Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.1
      1 #ifndef lint
      2 #ifndef NOID
      3 static char	elsieid[] = "@(#)localtime.c	7.43";
      4 #endif /* !defined NOID */
      5 #endif /* !defined lint */
      6 
      7 /*
      8 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
      9 ** POSIX-style TZ environment variable handling from Guy Harris
     10 ** (guy (at) auspex.com).
     11 */
     12 
     13 /*LINTLIBRARY*/
     14 
     15 #include "private.h"
     16 #include "tzfile.h"
     17 #include "fcntl.h"
     18 
     19 /*
     20 ** SunOS 4.1.1 headers lack O_BINARY.
     21 */
     22 
     23 #ifdef O_BINARY
     24 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     25 #endif /* defined O_BINARY */
     26 #ifndef O_BINARY
     27 #define OPEN_MODE	O_RDONLY
     28 #endif /* !defined O_BINARY */
     29 
     30 #ifndef WILDABBR
     31 /*
     32 ** Someone might make incorrect use of a time zone abbreviation:
     33 **	1.	They might reference tzname[0] before calling tzset (explicitly
     34 **		or implicitly).
     35 **	2.	They might reference tzname[1] before calling tzset (explicitly
     36 **		or implicitly).
     37 **	3.	They might reference tzname[1] after setting to a time zone
     38 **		in which Daylight Saving Time is never observed.
     39 **	4.	They might reference tzname[0] after setting to a time zone
     40 **		in which Standard Time is never observed.
     41 **	5.	They might reference tm.TM_ZONE after calling offtime.
     42 ** What's best to do in the above cases is open to debate;
     43 ** for now, we just set things up so that in any of the five cases
     44 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     45 ** string "tzname[0] used before set", and similarly for the other cases.
     46 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     47 ** manual page of what this "time zone abbreviation" means (doing this so
     48 ** that tzname[0] has the "normal" length of three characters).
     49 */
     50 #define WILDABBR	"   "
     51 #endif /* !defined WILDABBR */
     52 
     53 static char		wildabbr[] = "WILDABBR";
     54 
     55 static const char	gmt[] = "GMT";
     56 
     57 struct ttinfo {				/* time type information */
     58 	long		tt_gmtoff;	/* GMT offset in seconds */
     59 	int		tt_isdst;	/* used to set tm_isdst */
     60 	int		tt_abbrind;	/* abbreviation list index */
     61 	int		tt_ttisstd;	/* TRUE if transition is std time */
     62 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
     63 };
     64 
     65 struct lsinfo {				/* leap second information */
     66 	time_t		ls_trans;	/* transition time */
     67 	long		ls_corr;	/* correction to apply */
     68 };
     69 
     70 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     71 
     72 #ifdef TZNAME_MAX
     73 #define MY_TZNAME_MAX	TZNAME_MAX
     74 #endif /* defined TZNAME_MAX */
     75 #ifndef TZNAME_MAX
     76 #define MY_TZNAME_MAX	255
     77 #endif /* !defined TZNAME_MAX */
     78 
     79 struct state {
     80 	int		leapcnt;
     81 	int		timecnt;
     82 	int		typecnt;
     83 	int		charcnt;
     84 	time_t		ats[TZ_MAX_TIMES];
     85 	unsigned char	types[TZ_MAX_TIMES];
     86 	struct ttinfo	ttis[TZ_MAX_TYPES];
     87 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
     88 				(2 * (MY_TZNAME_MAX + 1)))];
     89 	struct lsinfo	lsis[TZ_MAX_LEAPS];
     90 };
     91 
     92 struct rule {
     93 	int		r_type;		/* type of rule--see below */
     94 	int		r_day;		/* day number of rule */
     95 	int		r_week;		/* week number of rule */
     96 	int		r_mon;		/* month number of rule */
     97 	long		r_time;		/* transition time of rule */
     98 };
     99 
    100 #define JULIAN_DAY		0	/* Jn - Julian day */
    101 #define DAY_OF_YEAR		1	/* n - day of year */
    102 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    103 
    104 /*
    105 ** Prototypes for static functions.
    106 */
    107 
    108 static long		detzcode P((const char * codep));
    109 static const char *	getzname P((const char * strp));
    110 static const char *	getnum P((const char * strp, int * nump, int min,
    111 				int max));
    112 static const char *	getsecs P((const char * strp, long * secsp));
    113 static const char *	getoffset P((const char * strp, long * offsetp));
    114 static const char *	getrule P((const char * strp, struct rule * rulep));
    115 static void		gmtload P((struct state * sp));
    116 static void		gmtsub P((const time_t * timep, long offset,
    117 				struct tm * tmp));
    118 static void		localsub P((const time_t * timep, long offset,
    119 				struct tm * tmp));
    120 static int		increment_overflow P((int * number, int delta));
    121 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    122 				int base));
    123 static void		settzname P((void));
    124 static time_t		time1 P((struct tm * tmp,
    125 				void(*funcp) P((const time_t *,
    126 				long, struct tm *)),
    127 				long offset));
    128 static time_t		time2 P((struct tm *tmp,
    129 				void(*funcp) P((const time_t *,
    130 				long, struct tm*)),
    131 				long offset, int * okayp));
    132 static void		timesub P((const time_t * timep, long offset,
    133 				const struct state * sp, struct tm * tmp));
    134 static int		tmcomp P((const struct tm * atmp,
    135 				const struct tm * btmp));
    136 static time_t		transtime P((time_t janfirst, int year,
    137 				const struct rule * rulep, long offset));
    138 static int		tzload P((const char * name, struct state * sp));
    139 static int		tzparse P((const char * name, struct state * sp,
    140 				int lastditch));
    141 
    142 #ifdef ALL_STATE
    143 static struct state *	lclptr;
    144 static struct state *	gmtptr;
    145 #endif /* defined ALL_STATE */
    146 
    147 #ifndef ALL_STATE
    148 static struct state	lclmem;
    149 static struct state	gmtmem;
    150 #define lclptr		(&lclmem)
    151 #define gmtptr		(&gmtmem)
    152 #endif /* State Farm */
    153 
    154 #ifndef TZ_STRLEN_MAX
    155 #define TZ_STRLEN_MAX 255
    156 #endif /* !defined TZ_STRLEN_MAX */
    157 
    158 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    159 static int		lcl_is_set;
    160 static int		gmt_is_set;
    161 
    162 char *			tzname[2] = {
    163 	wildabbr,
    164 	wildabbr
    165 };
    166 
    167 /*
    168 ** Section 4.12.3 of X3.159-1989 requires that
    169 **	Except for the strftime function, these functions [asctime,
    170 **	ctime, gmtime, localtime] return values in one of two static
    171 **	objects: a broken-down time structure and an array of char.
