Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.81
      1  1.81  christos /*	$NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $	*/
      2   1.7       jtc 
      3   1.7       jtc /*
      4   1.7       jtc ** This file is in the public domain, so clarified as of
      5  1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      6   1.7       jtc */
      7   1.2       jtc 
      8  1.11  christos #include <sys/cdefs.h>
      9  1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     10  1.11  christos #if 0
     11  1.58  christos static char	elsieid[] = "@(#)localtime.c	8.17";
     12  1.11  christos #else
     13  1.81  christos __RCSID("$NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $");
     14  1.11  christos #endif
     15  1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     16   1.1       jtc 
     17   1.1       jtc /*
     18  1.45   mlelstv ** Leap second handling from Bradley White.
     19  1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     20   1.1       jtc */
     21   1.1       jtc 
     22   1.1       jtc /*LINTLIBRARY*/
     23   1.1       jtc 
     24  1.12       jtc #include "namespace.h"
     25  1.78  christos #include <assert.h>
     26   1.1       jtc #include "private.h"
     27   1.1       jtc #include "tzfile.h"
     28   1.1       jtc #include "fcntl.h"
     29  1.19    kleink #include "reentrant.h"
     30  1.12       jtc 
     31  1.42  christos #if defined(__weak_alias)
     32  1.25    kleink __weak_alias(daylight,_daylight)
     33  1.23   mycroft __weak_alias(tzname,_tzname)
     34  1.12       jtc #endif
     35   1.1       jtc 
     36  1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     37  1.45   mlelstv #define TZ_ABBR_MAX_LEN	16
     38  1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     39  1.45   mlelstv 
     40  1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     41  1.45   mlelstv #define TZ_ABBR_CHAR_SET \
     42  1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     43  1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     44  1.45   mlelstv 
     45  1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     46  1.45   mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     47  1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     48  1.45   mlelstv 
     49  1.80  christos /* The minimum and maximum finite time values.  */
     50  1.80  christos static time_t const time_t_min =
     51  1.80  christos   (TYPE_SIGNED(time_t)
     52  1.80  christos    ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)
     53  1.80  christos    : 0);
     54  1.80  christos static time_t const time_t_max =
     55  1.80  christos   (TYPE_SIGNED(time_t)
     56  1.80  christos    ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1))
     57  1.80  christos    : -1);
     58  1.80  christos 
     59   1.1       jtc /*
     60   1.1       jtc ** SunOS 4.1.1 headers lack O_BINARY.
     61   1.1       jtc */
     62   1.1       jtc 
     63   1.1       jtc #ifdef O_BINARY
     64   1.1       jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     65   1.1       jtc #endif /* defined O_BINARY */
     66   1.1       jtc #ifndef O_BINARY
     67   1.1       jtc #define OPEN_MODE	O_RDONLY
     68   1.1       jtc #endif /* !defined O_BINARY */
     69   1.1       jtc 
     70   1.1       jtc #ifndef WILDABBR
     71   1.1       jtc /*
     72   1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     73   1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     74   1.1       jtc **		or implicitly).
     75   1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     76   1.1       jtc **		or implicitly).
     77   1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     78   1.1       jtc **		in which Daylight Saving Time is never observed.
     79   1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     80   1.1       jtc **		in which Standard Time is never observed.
     81   1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     82   1.1       jtc ** What's best to do in the above cases is open to debate;
     83   1.1       jtc ** for now, we just set things up so that in any of the five cases
     84  1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     85   1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     86  1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     87   1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     88   1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     89   1.1       jtc */
     90   1.1       jtc #define WILDABBR	"   "
     91   1.1       jtc #endif /* !defined WILDABBR */
     92   1.1       jtc 
     93  1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     94   1.1       jtc 
     95  1.71  christos static const char	gmt[] = "GMT";
     96   1.1       jtc 
     97  1.22    kleink /*
     98  1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     99  1.22    kleink ** We default to US rules as of 1999-08-17.
    100  1.22    kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
    101  1.22    kleink ** implementation dependent; for historical reasons, US rules are a
    102  1.22    kleink ** common default.
    103  1.22    kleink */
    104  1.22    kleink #ifndef TZDEFRULESTRING
    105  1.22    kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    106  1.22    kleink #endif /* !defined TZDEFDST */
    107  1.22    kleink 
    108   1.1       jtc struct ttinfo {				/* time type information */
    109  1.78  christos 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
    110   1.1       jtc 	int		tt_isdst;	/* used to set tm_isdst */
    111   1.1       jtc 	int		tt_abbrind;	/* abbreviation list index */
    112   1.1       jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
    113  1.78  christos 	int		tt_ttisgmt;	/* TRUE if transition is UT */
    114   1.1       jtc };
    115   1.1       jtc 
    116   1.1       jtc struct lsinfo {				/* leap second information */
    117   1.1       jtc 	time_t		ls_trans;	/* transition time */
    118  1.74  christos 	int_fast64_t	ls_corr;	/* correction to apply */
    119   1.1       jtc };
    120   1.1       jtc 
    121   1.1       jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    122   1.1       jtc 
    123   1.1       jtc #ifdef TZNAME_MAX
    124   1.1       jtc #define MY_TZNAME_MAX	TZNAME_MAX
    125   1.1       jtc #endif /* defined TZNAME_MAX */
    126   1.1       jtc #ifndef TZNAME_MAX
    127   1.1       jtc #define MY_TZNAME_MAX	255
    128   1.1       jtc #endif /* !defined TZNAME_MAX */
    129   1.1       jtc 
    130  1.49  christos struct __state {
    131   1.1       jtc 	int		leapcnt;
    132   1.1       jtc 	int		timecnt;
    133   1.1       jtc 	int		typecnt;
    134   1.1       jtc 	int		charcnt;
    135  1.45   mlelstv 	int		goback;
    136  1.45   mlelstv 	int		goahead;
    137  1.45   mlelstv 	time_t		ats[TZ_MAX_TIMES];
    138   1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    139   1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    140  1.69  christos 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
    141  1.69  christos 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
    142   1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    143  1.74  christos 	int		defaulttype; /* for early times or if no transitions */
    144   1.1       jtc };
    145   1.1       jtc 
    146   1.1       jtc struct rule {
    147   1.1       jtc 	int		r_type;		/* type of rule--see below */
    148   1.1       jtc 	int		r_day;		/* day number of rule */
    149   1.1       jtc 	int		r_week;		/* week number of rule */
    150   1.1       jtc 	int		r_mon;		/* month number of rule */
    151  1.74  christos 	int_fast32_t	r_time;		/* transition time of rule */
    152   1.1       jtc };
    153   1.1       jtc 
    154   1.1       jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    155   1.1       jtc #define DAY_OF_YEAR		1	/* n - day of year */
    156   1.1       jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    157   1.1       jtc 
    158  1.49  christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    159  1.74  christos 			       const int_fast32_t offset, struct tm *tmp);
    160  1.49  christos 
    161   1.1       jtc /*
    162   1.1       jtc ** Prototypes for static functions.
    163   1.1       jtc */
    164   1.1       jtc 
    165  1.74  christos static int_fast32_t	detzcode(const char * codep);
    166  1.81  christos static int_fast64_t	detzcode64(const char * codep);
    167  1.45   mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    168  1.74  christos static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
    169  1.74  christos static const char *	getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
    170  1.45   mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    171  1.45   mlelstv 				int max);
    172  1.74  christos static const char *	getsecs(const char * strp, int_fast32_t * secsp);
    173  1.74  christos static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
    174  1.45   mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    175  1.49  christos static void		gmtload(timezone_t sp);
    176  1.49  christos static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    177  1.74  christos 				const int_fast32_t offset, struct tm * tmp);
    178  1.49  christos static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    179  1.74  christos 				const int_fast32_t offset, struct tm *tmp);
    180  1.45   mlelstv static int		increment_overflow(int * number, int delta);
    181  1.76   msaitoh static int		increment_overflow32(int_fast32_t * number, int delta);
    182  1.81  christos static int		increment_overflow_time(time_t *t, int_fast32_t delta);
    183  1.74  christos static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
    184  1.45   mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    185  1.45   mlelstv 				int base);
    186  1.76   msaitoh static int		normalize_overflow32(int_fast32_t * tensptr,
    187  1.76   msaitoh 				int * unitsptr, int base);
    188  1.45   mlelstv static void		settzname(void);
    189  1.49  christos static time_t		time1(const timezone_t sp, struct tm * const tmp,
    190  1.74  christos 				subfun_t funcp, const int_fast32_t offset);
    191  1.49  christos static time_t		time2(const timezone_t sp, struct tm * const tmp,
    192  1.49  christos 				subfun_t funcp,
    193  1.74  christos 				const int_fast32_t offset, int *const okayp);
    194  1.69  christos static time_t		time2sub(const timezone_t sp, struct tm * const tmp,
    195  1.74  christos 				subfun_t funcp, const int_fast32_t offset,
    196  1.49  christos 				int *const okayp, const int do_norm_secs);
    197  1.49  christos static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    198  1.74  christos 				const int_fast32_t offset, struct tm * tmp);
    199  1.45   mlelstv static int		tmcomp(const struct tm * atmp,
    200  1.45   mlelstv 				const struct tm * btmp);
    201  1.81  christos static int_fast32_t	transtime(int year, const struct rule * rulep,
    202  1.81  christos 				  int_fast32_t offset)
    203  1.81  christos   ATTRIBUTE_PURE;
    204  1.49  christos static int		typesequiv(const timezone_t sp, int a, int b);
    205  1.49  christos static int		tzload(timezone_t sp, const char * name,
    206  1.45   mlelstv 				int doextend);
    207  1.49  christos static int		tzparse(timezone_t sp, const char * name,
    208  1.45   mlelstv 				int lastditch);
    209  1.45   mlelstv static void		tzset_unlocked(void);
    210  1.45   mlelstv static void		tzsetwall_unlocked(void);
    211  1.74  christos static int_fast64_t	leapcorr(const timezone_t sp, time_t * timep);
    212   1.1       jtc 
    213  1.49  christos static timezone_t lclptr;
    214  1.49  christos static timezone_t gmtptr;
    215   1.1       jtc 
    216   1.1       jtc #ifndef TZ_STRLEN_MAX
    217   1.1       jtc #define TZ_STRLEN_MAX 255
    218   1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    219   1.1       jtc 
    220  1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    221  1.45   mlelstv static int		lcl_is_set;
    222  1.45   mlelstv static int		gmt_is_set;
    223  1.42  christos 
    224  1.42  christos #if !defined(__LIBC12_SOURCE__)
    225   1.1       jtc 
    226  1.16   mycroft __aconst char *		tzname[2] = {
    227  1.37  christos 	(__aconst char *)__UNCONST(wildabbr),
    228  1.37  christos 	(__aconst char *)__UNCONST(wildabbr)
    229   1.1       jtc };
    230   1.1       jtc 
    231  1.42  christos #else
    232  1.42  christos 
    233  1.42  christos extern __aconst char *	tzname[2];
    234  1.42  christos 
    235  1.42  christos #endif
    236  1.42  christos 
    237  1.33  christos #ifdef _REENTRANT
    238  1.45   mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    239  1.19    kleink #endif
    240  1.19    kleink 
    241   1.1       jtc /*
    242   1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    243   1.1       jtc **	Except for the strftime function, these functions [asctime,
    244   1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    245   1.1       jtc **	objects: a broken-down time structure and an array of char.
    246  1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    247   1.1       jtc */
    248   1.1       jtc 
    249   1.1       jtc static struct tm	tm;
    250   1.1       jtc 
    251   1.1       jtc #ifdef USG_COMPAT
    252  1.42  christos #if !defined(__LIBC12_SOURCE__)
    253  1.42  christos long 			timezone = 0;
    254   1.1       jtc int			daylight = 0;
    255  1.42  christos #else
    256  1.42  christos extern int		daylight;
    257  1.42  christos extern long		timezone __RENAME(__timezone13);
    258  1.42  christos #endif
    259   1.1       jtc #endif /* defined USG_COMPAT */
    260   1.1       jtc 
    261   1.1       jtc #ifdef ALTZONE
    262  1.81  christos long			altzone = 0;
    263   1.1       jtc #endif /* defined ALTZONE */
    264   1.1       jtc 
    265  1.74  christos static int_fast32_t
    266  1.49  christos detzcode(const char *const codep)
    267   1.1       jtc {
    268  1.74  christos 	int_fast32_t	result;
    269  1.49  christos 	int	i;
    270  1.45   mlelstv 
    271  1.74  christos 	result = (codep[0] & 0x80) ? -1 : 0;
    272  1.45   mlelstv 	for (i = 0; i < 4; ++i)
    273  1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    274  1.45   mlelstv 	return result;
    275  1.45   mlelstv }
    276  1.45   mlelstv 
    277  1.81  christos static int_fast64_t
    278  1.49  christos detzcode64(const char *const codep)
    279  1.45   mlelstv {
    280  1.81  christos 	int_fast64_t	result;
    281  1.49  christos 	int	i;
    282   1.1       jtc 
    283  1.81  christos 	result = (codep[0] & 0x80) ? -1 : 0;
    284  1.45   mlelstv 	for (i = 0; i < 8; ++i)
    285  1.81  christos 		result = (result << 8) | (codep[i] & 0xff);
    286   1.1       jtc 	return result;
    287   1.1       jtc }
    288   1.1       jtc 
    289  1.49  christos const char *
    290  1.49  christos tzgetname(const timezone_t sp, int isdst)
    291  1.49  christos {
    292  1.49  christos 	int i;
    293  1.49  christos 	for (i = 0; i < sp->timecnt; ++i) {
    294  1.49  christos 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    295  1.49  christos 
    296  1.49  christos 		if (ttisp->tt_isdst == isdst)
    297  1.49  christos 			return &sp->chars[ttisp->tt_abbrind];
    298  1.49  christos 	}
    299  1.49  christos 	return NULL;
    300  1.49  christos }
    301  1.49  christos 
    302  1.49  christos static void
    303  1.49  christos settzname_z(timezone_t sp)
    304  1.49  christos {
    305  1.49  christos 	int			i;
    306  1.49  christos 
    307  1.49  christos 	/*
    308  1.49  christos 	** Scrub the abbreviations.
