 jtc };
648 1.1 jtc
649 1.1 jtc static const int year_lengths[2] = {
650 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
651 1.1 jtc };
652 1.1 jtc
653 1.1 jtc /*
654 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
655 1.45 mlelstv ** a valid character in a zone name is found. Return a pointer to that
656 1.1 jtc ** character.
657 1.1 jtc */
658 1.1 jtc
659 1.1 jtc static const char *
660 1.67 matt getzname(const char *strp)
661 1.1 jtc {
662 1.49 christos char c;
663 1.1 jtc
664 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
665 1.1 jtc c != '+')
666 1.1 jtc ++strp;
667 1.1 jtc return strp;
668 1.1 jtc }
669 1.1 jtc
670 1.1 jtc /*
671 1.45 mlelstv ** Given a pointer into an extended time zone string, scan until the ending
672 1.45 mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
673 1.45 mlelstv **
674 1.45 mlelstv ** As with getzname above, the legal character set is actually quite
675 1.45 mlelstv ** restricted, with other characters producing undefined results.
676 1.45 mlelstv ** We don't do any checking here; checking is done later in common-case code.
677 1.45 mlelstv */
678 1.45 mlelstv
679 1.45 mlelstv static const char *
680 1.49 christos getqzname(const char *strp, const int delim)
681 1.45 mlelstv {
682 1.49 christos int c;
683 1.45 mlelstv
684 1.45 mlelstv while ((c = *strp) != '\0' && c != delim)
685 1.45 mlelstv ++strp;
686 1.45 mlelstv return strp;
687 1.45 mlelstv }
688 1.45 mlelstv
689 1.45 mlelstv /*
690 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
691 1.1 jtc ** Check that the number is within a specified range; if it is not, return
692 1.1 jtc ** NULL.
693 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
694 1.1 jtc */
695 1.1 jtc
696 1.1 jtc static const char *
697 1.68 christos getnum(const char *strp, int *const nump, const int min, const int max)
698 1.1 jtc {
699 1.49 christos char c;
700 1.49 christos int num;
701 1.1 jtc
702 1.46 christos if (strp == NULL || !is_digit(c = *strp)) {
703 1.46 christos errno = EINVAL;
704 1.1 jtc return NULL;
705 1.46 christos }
706 1.1 jtc num = 0;
707 1.5 jtc do {
708 1.1 jtc num = num * 10 + (c - '0');
709 1.46 christos if (num > max) {
710 1.46 christos errno = EOVERFLOW;
711 1.1 jtc return NULL; /* illegal value */
712 1.46 christos }
713 1.5 jtc c = *++strp;
714 1.5 jtc } while (is_digit(c));
715 1.46 christos if (num < min) {
716 1.46 christos errno = EINVAL;
717 1.1 jtc return NULL; /* illegal value */
718 1.46 christos }
719 1.1 jtc *nump = num;
720 1.1 jtc return strp;
721 1.1 jtc }
722 1.1 jtc
723 1.1 jtc /*
724 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
725 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
726 1.1 jtc ** If any error occurs, return NULL.
727 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
728 1.1 jtc ** of seconds.
729 1.1 jtc */
730 1.1 jtc
731 1.1 jtc static const char *
732 1.49 christos getsecs(const char *strp, long *const secsp)
733 1.1 jtc {
734 1.1 jtc int num;
735 1.1 jtc
736 1.1 jtc /*
737 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
738 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
739 1.1 jtc ** but which specifies the equivalent of
740 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
741 1.1 jtc */
742 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
743 1.1 jtc if (strp == NULL)
744 1.1 jtc return NULL;
745 1.1 jtc *secsp = num * (long) SECSPERHOUR;
746 1.1 jtc if (*strp == ':') {
747 1.1 jtc ++strp;
748 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
749 1.1 jtc if (strp == NULL)
750 1.1 jtc return NULL;
751 1.1 jtc *secsp += num * SECSPERMIN;
752 1.1 jtc if (*strp == ':') {
753 1.1 jtc ++strp;
754 1.45 mlelstv /* `SECSPERMIN' allows for leap seconds. */
755 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
756 1.1 jtc if (strp == NULL)
757 1.1 jtc return NULL;
758 1.1 jtc *secsp += num;
759 1.1 jtc }
760 1.1 jtc }
761 1.1 jtc return strp;
762 1.1 jtc }
763 1.1 jtc
764 1.1 jtc /*
765 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
766 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
767 1.1 jtc ** If any error occurs, return NULL.
768 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
769 1.1 jtc */
770 1.1 jtc
771 1.1 jtc static const char *
772 1.49 christos getoffset(const char *strp, long *const offsetp)
773 1.1 jtc {
774 1.49 christos int neg = 0;
775 1.1 jtc
776 1.1 jtc if (*strp == '-') {
777 1.1 jtc neg = 1;
778 1.1 jtc ++strp;
779 1.5 jtc } else if (*strp == '+')
780 1.5 jtc ++strp;
781 1.1 jtc strp = getsecs(strp, offsetp);
782 1.1 jtc if (strp == NULL)
783 1.1 jtc return NULL; /* illegal time */
784 1.1 jtc if (neg)
785 1.1 jtc *offsetp = -*offsetp;
786 1.1 jtc return strp;
787 1.1 jtc }
788 1.1 jtc
789 1.1 jtc /*
790 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
791 1.45 mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
792 1.1 jtc ** If a valid rule is not found, return NULL.
793 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
794 1.1 jtc */
795 1.1 jtc
796 1.1 jtc static const char *
797 1.49 christos getrule(const char *strp, struct rule *const rulep)
798 1.1 jtc {
799 1.1 jtc if (*strp == 'J') {
800 1.1 jtc /*
801 1.1 jtc ** Julian day.
802 1.1 jtc */
803 1.1 jtc rulep->r_type = JULIAN_DAY;
804 1.1 jtc ++strp;
805 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
806 1.1 jtc } else if (*strp == 'M') {
807 1.1 jtc /*
808 1.1 jtc ** Month, week, day.
809 1.1 jtc */
810 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
811 1.1 jtc ++strp;
812 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
813 1.1 jtc if (strp == NULL)
814 1.1 jtc return NULL;
815 1.1 jtc if (*strp++ != '.')
816 1.1 jtc return NULL;
817 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
818 1.1 jtc if (strp == NULL)
819 1.1 jtc return NULL;
820 1.1 jtc if (*strp++ != '.')
821 1.1 jtc return NULL;
822 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
823 1.5 jtc } else if (is_digit(*strp)) {
824 1.1 jtc /*
825 1.1 jtc ** Day of year.
826 1.1 jtc */
827 1.1 jtc rulep->r_type = DAY_OF_YEAR;
828 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
829 1.1 jtc } else return NULL; /* invalid format */
830 1.1 jtc if (strp == NULL)
831 1.1 jtc return NULL;
832 1.1 jtc if (*strp == '/') {
833 1.1 jtc /*
834 1.1 jtc ** Time specified.
835 1.1 jtc */
836 1.1 jtc ++strp;
837 1.1 jtc strp = getsecs(strp, &rulep->r_time);
838 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
839 1.1 jtc return strp;
840 1.1 jtc }
841 1.1 jtc
842 1.1 jtc /*
843 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
844 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
845 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
846 1.1 jtc */
847 1.1 jtc
848 1.1 jtc static time_t
849 1.49 christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
850 1.49 christos const long offset)
851 1.49 christos {
852 1.49 christos int leapyear;
853 1.49 christos time_t value;
854 1.49 christos int i;
855 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
856 1.1 jtc
857 1.1 jtc INITIALIZE(value);
858 1.1 jtc leapyear = isleap(year);
859 1.1 jtc switch (rulep->r_type) {
860 1.1 jtc
861 1.1 jtc case JULIAN_DAY:
862 1.1 jtc /*
863 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
864 1.1 jtc ** years.
865 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
866 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
867 1.1 jtc ** January 1, midnight, to get the day.
868 1.1 jtc */
869 1.66 christos value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
870 1.1 jtc if (leapyear && rulep->r_day >= 60)
871 1.1 jtc value += SECSPERDAY;
872 1.1 jtc break;
873 1.1 jtc
874 1.1 jtc case DAY_OF_YEAR:
875 1.1 jtc /*
876 1.1 jtc ** n - day of year.
877 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
878 1.1 jtc ** January 1, midnight, to get the day.
879 1.1 jtc */
880 1.66 christos value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
881 1.1 jtc break;
882 1.1 jtc
883 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
884 1.1 jtc /*
885 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
886 1.1 jtc */
887 1.1 jtc value = janfirst;
888 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
889 1.66 christos value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
890 1.1 jtc
891 1.1 jtc /*
892 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
893 1.1 jtc ** month.
