localtime.c revision 1.17 1 /* $NetBSD: localtime.c,v 1.17 1998/07/28 20:28:04 mycroft Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char elsieid[] = "@(#)localtime.c 7.64";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.17 1998/07/28 20:28:04 mycroft Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18
19 /*
20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy (at) auspex.com).
23 */
24
25 /*LINTLIBRARY*/
26
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31
32 #ifdef __weak_alias
33 __weak_alias(offtime,_offtime);
34 __weak_alias(posix2time,_posix2time);
35 __weak_alias(time2posix,_time2posix);
36 __weak_alias(timegm,_timegm);
37 __weak_alias(timelocal,_timelocal);
38 __weak_alias(timeoff,_timeoff);
39 __weak_alias(tzset,_tzset);
40 __weak_alias(tzsetwall,_tzsetwall);
41 #endif
42
43 /*
44 ** SunOS 4.1.1 headers lack O_BINARY.
45 */
46
47 #ifdef O_BINARY
48 #define OPEN_MODE (O_RDONLY | O_BINARY)
49 #endif /* defined O_BINARY */
50 #ifndef O_BINARY
51 #define OPEN_MODE O_RDONLY
52 #endif /* !defined O_BINARY */
53
54 #ifndef WILDABBR
55 /*
56 ** Someone might make incorrect use of a time zone abbreviation:
57 ** 1. They might reference tzname[0] before calling tzset (explicitly
58 ** or implicitly).
59 ** 2. They might reference tzname[1] before calling tzset (explicitly
60 ** or implicitly).
61 ** 3. They might reference tzname[1] after setting to a time zone
62 ** in which Daylight Saving Time is never observed.
63 ** 4. They might reference tzname[0] after setting to a time zone
64 ** in which Standard Time is never observed.
65 ** 5. They might reference tm.TM_ZONE after calling offtime.
66 ** What's best to do in the above cases is open to debate;
67 ** for now, we just set things up so that in any of the five cases
68 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
69 ** string "tzname[0] used before set", and similarly for the other cases.
70 ** And another: initialize tzname[0] to "ERA", with an explanation in the
71 ** manual page of what this "time zone abbreviation" means (doing this so
72 ** that tzname[0] has the "normal" length of three characters).
73 */
74 #define WILDABBR " "
75 #endif /* !defined WILDABBR */
76
77 static const char wildabbr[] = "WILDABBR";
78
79 static const char gmt[] = "GMT";
80
81 struct ttinfo { /* time type information */
82 long tt_gmtoff; /* UTC offset in seconds */
83 int tt_isdst; /* used to set tm_isdst */
84 int tt_abbrind; /* abbreviation list index */
85 int tt_ttisstd; /* TRUE if transition is std time */
86 int tt_ttisgmt; /* TRUE if transition is UTC */
87 };
88
89 struct lsinfo { /* leap second information */
90 time_t ls_trans; /* transition time */
91 long ls_corr; /* correction to apply */
92 };
93
94 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
95
96 #ifdef TZNAME_MAX
97 #define MY_TZNAME_MAX TZNAME_MAX
98 #endif /* defined TZNAME_MAX */
99 #ifndef TZNAME_MAX
100 #define MY_TZNAME_MAX 255
101 #endif /* !defined TZNAME_MAX */
102
103 struct state {
104 int leapcnt;
105 int timecnt;
106 int typecnt;
107 int charcnt;
108 time_t ats[TZ_MAX_TIMES];
109 unsigned char types[TZ_MAX_TIMES];
110 struct ttinfo ttis[TZ_MAX_TYPES];
111 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
112 (2 * (MY_TZNAME_MAX + 1)))];
113 struct lsinfo lsis[TZ_MAX_LEAPS];
114 };
115
116 struct rule {
117 int r_type; /* type of rule--see below */
118 int r_day; /* day number of rule */
119 int r_week; /* week number of rule */
120 int r_mon; /* month number of rule */
121 long r_time; /* transition time of rule */
122 };
123
124 #define JULIAN_DAY 0 /* Jn - Julian day */
125 #define DAY_OF_YEAR 1 /* n - day of year */
126 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
127
128 /*
129 ** Prototypes for static functions.
130 */
131
132 static long detzcode P((const char * codep));
133 static const char * getzname P((const char * strp));
134 static const char * getnum P((const char * strp, int * nump, int min,
135 int max));
136 static const char * getsecs P((const char * strp, long * secsp));
137 static const char * getoffset P((const char * strp, long * offsetp));
138 static const char * getrule P((const char * strp, struct rule * rulep));
139 static void gmtload P((struct state * sp));
140 static void gmtsub P((const time_t * timep, long offset,
141 struct tm * tmp));
142 static void localsub P((const time_t * timep, long offset,
143 struct tm * tmp));
144 static int increment_overflow P((int * number, int delta));
145 static int normalize_overflow P((int * tensptr, int * unitsptr,
146 int base));
147 static void settzname P((void));
148 static time_t time1 P((struct tm * tmp,
149 void(*funcp) P((const time_t *,
150 long, struct tm *)),
151 long offset));
152 static time_t time2 P((struct tm *tmp,
153 void(*funcp) P((const time_t *,
154 long, struct tm*)),
155 long offset, int * okayp));
156 static time_t time2sub P((struct tm *tmp,
157 void(*funcp) P((const time_t *,
158 long, struct tm*)),
159 long offset, int * okayp, int do_norm_secs));
160 static void timesub P((const time_t * timep, long offset,
161 const struct state * sp, struct tm * tmp));
162 static int tmcomp P((const struct tm * atmp,
163 const struct tm * btmp));
164 static time_t transtime P((time_t janfirst, int year,
165 const struct rule * rulep, long offset));
166 static int tzload P((const char * name, struct state * sp));
167 static int tzparse P((const char * name, struct state * sp,
168 int lastditch));
169 #ifdef STD_INSPIRED
170 static long leapcorr P((time_t * timep));
171 #endif
172
173 #ifdef ALL_STATE
174 static struct state * lclptr;
175 static struct state * gmtptr;
176 #endif /* defined ALL_STATE */
177
178 #ifndef ALL_STATE
179 static struct state lclmem;
180 static struct state gmtmem;
181 #define lclptr (&lclmem)
182 #define gmtptr (&gmtmem)
183 #endif /* State Farm */
184
185 #ifndef TZ_STRLEN_MAX
186 #define TZ_STRLEN_MAX 255
187 #endif /* !defined TZ_STRLEN_MAX */
188
189 static char lcl_TZname[TZ_STRLEN_MAX + 1];
190 static int lcl_is_set;
191 static int gmt_is_set;
192
193 __aconst char * tzname[2] = {
194 (__aconst char *)wildabbr,
195 (__aconst char *)wildabbr
196 };
197
198 /*
199 ** Section 4.12.3 of X3.159-1989 requires that
200 ** Except for the strftime function, these functions [asctime,
201 ** ctime, gmtime, localtime] return values in one of two static
202 ** objects: a broken-down time structure and an array of char.