    309  1.49  christos 	** First, replace bogus characters.
    310  1.49  christos 	*/
    311  1.49  christos 	for (i = 0; i < sp->charcnt; ++i)
    312  1.49  christos 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    313  1.49  christos 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    314  1.49  christos 	/*
    315  1.49  christos 	** Second, truncate long abbreviations.
    316  1.49  christos 	*/
    317  1.49  christos 	for (i = 0; i < sp->typecnt; ++i) {
    318  1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    319  1.49  christos 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    320  1.49  christos 
    321  1.49  christos 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    322  1.49  christos 			strcmp(cp, GRANDPARENTED) != 0)
    323  1.49  christos 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    324  1.49  christos 	}
    325  1.49  christos }
    326  1.49  christos 
    327  1.45   mlelstv static void
    328  1.45   mlelstv settzname(void)
    329   1.1       jtc {
    330  1.49  christos 	timezone_t const	sp = lclptr;
    331  1.49  christos 	int			i;
    332   1.1       jtc 
    333  1.37  christos 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    334  1.37  christos 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    335   1.1       jtc #ifdef USG_COMPAT
    336   1.1       jtc 	daylight = 0;
    337   1.1       jtc 	timezone = 0;
    338   1.1       jtc #endif /* defined USG_COMPAT */
    339   1.1       jtc #ifdef ALTZONE
    340   1.1       jtc 	altzone = 0;
    341   1.1       jtc #endif /* defined ALTZONE */
    342   1.1       jtc 	if (sp == NULL) {
    343  1.37  christos 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    344   1.1       jtc 		return;
    345   1.1       jtc 	}
    346  1.58  christos 	/*
    347  1.58  christos 	** And to get the latest zone names into tzname. . .
    348  1.58  christos 	*/
    349   1.1       jtc 	for (i = 0; i < sp->typecnt; ++i) {
    350  1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    351   1.1       jtc 
    352  1.73  christos 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
    353  1.45   mlelstv #ifdef USG_COMPAT
    354  1.45   mlelstv 		if (ttisp->tt_isdst)
    355  1.45   mlelstv 			daylight = 1;
    356  1.58  christos 		if (!ttisp->tt_isdst)
    357  1.45   mlelstv 			timezone = -(ttisp->tt_gmtoff);
    358  1.45   mlelstv #endif /* defined USG_COMPAT */
    359  1.45   mlelstv #ifdef ALTZONE
    360  1.71  christos 		if (ttisp->tt_isdst)
    361  1.45   mlelstv 			altzone = -(ttisp->tt_gmtoff);
    362  1.45   mlelstv #endif /* defined ALTZONE */
    363   1.1       jtc 	}
    364  1.49  christos 	settzname_z(sp);
    365   1.1       jtc }
    366   1.1       jtc 
    367  1.45   mlelstv static int
    368  1.49  christos differ_by_repeat(const time_t t1, const time_t t0)
    369  1.45   mlelstv {
    370  1.78  christos 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    371  1.78  christos 		return 0;
    372  1.45   mlelstv 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    373  1.45   mlelstv }
    374  1.45   mlelstv 
    375  1.45   mlelstv static int
    376  1.49  christos tzload(timezone_t sp, const char *name, const int doextend)
    377  1.49  christos {
    378  1.49  christos 	const char *		p;
    379  1.49  christos 	int			i;
    380  1.49  christos 	int			fid;
    381  1.49  christos 	int			stored;
    382  1.66  christos 	ssize_t			nread;
    383  1.58  christos 	typedef union {
    384  1.45   mlelstv 		struct tzhead	tzhead;
    385  1.45   mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    386  1.45   mlelstv 					2 * sizeof *sp +
    387  1.45   mlelstv 					4 * TZ_MAX_TIMES];
    388  1.58  christos 	} u_t;
    389  1.58  christos 	u_t *			up;
    390  1.58  christos 
    391  1.58  christos 	up = calloc(1, sizeof *up);
    392  1.58  christos 	if (up == NULL)
    393  1.58  christos 		return -1;
    394   1.1       jtc 
    395  1.47  christos 	sp->goback = sp->goahead = FALSE;
    396   1.1       jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    397  1.58  christos 		goto oops;
    398   1.1       jtc 	{
    399  1.49  christos 		int	doaccess;
    400   1.1       jtc 		/*
    401   1.1       jtc 		** Section 4.9.1 of the C standard says that
    402   1.1       jtc 		** "FILENAME_MAX expands to an integral constant expression
    403  1.10       jtc 		** that is the size needed for an array of char large enough
    404   1.1       jtc 		** to hold the longest file name string that the implementation
    405   1.1       jtc 		** guarantees can be opened."
    406   1.1       jtc 		*/
    407   1.1       jtc 		char		fullname[FILENAME_MAX + 1];
    408   1.1       jtc 
    409   1.1       jtc 		if (name[0] == ':')
    410   1.1       jtc 			++name;
    411   1.1       jtc 		doaccess = name[0] == '/';
    412   1.1       jtc 		if (!doaccess) {
    413   1.1       jtc 			if ((p = TZDIR) == NULL)
    414  1.58  christos 				goto oops;
    415   1.1       jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    416  1.58  christos 				goto oops;
    417   1.8       mrg 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    418   1.8       mrg 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    419   1.8       mrg 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    420   1.1       jtc 			/*
    421   1.1       jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    422   1.1       jtc 			*/
    423   1.1       jtc 			if (strchr(name, '.') != NULL)
    424   1.1       jtc 				doaccess = TRUE;
    425   1.1       jtc 			name = fullname;
    426   1.1       jtc 		}
    427   1.1       jtc 		if (doaccess && access(name, R_OK) != 0)
    428  1.58  christos 			goto oops;
    429   1.9       mrg 		/*
    430   1.9       mrg 		 * XXX potential security problem here if user of a set-id
    431   1.9       mrg 		 * program has set TZ (which is passed in as name) here,
    432   1.9       mrg 		 * and uses a race condition trick to defeat the access(2)
    433   1.9       mrg 		 * above.
    434   1.9       mrg 		 */
    435   1.1       jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    436  1.58  christos 			goto oops;
    437   1.1       jtc 	}
    438  1.58  christos 	nread = read(fid, up->buf, sizeof up->buf);
    439  1.45   mlelstv 	if (close(fid) < 0 || nread <= 0)
    440  1.58  christos 		goto oops;
    441  1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    442   1.1       jtc 		int		ttisstdcnt;
    443   1.1       jtc 		int		ttisgmtcnt;
    444  1.81  christos 		int		timecnt;
    445   1.1       jtc 
    446  1.58  christos 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
    447  1.58  christos 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
    448  1.58  christos 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
    449  1.58  christos 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
    450  1.58  christos 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
    451  1.58  christos 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
    452  1.58  christos 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
    453   1.1       jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    454   1.1       jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    455   1.1       jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    456   1.1       jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    457   1.1       jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    458   1.1       jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    459  1.58  christos 				goto oops;
    460  1.58  christos 		if (nread - (p - up->buf) <
    461  1.45   mlelstv 			sp->timecnt * stored +		/* ats */
    462   1.1       jtc 			sp->timecnt +			/* types */
    463  1.45   mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    464   1.1       jtc 			sp->charcnt +			/* chars */
    465  1.45   mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    466   1.1       jtc 			ttisstdcnt +			/* ttisstds */
    467   1.1       jtc 			ttisgmtcnt)			/* ttisgmts */
    468  1.58  christos 				goto oops;
    469  1.81  christos 		timecnt = 0;
    470   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    471  1.81  christos 			int_fast64_t at
    472  1.81  christos 			  = stored == 4 ? detzcode(p) : detzcode64(p);
    473  1.81  christos 			sp->types[i] = ((TYPE_SIGNED(time_t)
    474  1.81  christos 					 ? time_t_min <= at
    475  1.81  christos 					 : 0 <= at)
    476  1.81  christos 					&& at <= time_t_max);
    477  1.81  christos 			if (sp->types[i]) {
    478  1.81  christos 				if (i && !timecnt && at != time_t_min) {
    479  1.81  christos 					/*
    480  1.81  christos 					** Keep the earlier record, but tweak
    481  1.81  christos 					** it so that it starts with the
    482  1.81  christos 					** minimum time_t value.
    483  1.81  christos 					*/
    484  1.81  christos 					sp->types[i - 1] = 1;
    485  1.81  christos 					sp->ats[timecnt++] = time_t_min;
    486  1.81  christos 				}
    487  1.81  christos 				_DIAGASSERT(__type_fit(time_t, at));
    488  1.81  christos 				sp->ats[timecnt++] = (time_t)at;
    489  1.81  christos 			}
    490  1.45   mlelstv 			p += stored;
    491   1.1       jtc 		}
    492  1.81  christos 		timecnt = 0;
    493   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    494  1.81  christos 			unsigned char typ = *p++;
    495  1.81  christos 			if (sp->typecnt <= typ)
    496  1.58  christos 				goto oops;
    497  1.81  christos 			if (sp->types[i])
    498  1.81  christos 				sp->types[timecnt++] = typ;
    499   1.1       jtc 		}
    500   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    501  1.49  christos 			struct ttinfo *	ttisp;
    502   1.1       jtc 
    503   1.1       jtc 			ttisp = &sp->ttis[i];
    504   1.1       jtc 			ttisp->tt_gmtoff = detzcode(p);
    505   1.1       jtc 			p += 4;
    506   1.1       jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    507   1.1       jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    508  1.58  christos 				goto oops;
    509   1.1       jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    510   1.1       jtc 			if (ttisp->tt_abbrind < 0 ||
    511   1.1       jtc 				ttisp->tt_abbrind > sp->charcnt)
    512  1.58  christos 					goto oops;
    513   1.1       jtc 		}
    514   1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    515   1.1       jtc 			sp->chars[i] = *p++;
    516   1.1       jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    517   1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    518  1.49  christos 			struct lsinfo *	lsisp;
    519   1.1       jtc 
    520   1.1       jtc 			lsisp = &sp->lsis[i];
    521  1.66  christos 			lsisp->ls_trans = (time_t)((stored == 4) ?
    522  1.66  christos 			    detzcode(p) : detzcode64(p));
    523  1.45   mlelstv 			p += stored;
    524   1.1       jtc 			lsisp->ls_corr = detzcode(p);
    525   1.1       jtc 			p += 4;
    526   1.1       jtc 		}
    527   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    528  1.49  christos 			struct ttinfo *	ttisp;
    529   1.1       jtc 
    530   1.1       jtc 			ttisp = &sp->ttis[i];
    531   1.1       jtc 			if (ttisstdcnt == 0)
    532   1.1       jtc 				ttisp->tt_ttisstd = FALSE;
    533   1.1       jtc 			else {
    534   1.1       jtc 				ttisp->tt_ttisstd = *p++;
    535   1.1       jtc 				if (ttisp->tt_ttisstd != TRUE &&
    536   1.1       jtc 					ttisp->tt_ttisstd != FALSE)
    537  1.58  christos 						goto oops;
    538   1.1       jtc 			}
    539   1.1       jtc 		}
    540   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    541  1.49  christos 			struct ttinfo *	ttisp;
    542   1.1       jtc 
    543   1.1       jtc 			ttisp = &sp->ttis[i];
    544   1.1       jtc 			if (ttisgmtcnt == 0)
    545   1.1       jtc 				ttisp->tt_ttisgmt = FALSE;
    546   1.1       jtc 			else {
    547   1.1       jtc 				ttisp->tt_ttisgmt = *p++;
    548   1.1       jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    549   1.1       jtc 					ttisp->tt_ttisgmt != FALSE)
    550  1.58  christos 						goto oops;
    551   1.1       jtc 			}
    552   1.1       jtc 		}
    553  1.45   mlelstv 		/*
    554  1.45   mlelstv 		** If this is an old file, we're done.
    555  1.45   mlelstv 		*/
    556  1.58  christos 		if (up->tzhead.tzh_version[0] == '\0')
    557  1.45   mlelstv 			break;
    558  1.58  christos 		nread -= p - up->buf;
    559  1.45   mlelstv 		for (i = 0; i < nread; ++i)
    560  1.58  christos 			up->buf[i] = p[i];
    561  1.45   mlelstv 		/*
    562  1.81  christos 		** If this is a signed narrow time_t system, we're done.
