localtime.c revision 1.13 1 /* $NetBSD: localtime.c,v 1.13 1997/09/05 02:11:55 jtc Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char elsieid[] = "@(#)localtime.c 7.62";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.13 1997/09/05 02:11:55 jtc Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18
19 /*
20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy (at) auspex.com).
23 */
24
25 /*LINTLIBRARY*/
26
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31
32 #ifdef __weak_alias
33 __weak_alias(offtime,_offtime);
34 __weak_alias(posix2time,_posix2time);
35 __weak_alias(time2posix,_time2posix);
36 __weak_alias(timegm,_timegm);
37 __weak_alias(timelocal,_timelocal);
38 __weak_alias(timeoff,_timeoff);
39 __weak_alias(tzset,_tzset);
40 __weak_alias(tzsetwall,_tzsetwall);
41 #endif
42
43 /*
44 ** SunOS 4.1.1 headers lack O_BINARY.
45 */
46
47 #ifdef O_BINARY
48 #define OPEN_MODE (O_RDONLY | O_BINARY)
49 #endif /* defined O_BINARY */
50 #ifndef O_BINARY
51 #define OPEN_MODE O_RDONLY
52 #endif /* !defined O_BINARY */
53
54 #ifndef WILDABBR
55 /*
56 ** Someone might make incorrect use of a time zone abbreviation:
57 ** 1. They might reference tzname[0] before calling tzset (explicitly
58 ** or implicitly).
59 ** 2. They might reference tzname[1] before calling tzset (explicitly
60 ** or implicitly).
61 ** 3. They might reference tzname[1] after setting to a time zone
62 ** in which Daylight Saving Time is never observed.
63 ** 4. They might reference tzname[0] after setting to a time zone
64 ** in which Standard Time is never observed.
65 ** 5. They might reference tm.TM_ZONE after calling offtime.
66 ** What's best to do in the above cases is open to debate;
67 ** for now, we just set things up so that in any of the five cases
68 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
69 ** string "tzname[0] used before set", and similarly for the other cases.
70 ** And another: initialize tzname[0] to "ERA", with an explanation in the
71 ** manual page of what this "time zone abbreviation" means (doing this so
72 ** that tzname[0] has the "normal" length of three characters).
73 */
74 #define WILDABBR " "
75 #endif /* !defined WILDABBR */
76
77 static char wildabbr[] = "WILDABBR";
78
79 static const char gmt[] = "GMT";
80
81 struct ttinfo { /* time type information */
82 long tt_gmtoff; /* GMT offset in seconds */
83 int tt_isdst; /* used to set tm_isdst */
84 int tt_abbrind; /* abbreviation list index */
85 int tt_ttisstd; /* TRUE if transition is std time */
86 int tt_ttisgmt; /* TRUE if transition is GMT */
87 };
88
89 struct lsinfo { /* leap second information */
90 time_t ls_trans; /* transition time */
91 long ls_corr; /* correction to apply */
92 };
93
94 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
95
96 #ifdef TZNAME_MAX
97 #define MY_TZNAME_MAX TZNAME_MAX
98 #endif /* defined TZNAME_MAX */
99 #ifndef TZNAME_MAX
100 #define MY_TZNAME_MAX 255
101 #endif /* !defined TZNAME_MAX */
102
103 struct state {
104 int leapcnt;
105 int timecnt;
106 int typecnt;
107 int charcnt;
108 time_t ats[TZ_MAX_TIMES];
109 unsigned char types[TZ_MAX_TIMES];
110 struct ttinfo ttis[TZ_MAX_TYPES];
111 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
112 (2 * (MY_TZNAME_MAX + 1)))];
113 struct lsinfo lsis[TZ_MAX_LEAPS];
114 };
115
116 struct rule {
117 int r_type; /* type of rule--see below */
118 int r_day; /* day number of rule */
119 int r_week; /* week number of rule */
120 int r_mon; /* month number of rule */
121 long r_time; /* transition time of rule */
122 };
123
124 #define JULIAN_DAY 0 /* Jn - Julian day */
125 #define DAY_OF_YEAR 1 /* n - day of year */
126 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
127
128 /*
129 ** Prototypes for static functions.
130 */
131
132 static long detzcode P((const char * codep));
133 static const char * getzname P((const char * strp));
134 static const char * getnum P((const char * strp, int * nump, int min,
135 int max));
136 static const char * getsecs P((const char * strp, long * secsp));
137 static const char * getoffset P((const char * strp, long * offsetp));
138 static const char * getrule P((const char * strp, struct rule * rulep));
139 static void gmtload P((struct state * sp));
140 static void gmtsub P((const time_t * timep, long offset,
141 struct tm * tmp));
142 static void localsub P((const time_t * timep, long offset,
143 struct tm * tmp));
144 static int increment_overflow P((int * number, int delta));
145 static int normalize_overflow P((int * tensptr, int * unitsptr,
146 int base));
147 static void settzname P((void));
148 static time_t time1 P((struct tm * tmp,
149 void(*funcp) P((const time_t *,
150 long, struct tm *)),
151 long offset));
152 static time_t time2 P((struct tm *tmp,
153 void(*funcp) P((const time_t *,
154 long, struct tm*)),
155 long offset, int * okayp));
156 static time_t time2sub P((struct tm *tmp,
157 void(*funcp) P((const time_t *,
158 long, struct tm*)),
159 long offset, int * okayp, int do_norm_secs));
160 static void timesub P((const time_t * timep, long offset,
161 const struct state * sp, struct tm * tmp));
162 static int tmcomp P((const struct tm * atmp,
163 const struct tm * btmp));
164 static time_t transtime P((time_t janfirst, int year,
165 const struct rule * rulep, long offset));
166 static int tzload P((const char * name, struct state * sp));
167 static int tzparse P((const char * name, struct state * sp,
168 int lastditch));
169 #ifdef STD_INSPIRED
170 static long leapcorr P((time_t * timep));
171 #endif
172
173 #ifdef ALL_STATE
174 static struct state * lclptr;
175 static struct state * gmtptr;
176 #endif /* defined ALL_STATE */
177
178 #ifndef ALL_STATE
179 static struct state lclmem;
180 static struct state gmtmem;
181 #define lclptr (&lclmem)
182 #define gmtptr (&gmtmem)
183 #endif /* State Farm */
184
185 #ifndef TZ_STRLEN_MAX
186 #define TZ_STRLEN_MAX 255
187 #endif /* !defined TZ_STRLEN_MAX */
188
189 static char lcl_TZname[TZ_STRLEN_MAX + 1];
190 static int lcl_is_set;
191 static int gmt_is_set;
192
193 char * tzname[2] = {
194 wildabbr,
195 wildabbr
196 };
197
198 /*
199 ** Section 4.12.3 of X3.159-1989 requires that
200 ** Except for the strftime function, these functions [asctime,
201 ** ctime, gmtime, localtime] return values in one of two static
202 ** objects: a broken-down time structure and an array of char.