203 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
204 */
205
206 static struct tm tm;
207
208 #ifdef USG_COMPAT
209 time_t timezone = 0;
210 int daylight = 0;
211 #endif /* defined USG_COMPAT */
212
213 #ifdef ALTZONE
214 time_t altzone = 0;
215 #endif /* defined ALTZONE */
216
217 static long
218 detzcode(codep)
219 const char * const codep;
220 {
221 register long result;
222
223 /*
224 ** The first character must be sign extended on systems with >32bit
225 ** longs. This was solved differently in the master tzcode sources
226 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
227 ** that this implementation is superior.
228 */
229
230 #ifdef __STDC__
231 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
232 #else
233 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
234 #endif
235
236 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
237 | (codep[1] & 0xff) << 16 \
238 | (codep[2] & 0xff) << 8
239 | (codep[3] & 0xff);
240 return result;
241 }
242
243 static void
244 settzname P((void))
245 {
246 register struct state * const sp = lclptr;
247 register int i;
248
249 tzname[0] = (__aconst char *)wildabbr;
250 tzname[1] = (__aconst char *)wildabbr;
251 #ifdef USG_COMPAT
252 daylight = 0;
253 timezone = 0;
254 #endif /* defined USG_COMPAT */
255 #ifdef ALTZONE
256 altzone = 0;
257 #endif /* defined ALTZONE */
258 #ifdef ALL_STATE
259 if (sp == NULL) {
260 tzname[0] = tzname[1] = (__aconst char *)gmt;
261 return;
262 }
263 #endif /* defined ALL_STATE */
264 for (i = 0; i < sp->typecnt; ++i) {
265 register const struct ttinfo * const ttisp = &sp->ttis[i];
266
267 tzname[ttisp->tt_isdst] =
268 &sp->chars[ttisp->tt_abbrind];
269 #ifdef USG_COMPAT
270 if (ttisp->tt_isdst)
271 daylight = 1;
272 if (i == 0 || !ttisp->tt_isdst)
273 timezone = -(ttisp->tt_gmtoff);
274 #endif /* defined USG_COMPAT */
275 #ifdef ALTZONE
276 if (i == 0 || ttisp->tt_isdst)
277 altzone = -(ttisp->tt_gmtoff);
278 #endif /* defined ALTZONE */
279 }
280 /*
281 ** And to get the latest zone names into tzname. . .
282 */
283 for (i = 0; i < sp->timecnt; ++i) {
284 register const struct ttinfo * const ttisp =
285 &sp->ttis[
286 sp->types[i]];
287
288 tzname[ttisp->tt_isdst] =
289 &sp->chars[ttisp->tt_abbrind];
290 }
291 }
292
293 static int
294 tzload(name, sp)
295 register const char * name;
296 register struct state * const sp;
297 {
298 register const char * p;
299 register int i;
300 register int fid;
301
302 if (name == NULL && (name = TZDEFAULT) == NULL)
303 return -1;
304
305 {
306 register int doaccess;
307 /*
308 ** Section 4.9.1 of the C standard says that
309 ** "FILENAME_MAX expands to an integral constant expression
310 ** that is the size needed for an array of char large enough
311 ** to hold the longest file name string that the implementation
312 ** guarantees can be opened."
313 */
314 char fullname[FILENAME_MAX + 1];
315
316 if (name[0] == ':')
317 ++name;
318 doaccess = name[0] == '/';
319 if (!doaccess) {
320 if ((p = TZDIR) == NULL)
321 return -1;
322 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
323 return -1;
324 (void) strcpy(fullname, p); /* XXX strcpy is safe */
325 (void) strcat(fullname, "/"); /* XXX strcat is safe */
326 (void) strcat(fullname, name); /* XXX strcat is safe */
327 /*
328 ** Set doaccess if '.' (as in "../") shows up in name.
329 */
330 if (strchr(name, '.') != NULL)
331 doaccess = TRUE;
332 name = fullname;
333 }
334 if (doaccess && access(name, R_OK) != 0)
335 return -1;
336 /*
337 * XXX potential security problem here if user of a set-id
338 * program has set TZ (which is passed in as name) here,
339 * and uses a race condition trick to defeat the access(2)
340 * above.
