Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.17
      1 /*	$NetBSD: localtime.c,v 1.17 1998/07/28 20:28:04 mycroft Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #ifndef lint
     10 #ifndef NOID
     11 #if 0
     12 static char	elsieid[] = "@(#)localtime.c	7.64";
     13 #else
     14 __RCSID("$NetBSD: localtime.c,v 1.17 1998/07/28 20:28:04 mycroft Exp $");
     15 #endif
     16 #endif /* !defined NOID */
     17 #endif /* !defined lint */
     18 
     19 /*
     20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     21 ** POSIX-style TZ environment variable handling from Guy Harris
     22 ** (guy (at) auspex.com).
     23 */
     24 
     25 /*LINTLIBRARY*/
     26 
     27 #include "namespace.h"
     28 #include "private.h"
     29 #include "tzfile.h"
     30 #include "fcntl.h"
     31 
     32 #ifdef __weak_alias
     33 __weak_alias(offtime,_offtime);
     34 __weak_alias(posix2time,_posix2time);
     35 __weak_alias(time2posix,_time2posix);
     36 __weak_alias(timegm,_timegm);
     37 __weak_alias(timelocal,_timelocal);
     38 __weak_alias(timeoff,_timeoff);
     39 __weak_alias(tzset,_tzset);
     40 __weak_alias(tzsetwall,_tzsetwall);
     41 #endif
     42 
     43 /*
     44 ** SunOS 4.1.1 headers lack O_BINARY.
     45 */
     46 
     47 #ifdef O_BINARY
     48 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     49 #endif /* defined O_BINARY */
     50 #ifndef O_BINARY
     51 #define OPEN_MODE	O_RDONLY
     52 #endif /* !defined O_BINARY */
     53 
     54 #ifndef WILDABBR
     55 /*
     56 ** Someone might make incorrect use of a time zone abbreviation:
     57 **	1.	They might reference tzname[0] before calling tzset (explicitly
     58 **		or implicitly).
     59 **	2.	They might reference tzname[1] before calling tzset (explicitly
     60 **		or implicitly).
     61 **	3.	They might reference tzname[1] after setting to a time zone
     62 **		in which Daylight Saving Time is never observed.
     63 **	4.	They might reference tzname[0] after setting to a time zone
     64 **		in which Standard Time is never observed.
     65 **	5.	They might reference tm.TM_ZONE after calling offtime.
     66 ** What's best to do in the above cases is open to debate;
     67 ** for now, we just set things up so that in any of the five cases
     68 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     69 ** string "tzname[0] used before set", and similarly for the other cases.
     70 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     71 ** manual page of what this "time zone abbreviation" means (doing this so
     72 ** that tzname[0] has the "normal" length of three characters).
     73 */
     74 #define WILDABBR	"   "
     75 #endif /* !defined WILDABBR */
     76 
     77 static const char	wildabbr[] = "WILDABBR";
     78 
     79 static const char	gmt[] = "GMT";
     80 
     81 struct ttinfo {				/* time type information */
     82 	long		tt_gmtoff;	/* UTC offset in seconds */
     83 	int		tt_isdst;	/* used to set tm_isdst */
     84 	int		tt_abbrind;	/* abbreviation list index */
     85 	int		tt_ttisstd;	/* TRUE if transition is std time */
     86 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
     87 };
     88 
     89 struct lsinfo {				/* leap second information */
     90 	time_t		ls_trans;	/* transition time */
     91 	long		ls_corr;	/* correction to apply */
     92 };
     93 
     94 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     95 
     96 #ifdef TZNAME_MAX
     97 #define MY_TZNAME_MAX	TZNAME_MAX
     98 #endif /* defined TZNAME_MAX */
     99 #ifndef TZNAME_MAX
    100 #define MY_TZNAME_MAX	255
    101 #endif /* !defined TZNAME_MAX */
    102 
    103 struct state {
    104 	int		leapcnt;
    105 	int		timecnt;
    106 	int		typecnt;
    107 	int		charcnt;
    108 	time_t		ats[TZ_MAX_TIMES];
    109 	unsigned char	types[TZ_MAX_TIMES];
    110 	struct ttinfo	ttis[TZ_MAX_TYPES];
    111 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    112 				(2 * (MY_TZNAME_MAX + 1)))];
    113 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    114 };
    115 
    116 struct rule {
    117 	int		r_type;		/* type of rule--see below */
    118 	int		r_day;		/* day number of rule */
    119 	int		r_week;		/* week number of rule */
    120 	int		r_mon;		/* month number of rule */
    121 	long		r_time;		/* transition time of rule */
    122 };
    123 
    124 #define JULIAN_DAY		0	/* Jn - Julian day */
    125 #define DAY_OF_YEAR		1	/* n - day of year */
    126 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    127 
    128 /*
    129 ** Prototypes for static functions.
