Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.1.1.4
      1 #ifndef lint
      2 #ifndef NOID
      3 static char	elsieid[] = "@(#)localtime.c	7.53";
      4 #endif /* !defined NOID */
      5 #endif /* !defined lint */
      6 
      7 /*
      8 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
      9 ** POSIX-style TZ environment variable handling from Guy Harris
     10 ** (guy (at) auspex.com).
     11 */
     12 
     13 /*LINTLIBRARY*/
     14 
     15 #include "private.h"
     16 #include "tzfile.h"
     17 #include "fcntl.h"
     18 
     19 /*
     20 ** SunOS 4.1.1 headers lack O_BINARY.
     21 */
     22 
     23 #ifdef O_BINARY
     24 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     25 #endif /* defined O_BINARY */
     26 #ifndef O_BINARY
     27 #define OPEN_MODE	O_RDONLY
     28 #endif /* !defined O_BINARY */
     29 
     30 #ifndef WILDABBR
     31 /*
     32 ** Someone might make incorrect use of a time zone abbreviation:
     33 **	1.	They might reference tzname[0] before calling tzset (explicitly
     34 **		or implicitly).
     35 **	2.	They might reference tzname[1] before calling tzset (explicitly
     36 **		or implicitly).
     37 **	3.	They might reference tzname[1] after setting to a time zone
     38 **		in which Daylight Saving Time is never observed.
     39 **	4.	They might reference tzname[0] after setting to a time zone
     40 **		in which Standard Time is never observed.
     41 **	5.	They might reference tm.TM_ZONE after calling offtime.
     42 ** What's best to do in the above cases is open to debate;
     43 ** for now, we just set things up so that in any of the five cases
     44 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     45 ** string "tzname[0] used before set", and similarly for the other cases.
     46 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     47 ** manual page of what this "time zone abbreviation" means (doing this so
     48 ** that tzname[0] has the "normal" length of three characters).
     49 */
     50 #define WILDABBR	"   "
     51 #endif /* !defined WILDABBR */
     52 
     53 static char		wildabbr[] = "WILDABBR";
     54 
     55 static const char	gmt[] = "GMT";
     56 
     57 struct ttinfo {				/* time type information */
     58 	long		tt_gmtoff;	/* GMT offset in seconds */
     59 	int		tt_isdst;	/* used to set tm_isdst */
     60 	int		tt_abbrind;	/* abbreviation list index */
     61 	int		tt_ttisstd;	/* TRUE if transition is std time */
     62 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
     63 };
     64 
     65 struct lsinfo {				/* leap second information */
     66 	time_t		ls_trans;	/* transition time */
     67 	long		ls_corr;	/* correction to apply */
     68 };
     69 
     70 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     71 
     72 #ifdef TZNAME_MAX
     73 #define MY_TZNAME_MAX	TZNAME_MAX
     74 #endif /* defined TZNAME_MAX */
     75 #ifndef TZNAME_MAX
     76 #define MY_TZNAME_MAX	255
     77 #endif /* !defined TZNAME_MAX */
     78 
     79 struct state {
     80 	int		leapcnt;
     81 	int		timecnt;
     82 	int		typecnt;
     83 	int		charcnt;
     84 	time_t		ats[TZ_MAX_TIMES];
     85 	unsigned char	types[TZ_MAX_TIMES];
     86 	struct ttinfo	ttis[TZ_MAX_TYPES];
     87 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
     88 				(2 * (MY_TZNAME_MAX + 1)))];
     89 	struct lsinfo	lsis[TZ_MAX_LEAPS];
     90 };
     91 
     92 struct rule {
     93 	int		r_type;		/* type of rule--see below */
     94 	int		r_day;		/* day number of rule */
     95 	int		r_week;		/* week number of rule */
     96 	int		r_mon;		/* month number of rule */
     97 	long		r_time;		/* transition time of rule */
     98 };
     99 
    100 #define JULIAN_DAY		0	/* Jn - Julian day */
    101 #define DAY_OF_YEAR		1	/* n - day of year */
    102 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    103 
    104 /*
    105 ** Prototypes for static functions.
    106 */
    107 
    108 static long		detzcode P((const char * codep));
    109 static const char *	getzname P((const char * strp));
    110 static const char *	getnum P((const char * strp, int * nump, int min,
    111 				int max));
    112 static const char *	getsecs P((const char * strp, long * secsp));
    113 static const char *	getoffset P((const char * strp, long * offsetp));
    114 static const char *	getrule P((const char * strp, struct rule * rulep));
    115 static void		gmtload P((struct state * sp));
    116 static void		gmtsub P((const time_t * timep, long offset,
    117 				struct tm * tmp));
    118 static void		localsub P((const time_t * timep, long offset,
    119 				struct tm * tmp));
    120 static int		increment_overflow P((int * number, int delta));
    121 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    122 				int base));
    123 static void		settzname P((void));
    124 static time_t		time1 P((struct tm * tmp,
    125 				void(*funcp) P((const time_t *,
    126 				long, struct tm *)),
    127 				long offset));
    128 static time_t		time2 P((struct tm *tmp,
    129 				void(*funcp) P((const time_t *,
    130 				long, struct tm*)),
    131 				long offset, int * okayp));
    132 static void		timesub P((const time_t * timep, long offset,
    133 				const struct state * sp, struct tm * tmp));
    134 static int		tmcomp P((const struct tm * atmp,
    135 				const struct tm * btmp));
    136 static time_t		transtime P((time_t janfirst, int year,
    137 				const struct rule * rulep, long offset));
    138 static int		tzload P((const char * name, struct state * sp));
    139 static int		tzparse P((const char * name, struct state * sp,
    140 				int lastditch));
    141 
    142 #ifdef ALL_STATE
    143 static struct state *	lclptr;
    144 static struct state *	gmtptr;
    145 #endif /* defined ALL_STATE */
    146 
    147 #ifndef ALL_STATE
    148 static struct state	lclmem;
    149 static struct state	gmtmem;
    150 #define lclptr		(&lclmem)
    151 #define gmtptr		(&gmtmem)
    152 #endif /* State Farm */
    153 
    154 #ifndef TZ_STRLEN_MAX
    155 #define TZ_STRLEN_MAX 255
    156 #endif /* !defined TZ_STRLEN_MAX */
    157 
    158 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    159 static int		lcl_is_set;
    160 static int		gmt_is_set;
    161 
    162 char *			tzname[2] = {
    163 	wildabbr,
    164 	wildabbr
    165 };
    166 
    167 /*
    168 ** Section 4.12.3 of X3.159-1989 requires that
    169 **	Except for the strftime function, these functions [asctime,
    170 **	ctime, gmtime, localtime] return values in one of two static
    171 **	objects: a broken-down time structure and an array of char.