203 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
204 */
205
206 static struct tm tm;
207
208 #ifdef USG_COMPAT
209 time_t timezone = 0;
210 int daylight = 0;
211 #endif /* defined USG_COMPAT */
212
213 #ifdef ALTZONE
214 time_t altzone = 0;
215 #endif /* defined ALTZONE */
216
217 static long
218 detzcode(codep)
219 const char * const codep;
220 {
221 register long result;
222
223 /*
224 ** The first character must be sign extended on systems with >32bit
225 ** longs. This was solved differently in the master tzcode sources
226 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
227 ** that this implementation is superior.
228 */
229
230 #ifdef __STDC__
231 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
232 #else
233 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
234 #endif
235
236 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
237 | (codep[1] & 0xff) << 16 \
238 | (codep[2] & 0xff) << 8
239 | (codep[3] & 0xff);
240 return result;
241 }
242
243 static void
244 settzname P((void))
245 {
246 register struct state * const sp = lclptr;
247 register int i;
248
249 tzname[0] = wildabbr;
250 tzname[1] = wildabbr;
251 #ifdef USG_COMPAT
252 daylight = 0;
253 timezone = 0;
254 #endif /* defined USG_COMPAT */
255 #ifdef ALTZONE
256 altzone = 0;
257 #endif /* defined ALTZONE */
258 #ifdef ALL_STATE
259 if (sp == NULL) {
260 tzname[0] = tzname[1] = gmt;
261 return;
262 }
263 #endif /* defined ALL_STATE */
264 for (i = 0; i < sp->typecnt; ++i) {
265 register const struct ttinfo * const ttisp = &sp->ttis[i];
266
267 tzname[ttisp->tt_isdst] =
268 &sp->chars[ttisp->tt_abbrind];
269 #ifdef USG_COMPAT
270 if (ttisp->tt_isdst)
271 daylight = 1;
272 if (i == 0 || !ttisp->tt_isdst)
273 timezone = -(ttisp->tt_gmtoff);
274 #endif /* defined USG_COMPAT */
275 #ifdef ALTZONE
276 if (i == 0 || ttisp->tt_isdst)
277 altzone = -(ttisp->tt_gmtoff);
278 #endif /* defined ALTZONE */
279 }
280 /*
281 ** And to get the latest zone names into tzname. . .
282 */
283 for (i = 0; i < sp->timecnt; ++i) {
284 register const struct ttinfo * const ttisp =
285 &sp->ttis[
286 sp->types[i]];
287
288 tzname[ttisp->tt_isdst] =
289 &sp->chars[ttisp->tt_abbrind];
290 }
291 }
292
293 static int
294 tzload(name, sp)
295 register const char * name;
296 register struct state * const sp;
297 {
298 register const char * p;
299 register int i;
300 register int fid;
301
302 if (name == NULL && (name = TZDEFAULT) == NULL)
303 return -1;
304
305 {
306 register int doaccess;
307 /*
308 ** Section 4.9.1 of the C standard says that
309 ** "FILENAME_MAX expands to an integral constant expression
310 ** that is the size needed for an array of char large enough
311 ** to hold the longest file name string that the implementation
312 ** guarantees can be opened."
313 */
314 char fullname[FILENAME_MAX + 1];
315
316 if (name[0] == ':')
317 ++name;
318 doaccess = name[0] == '/';
319 if (!doaccess) {
320 if ((p = TZDIR) == NULL)
321 return -1;
322 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
323 return -1;
324 (void) strcpy(fullname, p); /* XXX strcpy is safe */
325 (void) strcat(fullname, "/"); /* XXX strcat is safe */
326 (void) strcat(fullname, name); /* XXX strcat is safe */
327 /*
328 ** Set doaccess if '.' (as in "../") shows up in name.
329 */
330 if (strchr(name, '.') != NULL)
331 doaccess = TRUE;
332 name = fullname;
333 }
334 if (doaccess && access(name, R_OK) != 0)
335 return -1;
336 /*
337 * XXX potential security problem here if user of a set-id
338 * program has set TZ (which is passed in as name) here,
339 * and uses a race condition trick to defeat the access(2)
340 * above.