894 1.1 jtc */
895 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
896 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
897 1.1 jtc yy1 = yy0 / 100;
898 1.1 jtc yy2 = yy0 % 100;
899 1.1 jtc dow = ((26 * m1 - 2) / 10 +
900 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
901 1.1 jtc if (dow < 0)
902 1.1 jtc dow += DAYSPERWEEK;
903 1.1 jtc
904 1.1 jtc /*
905 1.45 mlelstv ** "dow" is the day-of-week of the first day of the month. Get
906 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
907 1.1 jtc ** month.
908 1.1 jtc */
909 1.1 jtc d = rulep->r_day - dow;
910 1.1 jtc if (d < 0)
911 1.1 jtc d += DAYSPERWEEK;
912 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
913 1.1 jtc if (d + DAYSPERWEEK >=
914 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
915 1.1 jtc break;
916 1.1 jtc d += DAYSPERWEEK;
917 1.1 jtc }
918 1.1 jtc
919 1.1 jtc /*
920 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
921 1.1 jtc */
922 1.66 christos value += (time_t)(d * SECSPERDAY);
923 1.1 jtc break;
924 1.1 jtc }
925 1.1 jtc
926 1.1 jtc /*
927 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
928 1.45 mlelstv ** question. To get the Epoch-relative time of the specified local
929 1.1 jtc ** time on that day, add the transition time and the current offset
930 1.14 jtc ** from UTC.
931 1.1 jtc */
932 1.66 christos return (time_t)(value + rulep->r_time + offset);
933 1.1 jtc }
934 1.1 jtc
935 1.1 jtc /*
936 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
937 1.1 jtc ** appropriate.
938 1.1 jtc */
939 1.1 jtc
940 1.1 jtc static int
941 1.49 christos tzparse(timezone_t sp, const char *name, const int lastditch)
942 1.1 jtc {
943 1.1 jtc const char * stdname;
944 1.1 jtc const char * dstname;
945 1.1 jtc size_t stdlen;
946 1.1 jtc size_t dstlen;
947 1.1 jtc long stdoffset;
948 1.1 jtc long dstoffset;
949 1.49 christos time_t * atp;
950 1.49 christos unsigned char * typep;
951 1.49 christos char * cp;
952 1.49 christos int load_result;
953 1.1 jtc
954 1.1 jtc INITIALIZE(dstname);
955 1.1 jtc stdname = name;
956 1.1 jtc if (lastditch) {
957 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
958 1.1 jtc name += stdlen;
959 1.1 jtc if (stdlen >= sizeof sp->chars)
960 1.1 jtc stdlen = (sizeof sp->chars) - 1;
961 1.10 jtc stdoffset = 0;
962 1.1 jtc } else {
963 1.45 mlelstv if (*name == '<') {
964 1.45 mlelstv name++;
965 1.45 mlelstv stdname = name;
966 1.45 mlelstv name = getqzname(name, '>');
967 1.45 mlelstv if (*name != '>')
968 1.45 mlelstv return (-1);
969 1.45 mlelstv stdlen = name - stdname;
970 1.45 mlelstv name++;
971 1.45 mlelstv } else {
972 1.45 mlelstv name = getzname(name);
973 1.45 mlelstv stdlen = name - stdname;
974 1.45 mlelstv }
975 1.10 jtc if (*name == '\0')
976 1.10 jtc return -1;
977 1.45 mlelstv name = getoffset(name, &stdoffset);
978 1.1 jtc if (name == NULL)
979 1.1 jtc return -1;
980 1.1 jtc }
981 1.49 christos load_result = tzload(sp, TZDEFRULES, FALSE);
982 1.1 jtc if (load_result != 0)
983 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
984 1.1 jtc if (*name != '\0') {
985 1.45 mlelstv if (*name == '<') {
986 1.45 mlelstv dstname = ++name;
987 1.45 mlelstv name = getqzname(name, '>');
988 1.45 mlelstv if (*name != '>')
989 1.45 mlelstv return -1;
990 1.45 mlelstv dstlen = name - dstname;
991 1.45 mlelstv name++;
992 1.45 mlelstv } else {
993 1.45 mlelstv dstname = name;
994 1.45 mlelstv name = getzname(name);
995 1.45 mlelstv dstlen = name - dstname; /* length of DST zone name */
996 1.45 mlelstv }
997 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
998 1.45 mlelstv name = getoffset(name, &dstoffset);
999 1.1 jtc if (name == NULL)
1000 1.1 jtc return -1;
1001 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
1002 1.22 kleink if (*name == '\0' && load_result != 0)
1003 1.22 kleink name = TZDEFRULESTRING;
1004 1.1 jtc if (*name == ',' || *name == ';') {
1005 1.1 jtc struct rule start;
1006 1.1 jtc struct rule end;
1007 1.49 christos int year;
1008 1.49 christos time_t janfirst;
1009 1.1 jtc time_t starttime;
1010 1.1 jtc time_t endtime;
1011 1.1 jtc
1012 1.1 jtc ++name;
1013 1.45 mlelstv if ((name = getrule(name, &start)) == NULL)
1014 1.1 jtc return -1;
1015 1.1 jtc if (*name++ != ',')
1016 1.1 jtc return -1;
1017 1.45 mlelstv if ((name = getrule(name, &end)) == NULL)
1018 1.1 jtc return -1;
1019 1.1 jtc if (*name != '\0')
1020 1.1 jtc return -1;
1021 1.1 jtc sp->typecnt = 2; /* standard time and DST */
1022 1.1 jtc /*
1023 1.45 mlelstv ** Two transitions per year, from EPOCH_YEAR forward.
1024 1.1 jtc */
1025 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1026 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
1027 1.1 jtc sp->ttis[0].tt_isdst = 1;
1028 1.66 christos sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1029 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
1030 1.1 jtc sp->ttis[1].tt_isdst = 0;
1031 1.1 jtc sp->ttis[1].tt_abbrind = 0;
1032 1.1 jtc atp = sp->ats;
1033 1.1 jtc typep = sp->types;
1034 1.1 jtc janfirst = 0;
1035 1.45 mlelstv sp->timecnt = 0;
1036 1.45 mlelstv for (year = EPOCH_YEAR;
1037 1.45 mlelstv sp->timecnt + 2 <= TZ_MAX_TIMES;
1038 1.45 mlelstv ++year) {
1039 1.45 mlelstv time_t newfirst;
1040 1.45 mlelstv
1041 1.45 mlelstv starttime = transtime(janfirst, year, &start,
1042 1.1 jtc stdoffset);
1043 1.45 mlelstv endtime = transtime(janfirst, year, &end,
1044 1.1 jtc dstoffset);
1045 1.1 jtc if (starttime > endtime) {
1046 1.1 jtc *atp++ = endtime;
1047 1.1 jtc *typep++ = 1; /* DST ends */
1048 1.1 jtc *atp++ = starttime;
1049 1.1 jtc *typep++ = 0; /* DST begins */
1050 1.1 jtc } else {
1051 1.1 jtc *atp++ = starttime;
1052 1.1 jtc *typep++ = 0; /* DST begins */
1053 1.1 jtc *atp++ = endtime;
1054 1.1 jtc *typep++ = 1; /* DST ends */
1055 1.1 jtc }
1056 1.45 mlelstv sp->timecnt += 2;
1057 1.45 mlelstv newfirst = janfirst;
1058 1.66 christos newfirst += (time_t)
1059 1.66 christos (year_lengths[isleap(year)] * SECSPERDAY);
1060 1.45 mlelstv if (newfirst <= janfirst)
1061 1.45 mlelstv break;
1062 1.45 mlelstv janfirst = newfirst;
1063 1.1 jtc }
1064 1.1 jtc } else {
1065 1.49 christos long theirstdoffset;
1066 1.49 christos long theirdstoffset;
1067 1.49 christos long theiroffset;
1068 1.49 christos int isdst;
1069 1.49 christos int i;
1070 1.49 christos int j;
1071 1.1 jtc
1072 1.1 jtc if (*name != '\0')
1073 1.1 jtc return -1;
1074 1.1 jtc /*
1075 1.69 christos ** Initial values of theirstdoffset and theirdstoffset.