341 */
342 if ((fid = open(name, OPEN_MODE)) == -1)
343 return -1;
344 }
345 {
346 struct tzhead * tzhp;
347 union {
348 struct tzhead tzhead;
349 char buf[sizeof *sp + sizeof *tzhp];
350 } u;
351 int ttisstdcnt;
352 int ttisgmtcnt;
353
354 i = read(fid, u.buf, sizeof u.buf);
355 if (close(fid) != 0)
356 return -1;
357 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
358 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
359 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
360 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
361 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
362 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
363 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
364 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
365 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
366 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
367 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
368 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
369 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
370 return -1;
371 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
372 sp->timecnt + /* types */
373 sp->typecnt * (4 + 2) + /* ttinfos */
374 sp->charcnt + /* chars */
375 sp->leapcnt * (4 + 4) + /* lsinfos */
376 ttisstdcnt + /* ttisstds */
377 ttisgmtcnt) /* ttisgmts */
378 return -1;
379 for (i = 0; i < sp->timecnt; ++i) {
380 sp->ats[i] = detzcode(p);
381 p += 4;
382 }
383 for (i = 0; i < sp->timecnt; ++i) {
384 sp->types[i] = (unsigned char) *p++;
385 if (sp->types[i] >= sp->typecnt)
386 return -1;
387 }
388 for (i = 0; i < sp->typecnt; ++i) {
389 register struct ttinfo * ttisp;
390
391 ttisp = &sp->ttis[i];
392 ttisp->tt_gmtoff = detzcode(p);
393 p += 4;
394 ttisp->tt_isdst = (unsigned char) *p++;
395 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
396 return -1;
397 ttisp->tt_abbrind = (unsigned char) *p++;
398 if (ttisp->tt_abbrind < 0 ||
399 ttisp->tt_abbrind > sp->charcnt)
400 return -1;
401 }
402 for (i = 0; i < sp->charcnt; ++i)
403 sp->chars[i] = *p++;
404 sp->chars[i] = '\0'; /* ensure '\0' at end */
405 for (i = 0; i < sp->leapcnt; ++i) {
406 register struct lsinfo * lsisp;
407
408 lsisp = &sp->lsis[i];
409 lsisp->ls_trans = detzcode(p);
410 p += 4;
411 lsisp->ls_corr = detzcode(p);
412 p += 4;
413 }
414 for (i = 0; i < sp->typecnt; ++i) {
415 register struct ttinfo * ttisp;
416
417 ttisp = &sp->ttis[i];
418 if (ttisstdcnt == 0)
419 ttisp->tt_ttisstd = FALSE;
420 else {
421 ttisp->tt_ttisstd = *p++;
422 if (ttisp->tt_ttisstd != TRUE &&
423 ttisp->tt_ttisstd != FALSE)
424 return -1;
425 }
426 }
427 for (i = 0; i < sp->typecnt; ++i) {
428 register struct ttinfo * ttisp;
429
430 ttisp = &sp->ttis[i];
431 if (ttisgmtcnt == 0)
432 ttisp->tt_ttisgmt = FALSE;
433 else {
434 ttisp->tt_ttisgmt = *p++;
435 if (ttisp->tt_ttisgmt != TRUE &&
436 ttisp->tt_ttisgmt != FALSE)
437 return -1;
438 }
439 }
440 }
441 return 0;
442 }
443
444 static const int mon_lengths[2][MONSPERYEAR] = {
445 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
446 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
447 };
448
449 static const int year_lengths[2] = {
450 DAYSPERNYEAR, DAYSPERLYEAR
451 };
452
453 /*
454 ** Given a pointer into a time zone string, scan until a character that is not
455 ** a valid character in a zone name is found. Return a pointer to that
456 ** character.
457 */
458
459 static const char *
460 getzname(strp)
461 register const char * strp;
462 {
463 register char c;
464
465 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
466 c != '+')
467 ++strp;
468 return strp;
469 }
470
471 /*
472 ** Given a pointer into a time zone string, extract a number from that string.
473 ** Check that the number is within a specified range; if it is not, return
474 ** NULL.
475 ** Otherwise, return a pointer to the first character not part of the number.
476 */
477
478 static const char *
479 getnum(strp, nump, min, max)
480 register const char * strp;
481 int * const nump;
482 const int min;
483 const int max;
484 {
485 register char c;
486 register int num;
487
488 if (strp == NULL || !is_digit(c = *strp))
489 return NULL;
490 num = 0;
491 do {
492 num = num * 10 + (c - '0');
493 if (num > max)
494 return NULL; /* illegal value */
495 c = *++strp;
496 } while (is_digit(c));
497 if (num < min)
498 return NULL; /* illegal value */
499 *nump = num;
500 return strp;
501 }
502
503 /*
504 ** Given a pointer into a time zone string, extract a number of seconds,
505 ** in hh[:mm[:ss]] form, from the string.
506 ** If any error occurs, return NULL.
507 ** Otherwise, return a pointer to the first character not part of the number
508 ** of seconds.
509 */
510
511 static const char *
512 getsecs(strp, secsp)
513 register const char * strp;
514 long * const secsp;
515 {
516 int num;
517
518 /*
519 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
520 ** "M10.4.6/26", which does not conform to Posix,
521 ** but which specifies the equivalent of
522 ** ``02:00 on the first Sunday on or after 23 Oct''.
523 */
524 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
525 if (strp == NULL)
526 return NULL;
527 *secsp = num * (long) SECSPERHOUR;
528 if (*strp == ':') {
529 ++strp;
530 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
531 if (strp == NULL)
532 return NULL;
533 *secsp += num * SECSPERMIN;
534 if (*strp == ':') {
535 ++strp;
536 /* `SECSPERMIN' allows for leap seconds. */
537 strp = getnum(strp, &num, 0, SECSPERMIN);
538 if (strp == NULL)
539 return NULL;
540 *secsp += num;
541 }
542 }
543 return strp;
544 }
545
546 /*
547 ** Given a pointer into a time zone string, extract an offset, in
548 ** [+-]hh[:mm[:ss]] form, from the string.
549 ** If any error occurs, return NULL.
550 ** Otherwise, return a pointer to the first character not part of the time.
551 */
552
553 static const char *
554 getoffset(strp, offsetp)
555 register const char * strp;
556 long * const offsetp;
557 {
558 register int neg = 0;
559
560 if (*strp == '-') {
561 neg = 1;
562 ++strp;
563 } else if (*strp == '+')
564 ++strp;
565 strp = getsecs(strp, offsetp);
566 if (strp == NULL)
567 return NULL; /* illegal time */
568 if (neg)
569 *offsetp = -*offsetp;
570 return strp;
571 }
572
573 /*
574 ** Given a pointer into a time zone string, extract a rule in the form
575 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
576 ** If a valid rule is not found, return NULL.
577 ** Otherwise, return a pointer to the first character not part of the rule.
578 */
579
580 static const char *
581 getrule(strp, rulep)
582 const char * strp;
583 register struct rule * const rulep;
584 {
585 if (*strp == 'J') {
586 /*
587 ** Julian day.
588 */
589 rulep->r_type = JULIAN_DAY;
590 ++strp;
591 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
592 } else if (*strp == 'M') {
593 /*
594 ** Month, week, day.
595 */
596 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
597 ++strp;
598 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
599 if (strp == NULL)
600 return NULL;
601 if (*strp++ != '.')
602 return NULL;
603 strp = getnum(strp, &rulep->r_week, 1, 5);
604 if (strp == NULL)
605 return NULL;
606 if (*strp++ != '.')
607 return NULL;
608 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
609 } else if (is_digit(*strp)) {
610 /*
611 ** Day of year.
612 */
613 rulep->r_type = DAY_OF_YEAR;
614 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
615 } else return NULL; /* invalid format */
616 if (strp == NULL)
617 return NULL;
618 if (*strp == '/') {
619 /*
620 ** Time specified.
621 */
622 ++strp;
623 strp = getsecs(strp, &rulep->r_time);
624 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
625 return strp;
626 }
627
628 /*
629 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
630 ** year, a rule, and the offset from UTC at the time that rule takes effect,
631 ** calculate the Epoch-relative time that rule takes effect.