    563  1.45   mlelstv 		*/
    564  1.81  christos 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
    565  1.45   mlelstv 			break;
    566  1.45   mlelstv 	}
    567  1.45   mlelstv 	if (doextend && nread > 2 &&
    568  1.58  christos 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    569  1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    570  1.49  christos 			struct __state ts;
    571  1.49  christos 			int	result;
    572  1.45   mlelstv 
    573  1.58  christos 			up->buf[nread - 1] = '\0';
    574  1.58  christos 			result = tzparse(&ts, &up->buf[1], FALSE);
    575  1.45   mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    576  1.45   mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    577  1.45   mlelstv 					for (i = 0; i < 2; ++i)
    578  1.45   mlelstv 						ts.ttis[i].tt_abbrind +=
    579  1.45   mlelstv 							sp->charcnt;
    580  1.45   mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    581  1.45   mlelstv 						sp->chars[sp->charcnt++] =
    582  1.45   mlelstv 							ts.chars[i];
    583  1.45   mlelstv 					i = 0;
    584  1.45   mlelstv 					while (i < ts.timecnt &&
    585  1.45   mlelstv 						ts.ats[i] <=
    586  1.45   mlelstv 						sp->ats[sp->timecnt - 1])
    587  1.45   mlelstv 							++i;
    588  1.45   mlelstv 					while (i < ts.timecnt &&
    589  1.45   mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    590  1.45   mlelstv 						sp->ats[sp->timecnt] =
    591  1.45   mlelstv 							ts.ats[i];
    592  1.45   mlelstv 						sp->types[sp->timecnt] =
    593  1.45   mlelstv 							sp->typecnt +
    594  1.45   mlelstv 							ts.types[i];
    595  1.45   mlelstv 						++sp->timecnt;
    596  1.45   mlelstv 						++i;
    597  1.45   mlelstv 					}
    598  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    599  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    600  1.45   mlelstv 			}
    601  1.45   mlelstv 	}
    602  1.45   mlelstv 	if (sp->timecnt > 1) {
    603  1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    604  1.45   mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    605  1.45   mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    606  1.45   mlelstv 					sp->goback = TRUE;
    607  1.45   mlelstv 					break;
    608  1.45   mlelstv 				}
    609  1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    610  1.45   mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    611  1.45   mlelstv 				sp->types[i]) &&
    612  1.45   mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    613  1.45   mlelstv 				sp->ats[i])) {
    614  1.45   mlelstv 					sp->goahead = TRUE;
    615  1.45   mlelstv 					break;
    616  1.45   mlelstv 		}
    617   1.1       jtc 	}
    618  1.74  christos 	/*
    619  1.74  christos 	** If type 0 is is unused in transitions,
    620  1.74  christos 	** it's the type to use for early times.
    621  1.74  christos 	*/
    622  1.74  christos 	for (i = 0; i < sp->typecnt; ++i)
    623  1.74  christos 		if (sp->types[i] == 0)
    624  1.74  christos 			break;
    625  1.74  christos 	i = (i >= sp->typecnt) ? 0 : -1;
    626  1.74  christos 	/*
    627  1.74  christos 	** Absent the above,
    628  1.74  christos 	** if there are transition times
    629  1.74  christos 	** and the first transition is to a daylight time
    630  1.74  christos 	** find the standard type less than and closest to
    631  1.74  christos 	** the type of the first transition.
    632  1.74  christos 	*/
    633  1.74  christos 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    634  1.74  christos 		i = sp->types[0];
    635  1.74  christos 		while (--i >= 0)
    636  1.74  christos 			if (!sp->ttis[i].tt_isdst)
    637  1.74  christos 				break;
    638  1.74  christos 	}
    639  1.74  christos 	/*
    640  1.74  christos 	** If no result yet, find the first standard type.
    641  1.74  christos 	** If there is none, punt to type zero.
    642  1.74  christos 	*/
    643  1.74  christos 	if (i < 0) {
    644  1.74  christos 		i = 0;
    645  1.74  christos 		while (sp->ttis[i].tt_isdst)
    646  1.74  christos 			if (++i >= sp->typecnt) {
    647  1.74  christos 				i = 0;
    648  1.74  christos 				break;
    649  1.74  christos 			}
    650  1.74  christos 	}
    651  1.74  christos 	sp->defaulttype = i;
    652  1.58  christos 	free(up);
    653   1.1       jtc 	return 0;
    654  1.58  christos oops:
    655  1.58  christos 	free(up);
    656  1.58  christos 	return -1;
    657   1.1       jtc }
    658   1.1       jtc 
    659  1.45   mlelstv static int
    660  1.49  christos typesequiv(const timezone_t sp, const int a, const int b)
    661  1.45   mlelstv {
    662  1.49  christos 	int	result;
    663  1.45   mlelstv 
    664  1.45   mlelstv 	if (sp == NULL ||
    665  1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    666  1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    667  1.45   mlelstv 			result = FALSE;
    668  1.45   mlelstv 	else {
    669  1.49  christos 		const struct ttinfo *	ap = &sp->ttis[a];
    670  1.49  christos 		const struct ttinfo *	bp = &sp->ttis[b];
    671  1.45   mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    672  1.45   mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    673  1.45   mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    674  1.45   mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    675  1.45   mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    676  1.45   mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    677  1.45   mlelstv 	}
    678  1.45   mlelstv 	return result;
    679  1.45   mlelstv }
    680  1.45   mlelstv 
    681   1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    682   1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    683   1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    684   1.1       jtc };
    685   1.1       jtc 
    686   1.1       jtc static const int	year_lengths[2] = {
    687   1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    688   1.1       jtc };
    689   1.1       jtc 
    690   1.1       jtc /*
    691   1.1       jtc ** Given a pointer into a time zone string, scan until a character that is not
    692  1.45   mlelstv ** a valid character in a zone name is found. Return a pointer to that
    693   1.1       jtc ** character.
    694   1.1       jtc */
    695   1.1       jtc 
    696   1.1       jtc static const char *
    697  1.67      matt getzname(const char *strp)
    698   1.1       jtc {
    699  1.49  christos 	char	c;
    700   1.1       jtc 
    701   1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    702   1.1       jtc 		c != '+')
    703   1.1       jtc 			++strp;
    704   1.1       jtc 	return strp;
    705   1.1       jtc }
    706   1.1       jtc 
    707   1.1       jtc /*
    708  1.45   mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    709  1.45   mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    710  1.45   mlelstv **
    711  1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    712  1.45   mlelstv ** restricted, with other characters producing undefined results.
    713  1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    714  1.45   mlelstv */
    715  1.45   mlelstv 
    716  1.45   mlelstv static const char *
    717  1.49  christos getqzname(const char *strp, const int delim)
    718  1.45   mlelstv {
    719  1.49  christos 	int	c;
    720  1.45   mlelstv 
    721  1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    722  1.45   mlelstv 		++strp;
    723  1.45   mlelstv 	return strp;
    724  1.45   mlelstv }
    725  1.45   mlelstv 
    726  1.45   mlelstv /*
    727   1.1       jtc ** Given a pointer into a time zone string, extract a number from that string.
    728   1.1       jtc ** Check that the number is within a specified range; if it is not, return
    729   1.1       jtc ** NULL.
    730   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    731   1.1       jtc */
    732   1.1       jtc 
    733   1.1       jtc static const char *
    734  1.68  christos getnum(const char *strp, int *const nump, const int min, const int max)
    735   1.1       jtc {
    736  1.49  christos 	char	c;
    737  1.49  christos 	int	num;
    738   1.1       jtc 
    739  1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    740  1.46  christos 		errno = EINVAL;
    741   1.1       jtc 		return NULL;
    742  1.46  christos 	}
    743   1.1       jtc 	num = 0;
    744   1.5       jtc 	do {
    745   1.1       jtc 		num = num * 10 + (c - '0');
    746  1.46  christos 		if (num > max) {
    747  1.46  christos 			errno = EOVERFLOW;
    748   1.1       jtc 			return NULL;	/* illegal value */
    749  1.46  christos 		}
    750   1.5       jtc 		c = *++strp;
    751   1.5       jtc 	} while (is_digit(c));
    752  1.46  christos 	if (num < min) {
    753  1.46  christos 		errno = EINVAL;
    754   1.1       jtc 		return NULL;		/* illegal value */
    755  1.46  christos 	}
    756   1.1       jtc 	*nump = num;
    757   1.1       jtc 	return strp;
    758   1.1       jtc }
    759   1.1       jtc 
    760   1.1       jtc /*
    761   1.1       jtc ** Given a pointer into a time zone string, extract a number of seconds,
    762   1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    763   1.1       jtc ** If any error occurs, return NULL.
    764   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    765   1.1       jtc ** of seconds.
    766   1.1       jtc */
    767   1.1       jtc 
    768   1.1       jtc static const char *
    769  1.74  christos getsecs(const char *strp, int_fast32_t *const secsp)
    770   1.1       jtc {
    771   1.1       jtc 	int	num;
    772   1.1       jtc 
    773   1.1       jtc 	/*
    774   1.1       jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    775   1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    776   1.1       jtc 	** but which specifies the equivalent of
    777   1.1       jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    778   1.1       jtc 	*/
    779   1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    780   1.1       jtc 	if (strp == NULL)
    781   1.1       jtc 		return NULL;
    782  1.74  christos 	*secsp = num * (int_fast32_t) SECSPERHOUR;
    783   1.1       jtc 	if (*strp == ':') {
    784   1.1       jtc 		++strp;
    785   1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    786   1.1       jtc 		if (strp == NULL)
    787   1.1       jtc 			return NULL;
    788   1.1       jtc 		*secsp += num * SECSPERMIN;
    789   1.1       jtc 		if (*strp == ':') {
    790   1.1       jtc 			++strp;
    791  1.45   mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    792   1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    793   1.1       jtc 			if (strp == NULL)
    794   1.1       jtc 				return NULL;
    795   1.1       jtc 			*secsp += num;
    796   1.1       jtc 		}
    797   1.1       jtc 	}
    798   1.1       jtc 	return strp;
    799   1.1       jtc }
    800   1.1       jtc 
    801   1.1       jtc /*
    802   1.1       jtc ** Given a pointer into a time zone string, extract an offset, in
    803   1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
    804   1.1       jtc ** If any error occurs, return NULL.
    805   1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
    806   1.1       jtc */
    807   1.1       jtc 
    808   1.1       jtc static const char *
    809  1.74  christos getoffset(const char *strp, int_fast32_t *const offsetp)
    810   1.1       jtc {
    811  1.49  christos 	int	neg = 0;
    812   1.1       jtc 
    813   1.1       jtc 	if (*strp == '-') {
    814   1.1       jtc 		neg = 1;
    815   1.1       jtc 		++strp;
    816   1.5       jtc 	} else if (*strp == '+')
    817   1.5       jtc 		++strp;
    818   1.1       jtc 	strp = getsecs(strp, offsetp);
    819   1.1       jtc 	if (strp == NULL)
    820   1.1       jtc 		return NULL;		/* illegal time */
    821   1.1       jtc 	if (neg)
    822   1.1       jtc 		*offsetp = -*offsetp;
    823   1.1       jtc 	return strp;
    824   1.1       jtc }
    825   1.1       jtc 
    826   1.1       jtc /*
    827   1.1       jtc ** Given a pointer into a time zone string, extract a rule in the form
    828  1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    829   1.1       jtc ** If a valid rule is not found, return NULL.
    830   1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
    831   1.1       jtc */
    832   1.1       jtc 
    833   1.1       jtc static const char *
    834  1.49  christos getrule(const char *strp, struct rule *const rulep)
    835   1.1       jtc {
    836   1.1       jtc 	if (*strp == 'J') {
    837   1.1       jtc 		/*
    838   1.1       jtc 		** Julian day.
    839   1.1       jtc 		*/
    840   1.1       jtc 		rulep->r_type = JULIAN_DAY;
    841   1.1       jtc 		++strp;
    842   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    843   1.1       jtc 	} else if (*strp == 'M') {
    844   1.1       jtc 		/*
    845   1.1       jtc 		** Month, week, day.
    846   1.1       jtc 		*/
    847   1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    848   1.1       jtc 		++strp;
    849   1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    850   1.1       jtc 		if (strp == NULL)
    851   1.1       jtc 			return NULL;
    852   1.1       jtc 		if (*strp++ != '.')
    853   1.1       jtc 			return NULL;
    854   1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    855   1.1       jtc 		if (strp == NULL)
    856   1.1       jtc 			return NULL;
    857   1.1       jtc 		if (*strp++ != '.')
    858   1.1       jtc 			return NULL;
    859   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    860   1.5       jtc 	} else if (is_digit(*strp)) {
    861   1.1       jtc 		/*
    862   1.1       jtc 		** Day of year.
    863   1.1       jtc 		*/
    864   1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
    865   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    866   1.1       jtc 	} else	return NULL;		/* invalid format */
    867   1.1       jtc 	if (strp == NULL)
    868   1.1       jtc 		return NULL;
    869   1.1       jtc 	if (*strp == '/') {
    870   1.1       jtc 		/*
    871   1.1       jtc 		** Time specified.
    872   1.1       jtc 		*/
    873   1.1       jtc 		++strp;
    874  1.78  christos 		strp = getoffset(strp, &rulep->r_time);
    875   1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    876   1.1       jtc 	return strp;
    877   1.1       jtc }
    878   1.1       jtc 
    879   1.1       jtc /*
    880  1.81  christos ** Given a year, a rule, and the offset from UT at the time that rule takes
    881  1.81  christos ** effect, calculate the year-relative time that rule takes effect.
