localtime.c revision 1.1.1.7 1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
4 */
5
6 #ifndef lint
7 #ifndef NOID
8 static char elsieid[] = "@(#)localtime.c 7.62";
9 #endif /* !defined NOID */
10 #endif /* !defined lint */
11
12 /*
13 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
14 ** POSIX-style TZ environment variable handling from Guy Harris
15 ** (guy (at) auspex.com).
16 */
17
18 /*LINTLIBRARY*/
19
20 #include "private.h"
21 #include "tzfile.h"
22 #include "fcntl.h"
23
24 /*
25 ** SunOS 4.1.1 headers lack O_BINARY.
26 */
27
28 #ifdef O_BINARY
29 #define OPEN_MODE (O_RDONLY | O_BINARY)
30 #endif /* defined O_BINARY */
31 #ifndef O_BINARY
32 #define OPEN_MODE O_RDONLY
33 #endif /* !defined O_BINARY */
34
35 #ifndef WILDABBR
36 /*
37 ** Someone might make incorrect use of a time zone abbreviation:
38 ** 1. They might reference tzname[0] before calling tzset (explicitly
39 ** or implicitly).
40 ** 2. They might reference tzname[1] before calling tzset (explicitly
41 ** or implicitly).
42 ** 3. They might reference tzname[1] after setting to a time zone
43 ** in which Daylight Saving Time is never observed.
44 ** 4. They might reference tzname[0] after setting to a time zone
45 ** in which Standard Time is never observed.
46 ** 5. They might reference tm.TM_ZONE after calling offtime.
47 ** What's best to do in the above cases is open to debate;
48 ** for now, we just set things up so that in any of the five cases
49 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
50 ** string "tzname[0] used before set", and similarly for the other cases.
51 ** And another: initialize tzname[0] to "ERA", with an explanation in the
52 ** manual page of what this "time zone abbreviation" means (doing this so
53 ** that tzname[0] has the "normal" length of three characters).
54 */
55 #define WILDABBR " "
56 #endif /* !defined WILDABBR */
57
58 static char wildabbr[] = "WILDABBR";
59
60 static const char gmt[] = "GMT";
61
62 struct ttinfo { /* time type information */
63 long tt_gmtoff; /* GMT offset in seconds */
64 int tt_isdst; /* used to set tm_isdst */
65 int tt_abbrind; /* abbreviation list index */
66 int tt_ttisstd; /* TRUE if transition is std time */
67 int tt_ttisgmt; /* TRUE if transition is GMT */
68 };
69
70 struct lsinfo { /* leap second information */
71 time_t ls_trans; /* transition time */
72 long ls_corr; /* correction to apply */
73 };
74
75 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
76
77 #ifdef TZNAME_MAX
78 #define MY_TZNAME_MAX TZNAME_MAX
79 #endif /* defined TZNAME_MAX */
80 #ifndef TZNAME_MAX
81 #define MY_TZNAME_MAX 255
82 #endif /* !defined TZNAME_MAX */
83
84 struct state {
85 int leapcnt;
86 int timecnt;
87 int typecnt;
88 int charcnt;
89 time_t ats[TZ_MAX_TIMES];
90 unsigned char types[TZ_MAX_TIMES];
91 struct ttinfo ttis[TZ_MAX_TYPES];
92 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
93 (2 * (MY_TZNAME_MAX + 1)))];
94 struct lsinfo lsis[TZ_MAX_LEAPS];
95 };
96
97 struct rule {
98 int r_type; /* type of rule--see below */
99 int r_day; /* day number of rule */
100 int r_week; /* week number of rule */
101 int r_mon; /* month number of rule */
102 long r_time; /* transition time of rule */
103 };
104
105 #define JULIAN_DAY 0 /* Jn - Julian day */
106 #define DAY_OF_YEAR 1 /* n - day of year */
107 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
108
109 /*
110 ** Prototypes for static functions.
111 */
112
113 static long detzcode P((const char * codep));
114 static const char * getzname P((const char * strp));
115 static const char * getnum P((const char * strp, int * nump, int min,
116 int max));
117 static const char * getsecs P((const char * strp, long * secsp));
118 static const char * getoffset P((const char * strp, long * offsetp));
119 static const char * getrule P((const char * strp, struct rule * rulep));
120 static void gmtload P((struct state * sp));
121 static void gmtsub P((const time_t * timep, long offset,
122 struct tm * tmp));
123 static void localsub P((const time_t * timep, long offset,
124 struct tm * tmp));
125 static int increment_overflow P((int * number, int delta));
126 static int normalize_overflow P((int * tensptr, int * unitsptr,
127 int base));
128 static void settzname P((void));
129 static time_t time1 P((struct tm * tmp,
130 void(*funcp) P((const time_t *,
131 long, struct tm *)),
132 long offset));
133 static time_t time2 P((struct tm *tmp,
134 void(*funcp) P((const time_t *,
135 long, struct tm*)),
136 long offset, int * okayp));
137 static time_t time2sub P((struct tm *tmp,
138 void(*funcp) P((const time_t *,
139 long, struct tm*)),
140 long offset, int * okayp, int do_norm_secs));
141 static void timesub P((const time_t * timep, long offset,
142 const struct state * sp, struct tm * tmp));
143 static int tmcomp P((const struct tm * atmp,
144 const struct tm * btmp));
145 static time_t transtime P((time_t janfirst, int year,
146 const struct rule * rulep, long offset));
147 static int tzload P((const char * name, struct state * sp));
148 static int tzparse P((const char * name, struct state * sp,
149 int lastditch));
150
151 #ifdef ALL_STATE
152 static struct state * lclptr;
153 static struct state * gmtptr;
154 #endif /* defined ALL_STATE */
155
156 #ifndef ALL_STATE
157 static struct state lclmem;
158 static struct state gmtmem;
159 #define lclptr (&lclmem)
160 #define gmtptr (&gmtmem)
161 #endif /* State Farm */
162
163 #ifndef TZ_STRLEN_MAX
164 #define TZ_STRLEN_MAX 255
165 #endif /* !defined TZ_STRLEN_MAX */
166
167 static char lcl_TZname[TZ_STRLEN_MAX + 1];
168 static int lcl_is_set;
169 static int gmt_is_set;
170
171 char * tzname[2] = {
172 wildabbr,
173 wildabbr
174 };
175
176 /*
177 ** Section 4.12.3 of X3.159-1989 requires that
178 ** Except for the strftime function, these functions [asctime,
179 ** ctime, gmtime, localtime] return values in one of two static
180 ** objects: a broken-down time structure and an array of char.