    172 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    173 */
    174 
    175 static struct tm	tm;
    176 
    177 #ifdef USG_COMPAT
    178 time_t			timezone = 0;
    179 int			daylight = 0;
    180 #endif /* defined USG_COMPAT */
    181 
    182 #ifdef ALTZONE
    183 time_t			altzone = 0;
    184 #endif /* defined ALTZONE */
    185 
    186 static long
    187 detzcode(codep)
    188 const char * const	codep;
    189 {
    190 	register long	result;
    191 	register int	i;
    192 
    193 	result = (codep[0] & 0x80) ? ~0L : 0L;
    194 	for (i = 0; i < 4; ++i)
    195 		result = (result << 8) | (codep[i] & 0xff);
    196 	return result;
    197 }
    198 
    199 static void
    200 settzname P((void))
    201 {
    202 	register struct state * const	sp = lclptr;
    203 	register int			i;
    204 
    205 	tzname[0] = wildabbr;
    206 	tzname[1] = wildabbr;
    207 #ifdef USG_COMPAT
    208 	daylight = 0;
    209 	timezone = 0;
    210 #endif /* defined USG_COMPAT */
    211 #ifdef ALTZONE
    212 	altzone = 0;
    213 #endif /* defined ALTZONE */
    214 #ifdef ALL_STATE
    215 	if (sp == NULL) {
    216 		tzname[0] = tzname[1] = gmt;
    217 		return;
    218 	}
    219 #endif /* defined ALL_STATE */
    220 	for (i = 0; i < sp->typecnt; ++i) {
    221 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    222 
    223 		tzname[ttisp->tt_isdst] =
    224 			&sp->chars[ttisp->tt_abbrind];
    225 #ifdef USG_COMPAT
    226 		if (ttisp->tt_isdst)
    227 			daylight = 1;
    228 		if (i == 0 || !ttisp->tt_isdst)
    229 			timezone = -(ttisp->tt_gmtoff);
    230 #endif /* defined USG_COMPAT */
    231 #ifdef ALTZONE
    232 		if (i == 0 || ttisp->tt_isdst)
    233 			altzone = -(ttisp->tt_gmtoff);
    234 #endif /* defined ALTZONE */
    235 	}
    236 	/*
    237 	** And to get the latest zone names into tzname. . .
    238 	*/
    239 	for (i = 0; i < sp->timecnt; ++i) {
    240 		register const struct ttinfo * const	ttisp =
    241 							&sp->ttis[
    242 								sp->types[i]];
    243 
    244 		tzname[ttisp->tt_isdst] =
    245 			&sp->chars[ttisp->tt_abbrind];
    246 	}
    247 }
    248 
    249 static int
    250 tzload(name, sp)
    251 register const char *		name;
    252 register struct state * const	sp;
    253 {
    254 	register const char *	p;
    255 	register int		i;
    256 	register int		fid;
    257 
    258 	if (name == NULL && (name = TZDEFAULT) == NULL)
    259 		return -1;
    260 	{
    261 		register int	doaccess;
    262 		/*
    263 		** Section 4.9.1 of the C standard says that
    264 		** "FILENAME_MAX expands to an integral constant expression
    265 		** that is the sie needed for an array of char large enough
    266 		** to hold the longest file name string that the implementation
    267 		** guarantees can be opened."
    268 		*/
    269 		char		fullname[FILENAME_MAX + 1];
    270 
    271 		if (name[0] == ':')
    272 			++name;
    273 		doaccess = name[0] == '/';
    274 		if (!doaccess) {
    275 			if ((p = TZDIR) == NULL)
    276 				return -1;
    277 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    278 				return -1;
    279 			(void) strcpy(fullname, p);
    280 			(void) strcat(fullname, "/");
    281 			(void) strcat(fullname, name);
    282 			/*
    283 			** Set doaccess if '.' (as in "../") shows up in name.
    284 			*/
    285 			if (strchr(name, '.') != NULL)
    286 				doaccess = TRUE;
    287 			name = fullname;
    288 		}
    289 		if (doaccess && access(name, R_OK) != 0)
    290 			return -1;
    291 		if ((fid = open(name, OPEN_MODE)) == -1)
    292 			return -1;
    293 	}
    294 	{
    295 		struct tzhead *	tzhp;
    296 		char		buf[sizeof *sp + sizeof *tzhp];
    297 		int		ttisstdcnt;
    298 		int		ttisgmtcnt;
    299 
    300 		i = read(fid, buf, sizeof buf);
    301 		if (close(fid) != 0)
    302 			return -1;
    303 		p = buf;
    304 		p += sizeof tzhp->tzh_reserved;
    305 		ttisstdcnt = (int) detzcode(p);
    306 		p += 4;
    307 		ttisgmtcnt = (int) detzcode(p);
    308 		p += 4;
    309 		sp->leapcnt = (int) detzcode(p);
    310 		p += 4;
    311 		sp->timecnt = (int) detzcode(p);
    312 		p += 4;
    313 		sp->typecnt = (int) detzcode(p);
    314 		p += 4;
    315 		sp->charcnt = (int) detzcode(p);
    316 		p += 4;
    317 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    318 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    319 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    320 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    321 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    322 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    323 				return -1;
    324 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
    325 			sp->timecnt +			/* types */
    326 			sp->typecnt * (4 + 2) +		/* ttinfos */
    327 			sp->charcnt +			/* chars */
    328 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    329 			ttisstdcnt +			/* ttisstds */
    330 			ttisgmtcnt)			/* ttisgmts */
    331 				return -1;
    332 		for (i = 0; i < sp->timecnt; ++i) {
    333 			sp->ats[i] = detzcode(p);
    334 			p += 4;
    335 		}
    336 		for (i = 0; i < sp->timecnt; ++i) {
    337 			sp->types[i] = (unsigned char) *p++;
    338 			if (sp->types[i] >= sp->typecnt)
    339 				return -1;
    340 		}
    341 		for (i = 0; i < sp->typecnt; ++i) {
    342 			register struct ttinfo *	ttisp;
    343 
    344 			ttisp = &sp->ttis[i];
    345 			ttisp->tt_gmtoff = detzcode(p);
    346 			p += 4;
    347 			ttisp->tt_isdst = (unsigned char) *p++;
    348 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    349 				return -1;
    350 			ttisp->tt_abbrind = (unsigned char) *p++;
    351 			if (ttisp->tt_abbrind < 0 ||
    352 				ttisp->tt_abbrind > sp->charcnt)
    353 					return -1;
    354 		}
    355 		for (i = 0; i < sp->charcnt; ++i)
    356 			sp->chars[i] = *p++;
    357 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    358 		for (i = 0; i < sp->leapcnt; ++i) {
    359 			register struct lsinfo *	lsisp;
    360 
    361 			lsisp = &sp->lsis[i];
    362 			lsisp->ls_trans = detzcode(p);
    363 			p += 4;
    364 			lsisp->ls_corr = detzcode(p);
    365 			p += 4;
    366 		}
    367 		for (i = 0; i < sp->typecnt; ++i) {
    368 			register struct ttinfo *	ttisp;
    369 
    370 			ttisp = &sp->ttis[i];
    371 			if (ttisstdcnt == 0)
    372 				ttisp->tt_ttisstd = FALSE;
    373 			else {
    374 				ttisp->tt_ttisstd = *p++;
    375 				if (ttisp->tt_ttisstd != TRUE &&
    376 					ttisp->tt_ttisstd != FALSE)
    377 						return -1;
    378 			}
    379 		}
    380 		for (i = 0; i < sp->typecnt; ++i) {
    381 			register struct ttinfo *	ttisp;
    382 
    383 			ttisp = &sp->ttis[i];
    384 			if (ttisgmtcnt == 0)
    385 				ttisp->tt_ttisgmt = FALSE;
    386 			else {
    387 				ttisp->tt_ttisgmt = *p++;
    388 				if (ttisp->tt_ttisgmt != TRUE &&
    389 					ttisp->tt_ttisgmt != FALSE)
    390 						return -1;
    391 			}
    392 		}
    393 	}
    394 	return 0;
    395 }
    396 
    397 static const int	mon_lengths[2][MONSPERYEAR] = {
    398 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    399 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    400 };
    401 
    402 static const int	year_lengths[2] = {
    403 	DAYSPERNYEAR, DAYSPERLYEAR
    404 };
    405 
    406 /*
    407 ** Given a pointer into a time zone string, scan until a character that is not
    408 ** a valid character in a zone name is found.  Return a pointer to that
    409 ** character.