341 */
342 if ((fid = open(name, OPEN_MODE)) == -1)
343 return -1;
344 }
345 {
346 struct tzhead * tzhp;
347 char buf[sizeof *sp + sizeof *tzhp];
348 int ttisstdcnt;
349 int ttisgmtcnt;
350
351 i = read(fid, buf, sizeof buf);
352 if (close(fid) != 0)
353 return -1;
354 p = buf;
355 p += sizeof tzhp->tzh_reserved;
356 ttisstdcnt = (int) detzcode(p);
357 p += 4;
358 ttisgmtcnt = (int) detzcode(p);
359 p += 4;
360 sp->leapcnt = (int) detzcode(p);
361 p += 4;
362 sp->timecnt = (int) detzcode(p);
363 p += 4;
364 sp->typecnt = (int) detzcode(p);
365 p += 4;
366 sp->charcnt = (int) detzcode(p);
367 p += 4;
368 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
369 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
370 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
371 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
372 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
373 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
374 return -1;
375 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
376 sp->timecnt + /* types */
377 sp->typecnt * (4 + 2) + /* ttinfos */
378 sp->charcnt + /* chars */
379 sp->leapcnt * (4 + 4) + /* lsinfos */
380 ttisstdcnt + /* ttisstds */
381 ttisgmtcnt) /* ttisgmts */
382 return -1;
383 for (i = 0; i < sp->timecnt; ++i) {
384 sp->ats[i] = detzcode(p);
385 p += 4;
386 }
387 for (i = 0; i < sp->timecnt; ++i) {
388 sp->types[i] = (unsigned char) *p++;
389 if (sp->types[i] >= sp->typecnt)
390 return -1;
391 }
392 for (i = 0; i < sp->typecnt; ++i) {
393 register struct ttinfo * ttisp;
394
395 ttisp = &sp->ttis[i];
396 ttisp->tt_gmtoff = detzcode(p);
397 p += 4;
398 ttisp->tt_isdst = (unsigned char) *p++;
399 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
400 return -1;
401 ttisp->tt_abbrind = (unsigned char) *p++;
402 if (ttisp->tt_abbrind < 0 ||
403 ttisp->tt_abbrind > sp->charcnt)
404 return -1;
405 }
406 for (i = 0; i < sp->charcnt; ++i)
407 sp->chars[i] = *p++;
408 sp->chars[i] = '\0'; /* ensure '\0' at end */
409 for (i = 0; i < sp->leapcnt; ++i) {
410 register struct lsinfo * lsisp;
411
412 lsisp = &sp->lsis[i];
413 lsisp->ls_trans = detzcode(p);
414 p += 4;
415 lsisp->ls_corr = detzcode(p);
416 p += 4;
417 }
418 for (i = 0; i < sp->typecnt; ++i) {
419 register struct ttinfo * ttisp;
420
421 ttisp = &sp->ttis[i];
422 if (ttisstdcnt == 0)
423 ttisp->tt_ttisstd = FALSE;
424 else {
425 ttisp->tt_ttisstd = *p++;
426 if (ttisp->tt_ttisstd != TRUE &&
427 ttisp->tt_ttisstd != FALSE)
428 return -1;
429 }
430 }
431 for (i = 0; i < sp->typecnt; ++i) {
432 register struct ttinfo * ttisp;
433
434 ttisp = &sp->ttis[i];
435 if (ttisgmtcnt == 0)
436 ttisp->tt_ttisgmt = FALSE;
437 else {
438 ttisp->tt_ttisgmt = *p++;
439 if (ttisp->tt_ttisgmt != TRUE &&
440 ttisp->tt_ttisgmt != FALSE)
441 return -1;
442 }
443 }
444 }
445 return 0;
446 }
447
448 static const int mon_lengths[2][MONSPERYEAR] = {
449 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
450 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
451 };
452
453 static const int year_lengths[2] = {
454 DAYSPERNYEAR, DAYSPERLYEAR
455 };
456
457 /*
458 ** Given a pointer into a time zone string, scan until a character that is not
459 ** a valid character in a zone name is found. Return a pointer to that
460 ** character.
461 */
462
463 static const char *
464 getzname(strp)
465 register const char * strp;
466 {
467 register char c;
468
469 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
470 c != '+')
471 ++strp;
472 return strp;
473 }
474
475 /*
476 ** Given a pointer into a time zone string, extract a number from that string.
477 ** Check that the number is within a specified range; if it is not, return
478 ** NULL.
479 ** Otherwise, return a pointer to the first character not part of the number.
480 */
481
482 static const char *
483 getnum(strp, nump, min, max)
484 register const char * strp;
485 int * const nump;
486 const int min;
487 const int max;
488 {
489 register char c;
490 register int num;
491
492 if (strp == NULL || !is_digit(c = *strp))
493 return NULL;
494 num = 0;
495 do {
496 num = num * 10 + (c - '0');
497 if (num > max)
498 return NULL; /* illegal value */
499 c = *++strp;
500 } while (is_digit(c));
501 if (num < min)
502 return NULL; /* illegal value */
503 *nump = num;
504 return strp;
505 }
506
507 /*
508 ** Given a pointer into a time zone string, extract a number of seconds,
509 ** in hh[:mm[:ss]] form, from the string.
510 ** If any error occurs, return NULL.
511 ** Otherwise, return a pointer to the first character not part of the number
512 ** of seconds.
513 */
514
515 static const char *
516 getsecs(strp, secsp)
517 register const char * strp;
518 long * const secsp;
519 {
520 int num;
521
522 /*
523 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
524 ** "M10.4.6/26", which does not conform to Posix,
525 ** but which specifies the equivalent of
526 ** ``02:00 on the first Sunday on or after 23 Oct''.
527 */
528 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
529 if (strp == NULL)
530 return NULL;
531 *secsp = num * (long) SECSPERHOUR;
532 if (*strp == ':') {
533 ++strp;
534 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
535 if (strp == NULL)
536 return NULL;
537 *secsp += num * SECSPERMIN;
538 if (*strp == ':') {
539 ++strp;
540 /* `SECSPERMIN' allows for leap seconds. */
541 strp = getnum(strp, &num, 0, SECSPERMIN);
542 if (strp == NULL)
543 return NULL;
544 *secsp += num;
545 }
546 }
547 return strp;
548 }
549
550 /*
551 ** Given a pointer into a time zone string, extract an offset, in
552 ** [+-]hh[:mm[:ss]] form, from the string.
553 ** If any error occurs, return NULL.
554 ** Otherwise, return a pointer to the first character not part of the time.
555 */
556
557 static const char *
558 getoffset(strp, offsetp)
559 register const char * strp;
560 long * const offsetp;
561 {
562 register int neg = 0;
563
564 if (*strp == '-') {
565 neg = 1;
566 ++strp;
567 } else if (*strp == '+')
568 ++strp;
569 strp = getsecs(strp, offsetp);
570 if (strp == NULL)
571 return NULL; /* illegal time */
572 if (neg)
573 *offsetp = -*offsetp;
574 return strp;
575 }
576
577 /*
578 ** Given a pointer into a time zone string, extract a rule in the form
579 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
580 ** If a valid rule is not found, return NULL.
581 ** Otherwise, return a pointer to the first character not part of the rule.
582 */
583
584 static const char *
585 getrule(strp, rulep)
586 const char * strp;
587 register struct rule * const rulep;
588 {
589 if (*strp == 'J') {
590 /*
591 ** Julian day.
592 */
593 rulep->r_type = JULIAN_DAY;
594 ++strp;
595 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
596 } else if (*strp == 'M') {
597 /*
598 ** Month, week, day.
599 */
600 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
601 ++strp;
602 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
603 if (strp == NULL)
604 return NULL;
605 if (*strp++ != '.')
606 return NULL;
607 strp = getnum(strp, &rulep->r_week, 1, 5);
608 if (strp == NULL)
609 return NULL;
610 if (*strp++ != '.')
611 return NULL;
612 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
613 } else if (is_digit(*strp)) {
614 /*
615 ** Day of year.
616 */
617 rulep->r_type = DAY_OF_YEAR;
618 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
619 } else return NULL; /* invalid format */
620 if (strp == NULL)
621 return NULL;
622 if (*strp == '/') {
623 /*
624 ** Time specified.