    882   1.1       jtc */
    883   1.1       jtc 
    884  1.81  christos static int_fast32_t
    885  1.81  christos transtime(const int year, const struct rule *const rulep,
    886  1.81  christos 	  const int_fast32_t offset)
    887  1.49  christos {
    888  1.49  christos 	int	leapyear;
    889  1.81  christos 	int_fast32_t	value;
    890  1.49  christos 	int	i;
    891   1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
    892   1.1       jtc 
    893   1.1       jtc 	INITIALIZE(value);
    894   1.1       jtc 	leapyear = isleap(year);
    895   1.1       jtc 	switch (rulep->r_type) {
    896   1.1       jtc 
    897   1.1       jtc 	case JULIAN_DAY:
    898   1.1       jtc 		/*
    899   1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    900   1.1       jtc 		** years.
    901   1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
    902   1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
    903   1.1       jtc 		** January 1, midnight, to get the day.
    904   1.1       jtc 		*/
    905  1.81  christos 		value = (rulep->r_day - 1) * SECSPERDAY;
    906   1.1       jtc 		if (leapyear && rulep->r_day >= 60)
    907   1.1       jtc 			value += SECSPERDAY;
    908   1.1       jtc 		break;
    909   1.1       jtc 
    910   1.1       jtc 	case DAY_OF_YEAR:
    911   1.1       jtc 		/*
    912   1.1       jtc 		** n - day of year.
    913   1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
    914   1.1       jtc 		** January 1, midnight, to get the day.
    915   1.1       jtc 		*/
    916  1.81  christos 		value = rulep->r_day * SECSPERDAY;
    917   1.1       jtc 		break;
    918   1.1       jtc 
    919   1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
    920   1.1       jtc 		/*
    921   1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
    922   1.1       jtc 		*/
    923   1.1       jtc 
    924   1.1       jtc 		/*
    925   1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    926   1.1       jtc 		** month.
    927   1.1       jtc 		*/
    928   1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    929   1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    930   1.1       jtc 		yy1 = yy0 / 100;
    931   1.1       jtc 		yy2 = yy0 % 100;
    932   1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
    933   1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    934   1.1       jtc 		if (dow < 0)
    935   1.1       jtc 			dow += DAYSPERWEEK;
    936   1.1       jtc 
    937   1.1       jtc 		/*
    938  1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    939   1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    940   1.1       jtc 		** month.
    941   1.1       jtc 		*/
    942   1.1       jtc 		d = rulep->r_day - dow;
    943   1.1       jtc 		if (d < 0)
    944   1.1       jtc 			d += DAYSPERWEEK;
    945   1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
    946   1.1       jtc 			if (d + DAYSPERWEEK >=
    947   1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    948   1.1       jtc 					break;
    949   1.1       jtc 			d += DAYSPERWEEK;
    950   1.1       jtc 		}
    951   1.1       jtc 
    952   1.1       jtc 		/*
    953   1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    954   1.1       jtc 		*/
    955  1.81  christos 		value = d * SECSPERDAY;
    956  1.81  christos 		for (i = 0; i < rulep->r_mon - 1; ++i)
    957  1.81  christos 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    958   1.1       jtc 		break;
    959   1.1       jtc 	}
    960   1.1       jtc 
    961   1.1       jtc 	/*
    962  1.81  christos 	** "value" is the year-relative time of 00:00:00 UT on the day in
    963  1.81  christos 	** question. To get the year-relative time of the specified local
    964   1.1       jtc 	** time on that day, add the transition time and the current offset
    965  1.78  christos 	** from UT.
    966   1.1       jtc 	*/
    967  1.81  christos 	return value + rulep->r_time + offset;
    968   1.1       jtc }
    969   1.1       jtc 
    970   1.1       jtc /*
    971   1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    972   1.1       jtc ** appropriate.
    973   1.1       jtc */
    974   1.1       jtc 
    975   1.1       jtc static int
    976  1.49  christos tzparse(timezone_t sp, const char *name, const int lastditch)
    977   1.1       jtc {
    978  1.74  christos 	const char *		stdname;
    979  1.74  christos 	const char *		dstname;
    980  1.74  christos 	size_t			stdlen;
    981  1.74  christos 	size_t			dstlen;
    982  1.74  christos 	int_fast32_t		stdoffset;
    983  1.74  christos 	int_fast32_t		dstoffset;
    984  1.49  christos 	char *			cp;
    985  1.49  christos 	int			load_result;
    986   1.1       jtc 
    987   1.1       jtc 	INITIALIZE(dstname);
    988   1.1       jtc 	stdname = name;
    989   1.1       jtc 	if (lastditch) {
    990   1.1       jtc 		stdlen = strlen(name);	/* length of standard zone name */
    991   1.1       jtc 		name += stdlen;
    992   1.1       jtc 		if (stdlen >= sizeof sp->chars)
    993   1.1       jtc 			stdlen = (sizeof sp->chars) - 1;
    994  1.10       jtc 		stdoffset = 0;
    995   1.1       jtc 	} else {
    996  1.45   mlelstv 		if (*name == '<') {
    997  1.45   mlelstv 			name++;
    998  1.45   mlelstv 			stdname = name;
    999  1.45   mlelstv 			name = getqzname(name, '>');
   1000  1.45   mlelstv 			if (*name != '>')
   1001  1.45   mlelstv 				return (-1);
   1002  1.45   mlelstv 			stdlen = name - stdname;
   1003  1.45   mlelstv 			name++;
   1004  1.45   mlelstv 		} else {
   1005  1.45   mlelstv 			name = getzname(name);
   1006  1.45   mlelstv 			stdlen = name - stdname;
   1007  1.45   mlelstv 		}
   1008  1.10       jtc 		if (*name == '\0')
   1009  1.10       jtc 			return -1;
   1010  1.45   mlelstv 		name = getoffset(name, &stdoffset);
   1011   1.1       jtc 		if (name == NULL)
   1012   1.1       jtc 			return -1;
   1013   1.1       jtc 	}
   1014  1.49  christos 	load_result = tzload(sp, TZDEFRULES, FALSE);
   1015   1.1       jtc 	if (load_result != 0)
   1016   1.1       jtc 		sp->leapcnt = 0;		/* so, we're off a little */
   1017   1.1       jtc 	if (*name != '\0') {
   1018  1.45   mlelstv 		if (*name == '<') {
   1019  1.45   mlelstv 			dstname = ++name;
   1020  1.45   mlelstv 			name = getqzname(name, '>');
   1021  1.45   mlelstv 			if (*name != '>')
   1022  1.45   mlelstv 				return -1;
   1023  1.45   mlelstv 			dstlen = name - dstname;
   1024  1.45   mlelstv 			name++;
   1025  1.45   mlelstv 		} else {
   1026  1.45   mlelstv 			dstname = name;
   1027  1.45   mlelstv 			name = getzname(name);
   1028  1.45   mlelstv 			dstlen = name - dstname; /* length of DST zone name */
   1029  1.45   mlelstv 		}
   1030   1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1031  1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1032   1.1       jtc 			if (name == NULL)
   1033   1.1       jtc 				return -1;
   1034   1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1035  1.22    kleink 		if (*name == '\0' && load_result != 0)
   1036  1.22    kleink 			name = TZDEFRULESTRING;
   1037   1.1       jtc 		if (*name == ',' || *name == ';') {
   1038   1.1       jtc 			struct rule	start;
   1039   1.1       jtc 			struct rule	end;
   1040  1.78  christos 			int		year;
   1041  1.78  christos 			int		yearlim;
   1042  1.81  christos 			int		timecnt;
   1043  1.78  christos 			time_t		janfirst;
   1044   1.1       jtc 
   1045   1.1       jtc 			++name;
   1046  1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1047   1.1       jtc 				return -1;
   1048   1.1       jtc 			if (*name++ != ',')
   1049   1.1       jtc 				return -1;
   1050  1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1051   1.1       jtc 				return -1;
   1052   1.1       jtc 			if (*name != '\0')
   1053   1.1       jtc 				return -1;
   1054   1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1055   1.1       jtc 			/*
   1056  1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1057   1.1       jtc 			*/
   1058  1.58  christos 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1059   1.1       jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1060   1.1       jtc 			sp->ttis[0].tt_isdst = 1;
   1061  1.66  christos 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
   1062   1.1       jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1063   1.1       jtc 			sp->ttis[1].tt_isdst = 0;
   1064   1.1       jtc 			sp->ttis[1].tt_abbrind = 0;
   1065  1.81  christos 			timecnt = 0;
   1066   1.1       jtc 			janfirst = 0;
   1067  1.45   mlelstv 			sp->timecnt = 0;
   1068  1.78  christos 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
   1069  1.78  christos 			for (year = EPOCH_YEAR; year < yearlim; year++) {
   1070  1.81  christos 				int_fast32_t
   1071  1.81  christos 				  starttime = transtime(year, &start, stdoffset),
   1072  1.81  christos 				  endtime = transtime(year, &end, dstoffset);
   1073  1.81  christos 				int_fast32_t
   1074  1.81  christos 				  yearsecs = (year_lengths[isleap(year)]
   1075  1.81  christos 					      * SECSPERDAY);
   1076  1.81  christos 				int reversed = endtime < starttime;
   1077  1.81  christos 				if (reversed) {
   1078  1.81  christos 					int_fast32_t swap = starttime;
   1079  1.81  christos 					starttime = endtime;
   1080  1.81  christos 					endtime = swap;
   1081  1.81  christos 				}
   1082  1.81  christos 				if (reversed
   1083  1.78  christos 				    || (starttime < endtime
   1084  1.78  christos 					&& (endtime - starttime
   1085  1.78  christos 					    < (yearsecs
   1086  1.78  christos 					       + (stdoffset - dstoffset))))) {
   1087  1.81  christos 					if (TZ_MAX_TIMES - 2 < timecnt)
   1088  1.78  christos 						break;
   1089  1.78  christos 					yearlim = year + YEARSPERREPEAT + 1;
   1090  1.81  christos 					sp->ats[timecnt] = janfirst;
   1091  1.81  christos 					if (increment_overflow_time
   1092  1.81  christos 					    (&sp->ats[timecnt], starttime))
   1093  1.81  christos 						break;
   1094  1.81  christos 					sp->types[timecnt++] = reversed;
   1095  1.81  christos 					sp->ats[timecnt] = janfirst;
   1096  1.81  christos 					if (increment_overflow_time
   1097  1.81  christos 					    (&sp->ats[timecnt], endtime))
   1098  1.81  christos 						break;
   1099  1.81  christos 					sp->types[timecnt++] = !reversed;
   1100   1.1       jtc 				}
   1101  1.81  christos 				if (increment_overflow_time(&janfirst, yearsecs))
   1102  1.45   mlelstv 					break;
   1103   1.1       jtc 			}
   1104  1.81  christos 			sp->timecnt = timecnt;
   1105  1.81  christos 			if (!timecnt)
   1106  1.78  christos 				sp->typecnt = 1;	/* Perpetual DST.  */
   1107   1.1       jtc 		} else {
   1108  1.74  christos 			int_fast32_t	theirstdoffset;
   1109  1.74  christos 			int_fast32_t	theirdstoffset;
   1110  1.74  christos 			int_fast32_t	theiroffset;
   1111  1.74  christos 			int		isdst;
   1112  1.74  christos 			int		i;
   1113  1.74  christos 			int		j;
   1114   1.1       jtc 
   1115   1.1       jtc 			if (*name != '\0')
   1116   1.1       jtc 				return -1;
   1117   1.1       jtc 			/*
   1118  1.69  christos 			** Initial values of theirstdoffset and theirdstoffset.
   1119   1.1       jtc 			*/
   1120   1.1       jtc 			theirstdoffset = 0;
   1121   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1122   1.1       jtc 				j = sp->types[i];
   1123   1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1124   1.5       jtc 					theirstdoffset =
   1125   1.5       jtc 						-sp->ttis[j].tt_gmtoff;
   1126   1.1       jtc 					break;
   1127   1.1       jtc 				}
   1128   1.1       jtc 			}
   1129  1.45   mlelstv 			theirdstoffset = 0;
   1130  1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1131  1.45   mlelstv 				j = sp->types[i];
   1132  1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1133  1.45   mlelstv 					theirdstoffset =
   1134  1.45   mlelstv 						-sp->ttis[j].tt_gmtoff;
   1135  1.45   mlelstv 					break;
   1136  1.45   mlelstv 				}
   1137  1.45   mlelstv 			}
   1138   1.1       jtc 			/*
   1139   1.1       jtc 			** Initially we're assumed to be in standard time.
   1140   1.1       jtc 			*/
   1141  1.45   mlelstv 			isdst = FALSE;
   1142   1.1       jtc 			theiroffset = theirstdoffset;
   1143   1.1       jtc 			/*
   1144   1.1       jtc 			** Now juggle transition times and types
   1145   1.1       jtc 			** tracking offsets as you do.
   1146   1.1       jtc 			*/
   1147   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1148   1.1       jtc 				j = sp->types[i];
   1149   1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1150   1.1       jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1151   1.1       jtc 					/* No adjustment to transition time */
   1152   1.1       jtc 				} else {
   1153   1.1       jtc 					/*
   1154   1.1       jtc 					** If summer time is in effect, and the
   1155   1.1       jtc 					** transition time was not specified as
   1156   1.1       jtc 					** standard time, add the summer time
   1157   1.1       jtc 					** offset to the transition time;
   1158   1.1       jtc 					** otherwise, add the standard time
   1159   1.1       jtc 					** offset to the transition time.