    172 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    173 */
    174 
    175 static struct tm	tm;
    176 
    177 #ifdef USG_COMPAT
    178 time_t			timezone = 0;
    179 int			daylight = 0;
    180 #endif /* defined USG_COMPAT */
    181 
    182 #ifdef ALTZONE
    183 time_t			altzone = 0;
    184 #endif /* defined ALTZONE */
    185 
    186 static long
    187 detzcode(codep)
    188 const char * const	codep;
    189 {
    190 	register long	result;
    191 	register int	i;
    192 
    193 	result = 0;
    194 	for (i = 0; i < 4; ++i)
    195 		result = (result << 8) | (codep[i] & 0xff);
    196 	return result;
    197 }
    198 
    199 static void
    200 settzname P((void))
    201 {
    202 	register struct state * const		sp = lclptr;
    203 	register int				i;
    204 
    205 	tzname[0] = wildabbr;
    206 	tzname[1] = wildabbr;
    207 #ifdef USG_COMPAT
    208 	daylight = 0;
    209 	timezone = 0;
    210 #endif /* defined USG_COMPAT */
    211 #ifdef ALTZONE
    212 	altzone = 0;
    213 #endif /* defined ALTZONE */
    214 #ifdef ALL_STATE
    215 	if (sp == NULL) {
    216 		tzname[0] = tzname[1] = gmt;
    217 		return;
    218 	}
    219 #endif /* defined ALL_STATE */
    220 	for (i = 0; i < sp->typecnt; ++i) {
    221 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    222 
    223 		tzname[ttisp->tt_isdst] =
    224 			&sp->chars[ttisp->tt_abbrind];
    225 #ifdef USG_COMPAT
    226 		if (ttisp->tt_isdst)
    227 			daylight = 1;
    228 		if (i == 0 || !ttisp->tt_isdst)
    229 			timezone = -(ttisp->tt_gmtoff);
    230 #endif /* defined USG_COMPAT */
    231 #ifdef ALTZONE
    232 		if (i == 0 || ttisp->tt_isdst)
    233 			altzone = -(ttisp->tt_gmtoff);
    234 #endif /* defined ALTZONE */
    235 	}
    236 	/*
    237 	** And to get the latest zone names into tzname. . .
    238 	*/
    239 	for (i = 0; i < sp->timecnt; ++i) {
    240 		register const struct ttinfo * const	ttisp =
    241 							&sp->ttis[
    242 								sp->types[i]];
    243 
    244 		tzname[ttisp->tt_isdst] =
    245 			&sp->chars[ttisp->tt_abbrind];
    246 	}
    247 }
    248 
    249 static int
    250 tzload(name, sp)
    251 register const char *		name;
    252 register struct state * const	sp;
    253 {
    254 	register const char *	p;
    255 	register int		i;
    256 	register int		fid;
    257 
    258 	if (name == NULL && (name = TZDEFAULT) == NULL)
    259 		return -1;
    260 	{
    261 		register int	doaccess;
    262 		/*
    263 		** Section 4.9.1 of the C standard says that
    264 		** "FILENAME_MAX expands to an integral constant expression
    265 		** that is the sie needed for an array of char large enough
    266 		** to hold the longest file name string that the implementation
    267 		** guarantees can be opened."
    268 		*/
    269 		char		fullname[FILENAME_MAX + 1];
    270 
    271 		if (name[0] == ':')
    272 			++name;
    273 		doaccess = name[0] == '/';
    274 		if (!doaccess) {
    275 			if ((p = TZDIR) == NULL)
    276 				return -1;
    277 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    278 				return -1;
    279 			(void) strcpy(fullname, p);
    280 			(void) strcat(fullname, "/");
    281 			(void) strcat(fullname, name);
    282 			/*
    283 			** Set doaccess if '.' (as in "../") shows up in name.
    284 			*/
    285 			if (strchr(name, '.') != NULL)
    286 				doaccess = TRUE;
    287 			name = fullname;
    288 		}
    289 		if (doaccess && access(name, R_OK) != 0)
    290 			return -1;
    291 		if ((fid = open(name, OPEN_MODE)) == -1)
    292 			return -1;
    293 	}
    294 	{
    295 		struct tzhead *	tzhp;
    296 		char		buf[sizeof *sp + sizeof *tzhp];
    297 		int		ttisstdcnt;
    298 		int		ttisgmtcnt;
    299 
    300 		i = read(fid, buf, sizeof buf);
    301 		if (close(fid) != 0)
    302 			return -1;
    303 		p = buf;
    304 		p += sizeof tzhp->tzh_reserved;
    305 		ttisstdcnt = (int) detzcode(p);
    306 		p += 4;
    307 		ttisgmtcnt = (int) detzcode(p);
    308 		p += 4;
    309 		sp->leapcnt = (int) detzcode(p);
    310 		p += 4;
    311 		sp->timecnt = (int) detzcode(p);
    312 		p += 4;
    313 		sp->typecnt = (int) detzcode(p);
    314 		p += 4;
    315 		sp->charcnt = (int) detzcode(p);
    316 		p += 4;
    317 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    318 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    319 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    320 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    321 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    322 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    323 				return -1;
    324 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
    325 			sp->timecnt +			/* types */
    326 			sp->typecnt * (4 + 2) +		/* ttinfos */
    327 			sp->charcnt +			/* chars */
    328 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    329 			ttisstdcnt +			/* ttisstds */
    330 			ttisgmtcnt)			/* ttisgmts */
    331 				return -1;
    332 		for (i = 0; i < sp->timecnt; ++i) {
    333 			sp->ats[i] = detzcode(p);
    334 			p += 4;
    335 		}
    336 		for (i = 0; i < sp->timecnt; ++i) {
    337 			sp->types[i] = (unsigned char) *p++;
    338 			if (sp->types[i] >= sp->typecnt)
    339 				return -1;
    340 		}
    341 		for (i = 0; i < sp->typecnt; ++i) {
    342 			register struct ttinfo *	ttisp;
    343 
    344 			ttisp = &sp->ttis[i];
    345 			ttisp->tt_gmtoff = detzcode(p);
    346 			p += 4;
    347 			ttisp->tt_isdst = (unsigned char) *p++;
    348 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    349 				return -1;
    350 			ttisp->tt_abbrind = (unsigned char) *p++;
    351 			if (ttisp->tt_abbrind < 0 ||
    352 				ttisp->tt_abbrind > sp->charcnt)
    353 					return -1;
    354 		}
    355 		for (i = 0; i < sp->charcnt; ++i)
    356 			sp->chars[i] = *p++;
    357 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    358 		for (i = 0; i < sp->leapcnt; ++i) {
    359 			register struct lsinfo *	lsisp;
    360 
    361 			lsisp = &sp->lsis[i];
    362 			lsisp->ls_trans = detzcode(p);
    363 			p += 4;
    364 			lsisp->ls_corr = detzcode(p);
    365 			p += 4;
    366 		}
    367 		for (i = 0; i < sp->typecnt; ++i) {
    368 			register struct ttinfo *	ttisp;
    369 
    370 			ttisp = &sp->ttis[i];
    371 			if (ttisstdcnt == 0)
    372 				ttisp->tt_ttisstd = FALSE;
    373 			else {
    374 				ttisp->tt_ttisstd = *p++;
    375 				if (ttisp->tt_ttisstd != TRUE &&
    376 					ttisp->tt_ttisstd != FALSE)
    377 						return -1;
    378 			}
    379 		}
    380 		for (i = 0; i < sp->typecnt; ++i) {
    381 			register struct ttinfo *	ttisp;
    382 
    383 			ttisp = &sp->ttis[i];
    384 			if (ttisgmtcnt == 0)
    385 				ttisp->tt_ttisgmt = FALSE;
    386 			else {
    387 				ttisp->tt_ttisgmt = *p++;
    388 				if (ttisp->tt_ttisgmt != TRUE &&
    389 					ttisp->tt_ttisgmt != FALSE)
    390 						return -1;
    391 			}
    392 		}
    393 	}
    394 	return 0;
    395 }
    396 
    397 static const int	mon_lengths[2][MONSPERYEAR] = {
    398 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    399 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    400 };
    401 
    402 static const int	year_lengths[2] = {
    403 	DAYSPERNYEAR, DAYSPERLYEAR
    404 };
    405 
    406 /*
    407 ** Given a pointer into a time zone string, scan until a character that is not
    408 ** a valid character in a zone name is found.  Return a pointer to that
    409 ** character.