181 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
182 */
183
184 static struct tm tm;
185
186 #ifdef USG_COMPAT
187 time_t timezone = 0;
188 int daylight = 0;
189 #endif /* defined USG_COMPAT */
190
191 #ifdef ALTZONE
192 time_t altzone = 0;
193 #endif /* defined ALTZONE */
194
195 static long
196 detzcode(codep)
197 const char * const codep;
198 {
199 register long result;
200 register int i;
201
202 result = (codep[0] & 0x80) ? ~0L : 0L;
203 for (i = 0; i < 4; ++i)
204 result = (result << 8) | (codep[i] & 0xff);
205 return result;
206 }
207
208 static void
209 settzname P((void))
210 {
211 register struct state * const sp = lclptr;
212 register int i;
213
214 tzname[0] = wildabbr;
215 tzname[1] = wildabbr;
216 #ifdef USG_COMPAT
217 daylight = 0;
218 timezone = 0;
219 #endif /* defined USG_COMPAT */
220 #ifdef ALTZONE
221 altzone = 0;
222 #endif /* defined ALTZONE */
223 #ifdef ALL_STATE
224 if (sp == NULL) {
225 tzname[0] = tzname[1] = gmt;
226 return;
227 }
228 #endif /* defined ALL_STATE */
229 for (i = 0; i < sp->typecnt; ++i) {
230 register const struct ttinfo * const ttisp = &sp->ttis[i];
231
232 tzname[ttisp->tt_isdst] =
233 &sp->chars[ttisp->tt_abbrind];
234 #ifdef USG_COMPAT
235 if (ttisp->tt_isdst)
236 daylight = 1;
237 if (i == 0 || !ttisp->tt_isdst)
238 timezone = -(ttisp->tt_gmtoff);
239 #endif /* defined USG_COMPAT */
240 #ifdef ALTZONE
241 if (i == 0 || ttisp->tt_isdst)
242 altzone = -(ttisp->tt_gmtoff);
243 #endif /* defined ALTZONE */
244 }
245 /*
246 ** And to get the latest zone names into tzname. . .
247 */
248 for (i = 0; i < sp->timecnt; ++i) {
249 register const struct ttinfo * const ttisp =
250 &sp->ttis[
251 sp->types[i]];
252
253 tzname[ttisp->tt_isdst] =
254 &sp->chars[ttisp->tt_abbrind];
255 }
256 }
257
258 static int
259 tzload(name, sp)
260 register const char * name;
261 register struct state * const sp;
262 {
263 register const char * p;
264 register int i;
265 register int fid;
266
267 if (name == NULL && (name = TZDEFAULT) == NULL)
268 return -1;
269 {
270 register int doaccess;
271 /*
272 ** Section 4.9.1 of the C standard says that
273 ** "FILENAME_MAX expands to an integral constant expression
274 ** that is the size needed for an array of char large enough
275 ** to hold the longest file name string that the implementation
276 ** guarantees can be opened."
277 */
278 char fullname[FILENAME_MAX + 1];
279
280 if (name[0] == ':')
281 ++name;
282 doaccess = name[0] == '/';
283 if (!doaccess) {
284 if ((p = TZDIR) == NULL)
285 return -1;
286 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
287 return -1;
288 (void) strcpy(fullname, p);
289 (void) strcat(fullname, "/");
290 (void) strcat(fullname, name);
291 /*
292 ** Set doaccess if '.' (as in "../") shows up in name.
293 */
294 if (strchr(name, '.') != NULL)
295 doaccess = TRUE;
296 name = fullname;
297 }
298 if (doaccess && access(name, R_OK) != 0)
299 return -1;
300 if ((fid = open(name, OPEN_MODE)) == -1)
301 return -1;
302 }
303 {
304 struct tzhead * tzhp;
305 char buf[sizeof *sp + sizeof *tzhp];
306 int ttisstdcnt;
307 int ttisgmtcnt;
308
309 i = read(fid, buf, sizeof buf);
310 if (close(fid) != 0)
311 return -1;
312 p = buf;
313 p += sizeof tzhp->tzh_reserved;
314 ttisstdcnt = (int) detzcode(p);
315 p += 4;
316 ttisgmtcnt = (int) detzcode(p);
317 p += 4;
318 sp->leapcnt = (int) detzcode(p);
319 p += 4;
320 sp->timecnt = (int) detzcode(p);
321 p += 4;
322 sp->typecnt = (int) detzcode(p);
323 p += 4;
324 sp->charcnt = (int) detzcode(p);
325 p += 4;
326 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
327 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
328 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
329 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
330 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
331 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
332 return -1;
333 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
334 sp->timecnt + /* types */
335 sp->typecnt * (4 + 2) + /* ttinfos */
336 sp->charcnt + /* chars */
337 sp->leapcnt * (4 + 4) + /* lsinfos */
338 ttisstdcnt + /* ttisstds */
339 ttisgmtcnt) /* ttisgmts */
340 return -1;
341 for (i = 0; i < sp->timecnt; ++i) {
342 sp->ats[i] = detzcode(p);
343 p += 4;
344 }
345 for (i = 0; i < sp->timecnt; ++i) {
346 sp->types[i] = (unsigned char) *p++;
347 if (sp->types[i] >= sp->typecnt)
348 return -1;
349 }
350 for (i = 0; i < sp->typecnt; ++i) {
351 register struct ttinfo * ttisp;
352
353 ttisp = &sp->ttis[i];
354 ttisp->tt_gmtoff = detzcode(p);
355 p += 4;
356 ttisp->tt_isdst = (unsigned char) *p++;
357 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
358 return -1;
359 ttisp->tt_abbrind = (unsigned char) *p++;
360 if (ttisp->tt_abbrind < 0 ||
361 ttisp->tt_abbrind > sp->charcnt)
362 return -1;
363 }
364 for (i = 0; i < sp->charcnt; ++i)
365 sp->chars[i] = *p++;
366 sp->chars[i] = '\0'; /* ensure '\0' at end */
367 for (i = 0; i < sp->leapcnt; ++i) {
368 register struct lsinfo * lsisp;
369
370 lsisp = &sp->lsis[i];
371 lsisp->ls_trans = detzcode(p);
372 p += 4;
373 lsisp->ls_corr = detzcode(p);
374 p += 4;
375 }
376 for (i = 0; i < sp->typecnt; ++i) {
377 register struct ttinfo * ttisp;
378
379 ttisp = &sp->ttis[i];
380 if (ttisstdcnt == 0)
381 ttisp->tt_ttisstd = FALSE;
382 else {
383 ttisp->tt_ttisstd = *p++;
384 if (ttisp->tt_ttisstd != TRUE &&
385 ttisp->tt_ttisstd != FALSE)
386 return -1;
387 }
388 }
389 for (i = 0; i < sp->typecnt; ++i) {
390 register struct ttinfo * ttisp;
391
392 ttisp = &sp->ttis[i];
393 if (ttisgmtcnt == 0)
394 ttisp->tt_ttisgmt = FALSE;
395 else {
396 ttisp->tt_ttisgmt = *p++;
397 if (ttisp->tt_ttisgmt != TRUE &&
398 ttisp->tt_ttisgmt != FALSE)
399 return -1;
400 }
401 }
402 }
403 return 0;
404 }
405
406 static const int mon_lengths[2][MONSPERYEAR] = {
407 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
408 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
409 };
410
411 static const int year_lengths[2] = {
412 DAYSPERNYEAR, DAYSPERLYEAR
413 };
414
415 /*
416 ** Given a pointer into a time zone string, scan until a character that is not
417 ** a valid character in a zone name is found. Return a pointer to that
418 ** character.