625 */
626 ++strp;
627 strp = getsecs(strp, &rulep->r_time);
628 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
629 return strp;
630 }
631
632 /*
633 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
634 ** year, a rule, and the offset from GMT at the time that rule takes effect,
635 ** calculate the Epoch-relative time that rule takes effect.
636 */
637
638 static time_t
639 transtime(janfirst, year, rulep, offset)
640 const time_t janfirst;
641 const int year;
642 register const struct rule * const rulep;
643 const long offset;
644 {
645 register int leapyear;
646 register time_t value;
647 register int i;
648 int d, m1, yy0, yy1, yy2, dow;
649
650 INITIALIZE(value);
651 leapyear = isleap(year);
652 switch (rulep->r_type) {
653
654 case JULIAN_DAY:
655 /*
656 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
657 ** years.
658 ** In non-leap years, or if the day number is 59 or less, just
659 ** add SECSPERDAY times the day number-1 to the time of
660 ** January 1, midnight, to get the day.
661 */
662 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
663 if (leapyear && rulep->r_day >= 60)
664 value += SECSPERDAY;
665 break;
666
667 case DAY_OF_YEAR:
668 /*
669 ** n - day of year.
670 ** Just add SECSPERDAY times the day number to the time of
671 ** January 1, midnight, to get the day.
672 */
673 value = janfirst + rulep->r_day * SECSPERDAY;
674 break;
675
676 case MONTH_NTH_DAY_OF_WEEK:
677 /*
678 ** Mm.n.d - nth "dth day" of month m.
679 */
680 value = janfirst;
681 for (i = 0; i < rulep->r_mon - 1; ++i)
682 value += mon_lengths[leapyear][i] * SECSPERDAY;
683
684 /*
685 ** Use Zeller's Congruence to get day-of-week of first day of
686 ** month.
687 */
688 m1 = (rulep->r_mon + 9) % 12 + 1;
689 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
690 yy1 = yy0 / 100;
691 yy2 = yy0 % 100;
692 dow = ((26 * m1 - 2) / 10 +
693 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
694 if (dow < 0)
695 dow += DAYSPERWEEK;
696
697 /*
698 ** "dow" is the day-of-week of the first day of the month. Get
699 ** the day-of-month (zero-origin) of the first "dow" day of the
700 ** month.
701 */
702 d = rulep->r_day - dow;
703 if (d < 0)
704 d += DAYSPERWEEK;
705 for (i = 1; i < rulep->r_week; ++i) {
706 if (d + DAYSPERWEEK >=
707 mon_lengths[leapyear][rulep->r_mon - 1])
708 break;
709 d += DAYSPERWEEK;
710 }
711
712 /*
713 ** "d" is the day-of-month (zero-origin) of the day we want.
714 */
715 value += d * SECSPERDAY;
716 break;
717 }
718
719 /*
720 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
721 ** question. To get the Epoch-relative time of the specified local
722 ** time on that day, add the transition time and the current offset
723 ** from GMT.
724 */
725 return value + rulep->r_time + offset;
726 }
727
728 /*
729 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
730 ** appropriate.
731 */
732
733 static int
734 tzparse(name, sp, lastditch)
735 const char * name;
736 register struct state * const sp;
737 const int lastditch;
738 {
739 const char * stdname;
740 const char * dstname;
741 size_t stdlen;
742 size_t dstlen;
743 long stdoffset;
744 long dstoffset;
745 register time_t * atp;
746 register unsigned char * typep;
747 register char * cp;
748 register int load_result;
749
750 INITIALIZE(dstname);
751 stdname = name;
752 if (lastditch) {
753 stdlen = strlen(name); /* length of standard zone name */
754 name += stdlen;
755 if (stdlen >= sizeof sp->chars)
756 stdlen = (sizeof sp->chars) - 1;
757 stdoffset = 0;
758 } else {
759 name = getzname(name);
760 stdlen = name - stdname;
761 if (stdlen < 3)
762 return -1;
763 if (*name == '\0')
764 return -1;
765 name = getoffset(name, &stdoffset);
766 if (name == NULL)
767 return -1;
768 }
769 load_result = tzload(TZDEFRULES, sp);
770 if (load_result != 0)
771 sp->leapcnt = 0; /* so, we're off a little */
772 if (*name != '\0') {
773 dstname = name;
774 name = getzname(name);
775 dstlen = name - dstname; /* length of DST zone name */
776 if (dstlen < 3)
777 return -1;
778 if (*name != '\0' && *name != ',' && *name != ';') {
779 name = getoffset(name, &dstoffset);
780 if (name == NULL)
781 return -1;
782 } else dstoffset = stdoffset - SECSPERHOUR;
783 if (*name == ',' || *name == ';') {
784 struct rule start;
785 struct rule end;
786 register int year;
787 register time_t janfirst;
788 time_t starttime;
789 time_t endtime;
790
791 ++name;
792 if ((name = getrule(name, &start)) == NULL)
793 return -1;
794 if (*name++ != ',')
795 return -1;
796 if ((name = getrule(name, &end)) == NULL)
797 return -1;
798 if (*name != '\0')
799 return -1;
800 sp->typecnt = 2; /* standard time and DST */
801 /*
802 ** Two transitions per year, from EPOCH_YEAR to 2037.
803 */
804 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
805 if (sp->timecnt > TZ_MAX_TIMES)
806 return -1;
807 sp->ttis[0].tt_gmtoff = -dstoffset;
808 sp->ttis[0].tt_isdst = 1;
809 sp->ttis[0].tt_abbrind = stdlen + 1;
810 sp->ttis[1].tt_gmtoff = -stdoffset;
811 sp->ttis[1].tt_isdst = 0;
812 sp->ttis[1].tt_abbrind = 0;
813 atp = sp->ats;
814 typep = sp->types;
815 janfirst = 0;
816 for (year = EPOCH_YEAR; year <= 2037; ++year) {
817 starttime = transtime(janfirst, year, &start,
818 stdoffset);
819 endtime = transtime(janfirst, year, &end,
820 dstoffset);
821 if (starttime > endtime) {
822 *atp++ = endtime;
823 *typep++ = 1; /* DST ends */
824 *atp++ = starttime;
825 *typep++ = 0; /* DST begins */
826 } else {
827 *atp++ = starttime;
828 *typep++ = 0; /* DST begins */
829 *atp++ = endtime;
830 *typep++ = 1; /* DST ends */
831 }
832 janfirst += year_lengths[isleap(year)] *
833 SECSPERDAY;
834 }
835 } else {
836 register long theirstdoffset;
837 register long theirdstoffset;
838 register long theiroffset;
839 register int isdst;
840 register int i;
841 register int j;
842
843 if (*name != '\0')
844 return -1;
845 if (load_result != 0)
846 return -1;
847 /*
848 ** Initial values of theirstdoffset and theirdstoffset.