    410 */
    411 
    412 static const char *
    413 getzname(strp)
    414 register const char *	strp;
    415 {
    416 	register char	c;
    417 
    418 	while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
    419 		c != '+')
    420 			++strp;
    421 	return strp;
    422 }
    423 
    424 /*
    425 ** Given a pointer into a time zone string, extract a number from that string.
    426 ** Check that the number is within a specified range; if it is not, return
    427 ** NULL.
    428 ** Otherwise, return a pointer to the first character not part of the number.
    429 */
    430 
    431 static const char *
    432 getnum(strp, nump, min, max)
    433 register const char *	strp;
    434 int * const		nump;
    435 const int		min;
    436 const int		max;
    437 {
    438 	register char	c;
    439 	register int	num;
    440 
    441 	if (strp == NULL || !isdigit(*strp))
    442 		return NULL;
    443 	num = 0;
    444 	while ((c = *strp) != '\0' && isdigit(c)) {
    445 		num = num * 10 + (c - '0');
    446 		if (num > max)
    447 			return NULL;	/* illegal value */
    448 		++strp;
    449 	}
    450 	if (num < min)
    451 		return NULL;		/* illegal value */
    452 	*nump = num;
    453 	return strp;
    454 }
    455 
    456 /*
    457 ** Given a pointer into a time zone string, extract a number of seconds,
    458 ** in hh[:mm[:ss]] form, from the string.
    459 ** If any error occurs, return NULL.
    460 ** Otherwise, return a pointer to the first character not part of the number
    461 ** of seconds.
    462 */
    463 
    464 static const char *
    465 getsecs(strp, secsp)
    466 register const char *	strp;
    467 long * const		secsp;
    468 {
    469 	int	num;
    470 
    471 	/*
    472 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    473 	** "M10.4.6/26", which does not conform to Posix,
    474 	** but which specifies the equivalent of
    475 	** ``02:00 on the first Sunday on or after 23 Oct''.
    476 	*/
    477 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    478 	if (strp == NULL)
    479 		return NULL;
    480 	*secsp = num * (long) SECSPERHOUR;
    481 	if (*strp == ':') {
    482 		++strp;
    483 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    484 		if (strp == NULL)
    485 			return NULL;
    486 		*secsp += num * SECSPERMIN;
    487 		if (*strp == ':') {
    488 			++strp;
    489 			/* `SECSPERMIN' allows for leap seconds.  */
    490 			strp = getnum(strp, &num, 0, SECSPERMIN);
    491 			if (strp == NULL)
    492 				return NULL;
    493 			*secsp += num;
    494 		}
    495 	}
    496 	return strp;
    497 }
    498 
    499 /*
    500 ** Given a pointer into a time zone string, extract an offset, in
    501 ** [+-]hh[:mm[:ss]] form, from the string.
    502 ** If any error occurs, return NULL.
    503 ** Otherwise, return a pointer to the first character not part of the time.
    504 */
    505 
    506 static const char *
    507 getoffset(strp, offsetp)
    508 register const char *	strp;
    509 long * const		offsetp;
    510 {
    511 	register int	neg;
    512 
    513 	if (*strp == '-') {
    514 		neg = 1;
    515 		++strp;
    516 	} else if (isdigit(*strp) || *strp++ == '+')
    517 		neg = 0;
    518 	else	return NULL;		/* illegal offset */
    519 	strp = getsecs(strp, offsetp);
    520 	if (strp == NULL)
    521 		return NULL;		/* illegal time */
    522 	if (neg)
    523 		*offsetp = -*offsetp;
    524 	return strp;
    525 }
    526 
    527 /*
    528 ** Given a pointer into a time zone string, extract a rule in the form
    529 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    530 ** If a valid rule is not found, return NULL.
    531 ** Otherwise, return a pointer to the first character not part of the rule.
    532 */
    533 
    534 static const char *
    535 getrule(strp, rulep)
    536 const char *			strp;
    537 register struct rule * const	rulep;
    538 {
    539 	if (*strp == 'J') {
    540 		/*
    541 		** Julian day.
    542 		*/
    543 		rulep->r_type = JULIAN_DAY;
    544 		++strp;
    545 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    546 	} else if (*strp == 'M') {
    547 		/*
    548 		** Month, week, day.
    549 		*/
    550 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    551 		++strp;
    552 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    553 		if (strp == NULL)
    554 			return NULL;
    555 		if (*strp++ != '.')
    556 			return NULL;
    557 		strp = getnum(strp, &rulep->r_week, 1, 5);
    558 		if (strp == NULL)
    559 			return NULL;
    560 		if (*strp++ != '.')
    561 			return NULL;
    562 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    563 	} else if (isdigit(*strp)) {
    564 		/*
    565 		** Day of year.
    566 		*/
    567 		rulep->r_type = DAY_OF_YEAR;
    568 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    569 	} else	return NULL;		/* invalid format */
    570 	if (strp == NULL)
    571 		return NULL;
    572 	if (*strp == '/') {
    573 		/*
    574 		** Time specified.
    575 		*/
    576 		++strp;
    577 		strp = getsecs(strp, &rulep->r_time);
    578 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    579 	return strp;
    580 }
    581 
    582 /*
    583 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
    584 ** year, a rule, and the offset from GMT at the time that rule takes effect,
    585 ** calculate the Epoch-relative time that rule takes effect.
    586 */
    587 
    588 static time_t
    589 transtime(janfirst, year, rulep, offset)
    590 const time_t				janfirst;
    591 const int				year;
    592 register const struct rule * const	rulep;
    593 const long				offset;
    594 {
    595 	register int	leapyear;
    596 	register time_t	value;
    597 	register int	i;
    598 	int		d, m1, yy0, yy1, yy2, dow;
    599 
    600 	INITIALIZE(value);
    601 	leapyear = isleap(year);
    602 	switch (rulep->r_type) {
    603 
    604 	case JULIAN_DAY:
    605 		/*
    606 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    607 		** years.