1076 1.1 jtc */
1077 1.1 jtc theirstdoffset = 0;
1078 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1079 1.1 jtc j = sp->types[i];
1080 1.1 jtc if (!sp->ttis[j].tt_isdst) {
1081 1.5 jtc theirstdoffset =
1082 1.5 jtc -sp->ttis[j].tt_gmtoff;
1083 1.1 jtc break;
1084 1.1 jtc }
1085 1.1 jtc }
1086 1.45 mlelstv theirdstoffset = 0;
1087 1.45 mlelstv for (i = 0; i < sp->timecnt; ++i) {
1088 1.45 mlelstv j = sp->types[i];
1089 1.45 mlelstv if (sp->ttis[j].tt_isdst) {
1090 1.45 mlelstv theirdstoffset =
1091 1.45 mlelstv -sp->ttis[j].tt_gmtoff;
1092 1.45 mlelstv break;
1093 1.45 mlelstv }
1094 1.45 mlelstv }
1095 1.1 jtc /*
1096 1.1 jtc ** Initially we're assumed to be in standard time.
1097 1.1 jtc */
1098 1.45 mlelstv isdst = FALSE;
1099 1.1 jtc theiroffset = theirstdoffset;
1100 1.1 jtc /*
1101 1.1 jtc ** Now juggle transition times and types
1102 1.1 jtc ** tracking offsets as you do.
1103 1.1 jtc */
1104 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1105 1.1 jtc j = sp->types[i];
1106 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
1107 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
1108 1.1 jtc /* No adjustment to transition time */
1109 1.1 jtc } else {
1110 1.1 jtc /*
1111 1.1 jtc ** If summer time is in effect, and the
1112 1.1 jtc ** transition time was not specified as
1113 1.1 jtc ** standard time, add the summer time
1114 1.1 jtc ** offset to the transition time;
1115 1.1 jtc ** otherwise, add the standard time
1116 1.1 jtc ** offset to the transition time.
1117 1.1 jtc */
1118 1.1 jtc /*
1119 1.1 jtc ** Transitions from DST to DDST
1120 1.1 jtc ** will effectively disappear since
1121 1.1 jtc ** POSIX provides for only one DST
1122 1.1 jtc ** offset.
1123 1.1 jtc */
1124 1.45 mlelstv if (isdst && !sp->ttis[j].tt_ttisstd) {
1125 1.66 christos sp->ats[i] += (time_t)
1126 1.66 christos (dstoffset - theirdstoffset);
1127 1.45 mlelstv } else {
1128 1.66 christos sp->ats[i] += (time_t)
1129 1.66 christos (stdoffset - theirstdoffset);
1130 1.45 mlelstv }
1131 1.1 jtc }
1132 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
1133 1.39 christos if (!sp->ttis[j].tt_isdst)
1134 1.39 christos theirstdoffset = theiroffset;
1135 1.45 mlelstv else theirdstoffset = theiroffset;
1136 1.1 jtc }
1137 1.1 jtc /*
1138 1.1 jtc ** Finally, fill in ttis.
1139 1.69 christos ** ttisstd and ttisgmt need not be handled
1140 1.1 jtc */
1141 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1142 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1143 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
1144 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1145 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
1146 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
1147 1.66 christos sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1148 1.7 jtc sp->typecnt = 2;
1149 1.1 jtc }
1150 1.1 jtc } else {
1151 1.1 jtc dstlen = 0;
1152 1.1 jtc sp->typecnt = 1; /* only standard time */
1153 1.1 jtc sp->timecnt = 0;
1154 1.58 christos memset(sp->ttis, 0, sizeof(sp->ttis));
1155 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
1156 1.1 jtc sp->ttis[0].tt_isdst = 0;
1157 1.1 jtc sp->ttis[0].tt_abbrind = 0;
1158 1.1 jtc }
1159 1.66 christos sp->charcnt = (int)(stdlen + 1);
1160 1.1 jtc if (dstlen != 0)
1161 1.66 christos sp->charcnt += (int)(dstlen + 1);
1162 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
1163 1.1 jtc return -1;
1164 1.1 jtc cp = sp->chars;
1165 1.1 jtc (void) strncpy(cp, stdname, stdlen);
1166 1.1 jtc cp += stdlen;
1167 1.1 jtc *cp++ = '\0';
1168 1.1 jtc if (dstlen != 0) {
1169 1.1 jtc (void) strncpy(cp, dstname, dstlen);
1170 1.1 jtc *(cp + dstlen) = '\0';
1171 1.1 jtc }
1172 1.1 jtc return 0;
1173 1.1 jtc }
1174 1.1 jtc
1175 1.1 jtc static void
1176 1.49 christos gmtload(timezone_t sp)
1177 1.49 christos {
1178 1.49 christos if (tzload(sp, gmt, TRUE) != 0)
1179 1.49 christos (void) tzparse(sp, gmt, TRUE);
1180 1.49 christos }
1181 1.49 christos
1182 1.49 christos timezone_t
1183 1.49 christos tzalloc(const char *name)
1184 1.49 christos {
1185 1.49 christos timezone_t sp = calloc(1, sizeof *sp);
1186 1.49 christos if (sp == NULL)
1187 1.49 christos return NULL;
1188 1.49 christos if (tzload(sp, name, TRUE) != 0) {
1189 1.49 christos free(sp);
1190 1.49 christos return NULL;
1191 1.49 christos }
1192 1.49 christos settzname_z(sp);
1193 1.49 christos return sp;
1194 1.49 christos }
1195 1.49 christos
1196 1.49 christos void
1197 1.49 christos tzfree(const timezone_t sp)
1198 1.1 jtc {
1199 1.49 christos free(sp);
1200 1.1 jtc }
1201 1.1 jtc
1202 1.19 kleink static void
1203 1.45 mlelstv tzsetwall_unlocked(void)
1204 1.1 jtc {
1205 1.45 mlelstv if (lcl_is_set < 0)
1206 1.1 jtc return;
1207 1.45 mlelstv lcl_is_set = -1;
1208 1.1 jtc
1209 1.1 jtc if (lclptr == NULL) {
1210 1.41 christos int saveerrno = errno;
1211 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1212 1.41 christos errno = saveerrno;
1213 1.1 jtc if (lclptr == NULL) {
1214 1.45 mlelstv settzname(); /* all we can do */
1215 1.1 jtc return;
1216 1.1 jtc }
1217 1.1 jtc }
1218 1.49 christos if (tzload(lclptr, NULL, TRUE) != 0)
1219 1.45 mlelstv gmtload(lclptr);
1220 1.45 mlelstv settzname();
1221 1.1 jtc }
1222 1.1 jtc
1223 1.19 kleink #ifndef STD_INSPIRED
1224 1.19 kleink /*
1225 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
1226 1.19 kleink ** may cause a warning about this upcoming static declaration...
1227 1.19 kleink */
1228 1.19 kleink static
1229 1.19 kleink #endif /* !defined STD_INSPIRED */
1230 1.1 jtc void
1231 1.45 mlelstv tzsetwall(void)
1232 1.19 kleink {
1233 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1234 1.45 mlelstv tzsetwall_unlocked();
1235 1.45 mlelstv rwlock_unlock(&lcl_lock);
1236 1.19 kleink }
1237 1.19 kleink
1238 1.45 mlelstv #ifndef STD_INSPIRED
1239 1.45 mlelstv /*
1240 1.45 mlelstv ** A non-static declaration of tzsetwall in a system header file
1241 1.45 mlelstv ** may cause a warning about this upcoming static declaration...
1242 1.45 mlelstv */
1243 1.45 mlelstv static
1244 1.45 mlelstv #endif /* !defined STD_INSPIRED */
1245 1.45 mlelstv void
1246 1.45 mlelstv tzset_unlocked(void)
1247 1.1 jtc {
1248 1.49 christos const char * name;
1249 1.1 jtc
1250 1.1 jtc name = getenv("TZ");
1251 1.1 jtc if (name == NULL) {
1252 1.45 mlelstv tzsetwall_unlocked();
1253 1.1 jtc return;
1254 1.1 jtc }
1255 1.1 jtc
1256 1.45 mlelstv if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1257 1.1 jtc return;
1258 1.45 mlelstv lcl_is_set = strlen(name) < sizeof lcl_TZname;
1259 1.45 mlelstv if (lcl_is_set)
1260 1.45 mlelstv (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1261 1.1 jtc
1262 1.1 jtc if (lclptr == NULL) {
1263 1.69 christos int saveerrno = errno;
1264 1.47 christos lclptr = calloc(1, sizeof *lclptr);
1265 1.41 christos errno = saveerrno;
1266 1.1 jtc if (lclptr == NULL) {
1267 1.45 mlelstv settzname(); /* all we can do */
1268 1.1 jtc return;
1269 1.1 jtc }
1270 1.1 jtc }
1271 1.1 jtc if (*name == '\0') {
1272 1.1 jtc /*
1273 1.1 jtc ** User wants it fast rather than right.