632 */
633
634 static time_t
635 transtime(janfirst, year, rulep, offset)
636 const time_t janfirst;
637 const int year;
638 register const struct rule * const rulep;
639 const long offset;
640 {
641 register int leapyear;
642 register time_t value;
643 register int i;
644 int d, m1, yy0, yy1, yy2, dow;
645
646 INITIALIZE(value);
647 leapyear = isleap(year);
648 switch (rulep->r_type) {
649
650 case JULIAN_DAY:
651 /*
652 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
653 ** years.
654 ** In non-leap years, or if the day number is 59 or less, just
655 ** add SECSPERDAY times the day number-1 to the time of
656 ** January 1, midnight, to get the day.
657 */
658 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
659 if (leapyear && rulep->r_day >= 60)
660 value += SECSPERDAY;
661 break;
662
663 case DAY_OF_YEAR:
664 /*
665 ** n - day of year.
666 ** Just add SECSPERDAY times the day number to the time of
667 ** January 1, midnight, to get the day.
668 */
669 value = janfirst + rulep->r_day * SECSPERDAY;
670 break;
671
672 case MONTH_NTH_DAY_OF_WEEK:
673 /*
674 ** Mm.n.d - nth "dth day" of month m.
675 */
676 value = janfirst;
677 for (i = 0; i < rulep->r_mon - 1; ++i)
678 value += mon_lengths[leapyear][i] * SECSPERDAY;
679
680 /*
681 ** Use Zeller's Congruence to get day-of-week of first day of
682 ** month.
683 */
684 m1 = (rulep->r_mon + 9) % 12 + 1;
685 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
686 yy1 = yy0 / 100;
687 yy2 = yy0 % 100;
688 dow = ((26 * m1 - 2) / 10 +
689 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
690 if (dow < 0)
691 dow += DAYSPERWEEK;
692
693 /*
694 ** "dow" is the day-of-week of the first day of the month. Get
695 ** the day-of-month (zero-origin) of the first "dow" day of the
696 ** month.
697 */
698 d = rulep->r_day - dow;
699 if (d < 0)
700 d += DAYSPERWEEK;
701 for (i = 1; i < rulep->r_week; ++i) {
702 if (d + DAYSPERWEEK >=
703 mon_lengths[leapyear][rulep->r_mon - 1])
704 break;
705 d += DAYSPERWEEK;
706 }
707
708 /*
709 ** "d" is the day-of-month (zero-origin) of the day we want.
710 */
711 value += d * SECSPERDAY;
712 break;
713 }
714
715 /*
716 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
717 ** question. To get the Epoch-relative time of the specified local
718 ** time on that day, add the transition time and the current offset
719 ** from UTC.
720 */
721 return value + rulep->r_time + offset;
722 }
723
724 /*
725 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
726 ** appropriate.
727 */
728
729 static int
730 tzparse(name, sp, lastditch)
731 const char * name;
732 register struct state * const sp;
733 const int lastditch;
734 {
735 const char * stdname;
736 const char * dstname;
737 size_t stdlen;
738 size_t dstlen;
739 long stdoffset;
740 long dstoffset;
741 register time_t * atp;
742 register unsigned char * typep;
743 register char * cp;
744 register int load_result;
745
746 INITIALIZE(dstname);
747 stdname = name;
748 if (lastditch) {
749 stdlen = strlen(name); /* length of standard zone name */
750 name += stdlen;
751 if (stdlen >= sizeof sp->chars)
752 stdlen = (sizeof sp->chars) - 1;
753 stdoffset = 0;
754 } else {
755 name = getzname(name);
756 stdlen = name - stdname;
757 if (stdlen < 3)
758 return -1;
759 if (*name == '\0')
760 return -1;
761 name = getoffset(name, &stdoffset);
762 if (name == NULL)
763 return -1;
764 }
765 load_result = tzload(TZDEFRULES, sp);
766 if (load_result != 0)
767 sp->leapcnt = 0; /* so, we're off a little */
768 if (*name != '\0') {
769 dstname = name;
770 name = getzname(name);
771 dstlen = name - dstname; /* length of DST zone name */
772 if (dstlen < 3)
773 return -1;
774 if (*name != '\0' && *name != ',' && *name != ';') {
775 name = getoffset(name, &dstoffset);
776 if (name == NULL)
777 return -1;
778 } else dstoffset = stdoffset - SECSPERHOUR;
779 if (*name == ',' || *name == ';') {
780 struct rule start;
781 struct rule end;
782 register int year;
783 register time_t janfirst;
784 time_t starttime;
785 time_t endtime;
786
787 ++name;
788 if ((name = getrule(name, &start)) == NULL)
789 return -1;
790 if (*name++ != ',')
791 return -1;
792 if ((name = getrule(name, &end)) == NULL)
793 return -1;
794 if (*name != '\0')
795 return -1;
796 sp->typecnt = 2; /* standard time and DST */
797 /*
798 ** Two transitions per year, from EPOCH_YEAR to 2037.
799 */
800 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
801 if (sp->timecnt > TZ_MAX_TIMES)
802 return -1;
803 sp->ttis[0].tt_gmtoff = -dstoffset;
804 sp->ttis[0].tt_isdst = 1;
805 sp->ttis[0].tt_abbrind = stdlen + 1;
806 sp->ttis[1].tt_gmtoff = -stdoffset;
807 sp->ttis[1].tt_isdst = 0;
808 sp->ttis[1].tt_abbrind = 0;
809 atp = sp->ats;
810 typep = sp->types;
811 janfirst = 0;
812 for (year = EPOCH_YEAR; year <= 2037; ++year) {
813 starttime = transtime(janfirst, year, &start,
814 stdoffset);
815 endtime = transtime(janfirst, year, &end,
816 dstoffset);
817 if (starttime > endtime) {
818 *atp++ = endtime;
819 *typep++ = 1; /* DST ends */
820 *atp++ = starttime;
821 *typep++ = 0; /* DST begins */
822 } else {
823 *atp++ = starttime;
824 *typep++ = 0; /* DST begins */
825 *atp++ = endtime;
826 *typep++ = 1; /* DST ends */
827 }
828 janfirst += year_lengths[isleap(year)] *
829 SECSPERDAY;
830 }
831 } else {
832 register long theirstdoffset;
833 register long theirdstoffset;
834 register long theiroffset;
835 register int isdst;
836 register int i;
837 register int j;
838
839 if (*name != '\0')
840 return -1;
841 if (load_result != 0)
842 return -1;
843 /*
844 ** Initial values of theirstdoffset and theirdstoffset.