    608 		** In non-leap years, or if the day number is 59 or less, just
    609 		** add SECSPERDAY times the day number-1 to the time of
    610 		** January 1, midnight, to get the day.
    611 		*/
    612 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    613 		if (leapyear && rulep->r_day >= 60)
    614 			value += SECSPERDAY;
    615 		break;
    616 
    617 	case DAY_OF_YEAR:
    618 		/*
    619 		** n - day of year.
    620 		** Just add SECSPERDAY times the day number to the time of
    621 		** January 1, midnight, to get the day.
    622 		*/
    623 		value = janfirst + rulep->r_day * SECSPERDAY;
    624 		break;
    625 
    626 	case MONTH_NTH_DAY_OF_WEEK:
    627 		/*
    628 		** Mm.n.d - nth "dth day" of month m.
    629 		*/
    630 		value = janfirst;
    631 		for (i = 0; i < rulep->r_mon - 1; ++i)
    632 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    633 
    634 		/*
    635 		** Use Zeller's Congruence to get day-of-week of first day of
    636 		** month.
    637 		*/
    638 		m1 = (rulep->r_mon + 9) % 12 + 1;
    639 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    640 		yy1 = yy0 / 100;
    641 		yy2 = yy0 % 100;
    642 		dow = ((26 * m1 - 2) / 10 +
    643 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    644 		if (dow < 0)
    645 			dow += DAYSPERWEEK;
    646 
    647 		/*
    648 		** "dow" is the day-of-week of the first day of the month.  Get
    649 		** the day-of-month (zero-origin) of the first "dow" day of the
    650 		** month.
    651 		*/
    652 		d = rulep->r_day - dow;
    653 		if (d < 0)
    654 			d += DAYSPERWEEK;
    655 		for (i = 1; i < rulep->r_week; ++i) {
    656 			if (d + DAYSPERWEEK >=
    657 				mon_lengths[leapyear][rulep->r_mon - 1])
    658 					break;
    659 			d += DAYSPERWEEK;
    660 		}
    661 
    662 		/*
    663 		** "d" is the day-of-month (zero-origin) of the day we want.
    664 		*/
    665 		value += d * SECSPERDAY;
    666 		break;
    667 	}
    668 
    669 	/*
    670 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
    671 	** question.  To get the Epoch-relative time of the specified local
    672 	** time on that day, add the transition time and the current offset
    673 	** from GMT.
    674 	*/
    675 	return value + rulep->r_time + offset;
    676 }
    677 
    678 /*
    679 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    680 ** appropriate.
    681 */
    682 
    683 static int
    684 tzparse(name, sp, lastditch)
    685 const char *			name;
    686 register struct state * const	sp;
    687 const int			lastditch;
    688 {
    689 	const char *			stdname;
    690 	const char *			dstname;
    691 	size_t				stdlen;
    692 	size_t				dstlen;
    693 	long				stdoffset;
    694 	long				dstoffset;
    695 	register time_t *		atp;
    696 	register unsigned char *	typep;
    697 	register char *			cp;
    698 	register int			load_result;
    699 
    700 	INITIALIZE(dstname);
    701 	stdname = name;
    702 	if (lastditch) {
    703 		stdlen = strlen(name);	/* length of standard zone name */
    704 		name += stdlen;
    705 		if (stdlen >= sizeof sp->chars)
    706 			stdlen = (sizeof sp->chars) - 1;
    707 	} else {
    708 		name = getzname(name);
    709 		stdlen = name - stdname;
    710 		if (stdlen < 3)
    711 			return -1;
    712 	}
    713 	if (*name == '\0')
    714 		return -1;	/* was "stdoffset = 0;" */
    715 	else {
    716 		name = getoffset(name, &stdoffset);
    717 		if (name == NULL)
    718 			return -1;
    719 	}
    720 	load_result = tzload(TZDEFRULES, sp);
    721 	if (load_result != 0)
    722 		sp->leapcnt = 0;		/* so, we're off a little */
    723 	if (*name != '\0') {
    724 		dstname = name;
    725 		name = getzname(name);
    726 		dstlen = name - dstname;	/* length of DST zone name */
    727 		if (dstlen < 3)
    728 			return -1;
    729 		if (*name != '\0' && *name != ',' && *name != ';') {
    730 			name = getoffset(name, &dstoffset);
    731 			if (name == NULL)
    732 				return -1;
    733 		} else	dstoffset = stdoffset - SECSPERHOUR;
    734 		if (*name == ',' || *name == ';') {
    735 			struct rule	start;
    736 			struct rule	end;
    737 			register int	year;
    738 			register time_t	janfirst;
    739 			time_t		starttime;
    740 			time_t		endtime;
    741 
    742 			++name;
    743 			if ((name = getrule(name, &start)) == NULL)
    744 				return -1;
    745 			if (*name++ != ',')
    746 				return -1;
    747 			if ((name = getrule(name, &end)) == NULL)
    748 				return -1;
    749 			if (*name != '\0')
    750 				return -1;
    751 			sp->typecnt = 2;	/* standard time and DST */
    752 			/*
    753 			** Two transitions per year, from EPOCH_YEAR to 2037.
    754 			*/
    755 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    756 			if (sp->timecnt > TZ_MAX_TIMES)
    757 				return -1;
    758 			sp->ttis[0].tt_gmtoff = -dstoffset;
    759 			sp->ttis[0].tt_isdst = 1;
    760 			sp->ttis[0].tt_abbrind = stdlen + 1;
    761 			sp->ttis[1].tt_gmtoff = -stdoffset;
    762 			sp->ttis[1].tt_isdst = 0;
    763 			sp->ttis[1].tt_abbrind = 0;
    764 			atp = sp->ats;
    765 			typep = sp->types;
    766 			janfirst = 0;
    767 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    768 				starttime = transtime(janfirst, year, &start,
    769 					stdoffset);
    770 				endtime = transtime(janfirst, year, &end,
    771 					dstoffset);
    772 				if (starttime > endtime) {
    773 					*atp++ = endtime;
    774 					*typep++ = 1;	/* DST ends */
    775 					*atp++ = starttime;
    776 					*typep++ = 0;	/* DST begins */
    777 				} else {
    778 					*atp++ = starttime;
    779 					*typep++ = 0;	/* DST begins */
    780 					*atp++ = endtime;
    781 					*typep++ = 1;	/* DST ends */
    782 				}
    783 				janfirst += year_lengths[isleap(year)] *
    784 					SECSPERDAY;
    785 			}
    786 		} else {
    787 			register long	theirstdoffset;
    788 			register long	theirdstoffset;
    789 			register long	theiroffset;
    790 			register int	isdst;
    791 			register int	i;
    792 			register int	j;
    793 
    794 			if (*name != '\0')
    795 				return -1;
    796 			if (load_result != 0)
    797 				return -1;
    798 			/*
    799 			** Initial values of theirstdoffset and theirdstoffset.