    410 */
    411 
    412 static const char *
    413 getzname(strp)
    414 register const char *	strp;
    415 {
    416 	register char	c;
    417 
    418 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    419 		c != '+')
    420 			++strp;
    421 	return strp;
    422 }
    423 
    424 /*
    425 ** Given a pointer into a time zone string, extract a number from that string.
    426 ** Check that the number is within a specified range; if it is not, return
    427 ** NULL.
    428 ** Otherwise, return a pointer to the first character not part of the number.
    429 */
    430 
    431 static const char *
    432 getnum(strp, nump, min, max)
    433 register const char *	strp;
    434 int * const		nump;
    435 const int		min;
    436 const int		max;
    437 {
    438 	register char	c;
    439 	register int	num;
    440 
    441 	if (strp == NULL || !is_digit(c = *strp))
    442 		return NULL;
    443 	num = 0;
    444 	do {
    445 		num = num * 10 + (c - '0');
    446 		if (num > max)
    447 			return NULL;	/* illegal value */
    448 		c = *++strp;
    449 	} while (is_digit(c));
    450 	if (num < min)
    451 		return NULL;		/* illegal value */
    452 	*nump = num;
    453 	return strp;
    454 }
    455 
    456 /*
    457 ** Given a pointer into a time zone string, extract a number of seconds,
    458 ** in hh[:mm[:ss]] form, from the string.
    459 ** If any error occurs, return NULL.
    460 ** Otherwise, return a pointer to the first character not part of the number
    461 ** of seconds.
    462 */
    463 
    464 static const char *
    465 getsecs(strp, secsp)
    466 register const char *	strp;
    467 long * const		secsp;
    468 {
    469 	int	num;
    470 
    471 	/*
    472 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    473 	** "M10.4.6/26", which does not conform to Posix,
    474 	** but which specifies the equivalent of
    475 	** ``02:00 on the first Sunday on or after 23 Oct''.
    476 	*/
    477 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    478 	if (strp == NULL)
    479 		return NULL;
    480 	*secsp = num * (long) SECSPERHOUR;
    481 	if (*strp == ':') {
    482 		++strp;
    483 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    484 		if (strp == NULL)
    485 			return NULL;
    486 		*secsp += num * SECSPERMIN;
    487 		if (*strp == ':') {
    488 			++strp;
    489 			/* `SECSPERMIN' allows for leap seconds.  */
    490 			strp = getnum(strp, &num, 0, SECSPERMIN);
    491 			if (strp == NULL)
    492 				return NULL;
    493 			*secsp += num;
    494 		}
    495 	}
    496 	return strp;
    497 }
    498 
    499 /*
    500 ** Given a pointer into a time zone string, extract an offset, in
    501 ** [+-]hh[:mm[:ss]] form, from the string.
    502 ** If any error occurs, return NULL.
    503 ** Otherwise, return a pointer to the first character not part of the time.
    504 */
    505 
    506 static const char *
    507 getoffset(strp, offsetp)
    508 register const char *	strp;
    509 long * const		offsetp;
    510 {
    511 	register int	neg = 0;
    512 
    513 	if (*strp == '-') {
    514 		neg = 1;
    515 		++strp;
    516 	} else if (*strp == '+')
    517 		++strp;
    518 	strp = getsecs(strp, offsetp);
    519 	if (strp == NULL)
    520 		return NULL;		/* illegal time */
    521 	if (neg)
    522 		*offsetp = -*offsetp;
    523 	return strp;
    524 }
    525 
    526 /*
    527 ** Given a pointer into a time zone string, extract a rule in the form
    528 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    529 ** If a valid rule is not found, return NULL.
    530 ** Otherwise, return a pointer to the first character not part of the rule.
    531 */
    532 
    533 static const char *
    534 getrule(strp, rulep)
    535 const char *			strp;
    536 register struct rule * const	rulep;
    537 {
    538 	if (*strp == 'J') {
    539 		/*
    540 		** Julian day.
    541 		*/
    542 		rulep->r_type = JULIAN_DAY;
    543 		++strp;
    544 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    545 	} else if (*strp == 'M') {
    546 		/*
    547 		** Month, week, day.
    548 		*/
    549 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    550 		++strp;
    551 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    552 		if (strp == NULL)
    553 			return NULL;
    554 		if (*strp++ != '.')
    555 			return NULL;
    556 		strp = getnum(strp, &rulep->r_week, 1, 5);
    557 		if (strp == NULL)
    558 			return NULL;
    559 		if (*strp++ != '.')
    560 			return NULL;
    561 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    562 	} else if (is_digit(*strp)) {
    563 		/*
    564 		** Day of year.
    565 		*/
    566 		rulep->r_type = DAY_OF_YEAR;
    567 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    568 	} else	return NULL;		/* invalid format */
    569 	if (strp == NULL)
    570 		return NULL;
    571 	if (*strp == '/') {
    572 		/*
    573 		** Time specified.
    574 		*/
    575 		++strp;
    576 		strp = getsecs(strp, &rulep->r_time);
    577 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    578 	return strp;
    579 }
    580 
    581 /*
    582 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
    583 ** year, a rule, and the offset from GMT at the time that rule takes effect,
    584 ** calculate the Epoch-relative time that rule takes effect.