    130 */
    131 
    132 static long		detzcode P((const char * codep));
    133 static const char *	getzname P((const char * strp));
    134 static const char *	getnum P((const char * strp, int * nump, int min,
    135 				int max));
    136 static const char *	getsecs P((const char * strp, long * secsp));
    137 static const char *	getoffset P((const char * strp, long * offsetp));
    138 static const char *	getrule P((const char * strp, struct rule * rulep));
    139 static void		gmtload P((struct state * sp));
    140 static void		gmtsub P((const time_t * timep, long offset,
    141 				struct tm * tmp));
    142 static void		localsub P((const time_t * timep, long offset,
    143 				struct tm * tmp));
    144 static int		increment_overflow P((int * number, int delta));
    145 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    146 				int base));
    147 static void		settzname P((void));
    148 static time_t		time1 P((struct tm * tmp,
    149 				void(*funcp) P((const time_t *,
    150 				long, struct tm *)),
    151 				long offset));
    152 static time_t		time2 P((struct tm *tmp,
    153 				void(*funcp) P((const time_t *,
    154 				long, struct tm*)),
    155 				long offset, int * okayp));
    156 static time_t		time2sub P((struct tm *tmp,
    157 				void(*funcp) P((const time_t *,
    158 				long, struct tm*)),
    159 				long offset, int * okayp, int do_norm_secs));
    160 static void		timesub P((const time_t * timep, long offset,
    161 				const struct state * sp, struct tm * tmp));
    162 static int		tmcomp P((const struct tm * atmp,
    163 				const struct tm * btmp));
    164 static time_t		transtime P((time_t janfirst, int year,
    165 				const struct rule * rulep, long offset));
    166 static int		tzload P((const char * name, struct state * sp));
    167 static int		tzparse P((const char * name, struct state * sp,
    168 				int lastditch));
    169 #ifdef STD_INSPIRED
    170 static long		leapcorr P((time_t * timep));
    171 #endif
    172 
    173 #ifdef ALL_STATE
    174 static struct state *	lclptr;
    175 static struct state *	gmtptr;
    176 #endif /* defined ALL_STATE */
    177 
    178 #ifndef ALL_STATE
    179 static struct state	lclmem;
    180 static struct state	gmtmem;
    181 #define lclptr		(&lclmem)
    182 #define gmtptr		(&gmtmem)
    183 #endif /* State Farm */
    184 
    185 #ifndef TZ_STRLEN_MAX
    186 #define TZ_STRLEN_MAX 255
    187 #endif /* !defined TZ_STRLEN_MAX */
    188 
    189 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    190 static int		lcl_is_set;
    191 static int		gmt_is_set;
    192 
    193 __aconst char *		tzname[2] = {
    194 	(__aconst char *)wildabbr,
    195 	(__aconst char *)wildabbr
    196 };
    197 
    198 /*
    199 ** Section 4.12.3 of X3.159-1989 requires that
    200 **	Except for the strftime function, these functions [asctime,
    201 **	ctime, gmtime, localtime] return values in one of two static
    202 **	objects: a broken-down time structure and an array of char.
    203 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    204 */
    205 
    206 static struct tm	tm;
    207 
    208 #ifdef USG_COMPAT
    209 time_t			timezone = 0;
    210 int			daylight = 0;
    211 #endif /* defined USG_COMPAT */
    212 
    213 #ifdef ALTZONE
    214 time_t			altzone = 0;
    215 #endif /* defined ALTZONE */
    216 
    217 static long
    218 detzcode(codep)
    219 const char * const	codep;
    220 {
    221 	register long	result;
    222 
    223 	/*
    224         ** The first character must be sign extended on systems with >32bit
    225         ** longs.  This was solved differently in the master tzcode sources
    226         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    227 	** that this implementation is superior.
    228         */
    229 
    230 #ifdef __STDC__
    231 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    232 #else
    233 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
    234 #endif
    235 
    236 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    237 	       | (codep[1] & 0xff) << 16 \
    238 	       | (codep[2] & 0xff) << 8
    239 	       | (codep[3] & 0xff);
    240 	return result;
    241 }
    242 
    243 static void
    244 settzname P((void))
    245 {
    246 	register struct state * const	sp = lclptr;
    247 	register int			i;
    248 
    249 	tzname[0] = (__aconst char *)wildabbr;
    250 	tzname[1] = (__aconst char *)wildabbr;
    251 #ifdef USG_COMPAT
    252 	daylight = 0;
    253 	timezone = 0;
    254 #endif /* defined USG_COMPAT */
    255 #ifdef ALTZONE
    256 	altzone = 0;
    257 #endif /* defined ALTZONE */
    258 #ifdef ALL_STATE
    259 	if (sp == NULL) {
    260 		tzname[0] = tzname[1] = (__aconst char *)gmt;
    261 		return;
    262 	}
    263 #endif /* defined ALL_STATE */
    264 	for (i = 0; i < sp->typecnt; ++i) {
    265 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    266 
    267 		tzname[ttisp->tt_isdst] =
    268 			&sp->chars[ttisp->tt_abbrind];
    269 #ifdef USG_COMPAT
    270 		if (ttisp->tt_isdst)
    271 			daylight = 1;
    272 		if (i == 0 || !ttisp->tt_isdst)
    273 			timezone = -(ttisp->tt_gmtoff);
    274 #endif /* defined USG_COMPAT */
    275 #ifdef ALTZONE
    276 		if (i == 0 || ttisp->tt_isdst)
    277 			altzone = -(ttisp->tt_gmtoff);
    278 #endif /* defined ALTZONE */
    279 	}
    280 	/*
    281 	** And to get the latest zone names into tzname. . .
    282 	*/
    283 	for (i = 0; i < sp->timecnt; ++i) {
    284 		register const struct ttinfo * const	ttisp =
    285 							&sp->ttis[
    286 								sp->types[i]];
    287 
    288 		tzname[ttisp->tt_isdst] =
    289 			&sp->chars[ttisp->tt_abbrind];
    290 	}
    291 }
    292 
    293 static int
    294 tzload(name, sp)
    295 register const char *		name;
    296 register struct state * const	sp;
    297 {
    298 	register const char *	p;
    299 	register int		i;
    300 	register int		fid;
    301 
    302 	if (name == NULL && (name = TZDEFAULT) == NULL)
    303 		return -1;
    304 
    305 	{
    306 		register int	doaccess;
    307 		/*
    308 		** Section 4.9.1 of the C standard says that
    309 		** "FILENAME_MAX expands to an integral constant expression
    310 		** that is the size needed for an array of char large enough
    311 		** to hold the longest file name string that the implementation
    312 		** guarantees can be opened."
    313 		*/
    314 		char		fullname[FILENAME_MAX + 1];
    315 
    316 		if (name[0] == ':')
    317 			++name;
    318 		doaccess = name[0] == '/';
    319 		if (!doaccess) {
    320 			if ((p = TZDIR) == NULL)
    321 				return -1;
    322 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    323 				return -1;
    324 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    325 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    326 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    327 			/*
    328 			** Set doaccess if '.' (as in "../") shows up in name.
    329 			*/
    330 			if (strchr(name, '.') != NULL)
    331 				doaccess = TRUE;
    332 			name = fullname;
    333 		}
    334 		if (doaccess && access(name, R_OK) != 0)
    335 			return -1;
    336 		/*
    337 		 * XXX potential security problem here if user of a set-id
    338 		 * program has set TZ (which is passed in as name) here,
    339 		 * and uses a race condition trick to defeat the access(2)
    340 		 * above.