    800 			*/
    801 			theirstdoffset = 0;
    802 			for (i = 0; i < sp->timecnt; ++i) {
    803 				j = sp->types[i];
    804 				if (!sp->ttis[j].tt_isdst) {
    805 					theirstdoffset = -sp->ttis[j].tt_gmtoff;
    806 					break;
    807 				}
    808 			}
    809 			theirdstoffset = 0;
    810 			for (i = 0; i < sp->timecnt; ++i) {
    811 				j = sp->types[i];
    812 				if (sp->ttis[j].tt_isdst) {
    813 					theirdstoffset = -sp->ttis[j].tt_gmtoff;
    814 					break;
    815 				}
    816 			}
    817 			/*
    818 			** Initially we're assumed to be in standard time.
    819 			*/
    820 			isdst = FALSE;
    821 			theiroffset = theirstdoffset;
    822 			/*
    823 			** Now juggle transition times and types
    824 			** tracking offsets as you do.
    825 			*/
    826 			for (i = 0; i < sp->timecnt; ++i) {
    827 				j = sp->types[i];
    828 				sp->types[i] = sp->ttis[j].tt_isdst;
    829 				if (sp->ttis[j].tt_ttisgmt) {
    830 					/* No adjustment to transition time */
    831 				} else {
    832 					/*
    833 					** If summer time is in effect, and the
    834 					** transition time was not specified as
    835 					** standard time, add the summer time
    836 					** offset to the transition time;
    837 					** otherwise, add the standard time
    838 					** offset to the transition time.
    839 					*/
    840 					/*
    841 					** Transitions from DST to DDST
    842 					** will effectively disappear since
    843 					** POSIX provides for only one DST
    844 					** offset.
    845 					*/
    846 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    847 						sp->ats[i] += dstoffset -
    848 							theirdstoffset;
    849 					} else {
    850 						sp->ats[i] += stdoffset -
    851 							theirstdoffset;
    852 					}
    853 				}
    854 				theiroffset = -sp->ttis[j].tt_gmtoff;
    855 				if (sp->ttis[j].tt_isdst)
    856 					theirdstoffset = theiroffset;
    857 				else	theirstdoffset = theiroffset;
    858 			}
    859 			/*
    860 			** Finally, fill in ttis.
    861 			** ttisstd and ttisgmt need not be handled.
    862 			*/
    863 			sp->ttis[0].tt_gmtoff = -stdoffset;
    864 			sp->ttis[0].tt_isdst = FALSE;
    865 			sp->ttis[0].tt_abbrind = 0;
    866 			sp->ttis[1].tt_gmtoff = -dstoffset;
    867 			sp->ttis[1].tt_isdst = TRUE;
    868 			sp->ttis[1].tt_abbrind = stdlen + 1;
    869 		}
    870 	} else {
    871 		dstlen = 0;
    872 		sp->typecnt = 1;		/* only standard time */
    873 		sp->timecnt = 0;
    874 		sp->ttis[0].tt_gmtoff = -stdoffset;
    875 		sp->ttis[0].tt_isdst = 0;
    876 		sp->ttis[0].tt_abbrind = 0;
    877 	}
    878 	sp->charcnt = stdlen + 1;
    879 	if (dstlen != 0)
    880 		sp->charcnt += dstlen + 1;
    881 	if (sp->charcnt > sizeof sp->chars)
    882 		return -1;
    883 	cp = sp->chars;
    884 	(void) strncpy(cp, stdname, stdlen);
    885 	cp += stdlen;
    886 	*cp++ = '\0';
    887 	if (dstlen != 0) {
    888 		(void) strncpy(cp, dstname, dstlen);
    889 		*(cp + dstlen) = '\0';
    890 	}
    891 	return 0;
    892 }
    893 
    894 static void
    895 gmtload(sp)
    896 struct state * const	sp;
    897 {
    898 	if (tzload(gmt, sp) != 0)
    899 		(void) tzparse(gmt, sp, TRUE);
    900 }
    901 
    902 #ifndef STD_INSPIRED
    903 /*
    904 ** A non-static declaration of tzsetwall in a system header file
    905 ** may cause a warning about this upcoming static declaration...
    906 */
    907 static
    908 #endif /* !defined STD_INSPIRED */
    909 void
    910 tzsetwall P((void))
    911 {
    912 	if (lcl_is_set < 0)
    913 		return;
    914 	lcl_is_set = -1;
    915 
    916 #ifdef ALL_STATE
    917 	if (lclptr == NULL) {
    918 		lclptr = (struct state *) malloc(sizeof *lclptr);
    919 		if (lclptr == NULL) {
    920 			settzname();	/* all we can do */
    921 			return;
    922 		}
    923 	}
    924 #endif /* defined ALL_STATE */
    925 	if (tzload((char *) NULL, lclptr) != 0)
    926 		gmtload(lclptr);
    927 	settzname();
    928 }
    929 
    930 void
    931 tzset P((void))
    932 {
    933 	register const char *	name;
    934 
    935 	name = getenv("TZ");
    936 	if (name == NULL) {
    937 		tzsetwall();
    938 		return;
    939 	}
    940 
    941 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    942 		return;
    943 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    944 	if (lcl_is_set)
    945 		(void) strcpy(lcl_TZname, name);
    946 
    947 #ifdef ALL_STATE
    948 	if (lclptr == NULL) {
    949 		lclptr = (struct state *) malloc(sizeof *lclptr);
    950 		if (lclptr == NULL) {
    951 			settzname();	/* all we can do */
    952 			return;
    953 		}
    954 	}
    955 #endif /* defined ALL_STATE */
    956 	if (*name == '\0') {
    957 		/*
    958 		** User wants it fast rather than right.
    959 		*/
    960 		lclptr->leapcnt = 0;		/* so, we're off a little */
    961 		lclptr->timecnt = 0;
    962 		lclptr->ttis[0].tt_gmtoff = 0;
    963 		lclptr->ttis[0].tt_abbrind = 0;
    964 		(void) strcpy(lclptr->chars, gmt);
    965 	} else if (tzload(name, lclptr) != 0)
    966 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
    967 			(void) gmtload(lclptr);
    968 	settzname();
    969 }
    970 
    971 /*
    972 ** The easy way to behave "as if no library function calls" localtime
    973 ** is to not call it--so we drop its guts into "localsub", which can be
    974 ** freely called.  (And no, the PANS doesn't require the above behavior--
    975 ** but it *is* desirable.)
    976 **
    977 ** The unused offset argument is for the benefit of mktime variants.