845 */
846 theirstdoffset = 0;
847 for (i = 0; i < sp->timecnt; ++i) {
848 j = sp->types[i];
849 if (!sp->ttis[j].tt_isdst) {
850 theirstdoffset =
851 -sp->ttis[j].tt_gmtoff;
852 break;
853 }
854 }
855 theirdstoffset = 0;
856 for (i = 0; i < sp->timecnt; ++i) {
857 j = sp->types[i];
858 if (sp->ttis[j].tt_isdst) {
859 theirdstoffset =
860 -sp->ttis[j].tt_gmtoff;
861 break;
862 }
863 }
864 /*
865 ** Initially we're assumed to be in standard time.
866 */
867 isdst = FALSE;
868 theiroffset = theirstdoffset;
869 /*
870 ** Now juggle transition times and types
871 ** tracking offsets as you do.
872 */
873 for (i = 0; i < sp->timecnt; ++i) {
874 j = sp->types[i];
875 sp->types[i] = sp->ttis[j].tt_isdst;
876 if (sp->ttis[j].tt_ttisgmt) {
877 /* No adjustment to transition time */
878 } else {
879 /*
880 ** If summer time is in effect, and the
881 ** transition time was not specified as
882 ** standard time, add the summer time
883 ** offset to the transition time;
884 ** otherwise, add the standard time
885 ** offset to the transition time.
886 */
887 /*
888 ** Transitions from DST to DDST
889 ** will effectively disappear since
890 ** POSIX provides for only one DST
891 ** offset.
892 */
893 if (isdst && !sp->ttis[j].tt_ttisstd) {
894 sp->ats[i] += dstoffset -
895 theirdstoffset;
896 } else {
897 sp->ats[i] += stdoffset -
898 theirstdoffset;
899 }
900 }
901 theiroffset = -sp->ttis[j].tt_gmtoff;
902 if (sp->ttis[j].tt_isdst)
903 theirdstoffset = theiroffset;
904 else theirstdoffset = theiroffset;
905 }
906 /*
907 ** Finally, fill in ttis.
908 ** ttisstd and ttisgmt need not be handled.
909 */
910 sp->ttis[0].tt_gmtoff = -stdoffset;
911 sp->ttis[0].tt_isdst = FALSE;
912 sp->ttis[0].tt_abbrind = 0;
913 sp->ttis[1].tt_gmtoff = -dstoffset;
914 sp->ttis[1].tt_isdst = TRUE;
915 sp->ttis[1].tt_abbrind = stdlen + 1;
916 sp->typecnt = 2;
917 }
918 } else {
919 dstlen = 0;
920 sp->typecnt = 1; /* only standard time */
921 sp->timecnt = 0;
922 sp->ttis[0].tt_gmtoff = -stdoffset;
923 sp->ttis[0].tt_isdst = 0;
924 sp->ttis[0].tt_abbrind = 0;
925 }
926 sp->charcnt = stdlen + 1;
927 if (dstlen != 0)
928 sp->charcnt += dstlen + 1;
929 if ((size_t) sp->charcnt > sizeof sp->chars)
930 return -1;
931 cp = sp->chars;
932 (void) strncpy(cp, stdname, stdlen);
933 cp += stdlen;
934 *cp++ = '\0';
935 if (dstlen != 0) {
936 (void) strncpy(cp, dstname, dstlen);
937 *(cp + dstlen) = '\0';
938 }
939 return 0;
940 }
941
942 static void
943 gmtload(sp)
944 struct state * const sp;
945 {
946 if (tzload(gmt, sp) != 0)
947 (void) tzparse(gmt, sp, TRUE);
948 }
949
950 #ifndef STD_INSPIRED
951 /*
952 ** A non-static declaration of tzsetwall in a system header file
953 ** may cause a warning about this upcoming static declaration...
954 */
955 static
956 #endif /* !defined STD_INSPIRED */
957 void
958 tzsetwall P((void))
959 {
960 if (lcl_is_set < 0)
961 return;
962 lcl_is_set = -1;
963
964 #ifdef ALL_STATE
965 if (lclptr == NULL) {
966 lclptr = (struct state *) malloc(sizeof *lclptr);
967 if (lclptr == NULL) {
968 settzname(); /* all we can do */
969 return;
970 }
971 }
972 #endif /* defined ALL_STATE */
973 if (tzload((char *) NULL, lclptr) != 0)
974 gmtload(lclptr);
975 settzname();
976 }
977
978 void
979 tzset P((void))
980 {
981 register const char * name;
982
983 name = getenv("TZ");
984 if (name == NULL) {
985 tzsetwall();
986 return;
987 }
988
989 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
990 return;
991 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
992 if (lcl_is_set)
993 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
994
995 #ifdef ALL_STATE
996 if (lclptr == NULL) {
997 lclptr = (struct state *) malloc(sizeof *lclptr);
998 if (lclptr == NULL) {
999 settzname(); /* all we can do */
1000 return;
1001 }
1002 }
1003 #endif /* defined ALL_STATE */
1004 if (*name == '\0') {
1005 /*
1006 ** User wants it fast rather than right.
1007 */
1008 lclptr->leapcnt = 0; /* so, we're off a little */
1009 lclptr->timecnt = 0;
1010 lclptr->ttis[0].tt_gmtoff = 0;
1011 lclptr->ttis[0].tt_abbrind = 0;
1012 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1013 } else if (tzload(name, lclptr) != 0)
1014 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1015 (void) gmtload(lclptr);
1016 settzname();
1017 }
1018
1019 /*
1020 ** The easy way to behave "as if no library function calls" localtime
1021 ** is to not call it--so we drop its guts into "localsub", which can be
1022 ** freely called. (And no, the PANS doesn't require the above behavior--
1023 ** but it *is* desirable.)
1024 **
1025 ** The unused offset argument is for the benefit of mktime variants.