849 */
850 theirstdoffset = 0;
851 for (i = 0; i < sp->timecnt; ++i) {
852 j = sp->types[i];
853 if (!sp->ttis[j].tt_isdst) {
854 theirstdoffset =
855 -sp->ttis[j].tt_gmtoff;
856 break;
857 }
858 }
859 theirdstoffset = 0;
860 for (i = 0; i < sp->timecnt; ++i) {
861 j = sp->types[i];
862 if (sp->ttis[j].tt_isdst) {
863 theirdstoffset =
864 -sp->ttis[j].tt_gmtoff;
865 break;
866 }
867 }
868 /*
869 ** Initially we're assumed to be in standard time.
870 */
871 isdst = FALSE;
872 theiroffset = theirstdoffset;
873 /*
874 ** Now juggle transition times and types
875 ** tracking offsets as you do.
876 */
877 for (i = 0; i < sp->timecnt; ++i) {
878 j = sp->types[i];
879 sp->types[i] = sp->ttis[j].tt_isdst;
880 if (sp->ttis[j].tt_ttisgmt) {
881 /* No adjustment to transition time */
882 } else {
883 /*
884 ** If summer time is in effect, and the
885 ** transition time was not specified as
886 ** standard time, add the summer time
887 ** offset to the transition time;
888 ** otherwise, add the standard time
889 ** offset to the transition time.
890 */
891 /*
892 ** Transitions from DST to DDST
893 ** will effectively disappear since
894 ** POSIX provides for only one DST
895 ** offset.
896 */
897 if (isdst && !sp->ttis[j].tt_ttisstd) {
898 sp->ats[i] += dstoffset -
899 theirdstoffset;
900 } else {
901 sp->ats[i] += stdoffset -
902 theirstdoffset;
903 }
904 }
905 theiroffset = -sp->ttis[j].tt_gmtoff;
906 if (sp->ttis[j].tt_isdst)
907 theirdstoffset = theiroffset;
908 else theirstdoffset = theiroffset;
909 }
910 /*
911 ** Finally, fill in ttis.
912 ** ttisstd and ttisgmt need not be handled.
913 */
914 sp->ttis[0].tt_gmtoff = -stdoffset;
915 sp->ttis[0].tt_isdst = FALSE;
916 sp->ttis[0].tt_abbrind = 0;
917 sp->ttis[1].tt_gmtoff = -dstoffset;
918 sp->ttis[1].tt_isdst = TRUE;
919 sp->ttis[1].tt_abbrind = stdlen + 1;
920 sp->typecnt = 2;
921 }
922 } else {
923 dstlen = 0;
924 sp->typecnt = 1; /* only standard time */
925 sp->timecnt = 0;
926 sp->ttis[0].tt_gmtoff = -stdoffset;
927 sp->ttis[0].tt_isdst = 0;
928 sp->ttis[0].tt_abbrind = 0;
929 }
930 sp->charcnt = stdlen + 1;
931 if (dstlen != 0)
932 sp->charcnt += dstlen + 1;
933 if ((size_t) sp->charcnt > sizeof sp->chars)
934 return -1;
935 cp = sp->chars;
936 (void) strncpy(cp, stdname, stdlen);
937 cp += stdlen;
938 *cp++ = '\0';
939 if (dstlen != 0) {
940 (void) strncpy(cp, dstname, dstlen);
941 *(cp + dstlen) = '\0';
942 }
943 return 0;
944 }
945
946 static void
947 gmtload(sp)
948 struct state * const sp;
949 {
950 if (tzload(gmt, sp) != 0)
951 (void) tzparse(gmt, sp, TRUE);
952 }
953
954 #ifndef STD_INSPIRED
955 /*
956 ** A non-static declaration of tzsetwall in a system header file
957 ** may cause a warning about this upcoming static declaration...
958 */
959 static
960 #endif /* !defined STD_INSPIRED */
961 void
962 tzsetwall P((void))
963 {
964 if (lcl_is_set < 0)
965 return;
966 lcl_is_set = -1;
967
968 #ifdef ALL_STATE
969 if (lclptr == NULL) {
970 lclptr = (struct state *) malloc(sizeof *lclptr);
971 if (lclptr == NULL) {
972 settzname(); /* all we can do */
973 return;
974 }
975 }
976 #endif /* defined ALL_STATE */
977 if (tzload((char *) NULL, lclptr) != 0)
978 gmtload(lclptr);
979 settzname();
980 }
981
982 void
983 tzset P((void))
984 {
985 register const char * name;
986
987 name = getenv("TZ");
988 if (name == NULL) {
989 tzsetwall();
990 return;
991 }
992
993 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
994 return;
995 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
996 if (lcl_is_set)
997 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
998
999 #ifdef ALL_STATE
1000 if (lclptr == NULL) {
1001 lclptr = (struct state *) malloc(sizeof *lclptr);
1002 if (lclptr == NULL) {
1003 settzname(); /* all we can do */
1004 return;
1005 }
1006 }
1007 #endif /* defined ALL_STATE */
1008 if (*name == '\0') {
1009 /*
1010 ** User wants it fast rather than right.
1011 */
1012 lclptr->leapcnt = 0; /* so, we're off a little */
1013 lclptr->timecnt = 0;
1014 lclptr->ttis[0].tt_gmtoff = 0;
1015 lclptr->ttis[0].tt_abbrind = 0;
1016 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1017 } else if (tzload(name, lclptr) != 0)
1018 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1019 (void) gmtload(lclptr);
1020 settzname();
1021 }
1022
1023 /*
1024 ** The easy way to behave "as if no library function calls" localtime
1025 ** is to not call it--so we drop its guts into "localsub", which can be
1026 ** freely called. (And no, the PANS doesn't require the above behavior--
1027 ** but it *is* desirable.)
1028 **
1029 ** The unused offset argument is for the benefit of mktime variants.