    978 */
    979 
    980 /*ARGSUSED*/
    981 static void
    982 localsub(timep, offset, tmp)
    983 const time_t * const	timep;
    984 const long		offset;
    985 struct tm * const	tmp;
    986 {
    987 	register struct state *		sp;
    988 	register const struct ttinfo *	ttisp;
    989 	register int			i;
    990 	const time_t			t = *timep;
    991 
    992 	sp = lclptr;
    993 #ifdef ALL_STATE
    994 	if (sp == NULL) {
    995 		gmtsub(timep, offset, tmp);
    996 		return;
    997 	}
    998 #endif /* defined ALL_STATE */
    999 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1000 		i = 0;
   1001 		while (sp->ttis[i].tt_isdst)
   1002 			if (++i >= sp->typecnt) {
   1003 				i = 0;
   1004 				break;
   1005 			}
   1006 	} else {
   1007 		for (i = 1; i < sp->timecnt; ++i)
   1008 			if (t < sp->ats[i])
   1009 				break;
   1010 		i = sp->types[i - 1];
   1011 	}
   1012 	ttisp = &sp->ttis[i];
   1013 	/*
   1014 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1015 	** you'd replace the statement below with
   1016 	**	t += ttisp->tt_gmtoff;
   1017 	**	timesub(&t, 0L, sp, tmp);
   1018 	*/
   1019 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1020 	tmp->tm_isdst = ttisp->tt_isdst;
   1021 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1022 #ifdef TM_ZONE
   1023 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1024 #endif /* defined TM_ZONE */
   1025 }
   1026 
   1027 struct tm *
   1028 localtime(timep)
   1029 const time_t * const	timep;
   1030 {
   1031 	tzset();
   1032 	localsub(timep, 0L, &tm);
   1033 	return &tm;
   1034 }
   1035 
   1036 /*
   1037 ** gmtsub is to gmtime as localsub is to localtime.
   1038 */
   1039 
   1040 static void
   1041 gmtsub(timep, offset, tmp)
   1042 const time_t * const	timep;
   1043 const long		offset;
   1044 struct tm * const	tmp;
   1045 {
   1046 	if (!gmt_is_set) {
   1047 		gmt_is_set = TRUE;
   1048 #ifdef ALL_STATE
   1049 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1050 		if (gmtptr != NULL)
   1051 #endif /* defined ALL_STATE */
   1052 			gmtload(gmtptr);
   1053 	}
   1054 	timesub(timep, offset, gmtptr, tmp);
   1055 #ifdef TM_ZONE
   1056 	/*
   1057 	** Could get fancy here and deliver something such as
   1058 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
   1059 	** but this is no time for a treasure hunt.
   1060 	*/
   1061 	if (offset != 0)
   1062 		tmp->TM_ZONE = wildabbr;
   1063 	else {
   1064 #ifdef ALL_STATE
   1065 		if (gmtptr == NULL)
   1066 			tmp->TM_ZONE = gmt;
   1067 		else	tmp->TM_ZONE = gmtptr->chars;
   1068 #endif /* defined ALL_STATE */
   1069 #ifndef ALL_STATE
   1070 		tmp->TM_ZONE = gmtptr->chars;
   1071 #endif /* State Farm */
   1072 	}
   1073 #endif /* defined TM_ZONE */
   1074 }
   1075 
   1076 struct tm *
   1077 gmtime(timep)
   1078 const time_t * const	timep;
   1079 {
   1080 	gmtsub(timep, 0L, &tm);
   1081 	return &tm;
   1082 }
   1083 
   1084 #ifdef STD_INSPIRED
   1085 
   1086 struct tm *
   1087 offtime(timep, offset)
   1088 const time_t * const	timep;
   1089 const long		offset;
   1090 {
   1091 	gmtsub(timep, offset, &tm);
   1092 	return &tm;
   1093 }
   1094 
   1095 #endif /* defined STD_INSPIRED */
   1096 
   1097 static void
   1098 timesub(timep, offset, sp, tmp)
   1099 const time_t * const			timep;
   1100 const long				offset;
   1101 register const struct state * const	sp;
   1102 register struct tm * const		tmp;
   1103 {
   1104 	register const struct lsinfo *	lp;
   1105 	register long			days;
   1106 	register long			rem;
   1107 	register int			y;
   1108 	register int			yleap;
   1109 	register const int *		ip;
   1110 	register long			corr;
   1111 	register int			hit;
   1112 	register int			i;
   1113 
   1114 	corr = 0;
   1115 	hit = 0;
   1116 #ifdef ALL_STATE
   1117 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1118 #endif /* defined ALL_STATE */
   1119 #ifndef ALL_STATE
   1120 	i = sp->leapcnt;
   1121 #endif /* State Farm */
   1122 	while (--i >= 0) {
   1123 		lp = &sp->lsis[i];
   1124 		if (*timep >= lp->ls_trans) {
   1125 			if (*timep == lp->ls_trans) {
   1126 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1127 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1128 				if (hit)
   1129 					while (i > 0 &&
   1130 						sp->lsis[i].ls_trans ==
   1131 						sp->lsis[i - 1].ls_trans + 1 &&
   1132 						sp->lsis[i].ls_corr ==
   1133 						sp->lsis[i - 1].ls_corr + 1) {
   1134 							++hit;
   1135 							--i;
   1136 					}
   1137 			}
   1138 			corr = lp->ls_corr;
   1139 			break;
   1140 		}
   1141 	}
   1142 	days = *timep / SECSPERDAY;
   1143 	rem = *timep % SECSPERDAY;
   1144 #ifdef mc68k
   1145 	if (*timep == 0x80000000) {
   1146 		/*
   1147 		** A 3B1 muffs the division on the most negative number.
   1148 		*/
   1149 		days = -24855;
   1150 		rem = -11648;
   1151 	}
   1152 #endif /* defined mc68k */
   1153 	rem += (offset - corr);
   1154 	while (rem < 0) {
   1155 		rem += SECSPERDAY;
   1156 		--days;
   1157 	}
   1158 	while (rem >= SECSPERDAY) {
   1159 		rem -= SECSPERDAY;
   1160 		++days;
   1161 	}
   1162 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1163 	rem = rem % SECSPERHOUR;
   1164 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1165 	tmp->tm_sec = (int) (rem % SECSPERMIN);
   1166 	if (hit)
   1167 		/*
   1168 		** A positive leap second requires a special
   1169 		** representation.  This uses "... ??:59:60" et seq.