   1160   1.1       jtc 					*/
   1161   1.1       jtc 					/*
   1162   1.1       jtc 					** Transitions from DST to DDST
   1163   1.1       jtc 					** will effectively disappear since
   1164   1.1       jtc 					** POSIX provides for only one DST
   1165   1.1       jtc 					** offset.
   1166   1.1       jtc 					*/
   1167  1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1168  1.66  christos 						sp->ats[i] += (time_t)
   1169  1.66  christos 						    (dstoffset - theirdstoffset);
   1170  1.45   mlelstv 					} else {
   1171  1.66  christos 						sp->ats[i] += (time_t)
   1172  1.66  christos 						    (stdoffset - theirstdoffset);
   1173  1.45   mlelstv 					}
   1174   1.1       jtc 				}
   1175   1.1       jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1176  1.39  christos 				if (!sp->ttis[j].tt_isdst)
   1177  1.39  christos 					theirstdoffset = theiroffset;
   1178  1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1179   1.1       jtc 			}
   1180   1.1       jtc 			/*
   1181   1.1       jtc 			** Finally, fill in ttis.
   1182  1.69  christos 			** ttisstd and ttisgmt need not be handled
   1183   1.1       jtc 			*/
   1184  1.58  christos 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1185   1.1       jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1186   1.1       jtc 			sp->ttis[0].tt_isdst = FALSE;
   1187   1.1       jtc 			sp->ttis[0].tt_abbrind = 0;
   1188   1.1       jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1189   1.1       jtc 			sp->ttis[1].tt_isdst = TRUE;
   1190  1.66  christos 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
   1191   1.7       jtc 			sp->typecnt = 2;
   1192   1.1       jtc 		}
   1193   1.1       jtc 	} else {
   1194   1.1       jtc 		dstlen = 0;
   1195   1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1196   1.1       jtc 		sp->timecnt = 0;
   1197  1.58  christos 		memset(sp->ttis, 0, sizeof(sp->ttis));
   1198   1.1       jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1199   1.1       jtc 		sp->ttis[0].tt_isdst = 0;
   1200   1.1       jtc 		sp->ttis[0].tt_abbrind = 0;
   1201   1.1       jtc 	}
   1202  1.66  christos 	sp->charcnt = (int)(stdlen + 1);
   1203   1.1       jtc 	if (dstlen != 0)
   1204  1.66  christos 		sp->charcnt += (int)(dstlen + 1);
   1205  1.10       jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1206   1.1       jtc 		return -1;
   1207   1.1       jtc 	cp = sp->chars;
   1208   1.1       jtc 	(void) strncpy(cp, stdname, stdlen);
   1209   1.1       jtc 	cp += stdlen;
   1210   1.1       jtc 	*cp++ = '\0';
   1211   1.1       jtc 	if (dstlen != 0) {
   1212   1.1       jtc 		(void) strncpy(cp, dstname, dstlen);
   1213   1.1       jtc 		*(cp + dstlen) = '\0';
   1214   1.1       jtc 	}
   1215   1.1       jtc 	return 0;
   1216   1.1       jtc }
   1217   1.1       jtc 
   1218   1.1       jtc static void
   1219  1.49  christos gmtload(timezone_t sp)
   1220  1.49  christos {
   1221  1.49  christos 	if (tzload(sp, gmt, TRUE) != 0)
   1222  1.49  christos 		(void) tzparse(sp, gmt, TRUE);
   1223  1.49  christos }
   1224  1.49  christos 
   1225  1.49  christos timezone_t
   1226  1.49  christos tzalloc(const char *name)
   1227  1.49  christos {
   1228  1.49  christos 	timezone_t sp = calloc(1, sizeof *sp);
   1229  1.49  christos 	if (sp == NULL)
   1230  1.49  christos 		return NULL;
   1231  1.49  christos 	if (tzload(sp, name, TRUE) != 0) {
   1232  1.49  christos 		free(sp);
   1233  1.49  christos 		return NULL;
   1234  1.49  christos 	}
   1235  1.49  christos 	settzname_z(sp);
   1236  1.49  christos 	return sp;
   1237  1.49  christos }
   1238  1.49  christos 
   1239  1.49  christos void
   1240  1.49  christos tzfree(const timezone_t sp)
   1241   1.1       jtc {
   1242  1.49  christos 	free(sp);
   1243   1.1       jtc }
   1244   1.1       jtc 
   1245  1.19    kleink static void
   1246  1.45   mlelstv tzsetwall_unlocked(void)
   1247   1.1       jtc {
   1248  1.45   mlelstv 	if (lcl_is_set < 0)
   1249   1.1       jtc 		return;
   1250  1.45   mlelstv 	lcl_is_set = -1;
   1251   1.1       jtc 
   1252   1.1       jtc 	if (lclptr == NULL) {
   1253  1.41  christos 		int saveerrno = errno;
   1254  1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1255  1.41  christos 		errno = saveerrno;
   1256   1.1       jtc 		if (lclptr == NULL) {
   1257  1.45   mlelstv 			settzname();	/* all we can do */
   1258   1.1       jtc 			return;
   1259   1.1       jtc 		}
   1260   1.1       jtc 	}
   1261  1.49  christos 	if (tzload(lclptr, NULL, TRUE) != 0)
   1262  1.45   mlelstv 		gmtload(lclptr);
   1263  1.45   mlelstv 	settzname();
   1264   1.1       jtc }
   1265   1.1       jtc 
   1266  1.19    kleink #ifndef STD_INSPIRED
   1267  1.19    kleink /*
   1268  1.19    kleink ** A non-static declaration of tzsetwall in a system header file
   1269  1.19    kleink ** may cause a warning about this upcoming static declaration...
   1270  1.19    kleink */
   1271  1.19    kleink static
   1272  1.19    kleink #endif /* !defined STD_INSPIRED */
   1273   1.1       jtc void
   1274  1.45   mlelstv tzsetwall(void)
   1275  1.19    kleink {
   1276  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1277  1.45   mlelstv 	tzsetwall_unlocked();
   1278  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1279  1.19    kleink }
   1280  1.19    kleink 
   1281  1.45   mlelstv #ifndef STD_INSPIRED
   1282  1.45   mlelstv /*
   1283  1.45   mlelstv ** A non-static declaration of tzsetwall in a system header file
   1284  1.45   mlelstv ** may cause a warning about this upcoming static declaration...
   1285  1.45   mlelstv */
   1286  1.45   mlelstv static
   1287  1.45   mlelstv #endif /* !defined STD_INSPIRED */
   1288  1.45   mlelstv void
   1289  1.45   mlelstv tzset_unlocked(void)
   1290   1.1       jtc {
   1291  1.49  christos 	const char *	name;
   1292   1.1       jtc 
   1293   1.1       jtc 	name = getenv("TZ");
   1294   1.1       jtc 	if (name == NULL) {
   1295  1.45   mlelstv 		tzsetwall_unlocked();
   1296   1.1       jtc 		return;
   1297   1.1       jtc 	}
   1298   1.1       jtc 
   1299  1.45   mlelstv 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1300   1.1       jtc 		return;
   1301  1.45   mlelstv 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1302  1.45   mlelstv 	if (lcl_is_set)
   1303  1.45   mlelstv 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1304   1.1       jtc 
   1305   1.1       jtc 	if (lclptr == NULL) {
   1306  1.69  christos 		int saveerrno = errno;
   1307  1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1308  1.41  christos 		errno = saveerrno;
   1309   1.1       jtc 		if (lclptr == NULL) {
   1310  1.45   mlelstv 			settzname();	/* all we can do */
   1311   1.1       jtc 			return;
   1312   1.1       jtc 		}
   1313   1.1       jtc 	}
   1314   1.1       jtc 	if (*name == '\0') {
   1315   1.1       jtc 		/*
   1316   1.1       jtc 		** User wants it fast rather than right.
   1317   1.1       jtc 		*/
   1318   1.1       jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1319   1.1       jtc 		lclptr->timecnt = 0;
   1320  1.27    atatat 		lclptr->typecnt = 0;
   1321  1.27    atatat 		lclptr->ttis[0].tt_isdst = 0;
   1322   1.1       jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1323   1.1       jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1324  1.45   mlelstv 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1325  1.49  christos 	} else if (tzload(lclptr, name, TRUE) != 0)
   1326  1.49  christos 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1327  1.45   mlelstv 			(void) gmtload(lclptr);
   1328  1.45   mlelstv 	settzname();
   1329   1.1       jtc }
   1330   1.1       jtc 
   1331  1.19    kleink void
   1332  1.45   mlelstv tzset(void)
   1333  1.19    kleink {
   1334  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1335  1.45   mlelstv 	tzset_unlocked();
   1336  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1337  1.19    kleink }
   1338  1.19    kleink 
   1339   1.1       jtc /*
   1340   1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1341   1.1       jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1342  1.45   mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1343   1.1       jtc ** but it *is* desirable.)
   1344   1.1       jtc **
   1345   1.1       jtc ** The unused offset argument is for the benefit of mktime variants.
   1346   1.1       jtc */
   1347   1.1       jtc 
   1348   1.1       jtc /*ARGSUSED*/
   1349  1.45   mlelstv static struct tm *
   1350  1.74  christos localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
   1351  1.49  christos     struct tm *const tmp)
   1352  1.49  christos {
   1353  1.49  christos 	const struct ttinfo *	ttisp;
   1354  1.49  christos 	int			i;
   1355  1.49  christos 	struct tm *		result;
   1356   1.1       jtc 	const time_t			t = *timep;
   1357   1.1       jtc 
   1358  1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1359  1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1360  1.45   mlelstv 			time_t			newt = t;
   1361  1.49  christos 			time_t		seconds;
   1362  1.78  christos 			time_t		years;
   1363  1.45   mlelstv 
   1364  1.45   mlelstv 			if (t < sp->ats[0])
   1365  1.45   mlelstv 				seconds = sp->ats[0] - t;
   1366  1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1367  1.45   mlelstv 			--seconds;
   1368  1.78  christos 			years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
   1369  1.78  christos 			seconds = (time_t)(years * AVGSECSPERYEAR);
   1370  1.45   mlelstv 			if (t < sp->ats[0])
   1371  1.45   mlelstv 				newt += seconds;
   1372  1.45   mlelstv 			else	newt -= seconds;
   1373  1.45   mlelstv 			if (newt < sp->ats[0] ||
   1374  1.51  christos 				newt > sp->ats[sp->timecnt - 1])
   1375  1.45   mlelstv 					return NULL;	/* "cannot happen" */
   1376  1.49  christos 			result = localsub(sp, &newt, offset, tmp);
   1377  1.45   mlelstv 			if (result == tmp) {
   1378  1.49  christos 				time_t	newy;
   1379  1.45   mlelstv 
   1380  1.45   mlelstv 				newy = tmp->tm_year;
   1381  1.45   mlelstv 				if (t < sp->ats[0])
   1382  1.78  christos 					newy -= years;
   1383  1.78  christos 				else	newy += years;
   1384  1.45   mlelstv 				tmp->tm_year = (int)newy;
   1385  1.51  christos 				if (tmp->tm_year != newy)
   1386  1.45   mlelstv 					return NULL;
   1387  1.45   mlelstv 			}
   1388  1.45   mlelstv 			return result;
   1389   1.1       jtc 	}
   1390   1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1391  1.74  christos 		i = sp->defaulttype;
   1392   1.1       jtc 	} else {
   1393  1.49  christos 		int	lo = 1;
   1394  1.49  christos 		int	hi = sp->timecnt;
   1395  1.45   mlelstv 
   1396  1.45   mlelstv 		while (lo < hi) {
   1397  1.49  christos 			int	mid = (lo + hi) / 2;
   1398  1.45   mlelstv 
   1399  1.45   mlelstv 			if (t < sp->ats[mid])
   1400  1.45   mlelstv 				hi = mid;
   1401  1.45   mlelstv 			else	lo = mid + 1;
   1402  1.45   mlelstv 		}
   1403  1.45   mlelstv 		i = (int) sp->types[lo - 1];
   1404   1.1       jtc 	}
   1405   1.1       jtc 	ttisp = &sp->ttis[i];
   1406   1.1       jtc 	/*
   1407   1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1408   1.1       jtc 	** you'd replace the statement below with
   1409   1.1       jtc 	**	t += ttisp->tt_gmtoff;
   1410   1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1411   1.1       jtc 	*/
   1412  1.49  christos 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1413   1.1       jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1414  1.57  christos 	if (sp == lclptr)
   1415  1.57  christos 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1416   1.1       jtc #ifdef TM_ZONE
   1417   1.1       jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1418   1.1       jtc #endif /* defined TM_ZONE */
   1419  1.45   mlelstv 	return result;
   1420   1.1       jtc }
   1421   1.1       jtc 
   1422  1.49  christos /*
   1423  1.49  christos ** Re-entrant version of localtime.