1274 1.1 jtc */
1275 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1276 1.1 jtc lclptr->timecnt = 0;
1277 1.27 atatat lclptr->typecnt = 0;
1278 1.27 atatat lclptr->ttis[0].tt_isdst = 0;
1279 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1280 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1281 1.45 mlelstv (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1282 1.49 christos } else if (tzload(lclptr, name, TRUE) != 0)
1283 1.49 christos if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1284 1.45 mlelstv (void) gmtload(lclptr);
1285 1.45 mlelstv settzname();
1286 1.1 jtc }
1287 1.1 jtc
1288 1.19 kleink void
1289 1.45 mlelstv tzset(void)
1290 1.19 kleink {
1291 1.45 mlelstv rwlock_wrlock(&lcl_lock);
1292 1.45 mlelstv tzset_unlocked();
1293 1.45 mlelstv rwlock_unlock(&lcl_lock);
1294 1.19 kleink }
1295 1.19 kleink
1296 1.1 jtc /*
1297 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1298 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1299 1.45 mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
1300 1.1 jtc ** but it *is* desirable.)
1301 1.1 jtc **
1302 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1303 1.1 jtc */
1304 1.1 jtc
1305 1.1 jtc /*ARGSUSED*/
1306 1.45 mlelstv static struct tm *
1307 1.49 christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
1308 1.49 christos struct tm *const tmp)
1309 1.49 christos {
1310 1.49 christos const struct ttinfo * ttisp;
1311 1.49 christos int i;
1312 1.49 christos struct tm * result;
1313 1.1 jtc const time_t t = *timep;
1314 1.1 jtc
1315 1.45 mlelstv if ((sp->goback && t < sp->ats[0]) ||
1316 1.45 mlelstv (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1317 1.45 mlelstv time_t newt = t;
1318 1.49 christos time_t seconds;
1319 1.49 christos time_t tcycles;
1320 1.49 christos int_fast64_t icycles;
1321 1.45 mlelstv
1322 1.45 mlelstv if (t < sp->ats[0])
1323 1.45 mlelstv seconds = sp->ats[0] - t;
1324 1.45 mlelstv else seconds = t - sp->ats[sp->timecnt - 1];
1325 1.45 mlelstv --seconds;
1326 1.66 christos tcycles = (time_t)
1327 1.66 christos (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1328 1.45 mlelstv ++tcycles;
1329 1.45 mlelstv icycles = tcycles;
1330 1.45 mlelstv if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1331 1.45 mlelstv return NULL;
1332 1.45 mlelstv seconds = (time_t) icycles;
1333 1.45 mlelstv seconds *= YEARSPERREPEAT;
1334 1.45 mlelstv seconds *= AVGSECSPERYEAR;
1335 1.45 mlelstv if (t < sp->ats[0])
1336 1.45 mlelstv newt += seconds;
1337 1.45 mlelstv else newt -= seconds;
1338 1.45 mlelstv if (newt < sp->ats[0] ||
1339 1.51 christos newt > sp->ats[sp->timecnt - 1])
1340 1.45 mlelstv return NULL; /* "cannot happen" */
1341 1.49 christos result = localsub(sp, &newt, offset, tmp);
1342 1.45 mlelstv if (result == tmp) {
1343 1.49 christos time_t newy;
1344 1.45 mlelstv
1345 1.45 mlelstv newy = tmp->tm_year;
1346 1.45 mlelstv if (t < sp->ats[0])
1347 1.45 mlelstv newy -= (time_t)icycles * YEARSPERREPEAT;
1348 1.45 mlelstv else newy += (time_t)icycles * YEARSPERREPEAT;
1349 1.45 mlelstv tmp->tm_year = (int)newy;
1350 1.51 christos if (tmp->tm_year != newy)
1351 1.45 mlelstv return NULL;
1352 1.45 mlelstv }
1353 1.45 mlelstv return result;
1354 1.1 jtc }
1355 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1356 1.1 jtc i = 0;
1357 1.1 jtc while (sp->ttis[i].tt_isdst)
1358 1.1 jtc if (++i >= sp->typecnt) {
1359 1.1 jtc i = 0;
1360 1.1 jtc break;
1361 1.1 jtc }
1362 1.1 jtc } else {
1363 1.49 christos int lo = 1;
1364 1.49 christos int hi = sp->timecnt;
1365 1.45 mlelstv
1366 1.45 mlelstv while (lo < hi) {
1367 1.49 christos int mid = (lo + hi) / 2;
1368 1.45 mlelstv
1369 1.45 mlelstv if (t < sp->ats[mid])
1370 1.45 mlelstv hi = mid;
1371 1.45 mlelstv else lo = mid + 1;
1372 1.45 mlelstv }
1373 1.45 mlelstv i = (int) sp->types[lo - 1];
1374 1.1 jtc }
1375 1.1 jtc ttisp = &sp->ttis[i];
1376 1.1 jtc /*
1377 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1378 1.1 jtc ** you'd replace the statement below with
1379 1.1 jtc ** t += ttisp->tt_gmtoff;
1380 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1381 1.1 jtc */
1382 1.49 christos result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1383 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1384 1.57 christos if (sp == lclptr)
1385 1.57 christos tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1386 1.1 jtc #ifdef TM_ZONE
1387 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1388 1.1 jtc #endif /* defined TM_ZONE */
1389 1.45 mlelstv return result;
1390 1.1 jtc }
1391 1.1 jtc
1392 1.49 christos /*
1393 1.49 christos ** Re-entrant version of localtime.
1394 1.49 christos */
1395 1.49 christos
1396 1.1 jtc struct tm *
1397 1.49 christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
1398 1.1 jtc {
1399 1.49 christos rwlock_rdlock(&lcl_lock);
1400 1.45 mlelstv tzset_unlocked();
1401 1.49 christos tmp = localtime_rz(lclptr, timep, tmp);
1402 1.45 mlelstv rwlock_unlock(&lcl_lock);
1403 1.49 christos return tmp;
1404 1.1 jtc }
1405 1.1 jtc
1406 1.49 christos struct tm *
1407 1.49 christos localtime(const time_t *const timep)
1408 1.49 christos {
1409 1.49 christos return localtime_r(timep, &tm);
1410 1.49 christos }
1411 1.35 kleink
1412 1.18 kleink struct tm *
1413 1.49 christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1414 1.18 kleink {
1415 1.49 christos if (sp == NULL)
1416 1.51 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1417 1.49 christos else
1418 1.51 christos tmp = localsub(sp, timep, 0L, tmp);
1419 1.51 christos if (tmp == NULL)
1420 1.51 christos errno = EOVERFLOW;
1421 1.51 christos return tmp;
1422 1.18 kleink }
1423 1.18 kleink
1424 1.18 kleink /*
1425 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1426 1.1 jtc */
1427 1.1 jtc
1428 1.45 mlelstv static struct tm *
1429 1.68 christos gmtsub(const timezone_t sp, const time_t *const timep, const long offset,
1430 1.49 christos struct tm *const tmp)
1431 1.1 jtc {
1432 1.49 christos struct tm * result;
1433 1.33 christos #ifdef _REENTRANT
1434 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1435 1.19 kleink #endif
1436 1.19 kleink
1437 1.19 kleink mutex_lock(&gmt_mutex);
1438 1.45 mlelstv if (!gmt_is_set) {
1439 1.41 christos int saveerrno;
1440 1.45 mlelstv gmt_is_set = TRUE;
1441 1.41 christos saveerrno = errno;
1442 1.47 christos gmtptr = calloc(1, sizeof *gmtptr);
1443 1.41 christos errno = saveerrno;
1444 1.1 jtc if (gmtptr != NULL)
1445 1.45 mlelstv gmtload(gmtptr);
1446 1.1 jtc }
1447 1.19 kleink mutex_unlock(&gmt_mutex);
1448 1.49 christos result = timesub(gmtptr, timep, offset, tmp);
1449 1.1 jtc #ifdef TM_ZONE
1450 1.1 jtc /*
1451 1.1 jtc ** Could get fancy here and deliver something such as
1452 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1453 1.1 jtc ** but this is no time for a treasure hunt.