    585 */
    586 
    587 static time_t
    588 transtime(janfirst, year, rulep, offset)
    589 const time_t				janfirst;
    590 const int				year;
    591 register const struct rule * const	rulep;
    592 const long				offset;
    593 {
    594 	register int	leapyear;
    595 	register time_t	value;
    596 	register int	i;
    597 	int		d, m1, yy0, yy1, yy2, dow;
    598 
    599 	INITIALIZE(value);
    600 	leapyear = isleap(year);
    601 	switch (rulep->r_type) {
    602 
    603 	case JULIAN_DAY:
    604 		/*
    605 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    606 		** years.
    607 		** In non-leap years, or if the day number is 59 or less, just
    608 		** add SECSPERDAY times the day number-1 to the time of
    609 		** January 1, midnight, to get the day.
    610 		*/
    611 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    612 		if (leapyear && rulep->r_day >= 60)
    613 			value += SECSPERDAY;
    614 		break;
    615 
    616 	case DAY_OF_YEAR:
    617 		/*
    618 		** n - day of year.
    619 		** Just add SECSPERDAY times the day number to the time of
    620 		** January 1, midnight, to get the day.
    621 		*/
    622 		value = janfirst + rulep->r_day * SECSPERDAY;
    623 		break;
    624 
    625 	case MONTH_NTH_DAY_OF_WEEK:
    626 		/*
    627 		** Mm.n.d - nth "dth day" of month m.
    628 		*/
    629 		value = janfirst;
    630 		for (i = 0; i < rulep->r_mon - 1; ++i)
    631 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    632 
    633 		/*
    634 		** Use Zeller's Congruence to get day-of-week of first day of
    635 		** month.
    636 		*/
    637 		m1 = (rulep->r_mon + 9) % 12 + 1;
    638 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    639 		yy1 = yy0 / 100;
    640 		yy2 = yy0 % 100;
    641 		dow = ((26 * m1 - 2) / 10 +
    642 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    643 		if (dow < 0)
    644 			dow += DAYSPERWEEK;
    645 
    646 		/*
    647 		** "dow" is the day-of-week of the first day of the month.  Get
    648 		** the day-of-month (zero-origin) of the first "dow" day of the
    649 		** month.
    650 		*/
    651 		d = rulep->r_day - dow;
    652 		if (d < 0)
    653 			d += DAYSPERWEEK;
    654 		for (i = 1; i < rulep->r_week; ++i) {
    655 			if (d + DAYSPERWEEK >=
    656 				mon_lengths[leapyear][rulep->r_mon - 1])
    657 					break;
    658 			d += DAYSPERWEEK;
    659 		}
    660 
    661 		/*
    662 		** "d" is the day-of-month (zero-origin) of the day we want.
    663 		*/
    664 		value += d * SECSPERDAY;
    665 		break;
    666 	}
    667 
    668 	/*
    669 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
    670 	** question.  To get the Epoch-relative time of the specified local
    671 	** time on that day, add the transition time and the current offset
    672 	** from GMT.
    673 	*/
    674 	return value + rulep->r_time + offset;
    675 }
    676 
    677 /*
    678 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    679 ** appropriate.
    680 */
    681 
    682 static int
    683 tzparse(name, sp, lastditch)
    684 const char *			name;
    685 register struct state * const	sp;
    686 const int			lastditch;
    687 {
    688 	const char *			stdname;
    689 	const char *			dstname;
    690 	size_t				stdlen;
    691 	size_t				dstlen;
    692 	long				stdoffset;
    693 	long				dstoffset;
    694 	register time_t *		atp;
    695 	register unsigned char *	typep;
    696 	register char *			cp;
    697 	register int			load_result;
    698 
    699 	INITIALIZE(dstname);
    700 	stdname = name;
    701 	if (lastditch) {
    702 		stdlen = strlen(name);	/* length of standard zone name */
    703 		name += stdlen;
    704 		if (stdlen >= sizeof sp->chars)
    705 			stdlen = (sizeof sp->chars) - 1;
    706 	} else {
    707 		name = getzname(name);
    708 		stdlen = name - stdname;
    709 		if (stdlen < 3)
    710 			return -1;
    711 	}
    712 	if (*name == '\0')
    713 		return -1;	/* was "stdoffset = 0;" */
    714 	else {
    715 		name = getoffset(name, &stdoffset);
    716 		if (name == NULL)
    717 			return -1;
    718 	}
    719 	load_result = tzload(TZDEFRULES, sp);
    720 	if (load_result != 0)
    721 		sp->leapcnt = 0;		/* so, we're off a little */
    722 	if (*name != '\0') {
    723 		dstname = name;
    724 		name = getzname(name);
    725 		dstlen = name - dstname;	/* length of DST zone name */
    726 		if (dstlen < 3)
    727 			return -1;
    728 		if (*name != '\0' && *name != ',' && *name != ';') {
    729 			name = getoffset(name, &dstoffset);
    730 			if (name == NULL)
    731 				return -1;
    732 		} else	dstoffset = stdoffset - SECSPERHOUR;
    733 		if (*name == ',' || *name == ';') {
    734 			struct rule	start;
    735 			struct rule	end;
    736 			register int	year;
    737 			register time_t	janfirst;
    738 			time_t		starttime;
    739 			time_t		endtime;
    740 
    741 			++name;
    742 			if ((name = getrule(name, &start)) == NULL)
    743 				return -1;
    744 			if (*name++ != ',')
    745 				return -1;
    746 			if ((name = getrule(name, &end)) == NULL)
    747 				return -1;
    748 			if (*name != '\0')
    749 				return -1;
    750 			sp->typecnt = 2;	/* standard time and DST */
    751 			/*
    752 			** Two transitions per year, from EPOCH_YEAR to 2037.
    753 			*/
    754 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    755 			if (sp->timecnt > TZ_MAX_TIMES)
    756 				return -1;
    757 			sp->ttis[0].tt_gmtoff = -dstoffset;
    758 			sp->ttis[0].tt_isdst = 1;
    759 			sp->ttis[0].tt_abbrind = stdlen + 1;
    760 			sp->ttis[1].tt_gmtoff = -stdoffset;
    761 			sp->ttis[1].tt_isdst = 0;
    762 			sp->ttis[1].tt_abbrind = 0;
    763 			atp = sp->ats;
    764 			typep = sp->types;
    765 			janfirst = 0;
    766 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    767 				starttime = transtime(janfirst, year, &start,
    768 					stdoffset);
    769 				endtime = transtime(janfirst, year, &end,
    770 					dstoffset);
    771 				if (starttime > endtime) {
    772 					*atp++ = endtime;
    773 					*typep++ = 1;	/* DST ends */
    774 					*atp++ = starttime;
    775 					*typep++ = 0;	/* DST begins */
    776 				} else {
    777 					*atp++ = starttime;
    778 					*typep++ = 0;	/* DST begins */
    779 					*atp++ = endtime;
    780 					*typep++ = 1;	/* DST ends */
    781 				}
    782 				janfirst += year_lengths[isleap(year)] *
    783 					SECSPERDAY;
    784 			}
    785 		} else {
    786 			register long	theirstdoffset;
    787 			register long	theirdstoffset;
    788 			register long	theiroffset;
    789 			register int	isdst;
    790 			register int	i;
    791 			register int	j;
    792 
    793 			if (*name != '\0')
    794 				return -1;
    795 			if (load_result != 0)
    796 				return -1;
    797 			/*
    798 			** Initial values of theirstdoffset and theirdstoffset.