    341 		 */
    342 		if ((fid = open(name, OPEN_MODE)) == -1)
    343 			return -1;
    344 	}
    345 	{
    346 		struct tzhead *	tzhp;
    347 		union {
    348 		  struct tzhead tzhead;
    349 		  char		buf[sizeof *sp + sizeof *tzhp];
    350 		} u;
    351 		int		ttisstdcnt;
    352 		int		ttisgmtcnt;
    353 
    354 		i = read(fid, u.buf, sizeof u.buf);
    355 		if (close(fid) != 0)
    356 			return -1;
    357 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    358 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    359 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    360 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    361 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    362 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    363 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    364 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    365 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    366 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    367 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    368 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    369 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    370 				return -1;
    371 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
    372 			sp->timecnt +			/* types */
    373 			sp->typecnt * (4 + 2) +		/* ttinfos */
    374 			sp->charcnt +			/* chars */
    375 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    376 			ttisstdcnt +			/* ttisstds */
    377 			ttisgmtcnt)			/* ttisgmts */
    378 				return -1;
    379 		for (i = 0; i < sp->timecnt; ++i) {
    380 			sp->ats[i] = detzcode(p);
    381 			p += 4;
    382 		}
    383 		for (i = 0; i < sp->timecnt; ++i) {
    384 			sp->types[i] = (unsigned char) *p++;
    385 			if (sp->types[i] >= sp->typecnt)
    386 				return -1;
    387 		}
    388 		for (i = 0; i < sp->typecnt; ++i) {
    389 			register struct ttinfo *	ttisp;
    390 
    391 			ttisp = &sp->ttis[i];
    392 			ttisp->tt_gmtoff = detzcode(p);
    393 			p += 4;
    394 			ttisp->tt_isdst = (unsigned char) *p++;
    395 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    396 				return -1;
    397 			ttisp->tt_abbrind = (unsigned char) *p++;
    398 			if (ttisp->tt_abbrind < 0 ||
    399 				ttisp->tt_abbrind > sp->charcnt)
    400 					return -1;
    401 		}
    402 		for (i = 0; i < sp->charcnt; ++i)
    403 			sp->chars[i] = *p++;
    404 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    405 		for (i = 0; i < sp->leapcnt; ++i) {
    406 			register struct lsinfo *	lsisp;
    407 
    408 			lsisp = &sp->lsis[i];
    409 			lsisp->ls_trans = detzcode(p);
    410 			p += 4;
    411 			lsisp->ls_corr = detzcode(p);
    412 			p += 4;
    413 		}
    414 		for (i = 0; i < sp->typecnt; ++i) {
    415 			register struct ttinfo *	ttisp;
    416 
    417 			ttisp = &sp->ttis[i];
    418 			if (ttisstdcnt == 0)
    419 				ttisp->tt_ttisstd = FALSE;
    420 			else {
    421 				ttisp->tt_ttisstd = *p++;
    422 				if (ttisp->tt_ttisstd != TRUE &&
    423 					ttisp->tt_ttisstd != FALSE)
    424 						return -1;
    425 			}
    426 		}
    427 		for (i = 0; i < sp->typecnt; ++i) {
    428 			register struct ttinfo *	ttisp;
    429 
    430 			ttisp = &sp->ttis[i];
    431 			if (ttisgmtcnt == 0)
    432 				ttisp->tt_ttisgmt = FALSE;
    433 			else {
    434 				ttisp->tt_ttisgmt = *p++;
    435 				if (ttisp->tt_ttisgmt != TRUE &&
    436 					ttisp->tt_ttisgmt != FALSE)
    437 						return -1;
    438 			}
    439 		}
    440 	}
    441 	return 0;
    442 }
    443 
    444 static const int	mon_lengths[2][MONSPERYEAR] = {
    445 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    446 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    447 };
    448 
    449 static const int	year_lengths[2] = {
    450 	DAYSPERNYEAR, DAYSPERLYEAR
    451 };
    452 
    453 /*
    454 ** Given a pointer into a time zone string, scan until a character that is not
    455 ** a valid character in a zone name is found.  Return a pointer to that
    456 ** character.
    457 */
    458 
    459 static const char *
    460 getzname(strp)
    461 register const char *	strp;
    462 {
    463 	register char	c;
    464 
    465 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    466 		c != '+')
    467 			++strp;
    468 	return strp;
    469 }
    470 
    471 /*
    472 ** Given a pointer into a time zone string, extract a number from that string.
    473 ** Check that the number is within a specified range; if it is not, return
    474 ** NULL.
    475 ** Otherwise, return a pointer to the first character not part of the number.
    476 */
    477 
    478 static const char *
    479 getnum(strp, nump, min, max)
    480 register const char *	strp;
    481 int * const		nump;
    482 const int		min;
    483 const int		max;
    484 {
    485 	register char	c;
    486 	register int	num;
    487 
    488 	if (strp == NULL || !is_digit(c = *strp))
    489 		return NULL;
    490 	num = 0;
    491 	do {
    492 		num = num * 10 + (c - '0');
    493 		if (num > max)
    494 			return NULL;	/* illegal value */
    495 		c = *++strp;
    496 	} while (is_digit(c));
    497 	if (num < min)
    498 		return NULL;		/* illegal value */
    499 	*nump = num;
    500 	return strp;
    501 }
    502 
    503 /*
    504 ** Given a pointer into a time zone string, extract a number of seconds,
    505 ** in hh[:mm[:ss]] form, from the string.
    506 ** If any error occurs, return NULL.
    507 ** Otherwise, return a pointer to the first character not part of the number
    508 ** of seconds.
    509 */
    510 
    511 static const char *
    512 getsecs(strp, secsp)
    513 register const char *	strp;
    514 long * const		secsp;
    515 {
    516 	int	num;
    517 
    518 	/*
    519 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    520 	** "M10.4.6/26", which does not conform to Posix,
    521 	** but which specifies the equivalent of
    522 	** ``02:00 on the first Sunday on or after 23 Oct''.