   1424  1.49  christos */
   1425  1.49  christos 
   1426   1.1       jtc struct tm *
   1427  1.49  christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1428   1.1       jtc {
   1429  1.49  christos 	rwlock_rdlock(&lcl_lock);
   1430  1.45   mlelstv 	tzset_unlocked();
   1431  1.49  christos 	tmp = localtime_rz(lclptr, timep, tmp);
   1432  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1433  1.49  christos 	return tmp;
   1434   1.1       jtc }
   1435   1.1       jtc 
   1436  1.49  christos struct tm *
   1437  1.49  christos localtime(const time_t *const timep)
   1438  1.49  christos {
   1439  1.49  christos 	return localtime_r(timep, &tm);
   1440  1.49  christos }
   1441  1.35    kleink 
   1442  1.18    kleink struct tm *
   1443  1.49  christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1444  1.18    kleink {
   1445  1.49  christos 	if (sp == NULL)
   1446  1.74  christos 		tmp = gmtsub(NULL, timep, 0, tmp);
   1447  1.49  christos 	else
   1448  1.74  christos 		tmp = localsub(sp, timep, 0, tmp);
   1449  1.51  christos 	if (tmp == NULL)
   1450  1.51  christos 		errno = EOVERFLOW;
   1451  1.51  christos 	return tmp;
   1452  1.18    kleink }
   1453  1.18    kleink 
   1454  1.18    kleink /*
   1455   1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1456   1.1       jtc */
   1457   1.1       jtc 
   1458  1.45   mlelstv static struct tm *
   1459  1.74  christos gmtsub(const timezone_t sp, const time_t *const timep,
   1460  1.74  christos     const int_fast32_t offset, struct tm *const tmp)
   1461   1.1       jtc {
   1462  1.49  christos 	struct tm *	result;
   1463  1.33  christos #ifdef _REENTRANT
   1464  1.19    kleink 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1465  1.19    kleink #endif
   1466  1.19    kleink 
   1467  1.19    kleink 	mutex_lock(&gmt_mutex);
   1468  1.45   mlelstv 	if (!gmt_is_set) {
   1469  1.41  christos 		int saveerrno;
   1470  1.45   mlelstv 		gmt_is_set = TRUE;
   1471  1.41  christos 		saveerrno = errno;
   1472  1.47  christos 		gmtptr = calloc(1, sizeof *gmtptr);
   1473  1.41  christos 		errno = saveerrno;
   1474   1.1       jtc 		if (gmtptr != NULL)
   1475  1.45   mlelstv 			gmtload(gmtptr);
   1476   1.1       jtc 	}
   1477  1.19    kleink 	mutex_unlock(&gmt_mutex);
   1478  1.49  christos 	result = timesub(gmtptr, timep, offset, tmp);
   1479   1.1       jtc #ifdef TM_ZONE
   1480   1.1       jtc 	/*
   1481   1.1       jtc 	** Could get fancy here and deliver something such as
   1482  1.78  christos 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
   1483   1.1       jtc 	** but this is no time for a treasure hunt.
   1484   1.1       jtc 	*/
   1485   1.1       jtc 	if (offset != 0)
   1486  1.37  christos 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1487   1.1       jtc 	else {
   1488   1.1       jtc 		if (gmtptr == NULL)
   1489  1.37  christos 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1490   1.1       jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1491   1.1       jtc 	}
   1492   1.1       jtc #endif /* defined TM_ZONE */
   1493  1.45   mlelstv 	return result;
   1494   1.1       jtc }
   1495   1.1       jtc 
   1496   1.1       jtc struct tm *
   1497  1.49  christos gmtime(const time_t *const timep)
   1498   1.1       jtc {
   1499  1.74  christos 	struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
   1500  1.55  christos 
   1501  1.55  christos 	if (tmp == NULL)
   1502  1.55  christos 		errno = EOVERFLOW;
   1503  1.55  christos 
   1504  1.55  christos 	return tmp;
   1505   1.1       jtc }
   1506   1.1       jtc 
   1507  1.18    kleink /*
   1508  1.35    kleink ** Re-entrant version of gmtime.
   1509  1.35    kleink */
   1510  1.35    kleink 
   1511  1.18    kleink struct tm *
   1512  1.49  christos gmtime_r(const time_t * const timep, struct tm *tmp)
   1513  1.18    kleink {
   1514  1.74  christos 	tmp = gmtsub(NULL, timep, 0, tmp);
   1515  1.55  christos 
   1516  1.55  christos 	if (tmp == NULL)
   1517  1.55  christos 		errno = EOVERFLOW;
   1518  1.55  christos 
   1519  1.55  christos 	return tmp;
   1520  1.18    kleink }
   1521  1.18    kleink 
   1522   1.1       jtc #ifdef STD_INSPIRED
   1523   1.1       jtc 
   1524   1.1       jtc struct tm *
   1525  1.49  christos offtime(const time_t *const timep, long offset)
   1526   1.1       jtc {
   1527  1.74  christos 	struct tm *tmp;
   1528  1.74  christos 
   1529  1.74  christos 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1530  1.75  christos 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   1531  1.74  christos 		errno = EOVERFLOW;
   1532  1.74  christos 		return NULL;
   1533  1.74  christos 	}
   1534  1.74  christos 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
   1535  1.55  christos 
   1536  1.55  christos 	if (tmp == NULL)
   1537  1.55  christos 		errno = EOVERFLOW;
   1538  1.55  christos 
   1539  1.55  christos 	return tmp;
   1540  1.49  christos }
   1541  1.49  christos 
   1542  1.49  christos struct tm *
   1543  1.49  christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1544  1.49  christos {
   1545  1.74  christos 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1546  1.75  christos 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   1547  1.74  christos 		errno = EOVERFLOW;
   1548  1.74  christos 		return NULL;
   1549  1.74  christos 	}
   1550  1.74  christos 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
   1551  1.55  christos 
   1552  1.55  christos 	if (tmp == NULL)
   1553  1.55  christos 		errno = EOVERFLOW;
   1554  1.55  christos 
   1555  1.55  christos 	return tmp;
   1556   1.1       jtc }
   1557   1.1       jtc 
   1558   1.1       jtc #endif /* defined STD_INSPIRED */
   1559   1.1       jtc 
   1560  1.45   mlelstv /*
   1561  1.45   mlelstv ** Return the number of leap years through the end of the given year
   1562  1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1563  1.45   mlelstv */
   1564  1.45   mlelstv 
   1565  1.45   mlelstv static int
   1566  1.49  christos leaps_thru_end_of(const int y)
   1567  1.45   mlelstv {
   1568  1.45   mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1569  1.45   mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1570  1.45   mlelstv }
   1571  1.45   mlelstv 
   1572  1.45   mlelstv static struct tm *
   1573  1.74  christos timesub(const timezone_t sp, const time_t *const timep,
   1574  1.74  christos     const int_fast32_t offset, struct tm *const tmp)
   1575  1.49  christos {
   1576  1.49  christos 	const struct lsinfo *	lp;
   1577  1.49  christos 	time_t			tdays;
   1578  1.49  christos 	int			idays;	/* unsigned would be so 2003 */
   1579  1.74  christos 	int_fast64_t		rem;
   1580  1.49  christos 	int			y;
   1581  1.49  christos 	const int *		ip;
   1582  1.74  christos 	int_fast64_t		corr;
   1583  1.49  christos 	int			hit;
   1584  1.49  christos 	int			i;
   1585   1.1       jtc 
   1586   1.1       jtc 	corr = 0;
   1587   1.1       jtc 	hit = 0;
   1588   1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1589   1.1       jtc 	while (--i >= 0) {
   1590   1.1       jtc 		lp = &sp->lsis[i];
   1591   1.1       jtc 		if (*timep >= lp->ls_trans) {
   1592   1.1       jtc 			if (*timep == lp->ls_trans) {
   1593   1.1       jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1594   1.1       jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1595   1.1       jtc 				if (hit)
   1596   1.1       jtc 					while (i > 0 &&
   1597   1.1       jtc 						sp->lsis[i].ls_trans ==
   1598   1.1       jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1599   1.1       jtc 						sp->lsis[i].ls_corr ==
   1600   1.1       jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1601   1.1       jtc 							++hit;
   1602   1.1       jtc 							--i;
   1603   1.1       jtc 					}
   1604   1.1       jtc 			}
   1605   1.1       jtc 			corr = lp->ls_corr;
   1606   1.1       jtc 			break;
   1607   1.1       jtc 		}
   1608   1.1       jtc 	}
   1609  1.45   mlelstv 	y = EPOCH_YEAR;
   1610  1.66  christos 	tdays = (time_t)(*timep / SECSPERDAY);
   1611  1.74  christos 	rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
   1612  1.45   mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1613  1.45   mlelstv 		int		newy;
   1614  1.49  christos 		time_t	tdelta;
   1615  1.49  christos 		int	idelta;
   1616  1.49  christos 		int	leapdays;
   1617  1.45   mlelstv 
   1618  1.45   mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1619  1.78  christos 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
   1620  1.78  christos 		       && tdelta <= INT_MAX))
   1621  1.45   mlelstv 			return NULL;
   1622  1.81  christos 		_DIAGASSERT(__type_fit(int, tdelta));
   1623  1.81  christos 		idelta = (int)tdelta;
   1624  1.45   mlelstv 		if (idelta == 0)
   1625  1.45   mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1626  1.45   mlelstv 		newy = y;
   1627  1.51  christos 		if (increment_overflow(&newy, idelta))
   1628  1.45   mlelstv 			return NULL;
   1629  1.45   mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1630  1.45   mlelstv 			leaps_thru_end_of(y - 1);
   1631  1.45   mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1632  1.45   mlelstv 		tdays -= leapdays;
   1633  1.45   mlelstv 		y = newy;
   1634  1.45   mlelstv 	}
   1635  1.45   mlelstv 	{
   1636  1.74  christos 		int_fast32_t seconds;
   1637  1.45   mlelstv 
   1638  1.78  christos 		seconds = (int_fast32_t)(tdays * SECSPERDAY);
   1639  1.66  christos 		tdays = (time_t)(seconds / SECSPERDAY);
   1640  1.74  christos 		rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
   1641   1.1       jtc 	}
   1642  1.45   mlelstv 	/*
   1643  1.45   mlelstv 	** Given the range, we can now fearlessly cast...
   1644  1.45   mlelstv 	*/
   1645  1.45   mlelstv 	idays = (int) tdays;
   1646  1.45   mlelstv 	rem += offset - corr;
   1647   1.1       jtc 	while (rem < 0) {
   1648   1.1       jtc 		rem += SECSPERDAY;
   1649  1.45   mlelstv 		--idays;
   1650   1.1       jtc 	}
   1651   1.1       jtc 	while (rem >= SECSPERDAY) {
   1652   1.1       jtc 		rem -= SECSPERDAY;
   1653  1.45   mlelstv 		++idays;
   1654  1.45   mlelstv 	}
   1655  1.45   mlelstv 	while (idays < 0) {
   1656  1.51  christos 		if (increment_overflow(&y, -1))
   1657  1.45   mlelstv 			return NULL;
   1658  1.45   mlelstv 		idays += year_lengths[isleap(y)];
   1659   1.1       jtc 	}
   1660  1.45   mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1661  1.45   mlelstv 		idays -= year_lengths[isleap(y)];
   1662  1.51  christos 		if (increment_overflow(&y, 1))
   1663  1.45   mlelstv 			return NULL;
   1664  1.45   mlelstv 	}
   1665  1.45   mlelstv 	tmp->tm_year = y;
   1666  1.51  christos 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1667  1.45   mlelstv 		return NULL;
   1668  1.45   mlelstv 	tmp->tm_yday = idays;
   1669  1.45   mlelstv 	/*
   1670  1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1671  1.45   mlelstv 	*/
   1672  1.45   mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1673  1.45   mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1674  1.45   mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1675  1.45   mlelstv 		leaps_thru_end_of(y - 1) -
   1676  1.45   mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1677  1.45   mlelstv 		idays;
   1678  1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1679  1.45   mlelstv 	if (tmp->tm_wday < 0)
   1680  1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1681   1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1682  1.45   mlelstv 	rem %= SECSPERHOUR;
   1683   1.1       jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1684   1.6       jtc 	/*
   1685   1.6       jtc 	** A positive leap second requires a special
   1686  1.45   mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1687   1.6       jtc 	*/
   1688   1.6       jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1689  1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1690  1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1691  1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1692  1.45   mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1693   1.1       jtc 	tmp->tm_isdst = 0;
   1694   1.1       jtc #ifdef TM_GMTOFF
   1695   1.1       jtc 	tmp->TM_GMTOFF = offset;
   1696   1.1       jtc #endif /* defined TM_GMTOFF */
   1697  1.45   mlelstv 	return tmp;
   1698   1.1       jtc }
   1699   1.1       jtc 
   1700   1.1       jtc char *
   1701  1.49  christos ctime(const time_t *const timep)
   1702   1.1       jtc {
   1703   1.1       jtc /*
   1704   1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1705  1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1706  1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1707   1.1       jtc **		asctime(localtime(timer))
   1708   1.1       jtc */
   1709  1.46  christos 	struct tm *rtm = localtime(timep);
   1710  1.46  christos 	if (rtm == NULL)
   1711  1.46  christos 		return NULL;
   1712  1.46  christos 	return asctime(rtm);
   1713  1.18    kleink }
   1714  1.18    kleink 
   1715  1.18    kleink char *
   1716  1.49  christos ctime_r(const time_t *const timep, char *buf)
   1717  1.18    kleink {
   1718  1.46  christos 	struct tm	mytm, *rtm;
   1719  1.18    kleink 
   1720  1.46  christos 	rtm = localtime_r(timep, &mytm);
   1721  1.46  christos 	if (rtm == NULL)
   1722  1.46  christos 		return NULL;
   1723  1.46  christos 	return asctime_r(rtm, buf);
   1724   1.1       jtc }
   1725   1.1       jtc 
   1726  1.49  christos char *
   1727  1.49  christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1728  1.49  christos {
   1729  1.49  christos 	struct tm	mytm, *rtm;
   1730  1.49  christos 
   1731  1.49  christos 	rtm = localtime_rz(sp, timep, &mytm);
   1732  1.49  christos 	if (rtm == NULL)
   1733  1.49  christos 		return NULL;
   1734  1.49  christos 	return asctime_r(rtm, buf);
   1735  1.49  christos }
   1736  1.49  christos 
   1737   1.1       jtc /*
   1738   1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1739   1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1740   1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1741  1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1742   1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1743   1.1       jtc **	would still be very reasonable).