   1170 		*/
   1171 		tmp->tm_sec += hit;
   1172 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1173 	if (tmp->tm_wday < 0)
   1174 		tmp->tm_wday += DAYSPERWEEK;
   1175 	y = EPOCH_YEAR;
   1176 	if (days >= 0)
   1177 		for ( ; ; ) {
   1178 			yleap = isleap(y);
   1179 			if (days < (long) year_lengths[yleap])
   1180 				break;
   1181 			++y;
   1182 			days = days - (long) year_lengths[yleap];
   1183 		}
   1184 	else do {
   1185 		--y;
   1186 		yleap = isleap(y);
   1187 		days = days + (long) year_lengths[yleap];
   1188 	} while (days < 0);
   1189 	tmp->tm_year = y - TM_YEAR_BASE;
   1190 	tmp->tm_yday = (int) days;
   1191 	ip = mon_lengths[yleap];
   1192 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1193 		days = days - (long) ip[tmp->tm_mon];
   1194 	tmp->tm_mday = (int) (days + 1);
   1195 	tmp->tm_isdst = 0;
   1196 #ifdef TM_GMTOFF
   1197 	tmp->TM_GMTOFF = offset;
   1198 #endif /* defined TM_GMTOFF */
   1199 }
   1200 
   1201 char *
   1202 ctime(timep)
   1203 const time_t * const	timep;
   1204 {
   1205 /*
   1206 ** Section 4.12.3.2 of X3.159-1989 requires that
   1207 **	The ctime funciton converts the calendar time pointed to by timer
   1208 **	to local time in the form of a string.  It is equivalent to
   1209 **		asctime(localtime(timer))
   1210 */
   1211 	return asctime(localtime(timep));
   1212 }
   1213 
   1214 /*
   1215 ** Adapted from code provided by Robert Elz, who writes:
   1216 **	The "best" way to do mktime I think is based on an idea of Bob
   1217 **	Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
   1218 **	It does a binary search of the time_t space.  Since time_t's are
   1219 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1220 **	would still be very reasonable).
   1221 */
   1222 
   1223 #ifndef WRONG
   1224 #define WRONG	(-1)
   1225 #endif /* !defined WRONG */
   1226 
   1227 /*
   1228 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1229 */
   1230 
   1231 static int
   1232 increment_overflow(number, delta)
   1233 int *	number;
   1234 int	delta;
   1235 {
   1236 	int	number0;
   1237 
   1238 	number0 = *number;
   1239 	*number += delta;
   1240 	return (*number < number0) != (delta < 0);
   1241 }
   1242 
   1243 static int
   1244 normalize_overflow(tensptr, unitsptr, base)
   1245 int * const	tensptr;
   1246 int * const	unitsptr;
   1247 const int	base;
   1248 {
   1249 	register int	tensdelta;
   1250 
   1251 	tensdelta = (*unitsptr >= 0) ?
   1252 		(*unitsptr / base) :
   1253 		(-1 - (-1 - *unitsptr) / base);
   1254 	*unitsptr -= tensdelta * base;
   1255 	return increment_overflow(tensptr, tensdelta);
   1256 }
   1257 
   1258 static int
   1259 tmcomp(atmp, btmp)
   1260 register const struct tm * const atmp;
   1261 register const struct tm * const btmp;
   1262 {
   1263 	register int	result;
   1264 
   1265 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1266 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1267 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1268 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1269 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1270 			result = atmp->tm_sec - btmp->tm_sec;
   1271 	return result;
   1272 }
   1273 
   1274 static time_t
   1275 time2(tmp, funcp, offset, okayp)
   1276 struct tm * const	tmp;
   1277 void (* const		funcp) P((const time_t*, long, struct tm*));
   1278 const long		offset;
   1279 int * const		okayp;
   1280 {
   1281 	register const struct state *	sp;
   1282 	register int			dir;
   1283 	register int			bits;
   1284 	register int			i, j ;
   1285 	register int			saved_seconds;
   1286 	time_t				newt;
   1287 	time_t				t;
   1288 	struct tm			yourtm, mytm;
   1289 
   1290 	*okayp = FALSE;
   1291 	yourtm = *tmp;
   1292 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1293 		return WRONG;
   1294 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1295 		return WRONG;
   1296 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1297 		return WRONG;
   1298 	/*
   1299 	** Turn yourtm.tm_year into an actual year number for now.
   1300 	** It is converted back to an offset from TM_YEAR_BASE later.
   1301 	*/
   1302 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1303 		return WRONG;
   1304 	while (yourtm.tm_mday <= 0) {
   1305 		if (increment_overflow(&yourtm.tm_year, -1))
   1306 			return WRONG;
   1307 		yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
   1308 	}
   1309 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1310 		yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
   1311 		if (increment_overflow(&yourtm.tm_year, 1))
   1312 			return WRONG;
   1313 	}
   1314 	for ( ; ; ) {
   1315 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1316 		if (yourtm.tm_mday <= i)
   1317 			break;
   1318 		yourtm.tm_mday -= i;
   1319 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1320 			yourtm.tm_mon = 0;
   1321 			if (increment_overflow(&yourtm.tm_year, 1))
   1322 				return WRONG;
   1323 		}
   1324 	}
   1325 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1326 		return WRONG;
   1327 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1328 		/*
   1329 		** We can't set tm_sec to 0, because that might push the
   1330 		** time below the minimum representable time.
   1331 		** Set tm_sec to 59 instead.
   1332 		** This assumes that the minimum representable time is
   1333 		** not in the same minute that a leap second was deleted from,
   1334 		** which is a safer assumption than using 58 would be.
   1335 		*/
   1336 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1337 			return WRONG;
   1338 		saved_seconds = yourtm.tm_sec;
   1339 		yourtm.tm_sec = SECSPERMIN - 1;
   1340 	} else {
   1341 		saved_seconds = yourtm.tm_sec;
   1342 		yourtm.tm_sec = 0;
   1343 	}
   1344 	/*
   1345 	** Calculate the number of magnitude bits in a time_t
   1346 	** (this works regardless of whether time_t is
   1347 	** signed or unsigned, though lint complains if unsigned).
   1348 	*/
   1349 	for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
   1350 		continue;
   1351 	/*
   1352 	** If time_t is signed, then 0 is the median value,
   1353 	** if time_t is unsigned, then 1 << bits is median.
   1354 	*/
   1355 	t = (t < 0) ? 0 : ((time_t) 1 << bits);
   1356 	for ( ; ; ) {
   1357 		(*funcp)(&t, offset, &mytm);
   1358 		dir = tmcomp(&mytm, &yourtm);
   1359 		if (dir != 0) {
   1360 			if (bits-- < 0)
   1361 				return WRONG;
   1362 			if (bits < 0)
   1363 				--t;
   1364 			else if (dir > 0)
   1365 				t -= (time_t) 1 << bits;
   1366 			else	t += (time_t) 1 << bits;
   1367 			continue;
   1368 		}
   1369 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1370 			break;
   1371 		/*
   1372 		** Right time, wrong type.
   1373 		** Hunt for right time, right type.
   1374 		** It's okay to guess wrong since the guess
   1375 		** gets checked.
   1376 		*/
   1377 		/*
   1378 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1379 		*/
   1380 		sp = (const struct state *)
   1381 			(((void *) funcp == (void *) localsub) ?