    523 	*/
    524 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    525 	if (strp == NULL)
    526 		return NULL;
    527 	*secsp = num * (long) SECSPERHOUR;
    528 	if (*strp == ':') {
    529 		++strp;
    530 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    531 		if (strp == NULL)
    532 			return NULL;
    533 		*secsp += num * SECSPERMIN;
    534 		if (*strp == ':') {
    535 			++strp;
    536 			/* `SECSPERMIN' allows for leap seconds.  */
    537 			strp = getnum(strp, &num, 0, SECSPERMIN);
    538 			if (strp == NULL)
    539 				return NULL;
    540 			*secsp += num;
    541 		}
    542 	}
    543 	return strp;
    544 }
    545 
    546 /*
    547 ** Given a pointer into a time zone string, extract an offset, in
    548 ** [+-]hh[:mm[:ss]] form, from the string.
    549 ** If any error occurs, return NULL.
    550 ** Otherwise, return a pointer to the first character not part of the time.
    551 */
    552 
    553 static const char *
    554 getoffset(strp, offsetp)
    555 register const char *	strp;
    556 long * const		offsetp;
    557 {
    558 	register int	neg = 0;
    559 
    560 	if (*strp == '-') {
    561 		neg = 1;
    562 		++strp;
    563 	} else if (*strp == '+')
    564 		++strp;
    565 	strp = getsecs(strp, offsetp);
    566 	if (strp == NULL)
    567 		return NULL;		/* illegal time */
    568 	if (neg)
    569 		*offsetp = -*offsetp;
    570 	return strp;
    571 }
    572 
    573 /*
    574 ** Given a pointer into a time zone string, extract a rule in the form
    575 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    576 ** If a valid rule is not found, return NULL.
    577 ** Otherwise, return a pointer to the first character not part of the rule.
    578 */
    579 
    580 static const char *
    581 getrule(strp, rulep)
    582 const char *			strp;
    583 register struct rule * const	rulep;
    584 {
    585 	if (*strp == 'J') {
    586 		/*
    587 		** Julian day.
    588 		*/
    589 		rulep->r_type = JULIAN_DAY;
    590 		++strp;
    591 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    592 	} else if (*strp == 'M') {
    593 		/*
    594 		** Month, week, day.
    595 		*/
    596 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    597 		++strp;
    598 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    599 		if (strp == NULL)
    600 			return NULL;
    601 		if (*strp++ != '.')
    602 			return NULL;
    603 		strp = getnum(strp, &rulep->r_week, 1, 5);
    604 		if (strp == NULL)
    605 			return NULL;
    606 		if (*strp++ != '.')
    607 			return NULL;
    608 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    609 	} else if (is_digit(*strp)) {
    610 		/*
    611 		** Day of year.
    612 		*/
    613 		rulep->r_type = DAY_OF_YEAR;
    614 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    615 	} else	return NULL;		/* invalid format */
    616 	if (strp == NULL)
    617 		return NULL;
    618 	if (*strp == '/') {
    619 		/*
    620 		** Time specified.
    621 		*/
    622 		++strp;
    623 		strp = getsecs(strp, &rulep->r_time);
    624 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    625 	return strp;
    626 }
    627 
    628 /*
    629 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    630 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    631 ** calculate the Epoch-relative time that rule takes effect.
    632 */
    633 
    634 static time_t
    635 transtime(janfirst, year, rulep, offset)
    636 const time_t				janfirst;
    637 const int				year;
    638 register const struct rule * const	rulep;
    639 const long				offset;
    640 {
    641 	register int	leapyear;
    642 	register time_t	value;
    643 	register int	i;
    644 	int		d, m1, yy0, yy1, yy2, dow;
    645 
    646 	INITIALIZE(value);
    647 	leapyear = isleap(year);
    648 	switch (rulep->r_type) {
    649 
    650 	case JULIAN_DAY:
    651 		/*
    652 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    653 		** years.
    654 		** In non-leap years, or if the day number is 59 or less, just
    655 		** add SECSPERDAY times the day number-1 to the time of
    656 		** January 1, midnight, to get the day.
    657 		*/
    658 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    659 		if (leapyear && rulep->r_day >= 60)
    660 			value += SECSPERDAY;
    661 		break;
    662 
    663 	case DAY_OF_YEAR:
    664 		/*
    665 		** n - day of year.
    666 		** Just add SECSPERDAY times the day number to the time of
    667 		** January 1, midnight, to get the day.
    668 		*/
    669 		value = janfirst + rulep->r_day * SECSPERDAY;
    670 		break;
    671 
    672 	case MONTH_NTH_DAY_OF_WEEK:
    673 		/*
    674 		** Mm.n.d - nth "dth day" of month m.
    675 		*/
    676 		value = janfirst;
    677 		for (i = 0; i < rulep->r_mon - 1; ++i)
    678 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    679 
    680 		/*
    681 		** Use Zeller's Congruence to get day-of-week of first day of
    682 		** month.
    683 		*/
    684 		m1 = (rulep->r_mon + 9) % 12 + 1;
    685 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    686 		yy1 = yy0 / 100;
    687 		yy2 = yy0 % 100;
    688 		dow = ((26 * m1 - 2) / 10 +
    689 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    690 		if (dow < 0)
    691 			dow += DAYSPERWEEK;
    692 
    693 		/*
    694 		** "dow" is the day-of-week of the first day of the month.  Get
    695 		** the day-of-month (zero-origin) of the first "dow" day of the
    696 		** month.
    697 		*/
    698 		d = rulep->r_day - dow;
    699 		if (d < 0)
    700 			d += DAYSPERWEEK;
    701 		for (i = 1; i < rulep->r_week; ++i) {
    702 			if (d + DAYSPERWEEK >=
    703 				mon_lengths[leapyear][rulep->r_mon - 1])
    704 					break;
    705 			d += DAYSPERWEEK;
    706 		}
    707 
    708 		/*
    709 		** "d" is the day-of-month (zero-origin) of the day we want.