1454 1.1 jtc */
1455 1.1 jtc if (offset != 0)
1456 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1457 1.1 jtc else {
1458 1.1 jtc if (gmtptr == NULL)
1459 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1460 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1461 1.1 jtc }
1462 1.1 jtc #endif /* defined TM_ZONE */
1463 1.45 mlelstv return result;
1464 1.1 jtc }
1465 1.1 jtc
1466 1.1 jtc struct tm *
1467 1.49 christos gmtime(const time_t *const timep)
1468 1.1 jtc {
1469 1.55 christos struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1470 1.55 christos
1471 1.55 christos if (tmp == NULL)
1472 1.55 christos errno = EOVERFLOW;
1473 1.55 christos
1474 1.55 christos return tmp;
1475 1.1 jtc }
1476 1.1 jtc
1477 1.18 kleink /*
1478 1.35 kleink ** Re-entrant version of gmtime.
1479 1.35 kleink */
1480 1.35 kleink
1481 1.18 kleink struct tm *
1482 1.49 christos gmtime_r(const time_t * const timep, struct tm *tmp)
1483 1.18 kleink {
1484 1.55 christos tmp = gmtsub(NULL, timep, 0L, tmp);
1485 1.55 christos
1486 1.55 christos if (tmp == NULL)
1487 1.55 christos errno = EOVERFLOW;
1488 1.55 christos
1489 1.55 christos return tmp;
1490 1.18 kleink }
1491 1.18 kleink
1492 1.1 jtc #ifdef STD_INSPIRED
1493 1.1 jtc
1494 1.1 jtc struct tm *
1495 1.49 christos offtime(const time_t *const timep, long offset)
1496 1.1 jtc {
1497 1.55 christos struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1498 1.55 christos
1499 1.55 christos if (tmp == NULL)
1500 1.55 christos errno = EOVERFLOW;
1501 1.55 christos
1502 1.55 christos return tmp;
1503 1.49 christos }
1504 1.49 christos
1505 1.49 christos struct tm *
1506 1.49 christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
1507 1.49 christos {
1508 1.55 christos tmp = gmtsub(NULL, timep, offset, tmp);
1509 1.55 christos
1510 1.55 christos if (tmp == NULL)
1511 1.55 christos errno = EOVERFLOW;
1512 1.55 christos
1513 1.55 christos return tmp;
1514 1.1 jtc }
1515 1.1 jtc
1516 1.1 jtc #endif /* defined STD_INSPIRED */
1517 1.1 jtc
1518 1.45 mlelstv /*
1519 1.45 mlelstv ** Return the number of leap years through the end of the given year
1520 1.45 mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
1521 1.45 mlelstv */
1522 1.45 mlelstv
1523 1.45 mlelstv static int
1524 1.49 christos leaps_thru_end_of(const int y)
1525 1.45 mlelstv {
1526 1.45 mlelstv return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1527 1.45 mlelstv -(leaps_thru_end_of(-(y + 1)) + 1);
1528 1.45 mlelstv }
1529 1.45 mlelstv
1530 1.45 mlelstv static struct tm *
1531 1.49 christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
1532 1.49 christos struct tm *const tmp)
1533 1.49 christos {
1534 1.49 christos const struct lsinfo * lp;
1535 1.49 christos time_t tdays;
1536 1.49 christos int idays; /* unsigned would be so 2003 */
1537 1.49 christos long rem;
1538 1.49 christos int y;
1539 1.49 christos const int * ip;
1540 1.49 christos long corr;
1541 1.49 christos int hit;
1542 1.49 christos int i;
1543 1.1 jtc
1544 1.1 jtc corr = 0;
1545 1.1 jtc hit = 0;
1546 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1547 1.1 jtc while (--i >= 0) {
1548 1.1 jtc lp = &sp->lsis[i];
1549 1.1 jtc if (*timep >= lp->ls_trans) {
1550 1.1 jtc if (*timep == lp->ls_trans) {
1551 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1552 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1553 1.1 jtc if (hit)
1554 1.1 jtc while (i > 0 &&
1555 1.1 jtc sp->lsis[i].ls_trans ==
1556 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1557 1.1 jtc sp->lsis[i].ls_corr ==
1558 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1559 1.1 jtc ++hit;
1560 1.1 jtc --i;
1561 1.1 jtc }
1562 1.1 jtc }
1563 1.1 jtc corr = lp->ls_corr;
1564 1.1 jtc break;
1565 1.1 jtc }
1566 1.1 jtc }
1567 1.45 mlelstv y = EPOCH_YEAR;
1568 1.66 christos tdays = (time_t)(*timep / SECSPERDAY);
1569 1.45 mlelstv rem = (long) (*timep - tdays * SECSPERDAY);
1570 1.45 mlelstv while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1571 1.45 mlelstv int newy;
1572 1.49 christos time_t tdelta;
1573 1.49 christos int idelta;
1574 1.49 christos int leapdays;
1575 1.45 mlelstv
1576 1.45 mlelstv tdelta = tdays / DAYSPERLYEAR;
1577 1.45 mlelstv idelta = (int) tdelta;
1578 1.51 christos if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1579 1.45 mlelstv return NULL;
1580 1.45 mlelstv if (idelta == 0)
1581 1.45 mlelstv idelta = (tdays < 0) ? -1 : 1;
1582 1.45 mlelstv newy = y;
1583 1.51 christos if (increment_overflow(&newy, idelta))
1584 1.45 mlelstv return NULL;
1585 1.45 mlelstv leapdays = leaps_thru_end_of(newy - 1) -
1586 1.45 mlelstv leaps_thru_end_of(y - 1);
1587 1.45 mlelstv tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1588 1.45 mlelstv tdays -= leapdays;
1589 1.45 mlelstv y = newy;
1590 1.45 mlelstv }
1591 1.45 mlelstv {
1592 1.49 christos long seconds;
1593 1.45 mlelstv
1594 1.45 mlelstv seconds = tdays * SECSPERDAY + 0.5;
1595 1.66 christos tdays = (time_t)(seconds / SECSPERDAY);
1596 1.45 mlelstv rem += (long) (seconds - tdays * SECSPERDAY);
1597 1.1 jtc }
1598 1.45 mlelstv /*
1599 1.45 mlelstv ** Given the range, we can now fearlessly cast...
1600 1.45 mlelstv */
1601 1.45 mlelstv idays = (int) tdays;
1602 1.45 mlelstv rem += offset - corr;
1603 1.1 jtc while (rem < 0) {
1604 1.1 jtc rem += SECSPERDAY;
1605 1.45 mlelstv --idays;
1606 1.1 jtc }
1607 1.1 jtc while (rem >= SECSPERDAY) {
1608 1.1 jtc rem -= SECSPERDAY;
1609 1.45 mlelstv ++idays;
1610 1.45 mlelstv }
1611 1.45 mlelstv while (idays < 0) {
1612 1.51 christos if (increment_overflow(&y, -1))
1613 1.45 mlelstv return NULL;
1614 1.45 mlelstv idays += year_lengths[isleap(y)];
1615 1.1 jtc }
1616 1.45 mlelstv while (idays >= year_lengths[isleap(y)]) {
1617 1.45 mlelstv idays -= year_lengths[isleap(y)];
1618 1.51 christos if (increment_overflow(&y, 1))
1619 1.45 mlelstv return NULL;
1620 1.45 mlelstv }
1621 1.45 mlelstv tmp->tm_year = y;
1622 1.51 christos if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1623 1.45 mlelstv return NULL;
1624 1.45 mlelstv tmp->tm_yday = idays;
1625 1.45 mlelstv /*
1626 1.45 mlelstv ** The "extra" mods below avoid overflow problems.
1627 1.45 mlelstv */
1628 1.45 mlelstv tmp->tm_wday = EPOCH_WDAY +
1629 1.45 mlelstv ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1630 1.45 mlelstv (DAYSPERNYEAR % DAYSPERWEEK) +
1631 1.45 mlelstv leaps_thru_end_of(y - 1) -
1632 1.45 mlelstv leaps_thru_end_of(EPOCH_YEAR - 1) +
1633 1.45 mlelstv idays;
1634 1.45 mlelstv tmp->tm_wday %= DAYSPERWEEK;
1635 1.45 mlelstv if (tmp->tm_wday < 0)
1636 1.45 mlelstv tmp->tm_wday += DAYSPERWEEK;
1637 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1638 1.45 mlelstv rem %= SECSPERHOUR;
1639 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1640 1.6 jtc /*
1641 1.6 jtc ** A positive leap second requires a special
1642 1.45 mlelstv ** representation. This uses "... ??:59:60" et seq.