419 */
420
421 static const char *
422 getzname(strp)
423 register const char * strp;
424 {
425 register char c;
426
427 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
428 c != '+')
429 ++strp;
430 return strp;
431 }
432
433 /*
434 ** Given a pointer into a time zone string, extract a number from that string.
435 ** Check that the number is within a specified range; if it is not, return
436 ** NULL.
437 ** Otherwise, return a pointer to the first character not part of the number.
438 */
439
440 static const char *
441 getnum(strp, nump, min, max)
442 register const char * strp;
443 int * const nump;
444 const int min;
445 const int max;
446 {
447 register char c;
448 register int num;
449
450 if (strp == NULL || !is_digit(c = *strp))
451 return NULL;
452 num = 0;
453 do {
454 num = num * 10 + (c - '0');
455 if (num > max)
456 return NULL; /* illegal value */
457 c = *++strp;
458 } while (is_digit(c));
459 if (num < min)
460 return NULL; /* illegal value */
461 *nump = num;
462 return strp;
463 }
464
465 /*
466 ** Given a pointer into a time zone string, extract a number of seconds,
467 ** in hh[:mm[:ss]] form, from the string.
468 ** If any error occurs, return NULL.
469 ** Otherwise, return a pointer to the first character not part of the number
470 ** of seconds.
471 */
472
473 static const char *
474 getsecs(strp, secsp)
475 register const char * strp;
476 long * const secsp;
477 {
478 int num;
479
480 /*
481 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
482 ** "M10.4.6/26", which does not conform to Posix,
483 ** but which specifies the equivalent of
484 ** ``02:00 on the first Sunday on or after 23 Oct''.
485 */
486 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
487 if (strp == NULL)
488 return NULL;
489 *secsp = num * (long) SECSPERHOUR;
490 if (*strp == ':') {
491 ++strp;
492 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
493 if (strp == NULL)
494 return NULL;
495 *secsp += num * SECSPERMIN;
496 if (*strp == ':') {
497 ++strp;
498 /* `SECSPERMIN' allows for leap seconds. */
499 strp = getnum(strp, &num, 0, SECSPERMIN);
500 if (strp == NULL)
501 return NULL;
502 *secsp += num;
503 }
504 }
505 return strp;
506 }
507
508 /*
509 ** Given a pointer into a time zone string, extract an offset, in
510 ** [+-]hh[:mm[:ss]] form, from the string.
511 ** If any error occurs, return NULL.
512 ** Otherwise, return a pointer to the first character not part of the time.
513 */
514
515 static const char *
516 getoffset(strp, offsetp)
517 register const char * strp;
518 long * const offsetp;
519 {
520 register int neg = 0;
521
522 if (*strp == '-') {
523 neg = 1;
524 ++strp;
525 } else if (*strp == '+')
526 ++strp;
527 strp = getsecs(strp, offsetp);
528 if (strp == NULL)
529 return NULL; /* illegal time */
530 if (neg)
531 *offsetp = -*offsetp;
532 return strp;
533 }
534
535 /*
536 ** Given a pointer into a time zone string, extract a rule in the form
537 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
538 ** If a valid rule is not found, return NULL.
539 ** Otherwise, return a pointer to the first character not part of the rule.
540 */
541
542 static const char *
543 getrule(strp, rulep)
544 const char * strp;
545 register struct rule * const rulep;
546 {
547 if (*strp == 'J') {
548 /*
549 ** Julian day.
550 */
551 rulep->r_type = JULIAN_DAY;
552 ++strp;
553 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
554 } else if (*strp == 'M') {
555 /*
556 ** Month, week, day.
557 */
558 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
559 ++strp;
560 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
561 if (strp == NULL)
562 return NULL;
563 if (*strp++ != '.')
564 return NULL;
565 strp = getnum(strp, &rulep->r_week, 1, 5);
566 if (strp == NULL)
567 return NULL;
568 if (*strp++ != '.')
569 return NULL;
570 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
571 } else if (is_digit(*strp)) {
572 /*
573 ** Day of year.
574 */
575 rulep->r_type = DAY_OF_YEAR;
576 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
577 } else return NULL; /* invalid format */
578 if (strp == NULL)
579 return NULL;
580 if (*strp == '/') {
581 /*
582 ** Time specified.
583 */
584 ++strp;
585 strp = getsecs(strp, &rulep->r_time);
586 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
587 return strp;
588 }
589
590 /*
591 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
592 ** year, a rule, and the offset from GMT at the time that rule takes effect,
593 ** calculate the Epoch-relative time that rule takes effect.
594 */
595
596 static time_t
597 transtime(janfirst, year, rulep, offset)
598 const time_t janfirst;
599 const int year;
600 register const struct rule * const rulep;
601 const long offset;
602 {
603 register int leapyear;
604 register time_t value;
605 register int i;
606 int d, m1, yy0, yy1, yy2, dow;
607
608 INITIALIZE(value);
609 leapyear = isleap(year);
610 switch (rulep->r_type) {
611
612 case JULIAN_DAY:
613 /*
614 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
615 ** years.