    710 		*/
    711 		value += d * SECSPERDAY;
    712 		break;
    713 	}
    714 
    715 	/*
    716 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    717 	** question.  To get the Epoch-relative time of the specified local
    718 	** time on that day, add the transition time and the current offset
    719 	** from UTC.
    720 	*/
    721 	return value + rulep->r_time + offset;
    722 }
    723 
    724 /*
    725 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    726 ** appropriate.
    727 */
    728 
    729 static int
    730 tzparse(name, sp, lastditch)
    731 const char *			name;
    732 register struct state * const	sp;
    733 const int			lastditch;
    734 {
    735 	const char *			stdname;
    736 	const char *			dstname;
    737 	size_t				stdlen;
    738 	size_t				dstlen;
    739 	long				stdoffset;
    740 	long				dstoffset;
    741 	register time_t *		atp;
    742 	register unsigned char *	typep;
    743 	register char *			cp;
    744 	register int			load_result;
    745 
    746 	INITIALIZE(dstname);
    747 	stdname = name;
    748 	if (lastditch) {
    749 		stdlen = strlen(name);	/* length of standard zone name */
    750 		name += stdlen;
    751 		if (stdlen >= sizeof sp->chars)
    752 			stdlen = (sizeof sp->chars) - 1;
    753 		stdoffset = 0;
    754 	} else {
    755 		name = getzname(name);
    756 		stdlen = name - stdname;
    757 		if (stdlen < 3)
    758 			return -1;
    759 		if (*name == '\0')
    760 			return -1;
    761 		name = getoffset(name, &stdoffset);
    762 		if (name == NULL)
    763 			return -1;
    764 	}
    765 	load_result = tzload(TZDEFRULES, sp);
    766 	if (load_result != 0)
    767 		sp->leapcnt = 0;		/* so, we're off a little */
    768 	if (*name != '\0') {
    769 		dstname = name;
    770 		name = getzname(name);
    771 		dstlen = name - dstname;	/* length of DST zone name */
    772 		if (dstlen < 3)
    773 			return -1;
    774 		if (*name != '\0' && *name != ',' && *name != ';') {
    775 			name = getoffset(name, &dstoffset);
    776 			if (name == NULL)
    777 				return -1;
    778 		} else	dstoffset = stdoffset - SECSPERHOUR;
    779 		if (*name == ',' || *name == ';') {
    780 			struct rule	start;
    781 			struct rule	end;
    782 			register int	year;
    783 			register time_t	janfirst;
    784 			time_t		starttime;
    785 			time_t		endtime;
    786 
    787 			++name;
    788 			if ((name = getrule(name, &start)) == NULL)
    789 				return -1;
    790 			if (*name++ != ',')
    791 				return -1;
    792 			if ((name = getrule(name, &end)) == NULL)
    793 				return -1;
    794 			if (*name != '\0')
    795 				return -1;
    796 			sp->typecnt = 2;	/* standard time and DST */
    797 			/*
    798 			** Two transitions per year, from EPOCH_YEAR to 2037.
    799 			*/
    800 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    801 			if (sp->timecnt > TZ_MAX_TIMES)
    802 				return -1;
    803 			sp->ttis[0].tt_gmtoff = -dstoffset;
    804 			sp->ttis[0].tt_isdst = 1;
    805 			sp->ttis[0].tt_abbrind = stdlen + 1;
    806 			sp->ttis[1].tt_gmtoff = -stdoffset;
    807 			sp->ttis[1].tt_isdst = 0;
    808 			sp->ttis[1].tt_abbrind = 0;
    809 			atp = sp->ats;
    810 			typep = sp->types;
    811 			janfirst = 0;
    812 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    813 				starttime = transtime(janfirst, year, &start,
    814 					stdoffset);
    815 				endtime = transtime(janfirst, year, &end,
    816 					dstoffset);
    817 				if (starttime > endtime) {
    818 					*atp++ = endtime;
    819 					*typep++ = 1;	/* DST ends */
    820 					*atp++ = starttime;
    821 					*typep++ = 0;	/* DST begins */
    822 				} else {
    823 					*atp++ = starttime;
    824 					*typep++ = 0;	/* DST begins */
    825 					*atp++ = endtime;
    826 					*typep++ = 1;	/* DST ends */
    827 				}
    828 				janfirst += year_lengths[isleap(year)] *
    829 					SECSPERDAY;
    830 			}
    831 		} else {
    832 			register long	theirstdoffset;
    833 			register long	theirdstoffset;
    834 			register long	theiroffset;
    835 			register int	isdst;
    836 			register int	i;
    837 			register int	j;
    838 
    839 			if (*name != '\0')
    840 				return -1;
    841 			if (load_result != 0)
    842 				return -1;
    843 			/*
    844 			** Initial values of theirstdoffset and theirdstoffset.
    845 			*/
    846 			theirstdoffset = 0;
    847 			for (i = 0; i < sp->timecnt; ++i) {
    848 				j = sp->types[i];
    849 				if (!sp->ttis[j].tt_isdst) {
    850 					theirstdoffset =
    851 						-sp->ttis[j].tt_gmtoff;
    852 					break;
    853 				}
    854 			}
    855 			theirdstoffset = 0;
    856 			for (i = 0; i < sp->timecnt; ++i) {
    857 				j = sp->types[i];
    858 				if (sp->ttis[j].tt_isdst) {
    859 					theirdstoffset =
    860 						-sp->ttis[j].tt_gmtoff;
    861 					break;
    862 				}
    863 			}
    864 			/*
    865 			** Initially we're assumed to be in standard time.
    866 			*/
    867 			isdst = FALSE;
    868 			theiroffset = theirstdoffset;
    869 			/*
    870 			** Now juggle transition times and types
    871 			** tracking offsets as you do.
    872 			*/
    873 			for (i = 0; i < sp->timecnt; ++i) {
    874 				j = sp->types[i];
    875 				sp->types[i] = sp->ttis[j].tt_isdst;
    876 				if (sp->ttis[j].tt_ttisgmt) {
    877 					/* No adjustment to transition time */
    878 				} else {
    879 					/*
    880 					** If summer time is in effect, and the
    881 					** transition time was not specified as
    882 					** standard time, add the summer time
    883 					** offset to the transition time;
    884 					** otherwise, add the standard time
    885 					** offset to the transition time.