   1382 			lclptr : gmtptr);
   1383 #ifdef ALL_STATE
   1384 		if (sp == NULL)
   1385 			return WRONG;
   1386 #endif /* defined ALL_STATE */
   1387 		for (i = 0; i < sp->typecnt; ++i) {
   1388 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1389 				continue;
   1390 			for (j = 0; j < sp->typecnt; ++j) {
   1391 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1392 					continue;
   1393 				newt = t + sp->ttis[j].tt_gmtoff -
   1394 					sp->ttis[i].tt_gmtoff;
   1395 				(*funcp)(&newt, offset, &mytm);
   1396 				if (tmcomp(&mytm, &yourtm) != 0)
   1397 					continue;
   1398 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1399 					continue;
   1400 				/*
   1401 				** We have a match.
   1402 				*/
   1403 				t = newt;
   1404 				goto label;
   1405 			}
   1406 		}
   1407 		return WRONG;
   1408 	}
   1409 label:
   1410 	newt = t + saved_seconds;
   1411 	if ((newt < t) != (saved_seconds < 0))
   1412 		return WRONG;
   1413 	t = newt;
   1414 	(*funcp)(&t, offset, tmp);
   1415 	*okayp = TRUE;
   1416 	return t;
   1417 }
   1418 
   1419 static time_t
   1420 time1(tmp, funcp, offset)
   1421 struct tm * const	tmp;
   1422 void (* const		funcp) P((const time_t*, long, struct tm*));
   1423 const long		offset;
   1424 {
   1425 	register time_t			t;
   1426 	register const struct state *	sp;
   1427 	register int			samei, otheri;
   1428 	int				okay;
   1429 
   1430 	if (tmp->tm_isdst > 1)
   1431 		tmp->tm_isdst = 1;
   1432 	t = time2(tmp, funcp, offset, &okay);
   1433 #ifdef PCTS
   1434 	/*
   1435 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1436 	*/
   1437 	if (okay)
   1438 		return t;
   1439 	if (tmp->tm_isdst < 0)
   1440 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1441 #endif /* defined PCTS */
   1442 #ifndef PCTS
   1443 	if (okay || tmp->tm_isdst < 0)
   1444 		return t;
   1445 #endif /* !defined PCTS */
   1446 	/*
   1447 	** We're supposed to assume that somebody took a time of one type
   1448 	** and did some math on it that yielded a "struct tm" that's bad.
   1449 	** We try to divine the type they started from and adjust to the
   1450 	** type they need.
   1451 	*/
   1452 	/*
   1453 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1454 	*/
   1455 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1456 		lclptr : gmtptr);
   1457 #ifdef ALL_STATE
   1458 	if (sp == NULL)
   1459 		return WRONG;
   1460 #endif /* defined ALL_STATE */
   1461 	for (samei = 0; samei < sp->typecnt; ++samei) {
   1462 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1463 			continue;
   1464 		for (otheri = 0; otheri < sp->typecnt; ++otheri) {
   1465 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1466 				continue;
   1467 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1468 					sp->ttis[samei].tt_gmtoff;
   1469 			tmp->tm_isdst = !tmp->tm_isdst;
   1470 			t = time2(tmp, funcp, offset, &okay);
   1471 			if (okay)
   1472 				return t;
   1473 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1474 					sp->ttis[samei].tt_gmtoff;
   1475 			tmp->tm_isdst = !tmp->tm_isdst;
   1476 		}
   1477 	}
   1478 	return WRONG;
   1479 }
   1480 
   1481 time_t
   1482 mktime(tmp)
   1483 struct tm * const	tmp;
   1484 {
   1485 	tzset();
   1486 	return time1(tmp, localsub, 0L);
   1487 }
   1488 
   1489 #ifdef STD_INSPIRED
   1490 
   1491 time_t
   1492 timelocal(tmp)
   1493 struct tm * const	tmp;
   1494 {
   1495 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1496 	return mktime(tmp);
   1497 }
   1498 
   1499 time_t
   1500 timegm(tmp)
   1501 struct tm * const	tmp;
   1502 {
   1503 	tmp->tm_isdst = 0;
   1504 	return time1(tmp, gmtsub, 0L);
   1505 }
   1506 
   1507 time_t
   1508 timeoff(tmp, offset)
   1509 struct tm * const	tmp;
   1510 const long		offset;
   1511 {
   1512 	tmp->tm_isdst = 0;
   1513 	return time1(tmp, gmtsub, offset);
   1514 }
   1515 
   1516 #endif /* defined STD_INSPIRED */
   1517 
   1518 #ifdef CMUCS
   1519 
   1520 /*
   1521 ** The following is supplied for compatibility with
   1522 ** previous versions of the CMUCS runtime library.
   1523 */
   1524 
   1525 long
   1526 gtime(tmp)
   1527 struct tm * const	tmp;
   1528 {
   1529 	const time_t	t = mktime(tmp);
   1530 
   1531 	if (t == WRONG)
   1532 		return -1;
   1533 	return t;
   1534 }
   1535 
   1536 #endif /* defined CMUCS */
   1537 
   1538 /*
   1539 ** XXX--is the below the right way to conditionalize??
   1540 */
   1541 
   1542 #ifdef STD_INSPIRED
   1543 
   1544 /*
   1545 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1546 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
   1547 ** is not the case if we are accounting for leap seconds.
   1548 ** So, we provide the following conversion routines for use
   1549 ** when exchanging timestamps with POSIX conforming systems.
   1550 */
   1551 
   1552 static long
   1553 leapcorr(timep)
   1554 time_t *	timep;
   1555 {
   1556 	register struct state *		sp;
   1557 	register struct lsinfo *	lp;
   1558 	register int			i;
   1559 
   1560 	sp = lclptr;
   1561 	i = sp->leapcnt;
   1562 	while (--i >= 0) {
   1563 		lp = &sp->lsis[i];
   1564 		if (*timep >= lp->ls_trans)
   1565 			return lp->ls_corr;
   1566 	}
   1567 	return 0;
   1568 }
   1569 
   1570 time_t
   1571 time2posix(t)
   1572 time_t	t;
   1573 {
   1574 	tzset();
   1575 	return t - leapcorr(&t);
   1576 }
   1577 
   1578 time_t
   1579 posix2time(t)
   1580 time_t	t;
   1581 {
   1582 	time_t	x;
   1583 	time_t	y;
   1584 
   1585 	tzset();
   1586 	/*
   1587 	** For a positive leap second hit, the result
   1588 	** is not unique.  For a negative leap second
   1589 	** hit, the corresponding time doesn't exist,
   1590 	** so we return an adjacent second.
   1591 	*/
   1592 	x = t + leapcorr(&t);
   1593 	y = x - leapcorr(&x);
   1594 	if (y < t) {
   1595 		do {
   1596 			x++;
   1597 			y = x - leapcorr(&x);
   1598 		} while (y < t);
   1599 		if (t != y)
   1600 			return x - 1;
   1601 	} else if (y > t) {
   1602 		do {
   1603 			--x;
   1604 			y = x - leapcorr(&x);
   1605 		} while (y > t);
   1606 		if (t != y)
   1607 			return x + 1;
   1608 	}
   1609 	return x;
   1610 }
   1611 
   1612 #endif /* defined STD_INSPIRED */
   1613