1030 */
1031
1032 /*ARGSUSED*/
1033 static void
1034 localsub(timep, offset, tmp)
1035 const time_t * const timep;
1036 const long offset;
1037 struct tm * const tmp;
1038 {
1039 register struct state * sp;
1040 register const struct ttinfo * ttisp;
1041 register int i;
1042 const time_t t = *timep;
1043
1044 sp = lclptr;
1045 #ifdef ALL_STATE
1046 if (sp == NULL) {
1047 gmtsub(timep, offset, tmp);
1048 return;
1049 }
1050 #endif /* defined ALL_STATE */
1051 if (sp->timecnt == 0 || t < sp->ats[0]) {
1052 i = 0;
1053 while (sp->ttis[i].tt_isdst)
1054 if (++i >= sp->typecnt) {
1055 i = 0;
1056 break;
1057 }
1058 } else {
1059 for (i = 1; i < sp->timecnt; ++i)
1060 if (t < sp->ats[i])
1061 break;
1062 i = sp->types[i - 1];
1063 }
1064 ttisp = &sp->ttis[i];
1065 /*
1066 ** To get (wrong) behavior that's compatible with System V Release 2.0
1067 ** you'd replace the statement below with
1068 ** t += ttisp->tt_gmtoff;
1069 ** timesub(&t, 0L, sp, tmp);
1070 */
1071 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1072 tmp->tm_isdst = ttisp->tt_isdst;
1073 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1074 #ifdef TM_ZONE
1075 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1076 #endif /* defined TM_ZONE */
1077 }
1078
1079 struct tm *
1080 localtime(timep)
1081 const time_t * const timep;
1082 {
1083 tzset();
1084 localsub(timep, 0L, &tm);
1085 return &tm;
1086 }
1087
1088 /*
1089 ** gmtsub is to gmtime as localsub is to localtime.
1090 */
1091
1092 static void
1093 gmtsub(timep, offset, tmp)
1094 const time_t * const timep;
1095 const long offset;
1096 struct tm * const tmp;
1097 {
1098 if (!gmt_is_set) {
1099 gmt_is_set = TRUE;
1100 #ifdef ALL_STATE
1101 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1102 if (gmtptr != NULL)
1103 #endif /* defined ALL_STATE */
1104 gmtload(gmtptr);
1105 }
1106 timesub(timep, offset, gmtptr, tmp);
1107 #ifdef TM_ZONE
1108 /*
1109 ** Could get fancy here and deliver something such as
1110 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1111 ** but this is no time for a treasure hunt.
1112 */
1113 if (offset != 0)
1114 tmp->TM_ZONE = wildabbr;
1115 else {
1116 #ifdef ALL_STATE
1117 if (gmtptr == NULL)
1118 tmp->TM_ZONE = gmt;
1119 else tmp->TM_ZONE = gmtptr->chars;
1120 #endif /* defined ALL_STATE */
1121 #ifndef ALL_STATE
1122 tmp->TM_ZONE = gmtptr->chars;
1123 #endif /* State Farm */
1124 }
1125 #endif /* defined TM_ZONE */
1126 }
1127
1128 struct tm *
1129 gmtime(timep)
1130 const time_t * const timep;
1131 {
1132 gmtsub(timep, 0L, &tm);
1133 return &tm;
1134 }
1135
1136 #ifdef STD_INSPIRED
1137
1138 struct tm *
1139 offtime(timep, offset)
1140 const time_t * const timep;
1141 const long offset;
1142 {
1143 gmtsub(timep, offset, &tm);
1144 return &tm;
1145 }
1146
1147 #endif /* defined STD_INSPIRED */
1148
1149 static void
1150 timesub(timep, offset, sp, tmp)
1151 const time_t * const timep;
1152 const long offset;
1153 register const struct state * const sp;
1154 register struct tm * const tmp;
1155 {
1156 register const struct lsinfo * lp;
1157 register long days;
1158 register long rem;
1159 register int y;
1160 register int yleap;
1161 register const int * ip;
1162 register long corr;
1163 register int hit;
1164 register int i;
1165
1166 corr = 0;
1167 hit = 0;
1168 #ifdef ALL_STATE
1169 i = (sp == NULL) ? 0 : sp->leapcnt;
1170 #endif /* defined ALL_STATE */
1171 #ifndef ALL_STATE
1172 i = sp->leapcnt;
1173 #endif /* State Farm */
1174 while (--i >= 0) {
1175 lp = &sp->lsis[i];
1176 if (*timep >= lp->ls_trans) {
1177 if (*timep == lp->ls_trans) {
1178 hit = ((i == 0 && lp->ls_corr > 0) ||
1179 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1180 if (hit)
1181 while (i > 0 &&
1182 sp->lsis[i].ls_trans ==
1183 sp->lsis[i - 1].ls_trans + 1 &&
1184 sp->lsis[i].ls_corr ==
1185 sp->lsis[i - 1].ls_corr + 1) {
1186 ++hit;
1187 --i;
1188 }
1189 }
1190 corr = lp->ls_corr;
1191 break;
1192 }
1193 }
1194 days = *timep / SECSPERDAY;
1195 rem = *timep % SECSPERDAY;
1196 #ifdef mc68k
1197 if (*timep == 0x80000000) {
1198 /*
1199 ** A 3B1 muffs the division on the most negative number.
1200 */
1201 days = -24855;
1202 rem = -11648;
1203 }
1204 #endif /* defined mc68k */
1205 rem += (offset - corr);
1206 while (rem < 0) {
1207 rem += SECSPERDAY;
1208 --days;
1209 }
1210 while (rem >= SECSPERDAY) {
1211 rem -= SECSPERDAY;
1212 ++days;
1213 }
1214 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1215 rem = rem % SECSPERHOUR;
1216 tmp->tm_min = (int) (rem / SECSPERMIN);
1217 /*
1218 ** A positive leap second requires a special
1219 ** representation. This uses "... ??:59:60" et seq.