    886 					*/
    887 					/*
    888 					** Transitions from DST to DDST
    889 					** will effectively disappear since
    890 					** POSIX provides for only one DST
    891 					** offset.
    892 					*/
    893 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    894 						sp->ats[i] += dstoffset -
    895 							theirdstoffset;
    896 					} else {
    897 						sp->ats[i] += stdoffset -
    898 							theirstdoffset;
    899 					}
    900 				}
    901 				theiroffset = -sp->ttis[j].tt_gmtoff;
    902 				if (sp->ttis[j].tt_isdst)
    903 					theirdstoffset = theiroffset;
    904 				else	theirstdoffset = theiroffset;
    905 			}
    906 			/*
    907 			** Finally, fill in ttis.
    908 			** ttisstd and ttisgmt need not be handled.
    909 			*/
    910 			sp->ttis[0].tt_gmtoff = -stdoffset;
    911 			sp->ttis[0].tt_isdst = FALSE;
    912 			sp->ttis[0].tt_abbrind = 0;
    913 			sp->ttis[1].tt_gmtoff = -dstoffset;
    914 			sp->ttis[1].tt_isdst = TRUE;
    915 			sp->ttis[1].tt_abbrind = stdlen + 1;
    916 			sp->typecnt = 2;
    917 		}
    918 	} else {
    919 		dstlen = 0;
    920 		sp->typecnt = 1;		/* only standard time */
    921 		sp->timecnt = 0;
    922 		sp->ttis[0].tt_gmtoff = -stdoffset;
    923 		sp->ttis[0].tt_isdst = 0;
    924 		sp->ttis[0].tt_abbrind = 0;
    925 	}
    926 	sp->charcnt = stdlen + 1;
    927 	if (dstlen != 0)
    928 		sp->charcnt += dstlen + 1;
    929 	if ((size_t) sp->charcnt > sizeof sp->chars)
    930 		return -1;
    931 	cp = sp->chars;
    932 	(void) strncpy(cp, stdname, stdlen);
    933 	cp += stdlen;
    934 	*cp++ = '\0';
    935 	if (dstlen != 0) {
    936 		(void) strncpy(cp, dstname, dstlen);
    937 		*(cp + dstlen) = '\0';
    938 	}
    939 	return 0;
    940 }
    941 
    942 static void
    943 gmtload(sp)
    944 struct state * const	sp;
    945 {
    946 	if (tzload(gmt, sp) != 0)
    947 		(void) tzparse(gmt, sp, TRUE);
    948 }
    949 
    950 #ifndef STD_INSPIRED
    951 /*
    952 ** A non-static declaration of tzsetwall in a system header file
    953 ** may cause a warning about this upcoming static declaration...
    954 */
    955 static
    956 #endif /* !defined STD_INSPIRED */
    957 void
    958 tzsetwall P((void))
    959 {
    960 	if (lcl_is_set < 0)
    961 		return;
    962 	lcl_is_set = -1;
    963 
    964 #ifdef ALL_STATE
    965 	if (lclptr == NULL) {
    966 		lclptr = (struct state *) malloc(sizeof *lclptr);
    967 		if (lclptr == NULL) {
    968 			settzname();	/* all we can do */
    969 			return;
    970 		}
    971 	}
    972 #endif /* defined ALL_STATE */
    973 	if (tzload((char *) NULL, lclptr) != 0)
    974 		gmtload(lclptr);
    975 	settzname();
    976 }
    977 
    978 void
    979 tzset P((void))
    980 {
    981 	register const char *	name;
    982 
    983 	name = getenv("TZ");
    984 	if (name == NULL) {
    985 		tzsetwall();
    986 		return;
    987 	}
    988 
    989 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    990 		return;
    991 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    992 	if (lcl_is_set)
    993 		(void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
    994 
    995 #ifdef ALL_STATE
    996 	if (lclptr == NULL) {
    997 		lclptr = (struct state *) malloc(sizeof *lclptr);
    998 		if (lclptr == NULL) {
    999 			settzname();	/* all we can do */
   1000 			return;
   1001 		}
   1002 	}
   1003 #endif /* defined ALL_STATE */
   1004 	if (*name == '\0') {
   1005 		/*
   1006 		** User wants it fast rather than right.
   1007 		*/
   1008 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1009 		lclptr->timecnt = 0;
   1010 		lclptr->ttis[0].tt_gmtoff = 0;
   1011 		lclptr->ttis[0].tt_abbrind = 0;
   1012 		(void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
   1013 	} else if (tzload(name, lclptr) != 0)
   1014 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1015 			(void) gmtload(lclptr);
   1016 	settzname();
   1017 }
   1018 
   1019 /*
   1020 ** The easy way to behave "as if no library function calls" localtime
   1021 ** is to not call it--so we drop its guts into "localsub", which can be
   1022 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1023 ** but it *is* desirable.)
   1024 **
   1025 ** The unused offset argument is for the benefit of mktime variants.