616 ** In non-leap years, or if the day number is 59 or less, just
617 ** add SECSPERDAY times the day number-1 to the time of
618 ** January 1, midnight, to get the day.
619 */
620 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
621 if (leapyear && rulep->r_day >= 60)
622 value += SECSPERDAY;
623 break;
624
625 case DAY_OF_YEAR:
626 /*
627 ** n - day of year.
628 ** Just add SECSPERDAY times the day number to the time of
629 ** January 1, midnight, to get the day.
630 */
631 value = janfirst + rulep->r_day * SECSPERDAY;
632 break;
633
634 case MONTH_NTH_DAY_OF_WEEK:
635 /*
636 ** Mm.n.d - nth "dth day" of month m.
637 */
638 value = janfirst;
639 for (i = 0; i < rulep->r_mon - 1; ++i)
640 value += mon_lengths[leapyear][i] * SECSPERDAY;
641
642 /*
643 ** Use Zeller's Congruence to get day-of-week of first day of
644 ** month.
645 */
646 m1 = (rulep->r_mon + 9) % 12 + 1;
647 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
648 yy1 = yy0 / 100;
649 yy2 = yy0 % 100;
650 dow = ((26 * m1 - 2) / 10 +
651 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
652 if (dow < 0)
653 dow += DAYSPERWEEK;
654
655 /*
656 ** "dow" is the day-of-week of the first day of the month. Get
657 ** the day-of-month (zero-origin) of the first "dow" day of the
658 ** month.
659 */
660 d = rulep->r_day - dow;
661 if (d < 0)
662 d += DAYSPERWEEK;
663 for (i = 1; i < rulep->r_week; ++i) {
664 if (d + DAYSPERWEEK >=
665 mon_lengths[leapyear][rulep->r_mon - 1])
666 break;
667 d += DAYSPERWEEK;
668 }
669
670 /*
671 ** "d" is the day-of-month (zero-origin) of the day we want.
672 */
673 value += d * SECSPERDAY;
674 break;
675 }
676
677 /*
678 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
679 ** question. To get the Epoch-relative time of the specified local
680 ** time on that day, add the transition time and the current offset
681 ** from GMT.
682 */
683 return value + rulep->r_time + offset;
684 }
685
686 /*
687 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
688 ** appropriate.
689 */
690
691 static int
692 tzparse(name, sp, lastditch)
693 const char * name;
694 register struct state * const sp;
695 const int lastditch;
696 {
697 const char * stdname;
698 const char * dstname;
699 size_t stdlen;
700 size_t dstlen;
701 long stdoffset;
702 long dstoffset;
703 register time_t * atp;
704 register unsigned char * typep;
705 register char * cp;
706 register int load_result;
707
708 INITIALIZE(dstname);
709 stdname = name;
710 if (lastditch) {
711 stdlen = strlen(name); /* length of standard zone name */
712 name += stdlen;
713 if (stdlen >= sizeof sp->chars)
714 stdlen = (sizeof sp->chars) - 1;
715 stdoffset = 0;
716 } else {
717 name = getzname(name);
718 stdlen = name - stdname;
719 if (stdlen < 3)
720 return -1;
721 if (*name == '\0')
722 return -1;
723 name = getoffset(name, &stdoffset);
724 if (name == NULL)
725 return -1;
726 }
727 load_result = tzload(TZDEFRULES, sp);
728 if (load_result != 0)
729 sp->leapcnt = 0; /* so, we're off a little */
730 if (*name != '\0') {
731 dstname = name;
732 name = getzname(name);
733 dstlen = name - dstname; /* length of DST zone name */
734 if (dstlen < 3)
735 return -1;
736 if (*name != '\0' && *name != ',' && *name != ';') {
737 name = getoffset(name, &dstoffset);
738 if (name == NULL)
739 return -1;
740 } else dstoffset = stdoffset - SECSPERHOUR;
741 if (*name == ',' || *name == ';') {
742 struct rule start;
743 struct rule end;
744 register int year;
745 register time_t janfirst;
746 time_t starttime;
747 time_t endtime;
748
749 ++name;
750 if ((name = getrule(name, &start)) == NULL)
751 return -1;
752 if (*name++ != ',')
753 return -1;
754 if ((name = getrule(name, &end)) == NULL)
755 return -1;
756 if (*name != '\0')
757 return -1;
758 sp->typecnt = 2; /* standard time and DST */
759 /*
760 ** Two transitions per year, from EPOCH_YEAR to 2037.
761 */
762 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
763 if (sp->timecnt > TZ_MAX_TIMES)
764 return -1;
765 sp->ttis[0].tt_gmtoff = -dstoffset;
766 sp->ttis[0].tt_isdst = 1;
767 sp->ttis[0].tt_abbrind = stdlen + 1;
768 sp->ttis[1].tt_gmtoff = -stdoffset;
769 sp->ttis[1].tt_isdst = 0;
770 sp->ttis[1].tt_abbrind = 0;
771 atp = sp->ats;
772 typep = sp->types;
773 janfirst = 0;
774 for (year = EPOCH_YEAR; year <= 2037; ++year) {
775 starttime = transtime(janfirst, year, &start,
776 stdoffset);
777 endtime = transtime(janfirst, year, &end,
778 dstoffset);
779 if (starttime > endtime) {
780 *atp++ = endtime;
781 *typep++ = 1; /* DST ends */
782 *atp++ = starttime;
783 *typep++ = 0; /* DST begins */
784 } else {
785 *atp++ = starttime;
786 *typep++ = 0; /* DST begins */
787 *atp++ = endtime;
788 *typep++ = 1; /* DST ends */
789 }
790 janfirst += year_lengths[isleap(year)] *
791 SECSPERDAY;
792 }
793 } else {
794 register long theirstdoffset;
795 register long theirdstoffset;
796 register long theiroffset;
797 register int isdst;
798 register int i;
799 register int j;
800
801 if (*name != '\0')
802 return -1;
803 if (load_result != 0)
804 return -1;
805 /*
806 ** Initial values of theirstdoffset and theirdstoffset.