1643 1.6 jtc */
1644 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1645 1.45 mlelstv ip = mon_lengths[isleap(y)];
1646 1.45 mlelstv for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1647 1.45 mlelstv idays -= ip[tmp->tm_mon];
1648 1.45 mlelstv tmp->tm_mday = (int) (idays + 1);
1649 1.1 jtc tmp->tm_isdst = 0;
1650 1.1 jtc #ifdef TM_GMTOFF
1651 1.1 jtc tmp->TM_GMTOFF = offset;
1652 1.1 jtc #endif /* defined TM_GMTOFF */
1653 1.45 mlelstv return tmp;
1654 1.1 jtc }
1655 1.1 jtc
1656 1.1 jtc char *
1657 1.49 christos ctime(const time_t *const timep)
1658 1.1 jtc {
1659 1.1 jtc /*
1660 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1661 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1662 1.45 mlelstv ** to local time in the form of a string. It is equivalent to
1663 1.1 jtc ** asctime(localtime(timer))
1664 1.1 jtc */
1665 1.46 christos struct tm *rtm = localtime(timep);
1666 1.46 christos if (rtm == NULL)
1667 1.46 christos return NULL;
1668 1.46 christos return asctime(rtm);
1669 1.18 kleink }
1670 1.18 kleink
1671 1.18 kleink char *
1672 1.49 christos ctime_r(const time_t *const timep, char *buf)
1673 1.18 kleink {
1674 1.46 christos struct tm mytm, *rtm;
1675 1.18 kleink
1676 1.46 christos rtm = localtime_r(timep, &mytm);
1677 1.46 christos if (rtm == NULL)
1678 1.46 christos return NULL;
1679 1.46 christos return asctime_r(rtm, buf);
1680 1.1 jtc }
1681 1.1 jtc
1682 1.49 christos char *
1683 1.49 christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1684 1.49 christos {
1685 1.49 christos struct tm mytm, *rtm;
1686 1.49 christos
1687 1.49 christos rtm = localtime_rz(sp, timep, &mytm);
1688 1.49 christos if (rtm == NULL)
1689 1.49 christos return NULL;
1690 1.49 christos return asctime_r(rtm, buf);
1691 1.49 christos }
1692 1.49 christos
1693 1.1 jtc /*
1694 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1695 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1696 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1697 1.45 mlelstv ** It does a binary search of the time_t space. Since time_t's are
1698 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1699 1.1 jtc ** would still be very reasonable).
1700 1.1 jtc */
1701 1.1 jtc
1702 1.1 jtc #ifndef WRONG
1703 1.51 christos #define WRONG ((time_t)-1)
1704 1.1 jtc #endif /* !defined WRONG */
1705 1.1 jtc
1706 1.1 jtc /*
1707 1.45 mlelstv ** Simplified normalize logic courtesy Paul Eggert.
1708 1.1 jtc */
1709 1.1 jtc
1710 1.1 jtc static int
1711 1.68 christos increment_overflow(int *const ip, int j)
1712 1.1 jtc {
1713 1.58 christos int i = *ip;
1714 1.1 jtc
1715 1.58 christos /*
1716 1.58 christos ** If i >= 0 there can only be overflow if i + j > INT_MAX
1717 1.58 christos ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1718 1.58 christos ** If i < 0 there can only be overflow if i + j < INT_MIN
1719 1.58 christos ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1720 1.58 christos */
1721 1.58 christos if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1722 1.58 christos return TRUE;
1723 1.58 christos *ip += j;
1724 1.58 christos return FALSE;
1725 1.1 jtc }
1726 1.1 jtc
1727 1.1 jtc static int
1728 1.68 christos long_increment_overflow(long *const lp, int m)
1729 1.45 mlelstv {
1730 1.58 christos long l = *lp;
1731 1.45 mlelstv
1732 1.58 christos if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1733 1.58 christos return TRUE;
1734 1.58 christos *lp += m;
1735 1.58 christos return FALSE;
1736 1.45 mlelstv }
1737 1.45 mlelstv
1738 1.45 mlelstv static int
1739 1.49 christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1740 1.1 jtc {
1741 1.49 christos int tensdelta;
1742 1.1 jtc
1743 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1744 1.1 jtc (*unitsptr / base) :
1745 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1746 1.1 jtc *unitsptr -= tensdelta * base;
1747 1.1 jtc return increment_overflow(tensptr, tensdelta);
1748 1.1 jtc }
1749 1.1 jtc
1750 1.1 jtc static int
1751 1.49 christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
1752 1.49 christos const int base)
1753 1.45 mlelstv {
1754 1.49 christos int tensdelta;
1755 1.45 mlelstv
1756 1.45 mlelstv tensdelta = (*unitsptr >= 0) ?
1757 1.45 mlelstv (*unitsptr / base) :
1758 1.45 mlelstv (-1 - (-1 - *unitsptr) / base);
1759 1.45 mlelstv *unitsptr -= tensdelta * base;
1760 1.45 mlelstv return long_increment_overflow(tensptr, tensdelta);
1761 1.45 mlelstv }
1762 1.45 mlelstv
1763 1.45 mlelstv static int
1764 1.49 christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1765 1.1 jtc {
1766 1.49 christos int result;
1767 1.1 jtc
1768 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1769 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1770 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1771 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1772 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1773 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1774 1.1 jtc return result;
1775 1.1 jtc }
1776 1.1 jtc
1777 1.1 jtc static time_t
1778 1.49 christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1779 1.49 christos const long offset, int *const okayp, const int do_norm_secs)
1780 1.49 christos {
1781 1.49 christos int dir;
1782 1.49 christos int i, j;
1783 1.49 christos int saved_seconds;
1784 1.49 christos long li;
1785 1.49 christos time_t lo;
1786 1.49 christos time_t hi;
1787 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
1788 1.61 christos time_t ilo;
1789 1.61 christos #endif
1790 1.45 mlelstv long y;
1791 1.1 jtc time_t newt;
1792 1.1 jtc time_t t;
1793 1.1 jtc struct tm yourtm, mytm;
1794 1.1 jtc
1795 1.1 jtc *okayp = FALSE;
1796 1.1 jtc yourtm = *tmp;
1797 1.64 christos #ifdef NO_ERROR_IN_DST_GAP
1798 1.64 christos again:
1799 1.64 christos #endif
1800 1.13 jtc if (do_norm_secs) {
1801 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1802 1.60 christos SECSPERMIN))
1803 1.60 christos goto overflow;
1804 1.13 jtc }
1805 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1806 1.60 christos goto overflow;
1807 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1808 1.60 christos goto overflow;
1809 1.45 mlelstv y = yourtm.tm_year;
1810 1.45 mlelstv if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1811 1.60 christos goto overflow;
1812 1.1 jtc /*
1813 1.45 mlelstv ** Turn y into an actual year number for now.
1814 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1815 1.1 jtc */
1816 1.45 mlelstv if (long_increment_overflow(&y, TM_YEAR_BASE))
1817 1.60 christos goto overflow;
1818 1.1 jtc while (yourtm.tm_mday <= 0) {
1819 1.45 mlelstv if (long_increment_overflow(&y, -1))
1820 1.60 christos goto overflow;
1821 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1822 1.45 mlelstv yourtm.tm_mday += year_lengths[isleap(li)];
1823 1.1 jtc }
1824 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1825 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
1826 1.45 mlelstv yourtm.tm_mday -= year_lengths[isleap(li)];
1827 1.45 mlelstv if (long_increment_overflow(&y, 1))
1828 1.60 christos goto overflow;
1829 1.1 jtc }
1830 1.1 jtc for ( ; ; ) {
1831 1.45 mlelstv i = mon_lengths[isleap(y)][yourtm.tm_mon];
1832 1.1 jtc if (yourtm.tm_mday <= i)
1833 1.1 jtc break;
1834 1.1 jtc yourtm.tm_mday -= i;
1835 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1836 1.1 jtc yourtm.tm_mon = 0;
1837 1.45 mlelstv if (long_increment_overflow(&y, 1))
1838 1.60 christos goto overflow;
1839 1.1 jtc }
1840 1.1 jtc }
1841 1.45 mlelstv if (long_increment_overflow(&y, -TM_YEAR_BASE))
1842 1.60 christos goto overflow;
1843 1.66 christos yourtm.tm_year = (int)y;
1844 1.45 mlelstv if (yourtm.tm_year != y)
1845 1.60 christos goto overflow;
1846 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1847 1.29 kleink saved_seconds = 0;
1848 1.45 mlelstv else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1849 1.1 jtc /*
1850 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1851 1.1 jtc ** time below the minimum representable time.
1852 1.1 jtc ** Set tm_sec to 59 instead.
1853 1.1 jtc ** This assumes that the minimum representable time is
1854 1.1 jtc ** not in the same minute that a leap second was deleted from,
1855 1.1 jtc ** which is a safer assumption than using 58 would be.