    799 			*/
    800 			theirstdoffset = 0;
    801 			for (i = 0; i < sp->timecnt; ++i) {
    802 				j = sp->types[i];
    803 				if (!sp->ttis[j].tt_isdst) {
    804 					theirstdoffset =
    805 						-sp->ttis[j].tt_gmtoff;
    806 					break;
    807 				}
    808 			}
    809 			theirdstoffset = 0;
    810 			for (i = 0; i < sp->timecnt; ++i) {
    811 				j = sp->types[i];
    812 				if (sp->ttis[j].tt_isdst) {
    813 					theirdstoffset =
    814 						-sp->ttis[j].tt_gmtoff;
    815 					break;
    816 				}
    817 			}
    818 			/*
    819 			** Initially we're assumed to be in standard time.
    820 			*/
    821 			isdst = FALSE;
    822 			theiroffset = theirstdoffset;
    823 			/*
    824 			** Now juggle transition times and types
    825 			** tracking offsets as you do.
    826 			*/
    827 			for (i = 0; i < sp->timecnt; ++i) {
    828 				j = sp->types[i];
    829 				sp->types[i] = sp->ttis[j].tt_isdst;
    830 				if (sp->ttis[j].tt_ttisgmt) {
    831 					/* No adjustment to transition time */
    832 				} else {
    833 					/*
    834 					** If summer time is in effect, and the
    835 					** transition time was not specified as
    836 					** standard time, add the summer time
    837 					** offset to the transition time;
    838 					** otherwise, add the standard time
    839 					** offset to the transition time.
    840 					*/
    841 					/*
    842 					** Transitions from DST to DDST
    843 					** will effectively disappear since
    844 					** POSIX provides for only one DST
    845 					** offset.
    846 					*/
    847 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    848 						sp->ats[i] += dstoffset -
    849 							theirdstoffset;
    850 					} else {
    851 						sp->ats[i] += stdoffset -
    852 							theirstdoffset;
    853 					}
    854 				}
    855 				theiroffset = -sp->ttis[j].tt_gmtoff;
    856 				if (sp->ttis[j].tt_isdst)
    857 					theirdstoffset = theiroffset;
    858 				else	theirstdoffset = theiroffset;
    859 			}
    860 			/*
    861 			** Finally, fill in ttis.
    862 			** ttisstd and ttisgmt need not be handled.
    863 			*/
    864 			sp->ttis[0].tt_gmtoff = -stdoffset;
    865 			sp->ttis[0].tt_isdst = FALSE;
    866 			sp->ttis[0].tt_abbrind = 0;
    867 			sp->ttis[1].tt_gmtoff = -dstoffset;
    868 			sp->ttis[1].tt_isdst = TRUE;
    869 			sp->ttis[1].tt_abbrind = stdlen + 1;
    870 		}
    871 	} else {
    872 		dstlen = 0;
    873 		sp->typecnt = 1;		/* only standard time */
    874 		sp->timecnt = 0;
    875 		sp->ttis[0].tt_gmtoff = -stdoffset;
    876 		sp->ttis[0].tt_isdst = 0;
    877 		sp->ttis[0].tt_abbrind = 0;
    878 	}
    879 	sp->charcnt = stdlen + 1;
    880 	if (dstlen != 0)
    881 		sp->charcnt += dstlen + 1;
    882 	if (sp->charcnt > sizeof sp->chars)
    883 		return -1;
    884 	cp = sp->chars;
    885 	(void) strncpy(cp, stdname, stdlen);
    886 	cp += stdlen;
    887 	*cp++ = '\0';
    888 	if (dstlen != 0) {
    889 		(void) strncpy(cp, dstname, dstlen);
    890 		*(cp + dstlen) = '\0';
    891 	}
    892 	return 0;
    893 }
    894 
    895 static void
    896 gmtload(sp)
    897 struct state * const	sp;
    898 {
    899 	if (tzload(gmt, sp) != 0)
    900 		(void) tzparse(gmt, sp, TRUE);
    901 }
    902 
    903 #ifndef STD_INSPIRED
    904 /*
    905 ** A non-static declaration of tzsetwall in a system header file
    906 ** may cause a warning about this upcoming static declaration...
    907 */
    908 static
    909 #endif /* !defined STD_INSPIRED */
    910 void
    911 tzsetwall P((void))
    912 {
    913 	if (lcl_is_set < 0)
    914 		return;
    915 	lcl_is_set = -1;
    916 
    917 #ifdef ALL_STATE
    918 	if (lclptr == NULL) {
    919 		lclptr = (struct state *) malloc(sizeof *lclptr);
    920 		if (lclptr == NULL) {
    921 			settzname();	/* all we can do */
    922 			return;
    923 		}
    924 	}
    925 #endif /* defined ALL_STATE */
    926 	if (tzload((char *) NULL, lclptr) != 0)
    927 		gmtload(lclptr);
    928 	settzname();
    929 }
    930 
    931 void
    932 tzset P((void))
    933 {
    934 	register const char *	name;
    935 
    936 	name = getenv("TZ");
    937 	if (name == NULL) {
    938 		tzsetwall();
    939 		return;
    940 	}
    941 
    942 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    943 		return;
    944 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    945 	if (lcl_is_set)
    946 		(void) strcpy(lcl_TZname, name);
    947 
    948 #ifdef ALL_STATE
    949 	if (lclptr == NULL) {
    950 		lclptr = (struct state *) malloc(sizeof *lclptr);
    951 		if (lclptr == NULL) {
    952 			settzname();	/* all we can do */
    953 			return;
    954 		}
    955 	}
    956 #endif /* defined ALL_STATE */
    957 	if (*name == '\0') {
    958 		/*
    959 		** User wants it fast rather than right.
    960 		*/
    961 		lclptr->leapcnt = 0;		/* so, we're off a little */
    962 		lclptr->timecnt = 0;
    963 		lclptr->ttis[0].tt_gmtoff = 0;
    964 		lclptr->ttis[0].tt_abbrind = 0;
    965 		(void) strcpy(lclptr->chars, gmt);
    966 	} else if (tzload(name, lclptr) != 0)
    967 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
    968 			(void) gmtload(lclptr);
    969 	settzname();
    970 }
    971 
    972 /*
    973 ** The easy way to behave "as if no library function calls" localtime
    974 ** is to not call it--so we drop its guts into "localsub", which can be
    975 ** freely called.  (And no, the PANS doesn't require the above behavior--
    976 ** but it *is* desirable.)