1220 */
1221 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1222 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1223 if (tmp->tm_wday < 0)
1224 tmp->tm_wday += DAYSPERWEEK;
1225 y = EPOCH_YEAR;
1226 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1227 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1228 register int newy;
1229
1230 newy = y + days / DAYSPERNYEAR;
1231 if (days < 0)
1232 --newy;
1233 days -= (newy - y) * DAYSPERNYEAR +
1234 LEAPS_THRU_END_OF(newy - 1) -
1235 LEAPS_THRU_END_OF(y - 1);
1236 y = newy;
1237 }
1238 tmp->tm_year = y - TM_YEAR_BASE;
1239 tmp->tm_yday = (int) days;
1240 ip = mon_lengths[yleap];
1241 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1242 days = days - (long) ip[tmp->tm_mon];
1243 tmp->tm_mday = (int) (days + 1);
1244 tmp->tm_isdst = 0;
1245 #ifdef TM_GMTOFF
1246 tmp->TM_GMTOFF = offset;
1247 #endif /* defined TM_GMTOFF */
1248 }
1249
1250 char *
1251 ctime(timep)
1252 const time_t * const timep;
1253 {
1254 /*
1255 ** Section 4.12.3.2 of X3.159-1989 requires that
1256 ** The ctime funciton converts the calendar time pointed to by timer
1257 ** to local time in the form of a string. It is equivalent to
1258 ** asctime(localtime(timer))
1259 */
1260 return asctime(localtime(timep));
1261 }
1262
1263 /*
1264 ** Adapted from code provided by Robert Elz, who writes:
1265 ** The "best" way to do mktime I think is based on an idea of Bob
1266 ** Kridle's (so its said...) from a long time ago.
1267 ** [kridle (at) xinet.com as of 1996-01-16.]
1268 ** It does a binary search of the time_t space. Since time_t's are
1269 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1270 ** would still be very reasonable).
1271 */
1272
1273 #ifndef WRONG
1274 #define WRONG (-1)
1275 #endif /* !defined WRONG */
1276
1277 /*
1278 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1279 */
1280
1281 static int
1282 increment_overflow(number, delta)
1283 int * number;
1284 int delta;
1285 {
1286 int number0;
1287
1288 number0 = *number;
1289 *number += delta;
1290 return (*number < number0) != (delta < 0);
1291 }
1292
1293 static int
1294 normalize_overflow(tensptr, unitsptr, base)
1295 int * const tensptr;
1296 int * const unitsptr;
1297 const int base;
1298 {
1299 register int tensdelta;
1300
1301 tensdelta = (*unitsptr >= 0) ?
1302 (*unitsptr / base) :
1303 (-1 - (-1 - *unitsptr) / base);
1304 *unitsptr -= tensdelta * base;
1305 return increment_overflow(tensptr, tensdelta);
1306 }
1307
1308 static int
1309 tmcomp(atmp, btmp)
1310 register const struct tm * const atmp;
1311 register const struct tm * const btmp;
1312 {
1313 register int result;
1314
1315 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1316 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1317 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1318 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1319 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1320 result = atmp->tm_sec - btmp->tm_sec;
1321 return result;
1322 }
1323
1324 static time_t
1325 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1326 struct tm * const tmp;
1327 void (* const funcp) P((const time_t*, long, struct tm*));
1328 const long offset;
1329 int * const okayp;
1330 const int do_norm_secs;
1331 {
1332 register const struct state * sp;
1333 register int dir;
1334 register int bits;
1335 register int i, j ;
1336 register int saved_seconds;
1337 time_t newt;
1338 time_t t;
1339 struct tm yourtm, mytm;
1340
1341 *okayp = FALSE;
1342 yourtm = *tmp;
1343 if (do_norm_secs) {
1344 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1345 SECSPERMIN))
1346 return WRONG;
1347 }
1348 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1349 return WRONG;
1350 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1351 return WRONG;
1352 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1353 return WRONG;
1354 /*
1355 ** Turn yourtm.tm_year into an actual year number for now.
1356 ** It is converted back to an offset from TM_YEAR_BASE later.
1357 */
1358 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1359 return WRONG;
1360 while (yourtm.tm_mday <= 0) {
1361 if (increment_overflow(&yourtm.tm_year, -1))
1362 return WRONG;
1363 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1364 yourtm.tm_mday += year_lengths[isleap(i)];
1365 }
1366 while (yourtm.tm_mday > DAYSPERLYEAR) {
1367 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1368 yourtm.tm_mday -= year_lengths[isleap(i)];
1369 if (increment_overflow(&yourtm.tm_year, 1))
1370 return WRONG;
1371 }
1372 for ( ; ; ) {
1373 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1374 if (yourtm.tm_mday <= i)
1375 break;
1376 yourtm.tm_mday -= i;
1377 if (++yourtm.tm_mon >= MONSPERYEAR) {
1378 yourtm.tm_mon = 0;
1379 if (increment_overflow(&yourtm.tm_year, 1))
1380 return WRONG;
1381 }
1382 }
1383 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1384 return WRONG;
1385 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1386 /*
1387 ** We can't set tm_sec to 0, because that might push the
1388 ** time below the minimum representable time.
1389 ** Set tm_sec to 59 instead.
1390 ** This assumes that the minimum representable time is
1391 ** not in the same minute that a leap second was deleted from,
1392 ** which is a safer assumption than using 58 would be.
1393 */
1394 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1395 return WRONG;
1396 saved_seconds = yourtm.tm_sec;
1397 yourtm.tm_sec = SECSPERMIN - 1;
1398 } else {
1399 saved_seconds = yourtm.tm_sec;
1400 yourtm.tm_sec = 0;
1401 }
1402 /*
1403 ** Divide the search space in half
1404 ** (this works whether time_t is signed or unsigned).
1405 */
1406 bits = TYPE_BIT(time_t) - 1;
1407 /*
1408 ** If time_t is signed, then 0 is just above the median,
1409 ** assuming two's complement arithmetic.
1410 ** If time_t is unsigned, then (1 << bits) is just above the median.
1411 */
1412 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1413 for ( ; ; ) {
1414 (*funcp)(&t, offset, &mytm);
1415 dir = tmcomp(&mytm, &yourtm);
1416 if (dir != 0) {
1417 if (bits-- < 0)
1418 return WRONG;
1419 if (bits < 0)
1420 --t; /* may be needed if new t is minimal */
1421 else if (dir > 0)
1422 t -= ((time_t) 1) << bits;
1423 else t += ((time_t) 1) << bits;
1424 continue;
1425 }
1426 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1427 break;
1428 /*
1429 ** Right time, wrong type.
1430 ** Hunt for right time, right type.
1431 ** It's okay to guess wrong since the guess
1432 ** gets checked.
1433 */
1434 /*
1435 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1436 */
1437 sp = (const struct state *)
1438 (((void *) funcp == (void *) localsub) ?