807 */
808 theirstdoffset = 0;
809 for (i = 0; i < sp->timecnt; ++i) {
810 j = sp->types[i];
811 if (!sp->ttis[j].tt_isdst) {
812 theirstdoffset =
813 -sp->ttis[j].tt_gmtoff;
814 break;
815 }
816 }
817 theirdstoffset = 0;
818 for (i = 0; i < sp->timecnt; ++i) {
819 j = sp->types[i];
820 if (sp->ttis[j].tt_isdst) {
821 theirdstoffset =
822 -sp->ttis[j].tt_gmtoff;
823 break;
824 }
825 }
826 /*
827 ** Initially we're assumed to be in standard time.
828 */
829 isdst = FALSE;
830 theiroffset = theirstdoffset;
831 /*
832 ** Now juggle transition times and types
833 ** tracking offsets as you do.
834 */
835 for (i = 0; i < sp->timecnt; ++i) {
836 j = sp->types[i];
837 sp->types[i] = sp->ttis[j].tt_isdst;
838 if (sp->ttis[j].tt_ttisgmt) {
839 /* No adjustment to transition time */
840 } else {
841 /*
842 ** If summer time is in effect, and the
843 ** transition time was not specified as
844 ** standard time, add the summer time
845 ** offset to the transition time;
846 ** otherwise, add the standard time
847 ** offset to the transition time.
848 */
849 /*
850 ** Transitions from DST to DDST
851 ** will effectively disappear since
852 ** POSIX provides for only one DST
853 ** offset.
854 */
855 if (isdst && !sp->ttis[j].tt_ttisstd) {
856 sp->ats[i] += dstoffset -
857 theirdstoffset;
858 } else {
859 sp->ats[i] += stdoffset -
860 theirstdoffset;
861 }
862 }
863 theiroffset = -sp->ttis[j].tt_gmtoff;
864 if (sp->ttis[j].tt_isdst)
865 theirdstoffset = theiroffset;
866 else theirstdoffset = theiroffset;
867 }
868 /*
869 ** Finally, fill in ttis.
870 ** ttisstd and ttisgmt need not be handled.
871 */
872 sp->ttis[0].tt_gmtoff = -stdoffset;
873 sp->ttis[0].tt_isdst = FALSE;
874 sp->ttis[0].tt_abbrind = 0;
875 sp->ttis[1].tt_gmtoff = -dstoffset;
876 sp->ttis[1].tt_isdst = TRUE;
877 sp->ttis[1].tt_abbrind = stdlen + 1;
878 sp->typecnt = 2;
879 }
880 } else {
881 dstlen = 0;
882 sp->typecnt = 1; /* only standard time */
883 sp->timecnt = 0;
884 sp->ttis[0].tt_gmtoff = -stdoffset;
885 sp->ttis[0].tt_isdst = 0;
886 sp->ttis[0].tt_abbrind = 0;
887 }
888 sp->charcnt = stdlen + 1;
889 if (dstlen != 0)
890 sp->charcnt += dstlen + 1;
891 if ((size_t) sp->charcnt > sizeof sp->chars)
892 return -1;
893 cp = sp->chars;
894 (void) strncpy(cp, stdname, stdlen);
895 cp += stdlen;
896 *cp++ = '\0';
897 if (dstlen != 0) {
898 (void) strncpy(cp, dstname, dstlen);
899 *(cp + dstlen) = '\0';
900 }
901 return 0;
902 }
903
904 static void
905 gmtload(sp)
906 struct state * const sp;
907 {
908 if (tzload(gmt, sp) != 0)
909 (void) tzparse(gmt, sp, TRUE);
910 }
911
912 #ifndef STD_INSPIRED
913 /*
914 ** A non-static declaration of tzsetwall in a system header file
915 ** may cause a warning about this upcoming static declaration...
916 */
917 static
918 #endif /* !defined STD_INSPIRED */
919 void
920 tzsetwall P((void))
921 {
922 if (lcl_is_set < 0)
923 return;
924 lcl_is_set = -1;
925
926 #ifdef ALL_STATE
927 if (lclptr == NULL) {
928 lclptr = (struct state *) malloc(sizeof *lclptr);
929 if (lclptr == NULL) {
930 settzname(); /* all we can do */
931 return;
932 }
933 }
934 #endif /* defined ALL_STATE */
935 if (tzload((char *) NULL, lclptr) != 0)
936 gmtload(lclptr);
937 settzname();
938 }
939
940 void
941 tzset P((void))
942 {
943 register const char * name;
944
945 name = getenv("TZ");
946 if (name == NULL) {
947 tzsetwall();
948 return;
949 }
950
951 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
952 return;
953 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
954 if (lcl_is_set)
955 (void) strcpy(lcl_TZname, name);
956
957 #ifdef ALL_STATE
958 if (lclptr == NULL) {
959 lclptr = (struct state *) malloc(sizeof *lclptr);
960 if (lclptr == NULL) {
961 settzname(); /* all we can do */
962 return;
963 }
964 }
965 #endif /* defined ALL_STATE */
966 if (*name == '\0') {
967 /*
968 ** User wants it fast rather than right.
969 */
970 lclptr->leapcnt = 0; /* so, we're off a little */
971 lclptr->timecnt = 0;
972 lclptr->ttis[0].tt_gmtoff = 0;
973 lclptr->ttis[0].tt_abbrind = 0;
974 (void) strcpy(lclptr->chars, gmt);
975 } else if (tzload(name, lclptr) != 0)
976 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
977 (void) gmtload(lclptr);
978 settzname();
979 }
980
981 /*
982 ** The easy way to behave "as if no library function calls" localtime
983 ** is to not call it--so we drop its guts into "localsub", which can be
984 ** freely called. (And no, the PANS doesn't require the above behavior--
985 ** but it *is* desirable.)
986 **
987 ** The unused offset argument is for the benefit of mktime variants.