   1744   1.1       jtc */
   1745   1.1       jtc 
   1746   1.1       jtc #ifndef WRONG
   1747  1.51  christos #define WRONG	((time_t)-1)
   1748   1.1       jtc #endif /* !defined WRONG */
   1749   1.1       jtc 
   1750   1.1       jtc /*
   1751  1.45   mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1752   1.1       jtc */
   1753   1.1       jtc 
   1754   1.1       jtc static int
   1755  1.68  christos increment_overflow(int *const ip, int j)
   1756   1.1       jtc {
   1757  1.58  christos 	int	i = *ip;
   1758   1.1       jtc 
   1759  1.58  christos 	/*
   1760  1.58  christos 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1761  1.58  christos 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1762  1.58  christos 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1763  1.58  christos 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1764  1.58  christos 	*/
   1765  1.58  christos 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1766  1.58  christos 		return TRUE;
   1767  1.58  christos 	*ip += j;
   1768  1.58  christos 	return FALSE;
   1769   1.1       jtc }
   1770   1.1       jtc 
   1771   1.1       jtc static int
   1772  1.74  christos increment_overflow32(int_fast32_t *const lp, int const m)
   1773  1.45   mlelstv {
   1774  1.74  christos 	int_fast32_t l = *lp;
   1775  1.45   mlelstv 
   1776  1.74  christos 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   1777  1.58  christos 		return TRUE;
   1778  1.58  christos 	*lp += m;
   1779  1.58  christos 	return FALSE;
   1780  1.45   mlelstv }
   1781  1.45   mlelstv 
   1782  1.45   mlelstv static int
   1783  1.81  christos increment_overflow_time(time_t *tp, int_fast32_t j)
   1784  1.81  christos {
   1785  1.81  christos 	/*
   1786  1.81  christos 	** This is like
   1787  1.81  christos 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
   1788  1.81  christos 	** except that it does the right thing even if *tp + j would overflow.
   1789  1.81  christos 	*/
   1790  1.81  christos 	if (! (j < 0
   1791  1.81  christos 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
   1792  1.81  christos 	       : *tp <= time_t_max - j))
   1793  1.81  christos 		return TRUE;
   1794  1.81  christos 	*tp += j;
   1795  1.81  christos 	return FALSE;
   1796  1.81  christos }
   1797  1.81  christos 
   1798  1.81  christos static int
   1799  1.49  christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1800   1.1       jtc {
   1801  1.49  christos 	int	tensdelta;
   1802   1.1       jtc 
   1803   1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   1804   1.1       jtc 		(*unitsptr / base) :
   1805   1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   1806   1.1       jtc 	*unitsptr -= tensdelta * base;
   1807   1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   1808   1.1       jtc }
   1809   1.1       jtc 
   1810   1.1       jtc static int
   1811  1.74  christos normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
   1812  1.49  christos     const int base)
   1813  1.45   mlelstv {
   1814  1.49  christos 	int	tensdelta;
   1815  1.45   mlelstv 
   1816  1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1817  1.45   mlelstv 		(*unitsptr / base) :
   1818  1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1819  1.45   mlelstv 	*unitsptr -= tensdelta * base;
   1820  1.74  christos 	return increment_overflow32(tensptr, tensdelta);
   1821  1.45   mlelstv }
   1822  1.45   mlelstv 
   1823  1.45   mlelstv static int
   1824  1.49  christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1825   1.1       jtc {
   1826  1.49  christos 	int	result;
   1827   1.1       jtc 
   1828  1.78  christos 	if (atmp->tm_year != btmp->tm_year)
   1829  1.78  christos 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
   1830  1.78  christos 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1831   1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1832   1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1833   1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1834   1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1835   1.1       jtc 	return result;
   1836   1.1       jtc }
   1837   1.1       jtc 
   1838   1.1       jtc static time_t
   1839  1.49  christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1840  1.74  christos     const int_fast32_t offset, int *const okayp, const int do_norm_secs)
   1841  1.49  christos {
   1842  1.49  christos 	int			dir;
   1843  1.49  christos 	int			i, j;
   1844  1.49  christos 	int			saved_seconds;
   1845  1.74  christos 	int_fast32_t		li;
   1846  1.49  christos 	time_t			lo;
   1847  1.49  christos 	time_t			hi;
   1848  1.61  christos #ifdef NO_ERROR_IN_DST_GAP
   1849  1.61  christos 	time_t			ilo;
   1850  1.61  christos #endif
   1851  1.74  christos 	int_fast32_t		y;
   1852  1.74  christos 	time_t			newt;
   1853  1.74  christos 	time_t			t;
   1854  1.74  christos 	struct tm		yourtm, mytm;
   1855   1.1       jtc 
   1856   1.1       jtc 	*okayp = FALSE;
   1857   1.1       jtc 	yourtm = *tmp;
   1858  1.64  christos #ifdef NO_ERROR_IN_DST_GAP
   1859  1.64  christos again:
   1860  1.64  christos #endif
   1861  1.13       jtc 	if (do_norm_secs) {
   1862  1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1863  1.60  christos 		    SECSPERMIN))
   1864  1.60  christos 			goto overflow;
   1865  1.13       jtc 	}
   1866   1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1867  1.60  christos 		goto overflow;
   1868   1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1869  1.60  christos 		goto overflow;
   1870  1.45   mlelstv 	y = yourtm.tm_year;
   1871  1.74  christos 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   1872  1.60  christos 		goto overflow;
   1873   1.1       jtc 	/*
   1874  1.45   mlelstv 	** Turn y into an actual year number for now.
   1875   1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1876   1.1       jtc 	*/
   1877  1.74  christos 	if (increment_overflow32(&y, TM_YEAR_BASE))
   1878  1.60  christos 		goto overflow;
   1879   1.1       jtc 	while (yourtm.tm_mday <= 0) {
   1880  1.74  christos 		if (increment_overflow32(&y, -1))
   1881  1.60  christos 			goto overflow;
   1882  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1883  1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1884   1.1       jtc 	}
   1885   1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1886  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1887  1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1888  1.74  christos 		if (increment_overflow32(&y, 1))
   1889  1.60  christos 			goto overflow;
   1890   1.1       jtc 	}
   1891   1.1       jtc 	for ( ; ; ) {
   1892  1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1893   1.1       jtc 		if (yourtm.tm_mday <= i)
   1894   1.1       jtc 			break;
   1895   1.1       jtc 		yourtm.tm_mday -= i;
   1896   1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1897   1.1       jtc 			yourtm.tm_mon = 0;
   1898  1.74  christos 			if (increment_overflow32(&y, 1))
   1899  1.60  christos 				goto overflow;
   1900   1.1       jtc 		}
   1901   1.1       jtc 	}
   1902  1.74  christos 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   1903  1.60  christos 		goto overflow;
   1904  1.66  christos 	yourtm.tm_year = (int)y;
   1905  1.45   mlelstv 	if (yourtm.tm_year != y)
   1906  1.60  christos 		goto overflow;
   1907  1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1908  1.29    kleink 		saved_seconds = 0;
   1909  1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1910   1.1       jtc 		/*
   1911   1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   1912   1.1       jtc 		** time below the minimum representable time.
   1913   1.1       jtc 		** Set tm_sec to 59 instead.
   1914   1.1       jtc 		** This assumes that the minimum representable time is
   1915   1.1       jtc 		** not in the same minute that a leap second was deleted from,
   1916   1.1       jtc 		** which is a safer assumption than using 58 would be.
   1917   1.1       jtc 		*/
   1918   1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1919  1.60  christos 			goto overflow;
   1920   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1921   1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1922   1.1       jtc 	} else {
   1923   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1924   1.1       jtc 		yourtm.tm_sec = 0;
   1925   1.1       jtc 	}
   1926   1.1       jtc 	/*
   1927  1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1928   1.1       jtc 	*/
   1929  1.70  christos 	/* LINTED const not */
   1930  1.45   mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1931  1.45   mlelstv 		lo = 0;
   1932  1.45   mlelstv 		hi = lo - 1;
   1933  1.45   mlelstv 	} else {
   1934  1.45   mlelstv 		lo = 1;
   1935  1.45   mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1936  1.45   mlelstv 			lo *= 2;
   1937  1.45   mlelstv 		hi = -(lo + 1);
   1938  1.45   mlelstv 	}
   1939  1.61  christos #ifdef NO_ERROR_IN_DST_GAP
   1940  1.61  christos 	ilo = lo;
   1941  1.61  christos #endif
   1942   1.1       jtc 	for ( ; ; ) {
   1943  1.45   mlelstv 		t = lo / 2 + hi / 2;
   1944  1.45   mlelstv 		if (t < lo)
   1945  1.45   mlelstv 			t = lo;
   1946  1.45   mlelstv 		else if (t > hi)
   1947  1.45   mlelstv 			t = hi;
   1948  1.49  christos 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1949  1.45   mlelstv 			/*
   1950  1.45   mlelstv 			** Assume that t is too extreme to be represented in
   1951  1.45   mlelstv 			** a struct tm; arrange things so that it is less
   1952  1.45   mlelstv 			** extreme on the next pass.
   1953  1.45   mlelstv 			*/
   1954  1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   1955  1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1956   1.1       jtc 		if (dir != 0) {
   1957  1.45   mlelstv 			if (t == lo) {
   1958  1.78  christos 				if (t == time_t_max)
   1959  1.78  christos 					goto overflow;
   1960  1.45   mlelstv 				++t;
   1961  1.45   mlelstv 				++lo;
   1962  1.45   mlelstv 			} else if (t == hi) {
   1963  1.78  christos 				if (t == time_t_min)
   1964  1.78  christos 					goto overflow;
   1965  1.45   mlelstv 				--t;
   1966  1.45   mlelstv 				--hi;
   1967  1.45   mlelstv 			}
   1968  1.59  christos #ifdef NO_ERROR_IN_DST_GAP
   1969  1.64  christos 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   1970  1.64  christos 			    do_norm_secs) {
   1971  1.59  christos 				for (i = sp->typecnt - 1; i >= 0; --i) {
   1972  1.59  christos 					for (j = sp->typecnt - 1; j >= 0; --j) {
   1973  1.64  christos 						time_t off;
   1974  1.59  christos 						if (sp->ttis[j].tt_isdst ==
   1975  1.59  christos 						    sp->ttis[i].tt_isdst)
   1976  1.59  christos 							continue;
   1977  1.59  christos 						off = sp->ttis[j].tt_gmtoff -
   1978  1.59  christos 						    sp->ttis[i].tt_gmtoff;
   1979  1.64  christos 						yourtm.tm_sec += off < 0 ?
   1980  1.64  christos 						    -off : off;
   1981  1.64  christos 						goto again;
   1982  1.59  christos 					}
   1983  1.59  christos 				}
   1984  1.59  christos 			}
   1985  1.59  christos #endif
   1986  1.45   mlelstv 			if (lo > hi)
   1987  1.60  christos 				goto invalid;
   1988  1.45   mlelstv 			if (dir > 0)
   1989  1.45   mlelstv 				hi = t;
   1990  1.45   mlelstv 			else	lo = t;
   1991   1.1       jtc 			continue;
   1992   1.1       jtc 		}
   1993   1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1994   1.1       jtc 			break;
   1995   1.1       jtc 		/*
   1996   1.1       jtc 		** Right time, wrong type.
   1997   1.1       jtc 		** Hunt for right time, right type.
   1998   1.1       jtc 		** It's okay to guess wrong since the guess
   1999   1.1       jtc 		** gets checked.
   2000   1.1       jtc 		*/
   2001   1.1       jtc 		if (sp == NULL)
   2002  1.60  christos 			goto invalid;
   2003   1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   2004   1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   2005   1.1       jtc 				continue;
   2006   1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   2007   1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   2008   1.1       jtc 					continue;
   2009  1.66  christos 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
   2010  1.66  christos 				    sp->ttis[i].tt_gmtoff);
   2011  1.49  christos 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   2012  1.45   mlelstv 					continue;
   2013   1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   2014   1.1       jtc 					continue;
   2015   1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   2016   1.1       jtc 					continue;
   2017   1.1       jtc 				/*
   2018   1.1       jtc 				** We have a match.