    977 **
    978 ** The unused offset argument is for the benefit of mktime variants.
    979 */
    980 
    981 /*ARGSUSED*/
    982 static void
    983 localsub(timep, offset, tmp)
    984 const time_t * const	timep;
    985 const long		offset;
    986 struct tm * const	tmp;
    987 {
    988 	register struct state *		sp;
    989 	register const struct ttinfo *	ttisp;
    990 	register int			i;
    991 	const time_t			t = *timep;
    992 
    993 	sp = lclptr;
    994 #ifdef ALL_STATE
    995 	if (sp == NULL) {
    996 		gmtsub(timep, offset, tmp);
    997 		return;
    998 	}
    999 #endif /* defined ALL_STATE */
   1000 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1001 		i = 0;
   1002 		while (sp->ttis[i].tt_isdst)
   1003 			if (++i >= sp->typecnt) {
   1004 				i = 0;
   1005 				break;
   1006 			}
   1007 	} else {
   1008 		for (i = 1; i < sp->timecnt; ++i)
   1009 			if (t < sp->ats[i])
   1010 				break;
   1011 		i = sp->types[i - 1];
   1012 	}
   1013 	ttisp = &sp->ttis[i];
   1014 	/*
   1015 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1016 	** you'd replace the statement below with
   1017 	**	t += ttisp->tt_gmtoff;
   1018 	**	timesub(&t, 0L, sp, tmp);
   1019 	*/
   1020 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1021 	tmp->tm_isdst = ttisp->tt_isdst;
   1022 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1023 #ifdef TM_ZONE
   1024 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1025 #endif /* defined TM_ZONE */
   1026 }
   1027 
   1028 struct tm *
   1029 localtime(timep)
   1030 const time_t * const	timep;
   1031 {
   1032 	tzset();
   1033 	localsub(timep, 0L, &tm);
   1034 	return &tm;
   1035 }
   1036 
   1037 /*
   1038 ** gmtsub is to gmtime as localsub is to localtime.
   1039 */
   1040 
   1041 static void
   1042 gmtsub(timep, offset, tmp)
   1043 const time_t * const	timep;
   1044 const long		offset;
   1045 struct tm * const	tmp;
   1046 {
   1047 	if (!gmt_is_set) {
   1048 		gmt_is_set = TRUE;
   1049 #ifdef ALL_STATE
   1050 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1051 		if (gmtptr != NULL)
   1052 #endif /* defined ALL_STATE */
   1053 			gmtload(gmtptr);
   1054 	}
   1055 	timesub(timep, offset, gmtptr, tmp);
   1056 #ifdef TM_ZONE
   1057 	/*
   1058 	** Could get fancy here and deliver something such as
   1059 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
   1060 	** but this is no time for a treasure hunt.
   1061 	*/
   1062 	if (offset != 0)
   1063 		tmp->TM_ZONE = wildabbr;
   1064 	else {
   1065 #ifdef ALL_STATE
   1066 		if (gmtptr == NULL)
   1067 			tmp->TM_ZONE = gmt;
   1068 		else	tmp->TM_ZONE = gmtptr->chars;
   1069 #endif /* defined ALL_STATE */
   1070 #ifndef ALL_STATE
   1071 		tmp->TM_ZONE = gmtptr->chars;
   1072 #endif /* State Farm */
   1073 	}
   1074 #endif /* defined TM_ZONE */
   1075 }
   1076 
   1077 struct tm *
   1078 gmtime(timep)
   1079 const time_t * const	timep;
   1080 {
   1081 	gmtsub(timep, 0L, &tm);
   1082 	return &tm;
   1083 }
   1084 
   1085 #ifdef STD_INSPIRED
   1086 
   1087 struct tm *
   1088 offtime(timep, offset)
   1089 const time_t * const	timep;
   1090 const long		offset;
   1091 {
   1092 	gmtsub(timep, offset, &tm);
   1093 	return &tm;
   1094 }
   1095 
   1096 #endif /* defined STD_INSPIRED */
   1097 
   1098 static void
   1099 timesub(timep, offset, sp, tmp)
   1100 const time_t * const			timep;
   1101 const long				offset;
   1102 register const struct state * const	sp;
   1103 register struct tm * const		tmp;
   1104 {
   1105 	register const struct lsinfo *	lp;
   1106 	register long			days;
   1107 	register long			rem;
   1108 	register int			y;
   1109 	register int			yleap;
   1110 	register const int *		ip;
   1111 	register long			corr;
   1112 	register int			hit;
   1113 	register int			i;
   1114 
   1115 	corr = 0;
   1116 	hit = 0;
   1117 #ifdef ALL_STATE
   1118 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1119 #endif /* defined ALL_STATE */
   1120 #ifndef ALL_STATE
   1121 	i = sp->leapcnt;
   1122 #endif /* State Farm */
   1123 	while (--i >= 0) {
   1124 		lp = &sp->lsis[i];
   1125 		if (*timep >= lp->ls_trans) {
   1126 			if (*timep == lp->ls_trans) {
   1127 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1128 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1129 				if (hit)
   1130 					while (i > 0 &&
   1131 						sp->lsis[i].ls_trans ==
   1132 						sp->lsis[i - 1].ls_trans + 1 &&
   1133 						sp->lsis[i].ls_corr ==
   1134 						sp->lsis[i - 1].ls_corr + 1) {
   1135 							++hit;
   1136 							--i;
   1137 					}
   1138 			}
   1139 			corr = lp->ls_corr;
   1140 			break;
   1141 		}
   1142 	}
   1143 	days = *timep / SECSPERDAY;
   1144 	rem = *timep % SECSPERDAY;
   1145 #ifdef mc68k
   1146 	if (*timep == 0x80000000) {
   1147 		/*
   1148 		** A 3B1 muffs the division on the most negative number.
   1149 		*/
   1150 		days = -24855;
   1151 		rem = -11648;
   1152 	}
   1153 #endif /* defined mc68k */
   1154 	rem += (offset - corr);
   1155 	while (rem < 0) {
   1156 		rem += SECSPERDAY;
   1157 		--days;
   1158 	}
   1159 	while (rem >= SECSPERDAY) {
   1160 		rem -= SECSPERDAY;
   1161 		++days;
   1162 	}
   1163 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1164 	rem = rem % SECSPERHOUR;
   1165 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1166 	/*
   1167 	** A positive leap second requires a special
   1168 	** representation.  This uses "... ??:59:60" et seq.