1026 */
1027
1028 /*ARGSUSED*/
1029 static void
1030 localsub(timep, offset, tmp)
1031 const time_t * const timep;
1032 const long offset;
1033 struct tm * const tmp;
1034 {
1035 register struct state * sp;
1036 register const struct ttinfo * ttisp;
1037 register int i;
1038 const time_t t = *timep;
1039
1040 sp = lclptr;
1041 #ifdef ALL_STATE
1042 if (sp == NULL) {
1043 gmtsub(timep, offset, tmp);
1044 return;
1045 }
1046 #endif /* defined ALL_STATE */
1047 if (sp->timecnt == 0 || t < sp->ats[0]) {
1048 i = 0;
1049 while (sp->ttis[i].tt_isdst)
1050 if (++i >= sp->typecnt) {
1051 i = 0;
1052 break;
1053 }
1054 } else {
1055 for (i = 1; i < sp->timecnt; ++i)
1056 if (t < sp->ats[i])
1057 break;
1058 i = sp->types[i - 1];
1059 }
1060 ttisp = &sp->ttis[i];
1061 /*
1062 ** To get (wrong) behavior that's compatible with System V Release 2.0
1063 ** you'd replace the statement below with
1064 ** t += ttisp->tt_gmtoff;
1065 ** timesub(&t, 0L, sp, tmp);
1066 */
1067 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1068 tmp->tm_isdst = ttisp->tt_isdst;
1069 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1070 #ifdef TM_ZONE
1071 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1072 #endif /* defined TM_ZONE */
1073 }
1074
1075 struct tm *
1076 localtime(timep)
1077 const time_t * const timep;
1078 {
1079 tzset();
1080 localsub(timep, 0L, &tm);
1081 return &tm;
1082 }
1083
1084 /*
1085 ** gmtsub is to gmtime as localsub is to localtime.
1086 */
1087
1088 static void
1089 gmtsub(timep, offset, tmp)
1090 const time_t * const timep;
1091 const long offset;
1092 struct tm * const tmp;
1093 {
1094 if (!gmt_is_set) {
1095 gmt_is_set = TRUE;
1096 #ifdef ALL_STATE
1097 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1098 if (gmtptr != NULL)
1099 #endif /* defined ALL_STATE */
1100 gmtload(gmtptr);
1101 }
1102 timesub(timep, offset, gmtptr, tmp);
1103 #ifdef TM_ZONE
1104 /*
1105 ** Could get fancy here and deliver something such as
1106 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1107 ** but this is no time for a treasure hunt.
1108 */
1109 if (offset != 0)
1110 tmp->TM_ZONE = (__aconst char *)wildabbr;
1111 else {
1112 #ifdef ALL_STATE
1113 if (gmtptr == NULL)
1114 tmp->TM_ZONE = (__aconst char *)gmt;
1115 else tmp->TM_ZONE = gmtptr->chars;
1116 #endif /* defined ALL_STATE */
1117 #ifndef ALL_STATE
1118 tmp->TM_ZONE = gmtptr->chars;
1119 #endif /* State Farm */
1120 }
1121 #endif /* defined TM_ZONE */
1122 }
1123
1124 struct tm *
1125 gmtime(timep)
1126 const time_t * const timep;
1127 {
1128 gmtsub(timep, 0L, &tm);
1129 return &tm;
1130 }
1131
1132 #ifdef STD_INSPIRED
1133
1134 struct tm *
1135 offtime(timep, offset)
1136 const time_t * const timep;
1137 const long offset;
1138 {
1139 gmtsub(timep, offset, &tm);
1140 return &tm;
1141 }
1142
1143 #endif /* defined STD_INSPIRED */
1144
1145 static void
1146 timesub(timep, offset, sp, tmp)
1147 const time_t * const timep;
1148 const long offset;
1149 register const struct state * const sp;
1150 register struct tm * const tmp;
1151 {
1152 register const struct lsinfo * lp;
1153 register long days;
1154 register long rem;
1155 register int y;
1156 register int yleap;
1157 register const int * ip;
1158 register long corr;
1159 register int hit;
1160 register int i;
1161
1162 corr = 0;
1163 hit = 0;
1164 #ifdef ALL_STATE
1165 i = (sp == NULL) ? 0 : sp->leapcnt;
1166 #endif /* defined ALL_STATE */
1167 #ifndef ALL_STATE
1168 i = sp->leapcnt;
1169 #endif /* State Farm */
1170 while (--i >= 0) {
1171 lp = &sp->lsis[i];
1172 if (*timep >= lp->ls_trans) {
1173 if (*timep == lp->ls_trans) {
1174 hit = ((i == 0 && lp->ls_corr > 0) ||
1175 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1176 if (hit)
1177 while (i > 0 &&
1178 sp->lsis[i].ls_trans ==
1179 sp->lsis[i - 1].ls_trans + 1 &&
1180 sp->lsis[i].ls_corr ==
1181 sp->lsis[i - 1].ls_corr + 1) {
1182 ++hit;
1183 --i;
1184 }
1185 }
1186 corr = lp->ls_corr;
1187 break;
1188 }
1189 }
1190 days = *timep / SECSPERDAY;
1191 rem = *timep % SECSPERDAY;
1192 #ifdef mc68k
1193 if (*timep == 0x80000000) {
1194 /*
1195 ** A 3B1 muffs the division on the most negative number.
1196 */
1197 days = -24855;
1198 rem = -11648;
1199 }
1200 #endif /* defined mc68k */
1201 rem += (offset - corr);
1202 while (rem < 0) {
1203 rem += SECSPERDAY;
1204 --days;
1205 }
1206 while (rem >= SECSPERDAY) {
1207 rem -= SECSPERDAY;
1208 ++days;
1209 }
1210 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1211 rem = rem % SECSPERHOUR;
1212 tmp->tm_min = (int) (rem / SECSPERMIN);
1213 /*
1214 ** A positive leap second requires a special
1215 ** representation. This uses "... ??:59:60" et seq.
1216 */
1217 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1218 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1219 if (tmp->tm_wday < 0)
1220 tmp->tm_wday += DAYSPERWEEK;
1221 y = EPOCH_YEAR;
1222 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1223 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1224 register int newy;
1225
1226 newy = y + days / DAYSPERNYEAR;
1227 if (days < 0)
1228 --newy;
1229 days -= (newy - y) * DAYSPERNYEAR +
1230 LEAPS_THRU_END_OF(newy - 1) -
1231 LEAPS_THRU_END_OF(y - 1);
1232 y = newy;
1233 }
1234 tmp->tm_year = y - TM_YEAR_BASE;
1235 tmp->tm_yday = (int) days;
1236 ip = mon_lengths[yleap];
1237 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1238 days = days - (long) ip[tmp->tm_mon];
1239 tmp->tm_mday = (int) (days + 1);
1240 tmp->tm_isdst = 0;
1241 #ifdef TM_GMTOFF
1242 tmp->TM_GMTOFF = offset;
1243 #endif /* defined TM_GMTOFF */
1244 }
1245
1246 char *
1247 ctime(timep)
1248 const time_t * const timep;
1249 {
1250 /*
1251 ** Section 4.12.3.2 of X3.159-1989 requires that
1252 ** The ctime funciton converts the calendar time pointed to by timer
1253 ** to local time in the form of a string. It is equivalent to
1254 ** asctime(localtime(timer))
1255 */
1256 return asctime(localtime(timep));
1257 }
1258
1259 /*
1260 ** Adapted from code provided by Robert Elz, who writes:
1261 ** The "best" way to do mktime I think is based on an idea of Bob
1262 ** Kridle's (so its said...) from a long time ago.