   2019   1.1       jtc 				*/
   2020   1.1       jtc 				t = newt;
   2021   1.1       jtc 				goto label;
   2022   1.1       jtc 			}
   2023   1.1       jtc 		}
   2024  1.60  christos 		goto invalid;
   2025   1.1       jtc 	}
   2026   1.1       jtc label:
   2027   1.1       jtc 	newt = t + saved_seconds;
   2028   1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   2029  1.60  christos 		goto overflow;
   2030   1.1       jtc 	t = newt;
   2031  1.51  christos 	if ((*funcp)(sp, &t, offset, tmp)) {
   2032  1.45   mlelstv 		*okayp = TRUE;
   2033  1.51  christos 		return t;
   2034  1.60  christos 	}
   2035  1.60  christos overflow:
   2036  1.60  christos 	errno = EOVERFLOW;
   2037  1.60  christos 	return WRONG;
   2038  1.60  christos invalid:
   2039  1.60  christos 	errno = EINVAL;
   2040  1.60  christos 	return WRONG;
   2041  1.13       jtc }
   2042  1.13       jtc 
   2043  1.13       jtc static time_t
   2044  1.49  christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2045  1.74  christos     const int_fast32_t offset, int *const okayp)
   2046  1.13       jtc {
   2047  1.13       jtc 	time_t	t;
   2048  1.13       jtc 
   2049  1.13       jtc 	/*
   2050  1.13       jtc 	** First try without normalization of seconds
   2051  1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   2052  1.13       jtc 	** If that fails, try with normalization of seconds.
   2053  1.13       jtc 	*/
   2054  1.49  christos 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   2055  1.49  christos 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   2056   1.1       jtc }
   2057   1.1       jtc 
   2058   1.1       jtc static time_t
   2059  1.49  christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2060  1.74  christos     const int_fast32_t offset)
   2061  1.49  christos {
   2062  1.49  christos 	time_t			t;
   2063  1.49  christos 	int			samei, otheri;
   2064  1.49  christos 	int			sameind, otherind;
   2065  1.49  christos 	int			i;
   2066  1.49  christos 	int			nseen;
   2067  1.35    kleink 	int				seen[TZ_MAX_TYPES];
   2068  1.35    kleink 	int				types[TZ_MAX_TYPES];
   2069   1.1       jtc 	int				okay;
   2070   1.1       jtc 
   2071  1.58  christos 	if (tmp == NULL) {
   2072  1.58  christos 		errno = EINVAL;
   2073  1.58  christos 		return WRONG;
   2074  1.58  christos 	}
   2075   1.1       jtc 	if (tmp->tm_isdst > 1)
   2076   1.1       jtc 		tmp->tm_isdst = 1;
   2077  1.49  christos 	t = time2(sp, tmp, funcp, offset, &okay);
   2078   1.1       jtc #ifdef PCTS
   2079   1.1       jtc 	/*
   2080  1.45   mlelstv 	** PCTS code courtesy Grant Sullivan.
   2081   1.1       jtc 	*/
   2082   1.1       jtc 	if (okay)
   2083   1.1       jtc 		return t;
   2084   1.1       jtc 	if (tmp->tm_isdst < 0)
   2085   1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2086   1.1       jtc #endif /* defined PCTS */
   2087   1.1       jtc #ifndef PCTS
   2088   1.1       jtc 	if (okay || tmp->tm_isdst < 0)
   2089   1.1       jtc 		return t;
   2090   1.1       jtc #endif /* !defined PCTS */
   2091   1.1       jtc 	/*
   2092   1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   2093   1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   2094   1.1       jtc 	** We try to divine the type they started from and adjust to the
   2095   1.1       jtc 	** type they need.
   2096   1.1       jtc 	*/
   2097  1.60  christos 	if (sp == NULL) {
   2098  1.60  christos 		errno = EINVAL;
   2099   1.1       jtc 		return WRONG;
   2100  1.60  christos 	}
   2101  1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   2102  1.35    kleink 		seen[i] = FALSE;
   2103  1.35    kleink 	nseen = 0;
   2104  1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2105  1.35    kleink 		if (!seen[sp->types[i]]) {
   2106  1.35    kleink 			seen[sp->types[i]] = TRUE;
   2107  1.35    kleink 			types[nseen++] = sp->types[i];
   2108  1.35    kleink 		}
   2109  1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2110  1.35    kleink 		samei = types[sameind];
   2111   1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2112   1.1       jtc 			continue;
   2113  1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2114  1.35    kleink 			otheri = types[otherind];
   2115   1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2116   1.1       jtc 				continue;
   2117  1.21  christos 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2118  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2119   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2120  1.49  christos 			t = time2(sp, tmp, funcp, offset, &okay);
   2121   1.1       jtc 			if (okay)
   2122   1.1       jtc 				return t;
   2123  1.21  christos 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2124  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2125   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2126   1.1       jtc 		}
   2127   1.1       jtc 	}
   2128  1.60  christos 	errno = EOVERFLOW;
   2129   1.1       jtc 	return WRONG;
   2130   1.1       jtc }
   2131   1.1       jtc 
   2132   1.1       jtc time_t
   2133  1.68  christos mktime_z(const timezone_t sp, struct tm *const tmp)
   2134  1.49  christos {
   2135  1.51  christos 	time_t t;
   2136  1.49  christos 	if (sp == NULL)
   2137  1.74  christos 		t = time1(NULL, tmp, gmtsub, 0);
   2138  1.49  christos 	else
   2139  1.74  christos 		t = time1(sp, tmp, localsub, 0);
   2140  1.51  christos 	return t;
   2141  1.49  christos }
   2142  1.49  christos 
   2143  1.49  christos time_t
   2144  1.68  christos mktime(struct tm *const tmp)
   2145   1.1       jtc {
   2146  1.19    kleink 	time_t result;
   2147  1.19    kleink 
   2148  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2149  1.45   mlelstv 	tzset_unlocked();
   2150  1.49  christos 	result = mktime_z(lclptr, tmp);
   2151  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2152  1.49  christos 	return result;
   2153   1.1       jtc }
   2154   1.1       jtc 
   2155   1.1       jtc #ifdef STD_INSPIRED
   2156   1.1       jtc 
   2157   1.1       jtc time_t
   2158  1.68  christos timelocal_z(const timezone_t sp, struct tm *const tmp)
   2159  1.49  christos {
   2160  1.49  christos 	if (tmp != NULL)
   2161  1.49  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2162  1.49  christos 	return mktime_z(sp, tmp);
   2163  1.49  christos }
   2164  1.49  christos 
   2165  1.49  christos time_t
   2166  1.49  christos timelocal(struct tm *const tmp)
   2167   1.1       jtc {
   2168  1.58  christos 	if (tmp != NULL)
   2169  1.58  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2170   1.1       jtc 	return mktime(tmp);
   2171   1.1       jtc }
   2172   1.1       jtc 
   2173   1.1       jtc time_t
   2174  1.49  christos timegm(struct tm *const tmp)
   2175   1.1       jtc {
   2176  1.51  christos 	time_t t;
   2177  1.51  christos 
   2178  1.58  christos 	if (tmp != NULL)
   2179  1.58  christos 		tmp->tm_isdst = 0;
   2180  1.74  christos 	t = time1(gmtptr, tmp, gmtsub, 0);
   2181  1.51  christos 	return t;
   2182   1.1       jtc }
   2183   1.1       jtc 
   2184   1.1       jtc time_t
   2185  1.74  christos timeoff(struct tm *const tmp, long offset)
   2186   1.1       jtc {
   2187  1.51  christos 	time_t t;
   2188  1.51  christos 
   2189  1.74  christos 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   2190  1.75  christos 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   2191  1.74  christos 		errno = EOVERFLOW;
   2192  1.74  christos 		return -1;
   2193  1.74  christos 	}
   2194  1.58  christos 	if (tmp != NULL)
   2195  1.58  christos 		tmp->tm_isdst = 0;
   2196  1.74  christos 	t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
   2197  1.51  christos 	return t;
   2198   1.1       jtc }
   2199   1.1       jtc 
   2200   1.1       jtc #endif /* defined STD_INSPIRED */
   2201   1.1       jtc 
   2202   1.1       jtc #ifdef CMUCS
   2203   1.1       jtc 
   2204   1.1       jtc /*
   2205   1.1       jtc ** The following is supplied for compatibility with
   2206   1.1       jtc ** previous versions of the CMUCS runtime library.
   2207   1.1       jtc */
   2208   1.1       jtc 
   2209  1.78  christos long
   2210  1.49  christos gtime(struct tm *const tmp)
   2211   1.1       jtc {
   2212  1.49  christos 	const time_t t = mktime(tmp);
   2213   1.1       jtc 
   2214   1.1       jtc 	if (t == WRONG)
   2215   1.1       jtc 		return -1;
   2216   1.1       jtc 	return t;
   2217   1.1       jtc }
   2218   1.1       jtc 
   2219   1.1       jtc #endif /* defined CMUCS */
   2220   1.1       jtc 
   2221   1.1       jtc /*
   2222   1.1       jtc ** XXX--is the below the right way to conditionalize??
   2223   1.1       jtc */
   2224   1.1       jtc 
   2225   1.1       jtc #ifdef STD_INSPIRED
   2226   1.1       jtc 
   2227   1.1       jtc /*
   2228   1.1       jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2229  1.14       jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2230   1.1       jtc ** is not the case if we are accounting for leap seconds.
   2231   1.1       jtc ** So, we provide the following conversion routines for use
   2232   1.1       jtc ** when exchanging timestamps with POSIX conforming systems.
   2233   1.1       jtc */
   2234   1.1       jtc 
   2235  1.74  christos static int_fast64_t
   2236  1.49  christos leapcorr(const timezone_t sp, time_t *timep)
   2237   1.1       jtc {
   2238  1.49  christos 	struct lsinfo * lp;
   2239  1.49  christos 	int		i;
   2240   1.1       jtc 
   2241   1.1       jtc 	i = sp->leapcnt;
   2242   1.1       jtc 	while (--i >= 0) {
   2243   1.1       jtc 		lp = &sp->lsis[i];
   2244   1.1       jtc 		if (*timep >= lp->ls_trans)
   2245   1.1       jtc 			return lp->ls_corr;
   2246   1.1       jtc 	}
   2247   1.1       jtc 	return 0;
   2248   1.1       jtc }
   2249   1.1       jtc 
   2250   1.1       jtc time_t
   2251  1.49  christos time2posix_z(const timezone_t sp, time_t t)
   2252  1.49  christos {
   2253  1.66  christos 	return (time_t)(t - leapcorr(sp, &t));
   2254  1.49  christos }
   2255  1.49  christos 
   2256  1.49  christos time_t
   2257  1.49  christos time2posix(time_t t)
   2258   1.1       jtc {
   2259  1.19    kleink 	time_t result;
   2260  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2261  1.45   mlelstv 	tzset_unlocked();
   2262  1.66  christos 	result = (time_t)(t - leapcorr(lclptr, &t));
   2263  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2264  1.19    kleink 	return (result);
   2265   1.1       jtc }
   2266   1.1       jtc 
   2267   1.1       jtc time_t
   2268  1.49  christos posix2time_z(const timezone_t sp, time_t t)
   2269   1.1       jtc {
   2270   1.1       jtc 	time_t	x;
   2271   1.1       jtc 	time_t	y;
   2272   1.1       jtc 
   2273   1.1       jtc 	/*
   2274   1.1       jtc 	** For a positive leap second hit, the result
   2275  1.45   mlelstv 	** is not unique. For a negative leap second
   2276   1.1       jtc 	** hit, the corresponding time doesn't exist,
   2277   1.1       jtc 	** so we return an adjacent second.
   2278   1.1       jtc 	*/
   2279  1.66  christos 	x = (time_t)(t + leapcorr(sp, &t));
   2280  1.66  christos 	y = (time_t)(x - leapcorr(sp, &x));
   2281   1.1       jtc 	if (y < t) {
   2282   1.1       jtc 		do {
   2283   1.1       jtc 			x++;
   2284  1.66  christos 			y = (time_t)(x - leapcorr(sp, &x));
   2285   1.1       jtc 		} while (y < t);
   2286  1.19    kleink 		if (t != y) {
   2287   1.1       jtc 			return x - 1;
   2288  1.19    kleink 		}
   2289   1.1       jtc 	} else if (y > t) {
   2290   1.1       jtc 		do {
   2291   1.1       jtc 			--x;
   2292  1.66  christos 			y = (time_t)(x - leapcorr(sp, &x));
   2293   1.1       jtc 		} while (y > t);
   2294  1.19    kleink 		if (t != y) {
   2295   1.1       jtc 			return x + 1;
   2296  1.19    kleink 		}
   2297   1.1       jtc 	}
   2298  1.49  christos 	return x;
   2299  1.49  christos }
   2300  1.49  christos 
   2301  1.49  christos 
   2302  1.49  christos 
   2303  1.49  christos time_t
   2304  1.49  christos posix2time(time_t t)
   2305  1.49  christos {
   2306  1.49  christos 	time_t result;
   2307  1.49  christos 
   2308  1.49  christos 	rwlock_wrlock(&lcl_lock);
   2309  1.49  christos 	tzset_unlocked();
   2310  1.49  christos 	result = posix2time_z(lclptr, t);
   2311  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2312  1.49  christos 	return result;
   2313   1.1       jtc }
   2314   1.1       jtc 
   2315   1.1       jtc #endif /* defined STD_INSPIRED */
   2316