   1026 */
   1027 
   1028 /*ARGSUSED*/
   1029 static void
   1030 localsub(timep, offset, tmp)
   1031 const time_t * const	timep;
   1032 const long		offset;
   1033 struct tm * const	tmp;
   1034 {
   1035 	register struct state *		sp;
   1036 	register const struct ttinfo *	ttisp;
   1037 	register int			i;
   1038 	const time_t			t = *timep;
   1039 
   1040 	sp = lclptr;
   1041 #ifdef ALL_STATE
   1042 	if (sp == NULL) {
   1043 		gmtsub(timep, offset, tmp);
   1044 		return;
   1045 	}
   1046 #endif /* defined ALL_STATE */
   1047 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1048 		i = 0;
   1049 		while (sp->ttis[i].tt_isdst)
   1050 			if (++i >= sp->typecnt) {
   1051 				i = 0;
   1052 				break;
   1053 			}
   1054 	} else {
   1055 		for (i = 1; i < sp->timecnt; ++i)
   1056 			if (t < sp->ats[i])
   1057 				break;
   1058 		i = sp->types[i - 1];
   1059 	}
   1060 	ttisp = &sp->ttis[i];
   1061 	/*
   1062 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1063 	** you'd replace the statement below with
   1064 	**	t += ttisp->tt_gmtoff;
   1065 	**	timesub(&t, 0L, sp, tmp);
   1066 	*/
   1067 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1068 	tmp->tm_isdst = ttisp->tt_isdst;
   1069 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1070 #ifdef TM_ZONE
   1071 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1072 #endif /* defined TM_ZONE */
   1073 }
   1074 
   1075 struct tm *
   1076 localtime(timep)
   1077 const time_t * const	timep;
   1078 {
   1079 	tzset();
   1080 	localsub(timep, 0L, &tm);
   1081 	return &tm;
   1082 }
   1083 
   1084 /*
   1085 ** gmtsub is to gmtime as localsub is to localtime.
   1086 */
   1087 
   1088 static void
   1089 gmtsub(timep, offset, tmp)
   1090 const time_t * const	timep;
   1091 const long		offset;
   1092 struct tm * const	tmp;
   1093 {
   1094 	if (!gmt_is_set) {
   1095 		gmt_is_set = TRUE;
   1096 #ifdef ALL_STATE
   1097 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1098 		if (gmtptr != NULL)
   1099 #endif /* defined ALL_STATE */
   1100 			gmtload(gmtptr);
   1101 	}
   1102 	timesub(timep, offset, gmtptr, tmp);
   1103 #ifdef TM_ZONE
   1104 	/*
   1105 	** Could get fancy here and deliver something such as
   1106 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1107 	** but this is no time for a treasure hunt.
   1108 	*/
   1109 	if (offset != 0)
   1110 		tmp->TM_ZONE = (__aconst char *)wildabbr;
   1111 	else {
   1112 #ifdef ALL_STATE
   1113 		if (gmtptr == NULL)
   1114 			tmp->TM_ZONE = (__aconst char *)gmt;
   1115 		else	tmp->TM_ZONE = gmtptr->chars;
   1116 #endif /* defined ALL_STATE */
   1117 #ifndef ALL_STATE
   1118 		tmp->TM_ZONE = gmtptr->chars;
   1119 #endif /* State Farm */
   1120 	}
   1121 #endif /* defined TM_ZONE */
   1122 }
   1123 
   1124 struct tm *
   1125 gmtime(timep)
   1126 const time_t * const	timep;
   1127 {
   1128 	gmtsub(timep, 0L, &tm);
   1129 	return &tm;
   1130 }
   1131 
   1132 #ifdef STD_INSPIRED
   1133 
   1134 struct tm *
   1135 offtime(timep, offset)
   1136 const time_t * const	timep;
   1137 const long		offset;
   1138 {
   1139 	gmtsub(timep, offset, &tm);
   1140 	return &tm;
   1141 }
   1142 
   1143 #endif /* defined STD_INSPIRED */
   1144 
   1145 static void
   1146 timesub(timep, offset, sp, tmp)
   1147 const time_t * const			timep;
   1148 const long				offset;
   1149 register const struct state * const	sp;
   1150 register struct tm * const		tmp;
   1151 {
   1152 	register const struct lsinfo *	lp;
   1153 	register long			days;
   1154 	register long			rem;
   1155 	register int			y;
   1156 	register int			yleap;
   1157 	register const int *		ip;
   1158 	register long			corr;
   1159 	register int			hit;
   1160 	register int			i;
   1161 
   1162 	corr = 0;
   1163 	hit = 0;
   1164 #ifdef ALL_STATE
   1165 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1166 #endif /* defined ALL_STATE */
   1167 #ifndef ALL_STATE
   1168 	i = sp->leapcnt;
   1169 #endif /* State Farm */
   1170 	while (--i >= 0) {
   1171 		lp = &sp->lsis[i];
   1172 		if (*timep >= lp->ls_trans) {
   1173 			if (*timep == lp->ls_trans) {
   1174 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1175 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1176 				if (hit)
   1177 					while (i > 0 &&
   1178 						sp->lsis[i].ls_trans ==
   1179 						sp->lsis[i - 1].ls_trans + 1 &&
   1180 						sp->lsis[i].ls_corr ==
   1181 						sp->lsis[i - 1].ls_corr + 1) {
   1182 							++hit;
   1183 							--i;
   1184 					}
   1185 			}
   1186 			corr = lp->ls_corr;
   1187 			break;
   1188 		}
   1189 	}
   1190 	days = *timep / SECSPERDAY;
   1191 	rem = *timep % SECSPERDAY;
   1192 #ifdef mc68k
   1193 	if (*timep == 0x80000000) {
   1194 		/*
   1195 		** A 3B1 muffs the division on the most negative number.
   1196 		*/
   1197 		days = -24855;
   1198 		rem = -11648;
   1199 	}
   1200 #endif /* defined mc68k */
   1201 	rem += (offset - corr);
   1202 	while (rem < 0) {
   1203 		rem += SECSPERDAY;
   1204 		--days;
   1205 	}
   1206 	while (rem >= SECSPERDAY) {
   1207 		rem -= SECSPERDAY;
   1208 		++days;
   1209 	}
   1210 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1211 	rem = rem % SECSPERHOUR;
   1212 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1213 	/*
   1214 	** A positive leap second requires a special
   1215 	** representation.  This uses "... ??:59:60" et seq.