988 */
989
990 /*ARGSUSED*/
991 static void
992 localsub(timep, offset, tmp)
993 const time_t * const timep;
994 const long offset;
995 struct tm * const tmp;
996 {
997 register struct state * sp;
998 register const struct ttinfo * ttisp;
999 register int i;
1000 const time_t t = *timep;
1001
1002 sp = lclptr;
1003 #ifdef ALL_STATE
1004 if (sp == NULL) {
1005 gmtsub(timep, offset, tmp);
1006 return;
1007 }
1008 #endif /* defined ALL_STATE */
1009 if (sp->timecnt == 0 || t < sp->ats[0]) {
1010 i = 0;
1011 while (sp->ttis[i].tt_isdst)
1012 if (++i >= sp->typecnt) {
1013 i = 0;
1014 break;
1015 }
1016 } else {
1017 for (i = 1; i < sp->timecnt; ++i)
1018 if (t < sp->ats[i])
1019 break;
1020 i = sp->types[i - 1];
1021 }
1022 ttisp = &sp->ttis[i];
1023 /*
1024 ** To get (wrong) behavior that's compatible with System V Release 2.0
1025 ** you'd replace the statement below with
1026 ** t += ttisp->tt_gmtoff;
1027 ** timesub(&t, 0L, sp, tmp);
1028 */
1029 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1030 tmp->tm_isdst = ttisp->tt_isdst;
1031 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1032 #ifdef TM_ZONE
1033 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1034 #endif /* defined TM_ZONE */
1035 }
1036
1037 struct tm *
1038 localtime(timep)
1039 const time_t * const timep;
1040 {
1041 tzset();
1042 localsub(timep, 0L, &tm);
1043 return &tm;
1044 }
1045
1046 /*
1047 ** gmtsub is to gmtime as localsub is to localtime.
1048 */
1049
1050 static void
1051 gmtsub(timep, offset, tmp)
1052 const time_t * const timep;
1053 const long offset;
1054 struct tm * const tmp;
1055 {
1056 if (!gmt_is_set) {
1057 gmt_is_set = TRUE;
1058 #ifdef ALL_STATE
1059 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1060 if (gmtptr != NULL)
1061 #endif /* defined ALL_STATE */
1062 gmtload(gmtptr);
1063 }
1064 timesub(timep, offset, gmtptr, tmp);
1065 #ifdef TM_ZONE
1066 /*
1067 ** Could get fancy here and deliver something such as
1068 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1069 ** but this is no time for a treasure hunt.
1070 */
1071 if (offset != 0)
1072 tmp->TM_ZONE = wildabbr;
1073 else {
1074 #ifdef ALL_STATE
1075 if (gmtptr == NULL)
1076 tmp->TM_ZONE = gmt;
1077 else tmp->TM_ZONE = gmtptr->chars;
1078 #endif /* defined ALL_STATE */
1079 #ifndef ALL_STATE
1080 tmp->TM_ZONE = gmtptr->chars;
1081 #endif /* State Farm */
1082 }
1083 #endif /* defined TM_ZONE */
1084 }
1085
1086 struct tm *
1087 gmtime(timep)
1088 const time_t * const timep;
1089 {
1090 gmtsub(timep, 0L, &tm);
1091 return &tm;
1092 }
1093
1094 #ifdef STD_INSPIRED
1095
1096 struct tm *
1097 offtime(timep, offset)
1098 const time_t * const timep;
1099 const long offset;
1100 {
1101 gmtsub(timep, offset, &tm);
1102 return &tm;
1103 }
1104
1105 #endif /* defined STD_INSPIRED */
1106
1107 static void
1108 timesub(timep, offset, sp, tmp)
1109 const time_t * const timep;
1110 const long offset;
1111 register const struct state * const sp;
1112 register struct tm * const tmp;
1113 {
1114 register const struct lsinfo * lp;
1115 register long days;
1116 register long rem;
1117 register int y;
1118 register int yleap;
1119 register const int * ip;
1120 register long corr;
1121 register int hit;
1122 register int i;
1123
1124 corr = 0;
1125 hit = 0;
1126 #ifdef ALL_STATE
1127 i = (sp == NULL) ? 0 : sp->leapcnt;
1128 #endif /* defined ALL_STATE */
1129 #ifndef ALL_STATE
1130 i = sp->leapcnt;
1131 #endif /* State Farm */
1132 while (--i >= 0) {
1133 lp = &sp->lsis[i];
1134 if (*timep >= lp->ls_trans) {
1135 if (*timep == lp->ls_trans) {
1136 hit = ((i == 0 && lp->ls_corr > 0) ||
1137 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1138 if (hit)
1139 while (i > 0 &&
1140 sp->lsis[i].ls_trans ==
1141 sp->lsis[i - 1].ls_trans + 1 &&
1142 sp->lsis[i].ls_corr ==
1143 sp->lsis[i - 1].ls_corr + 1) {
1144 ++hit;
1145 --i;
1146 }
1147 }
1148 corr = lp->ls_corr;
1149 break;
1150 }
1151 }
1152 days = *timep / SECSPERDAY;
1153 rem = *timep % SECSPERDAY;
1154 #ifdef mc68k
1155 if (*timep == 0x80000000) {
1156 /*
1157 ** A 3B1 muffs the division on the most negative number.
1158 */
1159 days = -24855;
1160 rem = -11648;
1161 }
1162 #endif /* defined mc68k */
1163 rem += (offset - corr);
1164 while (rem < 0) {
1165 rem += SECSPERDAY;
1166 --days;
1167 }
1168 while (rem >= SECSPERDAY) {
1169 rem -= SECSPERDAY;
1170 ++days;
1171 }
1172 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1173 rem = rem % SECSPERHOUR;
1174 tmp->tm_min = (int) (rem / SECSPERMIN);
1175 /*
1176 ** A positive leap second requires a special
1177 ** representation. This uses "... ??:59:60" et seq.
1178 */
1179 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1180 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1181 if (tmp->tm_wday < 0)
1182 tmp->tm_wday += DAYSPERWEEK;
1183 y = EPOCH_YEAR;
1184 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1185 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1186 register int newy;
1187
1188 newy = y + days / DAYSPERNYEAR;
1189 if (days < 0)
1190 --newy;
1191 days -= (newy - y) * DAYSPERNYEAR +
1192 LEAPS_THRU_END_OF(newy - 1) -
1193 LEAPS_THRU_END_OF(y - 1);
1194 y = newy;
1195 }
1196 tmp->tm_year = y - TM_YEAR_BASE;
1197 tmp->tm_yday = (int) days;
1198 ip = mon_lengths[yleap];
1199 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1200 days = days - (long) ip[tmp->tm_mon];
1201 tmp->tm_mday = (int) (days + 1);
1202 tmp->tm_isdst = 0;
1203 #ifdef TM_GMTOFF
1204 tmp->TM_GMTOFF = offset;
1205 #endif /* defined TM_GMTOFF */
1206 }
1207
1208 char *
1209 ctime(timep)
1210 const time_t * const timep;
1211 {
1212 /*
1213 ** Section 4.12.3.2 of X3.159-1989 requires that
1214 ** The ctime funciton converts the calendar time pointed to by timer
1215 ** to local time in the form of a string. It is equivalent to
1216 ** asctime(localtime(timer))
1217 */
1218 return asctime(localtime(timep));
1219 }
1220
1221 /*
1222 ** Adapted from code provided by Robert Elz, who writes:
1223 ** The "best" way to do mktime I think is based on an idea of Bob
1224 ** Kridle's (so its said...) from a long time ago.