1263 ** [kridle (at) xinet.com as of 1996-01-16.]
1264 ** It does a binary search of the time_t space. Since time_t's are
1265 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1266 ** would still be very reasonable).
1267 */
1268
1269 #ifndef WRONG
1270 #define WRONG (-1)
1271 #endif /* !defined WRONG */
1272
1273 /*
1274 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1275 */
1276
1277 static int
1278 increment_overflow(number, delta)
1279 int * number;
1280 int delta;
1281 {
1282 int number0;
1283
1284 number0 = *number;
1285 *number += delta;
1286 return (*number < number0) != (delta < 0);
1287 }
1288
1289 static int
1290 normalize_overflow(tensptr, unitsptr, base)
1291 int * const tensptr;
1292 int * const unitsptr;
1293 const int base;
1294 {
1295 register int tensdelta;
1296
1297 tensdelta = (*unitsptr >= 0) ?
1298 (*unitsptr / base) :
1299 (-1 - (-1 - *unitsptr) / base);
1300 *unitsptr -= tensdelta * base;
1301 return increment_overflow(tensptr, tensdelta);
1302 }
1303
1304 static int
1305 tmcomp(atmp, btmp)
1306 register const struct tm * const atmp;
1307 register const struct tm * const btmp;
1308 {
1309 register int result;
1310
1311 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1312 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1313 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1314 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1315 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1316 result = atmp->tm_sec - btmp->tm_sec;
1317 return result;
1318 }
1319
1320 static time_t
1321 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1322 struct tm * const tmp;
1323 void (* const funcp) P((const time_t*, long, struct tm*));
1324 const long offset;
1325 int * const okayp;
1326 const int do_norm_secs;
1327 {
1328 register const struct state * sp;
1329 register int dir;
1330 register int bits;
1331 register int i, j ;
1332 register int saved_seconds;
1333 time_t newt;
1334 time_t t;
1335 struct tm yourtm, mytm;
1336
1337 *okayp = FALSE;
1338 yourtm = *tmp;
1339 if (do_norm_secs) {
1340 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1341 SECSPERMIN))
1342 return WRONG;
1343 }
1344 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1345 return WRONG;
1346 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1347 return WRONG;
1348 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1349 return WRONG;
1350 /*
1351 ** Turn yourtm.tm_year into an actual year number for now.
1352 ** It is converted back to an offset from TM_YEAR_BASE later.
1353 */
1354 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1355 return WRONG;
1356 while (yourtm.tm_mday <= 0) {
1357 if (increment_overflow(&yourtm.tm_year, -1))
1358 return WRONG;
1359 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1360 yourtm.tm_mday += year_lengths[isleap(i)];
1361 }
1362 while (yourtm.tm_mday > DAYSPERLYEAR) {
1363 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1364 yourtm.tm_mday -= year_lengths[isleap(i)];
1365 if (increment_overflow(&yourtm.tm_year, 1))
1366 return WRONG;
1367 }
1368 for ( ; ; ) {
1369 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1370 if (yourtm.tm_mday <= i)
1371 break;
1372 yourtm.tm_mday -= i;
1373 if (++yourtm.tm_mon >= MONSPERYEAR) {
1374 yourtm.tm_mon = 0;
1375 if (increment_overflow(&yourtm.tm_year, 1))
1376 return WRONG;
1377 }
1378 }
1379 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1380 return WRONG;
1381 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1382 /*
1383 ** We can't set tm_sec to 0, because that might push the
1384 ** time below the minimum representable time.
1385 ** Set tm_sec to 59 instead.
1386 ** This assumes that the minimum representable time is
1387 ** not in the same minute that a leap second was deleted from,
1388 ** which is a safer assumption than using 58 would be.
1389 */
1390 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1391 return WRONG;
1392 saved_seconds = yourtm.tm_sec;
1393 yourtm.tm_sec = SECSPERMIN - 1;
1394 } else {
1395 saved_seconds = yourtm.tm_sec;
1396 yourtm.tm_sec = 0;
1397 }
1398 /*
1399 ** Divide the search space in half
1400 ** (this works whether time_t is signed or unsigned).
1401 */
1402 bits = TYPE_BIT(time_t) - 1;
1403 /*
1404 ** If time_t is signed, then 0 is just above the median,
1405 ** assuming two's complement arithmetic.
1406 ** If time_t is unsigned, then (1 << bits) is just above the median.
1407 */
1408 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1409 for ( ; ; ) {
1410 (*funcp)(&t, offset, &mytm);
1411 dir = tmcomp(&mytm, &yourtm);
1412 if (dir != 0) {
1413 if (bits-- < 0)
1414 return WRONG;
1415 if (bits < 0)
1416 --t; /* may be needed if new t is minimal */
1417 else if (dir > 0)
1418 t -= ((time_t) 1) << bits;
1419 else t += ((time_t) 1) << bits;
1420 continue;
1421 }
1422 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1423 break;
1424 /*
1425 ** Right time, wrong type.
1426 ** Hunt for right time, right type.
1427 ** It's okay to guess wrong since the guess
1428 ** gets checked.
1429 */
1430 /*
1431 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1432 */
1433 sp = (const struct state *)
1434 (((void *) funcp == (void *) localsub) ?
1435 lclptr : gmtptr);
1436 #ifdef ALL_STATE
1437 if (sp == NULL)
1438 return WRONG;
1439 #endif /* defined ALL_STATE */
1440 for (i = sp->typecnt - 1; i >= 0; --i) {
1441 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1442 continue;
1443 for (j = sp->typecnt - 1; j >= 0; --j) {
1444 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1445 continue;
1446 newt = t + sp->ttis[j].tt_gmtoff -
1447 sp->ttis[i].tt_gmtoff;
1448 (*funcp)(&newt, offset, &mytm);
1449 if (tmcomp(&mytm, &yourtm) != 0)
1450 continue;
1451 if (mytm.tm_isdst != yourtm.tm_isdst)
1452 continue;
1453 /*
1454 ** We have a match.