   1169 	*/
   1170 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1171 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1172 	if (tmp->tm_wday < 0)
   1173 		tmp->tm_wday += DAYSPERWEEK;
   1174 	y = EPOCH_YEAR;
   1175 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1176 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1177 		register int	newy;
   1178 
   1179 		newy = y + days / DAYSPERNYEAR;
   1180 		if (days < 0)
   1181 			--newy;
   1182 		days -= (newy - y) * DAYSPERNYEAR +
   1183 			LEAPS_THRU_END_OF(newy - 1) -
   1184 			LEAPS_THRU_END_OF(y - 1);
   1185 		y = newy;
   1186 	}
   1187 	tmp->tm_year = y - TM_YEAR_BASE;
   1188 	tmp->tm_yday = (int) days;
   1189 	ip = mon_lengths[yleap];
   1190 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1191 		days = days - (long) ip[tmp->tm_mon];
   1192 	tmp->tm_mday = (int) (days + 1);
   1193 	tmp->tm_isdst = 0;
   1194 #ifdef TM_GMTOFF
   1195 	tmp->TM_GMTOFF = offset;
   1196 #endif /* defined TM_GMTOFF */
   1197 }
   1198 
   1199 char *
   1200 ctime(timep)
   1201 const time_t * const	timep;
   1202 {
   1203 /*
   1204 ** Section 4.12.3.2 of X3.159-1989 requires that
   1205 **	The ctime funciton converts the calendar time pointed to by timer
   1206 **	to local time in the form of a string.  It is equivalent to
   1207 **		asctime(localtime(timer))
   1208 */
   1209 	return asctime(localtime(timep));
   1210 }
   1211 
   1212 /*
   1213 ** Adapted from code provided by Robert Elz, who writes:
   1214 **	The "best" way to do mktime I think is based on an idea of Bob
   1215 **	Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
   1216 **	It does a binary search of the time_t space.  Since time_t's are
   1217 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1218 **	would still be very reasonable).
   1219 */
   1220 
   1221 #ifndef WRONG
   1222 #define WRONG	(-1)
   1223 #endif /* !defined WRONG */
   1224 
   1225 /*
   1226 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1227 */
   1228 
   1229 static int
   1230 increment_overflow(number, delta)
   1231 int *	number;
   1232 int	delta;
   1233 {
   1234 	int	number0;
   1235 
   1236 	number0 = *number;
   1237 	*number += delta;
   1238 	return (*number < number0) != (delta < 0);
   1239 }
   1240 
   1241 static int
   1242 normalize_overflow(tensptr, unitsptr, base)
   1243 int * const	tensptr;
   1244 int * const	unitsptr;
   1245 const int	base;
   1246 {
   1247 	register int	tensdelta;
   1248 
   1249 	tensdelta = (*unitsptr >= 0) ?
   1250 		(*unitsptr / base) :
   1251 		(-1 - (-1 - *unitsptr) / base);
   1252 	*unitsptr -= tensdelta * base;
   1253 	return increment_overflow(tensptr, tensdelta);
   1254 }
   1255 
   1256 static int
   1257 tmcomp(atmp, btmp)
   1258 register const struct tm * const atmp;
   1259 register const struct tm * const btmp;
   1260 {
   1261 	register int	result;
   1262 
   1263 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1264 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1265 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1266 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1267 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1268 			result = atmp->tm_sec - btmp->tm_sec;
   1269 	return result;
   1270 }
   1271 
   1272 static time_t
   1273 time2(tmp, funcp, offset, okayp)
   1274 struct tm * const	tmp;
   1275 void (* const		funcp) P((const time_t*, long, struct tm*));
   1276 const long		offset;
   1277 int * const		okayp;
   1278 {
   1279 	register const struct state *	sp;
   1280 	register int			dir;
   1281 	register int			bits;
   1282 	register int			i, j ;
   1283 	register int			saved_seconds;
   1284 	time_t				newt;
   1285 	time_t				t;
   1286 	struct tm			yourtm, mytm;
   1287 
   1288 	*okayp = FALSE;
   1289 	yourtm = *tmp;
   1290 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1291 		return WRONG;
   1292 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1293 		return WRONG;
   1294 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1295 		return WRONG;
   1296 	/*
   1297 	** Turn yourtm.tm_year into an actual year number for now.
   1298 	** It is converted back to an offset from TM_YEAR_BASE later.
   1299 	*/
   1300 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1301 		return WRONG;
   1302 	while (yourtm.tm_mday <= 0) {
   1303 		if (increment_overflow(&yourtm.tm_year, -1))
   1304 			return WRONG;
   1305 		yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
   1306 	}
   1307 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1308 		yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
   1309 		if (increment_overflow(&yourtm.tm_year, 1))
   1310 			return WRONG;
   1311 	}
   1312 	for ( ; ; ) {
   1313 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1314 		if (yourtm.tm_mday <= i)
   1315 			break;
   1316 		yourtm.tm_mday -= i;
   1317 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1318 			yourtm.tm_mon = 0;
   1319 			if (increment_overflow(&yourtm.tm_year, 1))
   1320 				return WRONG;
   1321 		}
   1322 	}
   1323 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1324 		return WRONG;
   1325 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1326 		/*
   1327 		** We can't set tm_sec to 0, because that might push the
   1328 		** time below the minimum representable time.
   1329 		** Set tm_sec to 59 instead.
   1330 		** This assumes that the minimum representable time is
   1331 		** not in the same minute that a leap second was deleted from,
   1332 		** which is a safer assumption than using 58 would be.
   1333 		*/
   1334 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1335 			return WRONG;
   1336 		saved_seconds = yourtm.tm_sec;
   1337 		yourtm.tm_sec = SECSPERMIN - 1;
   1338 	} else {
   1339 		saved_seconds = yourtm.tm_sec;
   1340 		yourtm.tm_sec = 0;
   1341 	}
   1342 	/*
   1343 	** Divide the search space in half
   1344 	** (this works whether time_t is signed or unsigned).
   1345 	*/
   1346 	bits = TYPE_BIT(time_t) - 1;
   1347 	/*
   1348 	** If time_t is signed, then 0 is just above the median,
   1349 	** assuming two's complement arithmetic.
   1350 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1351 	*/
   1352 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1353 	for ( ; ; ) {
   1354 		(*funcp)(&t, offset, &mytm);
   1355 		dir = tmcomp(&mytm, &yourtm);
   1356 		if (dir != 0) {
   1357 			if (bits-- < 0)
   1358 				return WRONG;
   1359 			if (bits < 0)
   1360 				--t; /* may be needed if new t is minimal */
   1361 			else if (dir > 0)
   1362 				t -= ((time_t) 1) << bits;
   1363 			else	t += ((time_t) 1) << bits;
   1364 			continue;
   1365 		}
   1366 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1367 			break;
   1368 		/*
   1369 		** Right time, wrong type.
   1370 		** Hunt for right time, right type.
   1371 		** It's okay to guess wrong since the guess
   1372 		** gets checked.
   1373 		*/
   1374 		/*
   1375 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1376 		*/
   1377 		sp = (const struct state *)
   1378 			(((void *) funcp == (void *) localsub) ?