1439 lclptr : gmtptr);
1440 #ifdef ALL_STATE
1441 if (sp == NULL)
1442 return WRONG;
1443 #endif /* defined ALL_STATE */
1444 for (i = sp->typecnt - 1; i >= 0; --i) {
1445 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1446 continue;
1447 for (j = sp->typecnt - 1; j >= 0; --j) {
1448 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1449 continue;
1450 newt = t + sp->ttis[j].tt_gmtoff -
1451 sp->ttis[i].tt_gmtoff;
1452 (*funcp)(&newt, offset, &mytm);
1453 if (tmcomp(&mytm, &yourtm) != 0)
1454 continue;
1455 if (mytm.tm_isdst != yourtm.tm_isdst)
1456 continue;
1457 /*
1458 ** We have a match.
1459 */
1460 t = newt;
1461 goto label;
1462 }
1463 }
1464 return WRONG;
1465 }
1466 label:
1467 newt = t + saved_seconds;
1468 if ((newt < t) != (saved_seconds < 0))
1469 return WRONG;
1470 t = newt;
1471 (*funcp)(&t, offset, tmp);
1472 *okayp = TRUE;
1473 return t;
1474 }
1475
1476 static time_t
1477 time2(tmp, funcp, offset, okayp)
1478 struct tm * const tmp;
1479 void (* const funcp) P((const time_t*, long, struct tm*));
1480 const long offset;
1481 int * const okayp;
1482 {
1483 time_t t;
1484
1485 /*
1486 ** First try without normalization of seconds
1487 ** (in case tm_sec contains a value associated with a leap second).
1488 ** If that fails, try with normalization of seconds.
1489 */
1490 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1491 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1492 }
1493
1494 static time_t
1495 time1(tmp, funcp, offset)
1496 struct tm * const tmp;
1497 void (* const funcp) P((const time_t *, long, struct tm *));
1498 const long offset;
1499 {
1500 register time_t t;
1501 register const struct state * sp;
1502 register int samei, otheri;
1503 int okay;
1504
1505 if (tmp->tm_isdst > 1)
1506 tmp->tm_isdst = 1;
1507 t = time2(tmp, funcp, offset, &okay);
1508 #ifdef PCTS
1509 /*
1510 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1511 */
1512 if (okay)
1513 return t;
1514 if (tmp->tm_isdst < 0)
1515 tmp->tm_isdst = 0; /* reset to std and try again */
1516 #endif /* defined PCTS */
1517 #ifndef PCTS
1518 if (okay || tmp->tm_isdst < 0)
1519 return t;
1520 #endif /* !defined PCTS */
1521 /*
1522 ** We're supposed to assume that somebody took a time of one type
1523 ** and did some math on it that yielded a "struct tm" that's bad.
1524 ** We try to divine the type they started from and adjust to the
1525 ** type they need.
1526 */
1527 /*
1528 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1529 */
1530 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1531 lclptr : gmtptr);
1532 #ifdef ALL_STATE
1533 if (sp == NULL)
1534 return WRONG;
1535 #endif /* defined ALL_STATE */
1536 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1537 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1538 continue;
1539 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1540 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1541 continue;
1542 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1543 sp->ttis[samei].tt_gmtoff;
1544 tmp->tm_isdst = !tmp->tm_isdst;
1545 t = time2(tmp, funcp, offset, &okay);
1546 if (okay)
1547 return t;
1548 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1549 sp->ttis[samei].tt_gmtoff;
1550 tmp->tm_isdst = !tmp->tm_isdst;
1551 }
1552 }
1553 return WRONG;
1554 }
1555
1556 time_t
1557 mktime(tmp)
1558 struct tm * const tmp;
1559 {
1560 tzset();
1561 return time1(tmp, localsub, 0L);
1562 }
1563
1564 #ifdef STD_INSPIRED
1565
1566 time_t
1567 timelocal(tmp)
1568 struct tm * const tmp;
1569 {
1570 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1571 return mktime(tmp);
1572 }
1573
1574 time_t
1575 timegm(tmp)
1576 struct tm * const tmp;
1577 {
1578 tmp->tm_isdst = 0;
1579 return time1(tmp, gmtsub, 0L);
1580 }
1581
1582 time_t
1583 timeoff(tmp, offset)
1584 struct tm * const tmp;
1585 const long offset;
1586 {
1587 tmp->tm_isdst = 0;
1588 return time1(tmp, gmtsub, offset);
1589 }
1590
1591 #endif /* defined STD_INSPIRED */
1592
1593 #ifdef CMUCS
1594
1595 /*
1596 ** The following is supplied for compatibility with
1597 ** previous versions of the CMUCS runtime library.
1598 */
1599
1600 long
1601 gtime(tmp)
1602 struct tm * const tmp;
1603 {
1604 const time_t t = mktime(tmp);
1605
1606 if (t == WRONG)
1607 return -1;
1608 return t;
1609 }
1610
1611 #endif /* defined CMUCS */
1612
1613 /*
1614 ** XXX--is the below the right way to conditionalize??
1615 */
1616
1617 #ifdef STD_INSPIRED
1618
1619 /*
1620 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1621 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1622 ** is not the case if we are accounting for leap seconds.
1623 ** So, we provide the following conversion routines for use
1624 ** when exchanging timestamps with POSIX conforming systems.
1625 */
1626
1627 static long
1628 leapcorr(timep)
1629 time_t * timep;
1630 {
1631 register struct state * sp;
1632 register struct lsinfo * lp;
1633 register int i;
1634
1635 sp = lclptr;
1636 i = sp->leapcnt;
1637 while (--i >= 0) {
1638 lp = &sp->lsis[i];
1639 if (*timep >= lp->ls_trans)
1640 return lp->ls_corr;
1641 }
1642 return 0;
1643 }
1644
1645 time_t
1646 time2posix(t)
1647 time_t t;
1648 {
1649 tzset();
1650 return t - leapcorr(&t);
1651 }
1652
1653 time_t
1654 posix2time(t)
1655 time_t t;
1656 {
1657 time_t x;
1658 time_t y;
1659
1660 tzset();
1661 /*
1662 ** For a positive leap second hit, the result
1663 ** is not unique. For a negative leap second
1664 ** hit, the corresponding time doesn't exist,
1665 ** so we return an adjacent second.
1666 */
1667 x = t + leapcorr(&t);
1668 y = x - leapcorr(&x);
1669 if (y < t) {
1670 do {
1671 x++;
1672 y = x - leapcorr(&x);
1673 } while (y < t);
1674 if (t != y)
1675 return x - 1;
1676 } else if (y > t) {
1677 do {
1678 --x;
1679 y = x - leapcorr(&x);
1680 } while (y > t);
1681 if (t != y)
1682 return x + 1;
1683 }
1684 return x;
1685 }
1686
1687 #endif /* defined STD_INSPIRED */
1688