1856 1.1 jtc */
1857 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1858 1.60 christos goto overflow;
1859 1.1 jtc saved_seconds = yourtm.tm_sec;
1860 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1861 1.1 jtc } else {
1862 1.1 jtc saved_seconds = yourtm.tm_sec;
1863 1.1 jtc yourtm.tm_sec = 0;
1864 1.1 jtc }
1865 1.1 jtc /*
1866 1.45 mlelstv ** Do a binary search (this works whatever time_t's type is).
1867 1.1 jtc */
1868 1.70 christos /* LINTED const not */
1869 1.45 mlelstv if (!TYPE_SIGNED(time_t)) {
1870 1.45 mlelstv lo = 0;
1871 1.45 mlelstv hi = lo - 1;
1872 1.70 christos /* LINTED const not */
1873 1.45 mlelstv } else if (!TYPE_INTEGRAL(time_t)) {
1874 1.69 christos /* CONSTCOND */
1875 1.45 mlelstv if (sizeof(time_t) > sizeof(float))
1876 1.69 christos /* LINTED assumed double */
1877 1.45 mlelstv hi = (time_t) DBL_MAX;
1878 1.69 christos /* LINTED assumed float */
1879 1.45 mlelstv else hi = (time_t) FLT_MAX;
1880 1.45 mlelstv lo = -hi;
1881 1.45 mlelstv } else {
1882 1.45 mlelstv lo = 1;
1883 1.45 mlelstv for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1884 1.45 mlelstv lo *= 2;
1885 1.45 mlelstv hi = -(lo + 1);
1886 1.45 mlelstv }
1887 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
1888 1.61 christos ilo = lo;
1889 1.61 christos #endif
1890 1.1 jtc for ( ; ; ) {
1891 1.45 mlelstv t = lo / 2 + hi / 2;
1892 1.45 mlelstv if (t < lo)
1893 1.45 mlelstv t = lo;
1894 1.45 mlelstv else if (t > hi)
1895 1.45 mlelstv t = hi;
1896 1.49 christos if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1897 1.45 mlelstv /*
1898 1.45 mlelstv ** Assume that t is too extreme to be represented in
1899 1.45 mlelstv ** a struct tm; arrange things so that it is less
1900 1.45 mlelstv ** extreme on the next pass.
1901 1.45 mlelstv */
1902 1.45 mlelstv dir = (t > 0) ? 1 : -1;
1903 1.45 mlelstv } else dir = tmcomp(&mytm, &yourtm);
1904 1.1 jtc if (dir != 0) {
1905 1.45 mlelstv if (t == lo) {
1906 1.45 mlelstv ++t;
1907 1.45 mlelstv if (t <= lo)
1908 1.60 christos goto overflow;
1909 1.45 mlelstv ++lo;
1910 1.45 mlelstv } else if (t == hi) {
1911 1.45 mlelstv --t;
1912 1.45 mlelstv if (t >= hi)
1913 1.60 christos goto overflow;
1914 1.45 mlelstv --hi;
1915 1.45 mlelstv }
1916 1.59 christos #ifdef NO_ERROR_IN_DST_GAP
1917 1.64 christos if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1918 1.64 christos do_norm_secs) {
1919 1.59 christos for (i = sp->typecnt - 1; i >= 0; --i) {
1920 1.59 christos for (j = sp->typecnt - 1; j >= 0; --j) {
1921 1.64 christos time_t off;
1922 1.59 christos if (sp->ttis[j].tt_isdst ==
1923 1.59 christos sp->ttis[i].tt_isdst)
1924 1.59 christos continue;
1925 1.59 christos off = sp->ttis[j].tt_gmtoff -
1926 1.59 christos sp->ttis[i].tt_gmtoff;
1927 1.64 christos yourtm.tm_sec += off < 0 ?
1928 1.64 christos -off : off;
1929 1.64 christos goto again;
1930 1.59 christos }
1931 1.59 christos }
1932 1.59 christos }
1933 1.59 christos #endif
1934 1.45 mlelstv if (lo > hi)
1935 1.60 christos goto invalid;
1936 1.45 mlelstv if (dir > 0)
1937 1.45 mlelstv hi = t;
1938 1.45 mlelstv else lo = t;
1939 1.1 jtc continue;
1940 1.1 jtc }
1941 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1942 1.1 jtc break;
1943 1.1 jtc /*
1944 1.1 jtc ** Right time, wrong type.
1945 1.1 jtc ** Hunt for right time, right type.
1946 1.1 jtc ** It's okay to guess wrong since the guess
1947 1.1 jtc ** gets checked.
1948 1.1 jtc */
1949 1.1 jtc if (sp == NULL)
1950 1.60 christos goto invalid;
1951 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1952 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1953 1.1 jtc continue;
1954 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1955 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1956 1.1 jtc continue;
1957 1.66 christos newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
1958 1.66 christos sp->ttis[i].tt_gmtoff);
1959 1.49 christos if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1960 1.45 mlelstv continue;
1961 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1962 1.1 jtc continue;
1963 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1964 1.1 jtc continue;
1965 1.1 jtc /*
1966 1.1 jtc ** We have a match.
1967 1.1 jtc */
1968 1.1 jtc t = newt;
1969 1.1 jtc goto label;
1970 1.1 jtc }
1971 1.1 jtc }
1972 1.60 christos goto invalid;
1973 1.1 jtc }
1974 1.1 jtc label:
1975 1.1 jtc newt = t + saved_seconds;
1976 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1977 1.60 christos goto overflow;
1978 1.1 jtc t = newt;
1979 1.51 christos if ((*funcp)(sp, &t, offset, tmp)) {
1980 1.45 mlelstv *okayp = TRUE;
1981 1.51 christos return t;
1982 1.60 christos }
1983 1.60 christos overflow:
1984 1.60 christos errno = EOVERFLOW;
1985 1.60 christos return WRONG;
1986 1.60 christos invalid:
1987 1.60 christos errno = EINVAL;
1988 1.60 christos return WRONG;
1989 1.13 jtc }
1990 1.13 jtc
1991 1.13 jtc static time_t
1992 1.49 christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1993 1.49 christos const long offset, int *const okayp)
1994 1.13 jtc {
1995 1.13 jtc time_t t;
1996 1.13 jtc
1997 1.13 jtc /*
1998 1.13 jtc ** First try without normalization of seconds
1999 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
2000 1.13 jtc ** If that fails, try with normalization of seconds.
2001 1.13 jtc */
2002 1.49 christos t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2003 1.49 christos return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2004 1.1 jtc }
2005 1.1 jtc
2006 1.1 jtc static time_t
2007 1.49 christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2008 1.68 christos const long offset)
2009 1.49 christos {
2010 1.49 christos time_t t;
2011 1.49 christos int samei, otheri;
2012 1.49 christos int sameind, otherind;
2013 1.49 christos int i;
2014 1.49 christos int nseen;
2015 1.35 kleink int seen[TZ_MAX_TYPES];
2016 1.35 kleink int types[TZ_MAX_TYPES];
2017 1.1 jtc int okay;
2018 1.1 jtc
2019 1.58 christos if (tmp == NULL) {
2020 1.58 christos errno = EINVAL;
2021 1.58 christos return WRONG;
2022 1.58 christos }
2023 1.1 jtc if (tmp->tm_isdst > 1)
2024 1.1 jtc tmp->tm_isdst = 1;
2025 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
2026 1.1 jtc #ifdef PCTS
2027 1.1 jtc /*
2028 1.45 mlelstv ** PCTS code courtesy Grant Sullivan.
2029 1.1 jtc */
2030 1.1 jtc if (okay)
2031 1.1 jtc return t;
2032 1.1 jtc if (tmp->tm_isdst < 0)
2033 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
2034 1.1 jtc #endif /* defined PCTS */
2035 1.1 jtc #ifndef PCTS
2036 1.1 jtc if (okay || tmp->tm_isdst < 0)
2037 1.1 jtc return t;
2038 1.1 jtc #endif /* !defined PCTS */
2039 1.1 jtc /*
2040 1.1 jtc ** We're supposed to assume that somebody took a time of one type
2041 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
2042 1.1 jtc ** We try to divine the type they started from and adjust to the
2043 1.1 jtc ** type they need.