   1379 			lclptr : gmtptr);
   1380 #ifdef ALL_STATE
   1381 		if (sp == NULL)
   1382 			return WRONG;
   1383 #endif /* defined ALL_STATE */
   1384 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1385 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1386 				continue;
   1387 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1388 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1389 					continue;
   1390 				newt = t + sp->ttis[j].tt_gmtoff -
   1391 					sp->ttis[i].tt_gmtoff;
   1392 				(*funcp)(&newt, offset, &mytm);
   1393 				if (tmcomp(&mytm, &yourtm) != 0)
   1394 					continue;
   1395 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1396 					continue;
   1397 				/*
   1398 				** We have a match.
   1399 				*/
   1400 				t = newt;
   1401 				goto label;
   1402 			}
   1403 		}
   1404 		return WRONG;
   1405 	}
   1406 label:
   1407 	newt = t + saved_seconds;
   1408 	if ((newt < t) != (saved_seconds < 0))
   1409 		return WRONG;
   1410 	t = newt;
   1411 	(*funcp)(&t, offset, tmp);
   1412 	*okayp = TRUE;
   1413 	return t;
   1414 }
   1415 
   1416 static time_t
   1417 time1(tmp, funcp, offset)
   1418 struct tm * const	tmp;
   1419 void (* const		funcp) P((const time_t *, long, struct tm *));
   1420 const long		offset;
   1421 {
   1422 	register time_t			t;
   1423 	register const struct state *	sp;
   1424 	register int			samei, otheri;
   1425 	int				okay;
   1426 
   1427 	if (tmp->tm_isdst > 1)
   1428 		tmp->tm_isdst = 1;
   1429 	t = time2(tmp, funcp, offset, &okay);
   1430 #ifdef PCTS
   1431 	/*
   1432 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1433 	*/
   1434 	if (okay)
   1435 		return t;
   1436 	if (tmp->tm_isdst < 0)
   1437 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1438 #endif /* defined PCTS */
   1439 #ifndef PCTS
   1440 	if (okay || tmp->tm_isdst < 0)
   1441 		return t;
   1442 #endif /* !defined PCTS */
   1443 	/*
   1444 	** We're supposed to assume that somebody took a time of one type
   1445 	** and did some math on it that yielded a "struct tm" that's bad.
   1446 	** We try to divine the type they started from and adjust to the
   1447 	** type they need.
   1448 	*/
   1449 	/*
   1450 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1451 	*/
   1452 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1453 		lclptr : gmtptr);
   1454 #ifdef ALL_STATE
   1455 	if (sp == NULL)
   1456 		return WRONG;
   1457 #endif /* defined ALL_STATE */
   1458 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1459 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1460 			continue;
   1461 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1462 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1463 				continue;
   1464 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1465 					sp->ttis[samei].tt_gmtoff;
   1466 			tmp->tm_isdst = !tmp->tm_isdst;
   1467 			t = time2(tmp, funcp, offset, &okay);
   1468 			if (okay)
   1469 				return t;
   1470 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1471 					sp->ttis[samei].tt_gmtoff;
   1472 			tmp->tm_isdst = !tmp->tm_isdst;
   1473 		}
   1474 	}
   1475 	return WRONG;
   1476 }
   1477 
   1478 time_t
   1479 mktime(tmp)
   1480 struct tm * const	tmp;
   1481 {
   1482 	tzset();
   1483 	return time1(tmp, localsub, 0L);
   1484 }
   1485 
   1486 #ifdef STD_INSPIRED
   1487 
   1488 time_t
   1489 timelocal(tmp)
   1490 struct tm * const	tmp;
   1491 {
   1492 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1493 	return mktime(tmp);
   1494 }
   1495 
   1496 time_t
   1497 timegm(tmp)
   1498 struct tm * const	tmp;
   1499 {
   1500 	tmp->tm_isdst = 0;
   1501 	return time1(tmp, gmtsub, 0L);
   1502 }
   1503 
   1504 time_t
   1505 timeoff(tmp, offset)
   1506 struct tm * const	tmp;
   1507 const long		offset;
   1508 {
   1509 	tmp->tm_isdst = 0;
   1510 	return time1(tmp, gmtsub, offset);
   1511 }
   1512 
   1513 #endif /* defined STD_INSPIRED */
   1514 
   1515 #ifdef CMUCS
   1516 
   1517 /*
   1518 ** The following is supplied for compatibility with
   1519 ** previous versions of the CMUCS runtime library.
   1520 */
   1521 
   1522 long
   1523 gtime(tmp)
   1524 struct tm * const	tmp;
   1525 {
   1526 	const time_t	t = mktime(tmp);
   1527 
   1528 	if (t == WRONG)
   1529 		return -1;
   1530 	return t;
   1531 }
   1532 
   1533 #endif /* defined CMUCS */
   1534 
   1535 /*
   1536 ** XXX--is the below the right way to conditionalize??
   1537 */
   1538 
   1539 #ifdef STD_INSPIRED
   1540 
   1541 /*
   1542 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1543 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
   1544 ** is not the case if we are accounting for leap seconds.
   1545 ** So, we provide the following conversion routines for use
   1546 ** when exchanging timestamps with POSIX conforming systems.
   1547 */
   1548 
   1549 static long
   1550 leapcorr(timep)
   1551 time_t *	timep;
   1552 {
   1553 	register struct state *		sp;
   1554 	register struct lsinfo *	lp;
   1555 	register int			i;
   1556 
   1557 	sp = lclptr;
   1558 	i = sp->leapcnt;
   1559 	while (--i >= 0) {
   1560 		lp = &sp->lsis[i];
   1561 		if (*timep >= lp->ls_trans)
   1562 			return lp->ls_corr;
   1563 	}
   1564 	return 0;
   1565 }
   1566 
   1567 time_t
   1568 time2posix(t)
   1569 time_t	t;
   1570 {
   1571 	tzset();
   1572 	return t - leapcorr(&t);
   1573 }
   1574 
   1575 time_t
   1576 posix2time(t)
   1577 time_t	t;
   1578 {
   1579 	time_t	x;
   1580 	time_t	y;
   1581 
   1582 	tzset();
   1583 	/*
   1584 	** For a positive leap second hit, the result
   1585 	** is not unique.  For a negative leap second
   1586 	** hit, the corresponding time doesn't exist,
   1587 	** so we return an adjacent second.
   1588 	*/
   1589 	x = t + leapcorr(&t);
   1590 	y = x - leapcorr(&x);
   1591 	if (y < t) {
   1592 		do {
   1593 			x++;
   1594 			y = x - leapcorr(&x);
   1595 		} while (y < t);
   1596 		if (t != y)
   1597 			return x - 1;
   1598 	} else if (y > t) {
   1599 		do {
   1600 			--x;
   1601 			y = x - leapcorr(&x);
   1602 		} while (y > t);
   1603 		if (t != y)
   1604 			return x + 1;
   1605 	}
   1606 	return x;
   1607 }
   1608 
   1609 #endif /* defined STD_INSPIRED */
   1610