1455 */
1456 t = newt;
1457 goto label;
1458 }
1459 }
1460 return WRONG;
1461 }
1462 label:
1463 newt = t + saved_seconds;
1464 if ((newt < t) != (saved_seconds < 0))
1465 return WRONG;
1466 t = newt;
1467 (*funcp)(&t, offset, tmp);
1468 *okayp = TRUE;
1469 return t;
1470 }
1471
1472 static time_t
1473 time2(tmp, funcp, offset, okayp)
1474 struct tm * const tmp;
1475 void (* const funcp) P((const time_t*, long, struct tm*));
1476 const long offset;
1477 int * const okayp;
1478 {
1479 time_t t;
1480
1481 /*
1482 ** First try without normalization of seconds
1483 ** (in case tm_sec contains a value associated with a leap second).
1484 ** If that fails, try with normalization of seconds.
1485 */
1486 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1487 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1488 }
1489
1490 static time_t
1491 time1(tmp, funcp, offset)
1492 struct tm * const tmp;
1493 void (* const funcp) P((const time_t *, long, struct tm *));
1494 const long offset;
1495 {
1496 register time_t t;
1497 register const struct state * sp;
1498 register int samei, otheri;
1499 int okay;
1500
1501 if (tmp->tm_isdst > 1)
1502 tmp->tm_isdst = 1;
1503 t = time2(tmp, funcp, offset, &okay);
1504 #ifdef PCTS
1505 /*
1506 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1507 */
1508 if (okay)
1509 return t;
1510 if (tmp->tm_isdst < 0)
1511 tmp->tm_isdst = 0; /* reset to std and try again */
1512 #endif /* defined PCTS */
1513 #ifndef PCTS
1514 if (okay || tmp->tm_isdst < 0)
1515 return t;
1516 #endif /* !defined PCTS */
1517 /*
1518 ** We're supposed to assume that somebody took a time of one type
1519 ** and did some math on it that yielded a "struct tm" that's bad.
1520 ** We try to divine the type they started from and adjust to the
1521 ** type they need.
1522 */
1523 /*
1524 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1525 */
1526 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1527 lclptr : gmtptr);
1528 #ifdef ALL_STATE
1529 if (sp == NULL)
1530 return WRONG;
1531 #endif /* defined ALL_STATE */
1532 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1533 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1534 continue;
1535 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1536 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1537 continue;
1538 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1539 sp->ttis[samei].tt_gmtoff;
1540 tmp->tm_isdst = !tmp->tm_isdst;
1541 t = time2(tmp, funcp, offset, &okay);
1542 if (okay)
1543 return t;
1544 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1545 sp->ttis[samei].tt_gmtoff;
1546 tmp->tm_isdst = !tmp->tm_isdst;
1547 }
1548 }
1549 return WRONG;
1550 }
1551
1552 time_t
1553 mktime(tmp)
1554 struct tm * const tmp;
1555 {
1556 tzset();
1557 return time1(tmp, localsub, 0L);
1558 }
1559
1560 #ifdef STD_INSPIRED
1561
1562 time_t
1563 timelocal(tmp)
1564 struct tm * const tmp;
1565 {
1566 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1567 return mktime(tmp);
1568 }
1569
1570 time_t
1571 timegm(tmp)
1572 struct tm * const tmp;
1573 {
1574 tmp->tm_isdst = 0;
1575 return time1(tmp, gmtsub, 0L);
1576 }
1577
1578 time_t
1579 timeoff(tmp, offset)
1580 struct tm * const tmp;
1581 const long offset;
1582 {
1583 tmp->tm_isdst = 0;
1584 return time1(tmp, gmtsub, offset);
1585 }
1586
1587 #endif /* defined STD_INSPIRED */
1588
1589 #ifdef CMUCS
1590
1591 /*
1592 ** The following is supplied for compatibility with
1593 ** previous versions of the CMUCS runtime library.
1594 */
1595
1596 long
1597 gtime(tmp)
1598 struct tm * const tmp;
1599 {
1600 const time_t t = mktime(tmp);
1601
1602 if (t == WRONG)
1603 return -1;
1604 return t;
1605 }
1606
1607 #endif /* defined CMUCS */
1608
1609 /*
1610 ** XXX--is the below the right way to conditionalize??
1611 */
1612
1613 #ifdef STD_INSPIRED
1614
1615 /*
1616 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1617 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1618 ** is not the case if we are accounting for leap seconds.
1619 ** So, we provide the following conversion routines for use
1620 ** when exchanging timestamps with POSIX conforming systems.
1621 */
1622
1623 static long
1624 leapcorr(timep)
1625 time_t * timep;
1626 {
1627 register struct state * sp;
1628 register struct lsinfo * lp;
1629 register int i;
1630
1631 sp = lclptr;
1632 i = sp->leapcnt;
1633 while (--i >= 0) {
1634 lp = &sp->lsis[i];
1635 if (*timep >= lp->ls_trans)
1636 return lp->ls_corr;
1637 }
1638 return 0;
1639 }
1640
1641 time_t
1642 time2posix(t)
1643 time_t t;
1644 {
1645 tzset();
1646 return t - leapcorr(&t);
1647 }
1648
1649 time_t
1650 posix2time(t)
1651 time_t t;
1652 {
1653 time_t x;
1654 time_t y;
1655
1656 tzset();
1657 /*
1658 ** For a positive leap second hit, the result
1659 ** is not unique. For a negative leap second
1660 ** hit, the corresponding time doesn't exist,
1661 ** so we return an adjacent second.
1662 */
1663 x = t + leapcorr(&t);
1664 y = x - leapcorr(&x);
1665 if (y < t) {
1666 do {
1667 x++;
1668 y = x - leapcorr(&x);
1669 } while (y < t);
1670 if (t != y)
1671 return x - 1;
1672 } else if (y > t) {
1673 do {
1674 --x;
1675 y = x - leapcorr(&x);
1676 } while (y > t);
1677 if (t != y)
1678 return x + 1;
1679 }
1680 return x;
1681 }
1682
1683 #endif /* defined STD_INSPIRED */
1684