2044 1.1 jtc */
2045 1.60 christos if (sp == NULL) {
2046 1.60 christos errno = EINVAL;
2047 1.1 jtc return WRONG;
2048 1.60 christos }
2049 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
2050 1.35 kleink seen[i] = FALSE;
2051 1.35 kleink nseen = 0;
2052 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
2053 1.35 kleink if (!seen[sp->types[i]]) {
2054 1.35 kleink seen[sp->types[i]] = TRUE;
2055 1.35 kleink types[nseen++] = sp->types[i];
2056 1.35 kleink }
2057 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
2058 1.35 kleink samei = types[sameind];
2059 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2060 1.1 jtc continue;
2061 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
2062 1.35 kleink otheri = types[otherind];
2063 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2064 1.1 jtc continue;
2065 1.21 christos tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2066 1.21 christos sp->ttis[samei].tt_gmtoff);
2067 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2068 1.49 christos t = time2(sp, tmp, funcp, offset, &okay);
2069 1.1 jtc if (okay)
2070 1.1 jtc return t;
2071 1.21 christos tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2072 1.21 christos sp->ttis[samei].tt_gmtoff);
2073 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2074 1.1 jtc }
2075 1.1 jtc }
2076 1.60 christos errno = EOVERFLOW;
2077 1.1 jtc return WRONG;
2078 1.1 jtc }
2079 1.1 jtc
2080 1.1 jtc time_t
2081 1.68 christos mktime_z(const timezone_t sp, struct tm *const tmp)
2082 1.49 christos {
2083 1.51 christos time_t t;
2084 1.49 christos if (sp == NULL)
2085 1.51 christos t = time1(NULL, tmp, gmtsub, 0L);
2086 1.49 christos else
2087 1.51 christos t = time1(sp, tmp, localsub, 0L);
2088 1.51 christos return t;
2089 1.49 christos }
2090 1.49 christos
2091 1.49 christos time_t
2092 1.68 christos mktime(struct tm *const tmp)
2093 1.1 jtc {
2094 1.19 kleink time_t result;
2095 1.19 kleink
2096 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2097 1.45 mlelstv tzset_unlocked();
2098 1.49 christos result = mktime_z(lclptr, tmp);
2099 1.45 mlelstv rwlock_unlock(&lcl_lock);
2100 1.49 christos return result;
2101 1.1 jtc }
2102 1.1 jtc
2103 1.1 jtc #ifdef STD_INSPIRED
2104 1.1 jtc
2105 1.1 jtc time_t
2106 1.68 christos timelocal_z(const timezone_t sp, struct tm *const tmp)
2107 1.49 christos {
2108 1.49 christos if (tmp != NULL)
2109 1.49 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2110 1.49 christos return mktime_z(sp, tmp);
2111 1.49 christos }
2112 1.49 christos
2113 1.49 christos time_t
2114 1.49 christos timelocal(struct tm *const tmp)
2115 1.1 jtc {
2116 1.58 christos if (tmp != NULL)
2117 1.58 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2118 1.1 jtc return mktime(tmp);
2119 1.1 jtc }
2120 1.1 jtc
2121 1.1 jtc time_t
2122 1.49 christos timegm(struct tm *const tmp)
2123 1.1 jtc {
2124 1.51 christos time_t t;
2125 1.51 christos
2126 1.58 christos if (tmp != NULL)
2127 1.58 christos tmp->tm_isdst = 0;
2128 1.51 christos t = time1(gmtptr, tmp, gmtsub, 0L);
2129 1.51 christos return t;
2130 1.1 jtc }
2131 1.1 jtc
2132 1.1 jtc time_t
2133 1.49 christos timeoff(struct tm *const tmp, const long offset)
2134 1.1 jtc {
2135 1.51 christos time_t t;
2136 1.51 christos
2137 1.58 christos if (tmp != NULL)
2138 1.58 christos tmp->tm_isdst = 0;
2139 1.51 christos t = time1(gmtptr, tmp, gmtsub, offset);
2140 1.51 christos return t;
2141 1.1 jtc }
2142 1.1 jtc
2143 1.1 jtc #endif /* defined STD_INSPIRED */
2144 1.1 jtc
2145 1.1 jtc #ifdef CMUCS
2146 1.1 jtc
2147 1.1 jtc /*
2148 1.1 jtc ** The following is supplied for compatibility with
2149 1.1 jtc ** previous versions of the CMUCS runtime library.
2150 1.1 jtc */
2151 1.1 jtc
2152 1.1 jtc long
2153 1.49 christos gtime(struct tm *const tmp)
2154 1.1 jtc {
2155 1.49 christos const time_t t = mktime(tmp);
2156 1.1 jtc
2157 1.1 jtc if (t == WRONG)
2158 1.1 jtc return -1;
2159 1.1 jtc return t;
2160 1.1 jtc }
2161 1.1 jtc
2162 1.1 jtc #endif /* defined CMUCS */
2163 1.1 jtc
2164 1.1 jtc /*
2165 1.1 jtc ** XXX--is the below the right way to conditionalize??
2166 1.1 jtc */
2167 1.1 jtc
2168 1.1 jtc #ifdef STD_INSPIRED
2169 1.1 jtc
2170 1.1 jtc /*
2171 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2172 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2173 1.1 jtc ** is not the case if we are accounting for leap seconds.
2174 1.1 jtc ** So, we provide the following conversion routines for use
2175 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
2176 1.1 jtc */
2177 1.1 jtc
2178 1.1 jtc static long
2179 1.49 christos leapcorr(const timezone_t sp, time_t *timep)
2180 1.1 jtc {
2181 1.49 christos struct lsinfo * lp;
2182 1.49 christos int i;
2183 1.1 jtc
2184 1.1 jtc i = sp->leapcnt;
2185 1.1 jtc while (--i >= 0) {
2186 1.1 jtc lp = &sp->lsis[i];
2187 1.1 jtc if (*timep >= lp->ls_trans)
2188 1.1 jtc return lp->ls_corr;
2189 1.1 jtc }
2190 1.1 jtc return 0;
2191 1.1 jtc }
2192 1.1 jtc
2193 1.1 jtc time_t
2194 1.49 christos time2posix_z(const timezone_t sp, time_t t)
2195 1.49 christos {
2196 1.66 christos return (time_t)(t - leapcorr(sp, &t));
2197 1.49 christos }
2198 1.49 christos
2199 1.49 christos time_t
2200 1.49 christos time2posix(time_t t)
2201 1.1 jtc {
2202 1.19 kleink time_t result;
2203 1.45 mlelstv rwlock_wrlock(&lcl_lock);
2204 1.45 mlelstv tzset_unlocked();
2205 1.66 christos result = (time_t)(t - leapcorr(lclptr, &t));
2206 1.45 mlelstv rwlock_unlock(&lcl_lock);
2207 1.19 kleink return (result);
2208 1.1 jtc }
2209 1.1 jtc
2210 1.1 jtc time_t
2211 1.49 christos posix2time_z(const timezone_t sp, time_t t)
2212 1.1 jtc {
2213 1.1 jtc time_t x;
2214 1.1 jtc time_t y;
2215 1.1 jtc
2216 1.1 jtc /*
2217 1.1 jtc ** For a positive leap second hit, the result
2218 1.45 mlelstv ** is not unique. For a negative leap second
2219 1.1 jtc ** hit, the corresponding time doesn't exist,
2220 1.1 jtc ** so we return an adjacent second.
2221 1.1 jtc */
2222 1.66 christos x = (time_t)(t + leapcorr(sp, &t));
2223 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2224 1.1 jtc if (y < t) {
2225 1.1 jtc do {
2226 1.1 jtc x++;
2227 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2228 1.1 jtc } while (y < t);
2229 1.19 kleink if (t != y) {
2230 1.1 jtc return x - 1;
2231 1.19 kleink }
2232 1.1 jtc } else if (y > t) {
2233 1.1 jtc do {
2234 1.1 jtc --x;
2235 1.66 christos y = (time_t)(x - leapcorr(sp, &x));
2236 1.1 jtc } while (y > t);
2237 1.19 kleink if (t != y) {
2238 1.1 jtc return x + 1;
2239 1.19 kleink }
2240 1.1 jtc }
2241 1.49 christos return x;
2242 1.49 christos }
2243 1.49 christos
2244 1.49 christos
2245 1.49 christos
2246 1.49 christos time_t
2247 1.49 christos posix2time(time_t t)
2248 1.49 christos {
2249 1.49 christos time_t result;
2250 1.49 christos
2251 1.49 christos rwlock_wrlock(&lcl_lock);
2252 1.49 christos tzset_unlocked();
2253 1.49 christos result = posix2time_z(lclptr, t);
2254 1.45 mlelstv rwlock_unlock(&lcl_lock);
2255 1.49 christos return result;
2256 1.1 jtc }
2257 1.1 jtc
2258 1.1 jtc #endif /* defined STD_INSPIRED */
2259