1225 ** [kridle (at) xinet.com as of 1996-01-16.]
1226 ** It does a binary search of the time_t space. Since time_t's are
1227 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1228 ** would still be very reasonable).
1229 */
1230
1231 #ifndef WRONG
1232 #define WRONG (-1)
1233 #endif /* !defined WRONG */
1234
1235 /*
1236 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1237 */
1238
1239 static int
1240 increment_overflow(number, delta)
1241 int * number;
1242 int delta;
1243 {
1244 int number0;
1245
1246 number0 = *number;
1247 *number += delta;
1248 return (*number < number0) != (delta < 0);
1249 }
1250
1251 static int
1252 normalize_overflow(tensptr, unitsptr, base)
1253 int * const tensptr;
1254 int * const unitsptr;
1255 const int base;
1256 {
1257 register int tensdelta;
1258
1259 tensdelta = (*unitsptr >= 0) ?
1260 (*unitsptr / base) :
1261 (-1 - (-1 - *unitsptr) / base);
1262 *unitsptr -= tensdelta * base;
1263 return increment_overflow(tensptr, tensdelta);
1264 }
1265
1266 static int
1267 tmcomp(atmp, btmp)
1268 register const struct tm * const atmp;
1269 register const struct tm * const btmp;
1270 {
1271 register int result;
1272
1273 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1274 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1275 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1276 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1277 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1278 result = atmp->tm_sec - btmp->tm_sec;
1279 return result;
1280 }
1281
1282 static time_t
1283 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1284 struct tm * const tmp;
1285 void (* const funcp) P((const time_t*, long, struct tm*));
1286 const long offset;
1287 int * const okayp;
1288 const int do_norm_secs;
1289 {
1290 register const struct state * sp;
1291 register int dir;
1292 register int bits;
1293 register int i, j ;
1294 register int saved_seconds;
1295 time_t newt;
1296 time_t t;
1297 struct tm yourtm, mytm;
1298
1299 *okayp = FALSE;
1300 yourtm = *tmp;
1301 if (do_norm_secs) {
1302 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1303 SECSPERMIN))
1304 return WRONG;
1305 }
1306 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1307 return WRONG;
1308 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1309 return WRONG;
1310 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1311 return WRONG;
1312 /*
1313 ** Turn yourtm.tm_year into an actual year number for now.
1314 ** It is converted back to an offset from TM_YEAR_BASE later.
1315 */
1316 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1317 return WRONG;
1318 while (yourtm.tm_mday <= 0) {
1319 if (increment_overflow(&yourtm.tm_year, -1))
1320 return WRONG;
1321 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1322 yourtm.tm_mday += year_lengths[isleap(i)];
1323 }
1324 while (yourtm.tm_mday > DAYSPERLYEAR) {
1325 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1326 yourtm.tm_mday -= year_lengths[isleap(i)];
1327 if (increment_overflow(&yourtm.tm_year, 1))
1328 return WRONG;
1329 }
1330 for ( ; ; ) {
1331 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1332 if (yourtm.tm_mday <= i)
1333 break;
1334 yourtm.tm_mday -= i;
1335 if (++yourtm.tm_mon >= MONSPERYEAR) {
1336 yourtm.tm_mon = 0;
1337 if (increment_overflow(&yourtm.tm_year, 1))
1338 return WRONG;
1339 }
1340 }
1341 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1342 return WRONG;
1343 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1344 /*
1345 ** We can't set tm_sec to 0, because that might push the
1346 ** time below the minimum representable time.
1347 ** Set tm_sec to 59 instead.
1348 ** This assumes that the minimum representable time is
1349 ** not in the same minute that a leap second was deleted from,
1350 ** which is a safer assumption than using 58 would be.
1351 */
1352 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1353 return WRONG;
1354 saved_seconds = yourtm.tm_sec;
1355 yourtm.tm_sec = SECSPERMIN - 1;
1356 } else {
1357 saved_seconds = yourtm.tm_sec;
1358 yourtm.tm_sec = 0;
1359 }
1360 /*
1361 ** Divide the search space in half
1362 ** (this works whether time_t is signed or unsigned).
1363 */
1364 bits = TYPE_BIT(time_t) - 1;
1365 /*
1366 ** If time_t is signed, then 0 is just above the median,
1367 ** assuming two's complement arithmetic.
1368 ** If time_t is unsigned, then (1 << bits) is just above the median.
1369 */
1370 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1371 for ( ; ; ) {
1372 (*funcp)(&t, offset, &mytm);
1373 dir = tmcomp(&mytm, &yourtm);
1374 if (dir != 0) {
1375 if (bits-- < 0)
1376 return WRONG;
1377 if (bits < 0)
1378 --t; /* may be needed if new t is minimal */
1379 else if (dir > 0)
1380 t -= ((time_t) 1) << bits;
1381 else t += ((time_t) 1) << bits;
1382 continue;
1383 }
1384 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1385 break;
1386 /*
1387 ** Right time, wrong type.
1388 ** Hunt for right time, right type.
1389 ** It's okay to guess wrong since the guess
1390 ** gets checked.
1391 */
1392 /*
1393 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1394 */
1395 sp = (const struct state *)
1396 (((void *) funcp == (void *) localsub) ?
1397 lclptr : gmtptr);
1398 #ifdef ALL_STATE
1399 if (sp == NULL)
1400 return WRONG;
1401 #endif /* defined ALL_STATE */
1402 for (i = sp->typecnt - 1; i >= 0; --i) {
1403 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1404 continue;
1405 for (j = sp->typecnt - 1; j >= 0; --j) {
1406 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1407 continue;
1408 newt = t + sp->ttis[j].tt_gmtoff -
1409 sp->ttis[i].tt_gmtoff;
1410 (*funcp)(&newt, offset, &mytm);
1411 if (tmcomp(&mytm, &yourtm) != 0)
1412 continue;
1413 if (mytm.tm_isdst != yourtm.tm_isdst)
1414 continue;
1415 /*
1416 ** We have a match.
1417 */
1418 t = newt;
1419 goto label;
1420 }
1421 }
1422 return WRONG;
1423 }
1424 label:
1425 newt = t + saved_seconds;
1426 if ((newt < t) != (saved_seconds < 0))
1427 return WRONG;
1428 t = newt;
1429 (*funcp)(&t, offset, tmp);
1430 *okayp = TRUE;
1431 return t;
1432 }
1433
1434 static time_t
1435 time2(tmp, funcp, offset, okayp)
1436 struct tm * const tmp;
1437 void (* const funcp) P((const time_t*, long, struct tm*));
1438 const long offset;
1439 int * const okayp;
1440 {
1441 time_t t;
1442
1443 /*
1444 ** First try without normalization of seconds
1445 ** (in case tm_sec contains a value associated with a leap second).
1446 ** If that fails, try with normalization of seconds.
1447 */
1448 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1449 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1450 }
1451
1452 static time_t
1453 time1(tmp, funcp, offset)
1454 struct tm * const tmp;
1455 void (* const funcp) P((const time_t *, long, struct tm *));
1456 const long offset;
1457 {
1458 register time_t t;
1459 register const struct state * sp;
1460 register int samei, otheri;
1461 int okay;
1462
1463 if (tmp->tm_isdst > 1)
1464 tmp->tm_isdst = 1;
1465 t = time2(tmp, funcp, offset, &okay);
1466 #ifdef PCTS
1467 /*
1468 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1469 */
1470 if (okay)
1471 return t;
1472 if (tmp->tm_isdst < 0)
1473 tmp->tm_isdst = 0; /* reset to std and try again */
1474 #endif /* defined PCTS */
1475 #ifndef PCTS
1476 if (okay || tmp->tm_isdst < 0)
1477 return t;
1478 #endif /* !defined PCTS */
1479 /*
1480 ** We're supposed to assume that somebody took a time of one type
1481 ** and did some math on it that yielded a "struct tm" that's bad.
1482 ** We try to divine the type they started from and adjust to the
1483 ** type they need.
1484 */
1485 /*
1486 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1487 */
1488 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1489 lclptr : gmtptr);
1490 #ifdef ALL_STATE
1491 if (sp == NULL)
1492 return WRONG;
1493 #endif /* defined ALL_STATE */
1494 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1495 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1496 continue;
1497 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1498 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1499 continue;
1500 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1501 sp->ttis[samei].tt_gmtoff;
1502 tmp->tm_isdst = !tmp->tm_isdst;
1503 t = time2(tmp, funcp, offset, &okay);
1504 if (okay)
1505 return t;
1506 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1507 sp->ttis[samei].tt_gmtoff;
1508 tmp->tm_isdst = !tmp->tm_isdst;
1509 }
1510 }
1511 return WRONG;
1512 }
1513
1514 time_t
1515 mktime(tmp)
1516 struct tm * const tmp;
1517 {
1518 tzset();
1519 return time1(tmp, localsub, 0L);
1520 }
1521
1522 #ifdef STD_INSPIRED
1523
1524 time_t
1525 timelocal(tmp)
1526 struct tm * const tmp;
1527 {
1528 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1529 return mktime(tmp);
1530 }
1531
1532 time_t
1533 timegm(tmp)
1534 struct tm * const tmp;
1535 {
1536 tmp->tm_isdst = 0;
1537 return time1(tmp, gmtsub, 0L);
1538 }
1539
1540 time_t
1541 timeoff(tmp, offset)
1542 struct tm * const tmp;
1543 const long offset;
1544 {
1545 tmp->tm_isdst = 0;
1546 return time1(tmp, gmtsub, offset);
1547 }
1548
1549 #endif /* defined STD_INSPIRED */
1550
1551 #ifdef CMUCS
1552
1553 /*
1554 ** The following is supplied for compatibility with
1555 ** previous versions of the CMUCS runtime library.
1556 */
1557
1558 long
1559 gtime(tmp)
1560 struct tm * const tmp;
1561 {
1562 const time_t t = mktime(tmp);
1563
1564 if (t == WRONG)
1565 return -1;
1566 return t;
1567 }
1568
1569 #endif /* defined CMUCS */
1570
1571 /*
1572 ** XXX--is the below the right way to conditionalize??
1573 */
1574
1575 #ifdef STD_INSPIRED
1576
1577 /*
1578 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1579 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1580 ** is not the case if we are accounting for leap seconds.
1581 ** So, we provide the following conversion routines for use
1582 ** when exchanging timestamps with POSIX conforming systems.
1583 */
1584
1585 static long
1586 leapcorr(timep)
1587 time_t * timep;
1588 {
1589 register struct state * sp;
1590 register struct lsinfo * lp;
1591 register int i;
1592
1593 sp = lclptr;
1594 i = sp->leapcnt;
1595 while (--i >= 0) {
1596 lp = &sp->lsis[i];
1597 if (*timep >= lp->ls_trans)
1598 return lp->ls_corr;
1599 }
1600 return 0;
1601 }
1602
1603 time_t
1604 time2posix(t)
1605 time_t t;
1606 {
1607 tzset();
1608 return t - leapcorr(&t);
1609 }
1610
1611 time_t
1612 posix2time(t)
1613 time_t t;
1614 {
1615 time_t x;
1616 time_t y;
1617
1618 tzset();
1619 /*
1620 ** For a positive leap second hit, the result
1621 ** is not unique. For a negative leap second
1622 ** hit, the corresponding time doesn't exist,
1623 ** so we return an adjacent second.
1624 */
1625 x = t + leapcorr(&t);
1626 y = x - leapcorr(&x);
1627 if (y < t) {
1628 do {
1629 x++;
1630 y = x - leapcorr(&x);
1631 } while (y < t);
1632 if (t != y)
1633 return x - 1;
1634 } else if (y > t) {
1635 do {
1636 --x;
1637 y = x - leapcorr(&x);
1638 } while (y > t);
1639 if (t != y)
1640 return x + 1;
1641 }
1642 return x;
1643 }
1644
1645 #endif /* defined STD_INSPIRED */
1646