   1216 	*/
   1217 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1218 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1219 	if (tmp->tm_wday < 0)
   1220 		tmp->tm_wday += DAYSPERWEEK;
   1221 	y = EPOCH_YEAR;
   1222 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1223 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1224 		register int	newy;
   1225 
   1226 		newy = y + days / DAYSPERNYEAR;
   1227 		if (days < 0)
   1228 			--newy;
   1229 		days -= (newy - y) * DAYSPERNYEAR +
   1230 			LEAPS_THRU_END_OF(newy - 1) -
   1231 			LEAPS_THRU_END_OF(y - 1);
   1232 		y = newy;
   1233 	}
   1234 	tmp->tm_year = y - TM_YEAR_BASE;
   1235 	tmp->tm_yday = (int) days;
   1236 	ip = mon_lengths[yleap];
   1237 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1238 		days = days - (long) ip[tmp->tm_mon];
   1239 	tmp->tm_mday = (int) (days + 1);
   1240 	tmp->tm_isdst = 0;
   1241 #ifdef TM_GMTOFF
   1242 	tmp->TM_GMTOFF = offset;
   1243 #endif /* defined TM_GMTOFF */
   1244 }
   1245 
   1246 char *
   1247 ctime(timep)
   1248 const time_t * const	timep;
   1249 {
   1250 /*
   1251 ** Section 4.12.3.2 of X3.159-1989 requires that
   1252 **	The ctime funciton converts the calendar time pointed to by timer
   1253 **	to local time in the form of a string.  It is equivalent to
   1254 **		asctime(localtime(timer))
   1255 */
   1256 	return asctime(localtime(timep));
   1257 }
   1258 
   1259 /*
   1260 ** Adapted from code provided by Robert Elz, who writes:
   1261 **	The "best" way to do mktime I think is based on an idea of Bob
   1262 **	Kridle's (so its said...) from a long time ago.
   1263 **	[kridle (at) xinet.com as of 1996-01-16.]
   1264 **	It does a binary search of the time_t space.  Since time_t's are
   1265 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1266 **	would still be very reasonable).
   1267 */
   1268 
   1269 #ifndef WRONG
   1270 #define WRONG	(-1)
   1271 #endif /* !defined WRONG */
   1272 
   1273 /*
   1274 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1275 */
   1276 
   1277 static int
   1278 increment_overflow(number, delta)
   1279 int *	number;
   1280 int	delta;
   1281 {
   1282 	int	number0;
   1283 
   1284 	number0 = *number;
   1285 	*number += delta;
   1286 	return (*number < number0) != (delta < 0);
   1287 }
   1288 
   1289 static int
   1290 normalize_overflow(tensptr, unitsptr, base)
   1291 int * const	tensptr;
   1292 int * const	unitsptr;
   1293 const int	base;
   1294 {
   1295 	register int	tensdelta;
   1296 
   1297 	tensdelta = (*unitsptr >= 0) ?
   1298 		(*unitsptr / base) :
   1299 		(-1 - (-1 - *unitsptr) / base);
   1300 	*unitsptr -= tensdelta * base;
   1301 	return increment_overflow(tensptr, tensdelta);
   1302 }
   1303 
   1304 static int
   1305 tmcomp(atmp, btmp)
   1306 register const struct tm * const atmp;
   1307 register const struct tm * const btmp;
   1308 {
   1309 	register int	result;
   1310 
   1311 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1312 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1313 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1314 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1315 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1316 			result = atmp->tm_sec - btmp->tm_sec;
   1317 	return result;
   1318 }
   1319 
   1320 static time_t
   1321 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1322 struct tm * const	tmp;
   1323 void (* const		funcp) P((const time_t*, long, struct tm*));
   1324 const long		offset;
   1325 int * const		okayp;
   1326 const int		do_norm_secs;
   1327 {
   1328 	register const struct state *	sp;
   1329 	register int			dir;
   1330 	register int			bits;
   1331 	register int			i, j ;
   1332 	register int			saved_seconds;
   1333 	time_t				newt;
   1334 	time_t				t;
   1335 	struct tm			yourtm, mytm;
   1336 
   1337 	*okayp = FALSE;
   1338 	yourtm = *tmp;
   1339 	if (do_norm_secs) {
   1340 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1341 			SECSPERMIN))
   1342 				return WRONG;
   1343 	}
   1344 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1345 		return WRONG;
   1346 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1347 		return WRONG;
   1348 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1349 		return WRONG;
   1350 	/*
   1351 	** Turn yourtm.tm_year into an actual year number for now.
   1352 	** It is converted back to an offset from TM_YEAR_BASE later.
   1353 	*/
   1354 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1355 		return WRONG;
   1356 	while (yourtm.tm_mday <= 0) {
   1357 		if (increment_overflow(&yourtm.tm_year, -1))
   1358 			return WRONG;
   1359 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1360 		yourtm.tm_mday += year_lengths[isleap(i)];
   1361 	}
   1362 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1363 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1364 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1365 		if (increment_overflow(&yourtm.tm_year, 1))
   1366 			return WRONG;
   1367 	}
   1368 	for ( ; ; ) {
   1369 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1370 		if (yourtm.tm_mday <= i)
   1371 			break;
   1372 		yourtm.tm_mday -= i;
   1373 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1374 			yourtm.tm_mon = 0;
   1375 			if (increment_overflow(&yourtm.tm_year, 1))
   1376 				return WRONG;
   1377 		}
   1378 	}
   1379 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1380 		return WRONG;
   1381 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1382 		/*
   1383 		** We can't set tm_sec to 0, because that might push the
   1384 		** time below the minimum representable time.
   1385 		** Set tm_sec to 59 instead.
   1386 		** This assumes that the minimum representable time is
   1387 		** not in the same minute that a leap second was deleted from,
   1388 		** which is a safer assumption than using 58 would be.
   1389 		*/
   1390 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1391 			return WRONG;
   1392 		saved_seconds = yourtm.tm_sec;
   1393 		yourtm.tm_sec = SECSPERMIN - 1;
   1394 	} else {
   1395 		saved_seconds = yourtm.tm_sec;
   1396 		yourtm.tm_sec = 0;
   1397 	}
   1398 	/*
   1399 	** Divide the search space in half
   1400 	** (this works whether time_t is signed or unsigned).
   1401 	*/
   1402 	bits = TYPE_BIT(time_t) - 1;
   1403 	/*
   1404 	** If time_t is signed, then 0 is just above the median,
   1405 	** assuming two's complement arithmetic.
   1406 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1407 	*/
   1408 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1409 	for ( ; ; ) {
   1410 		(*funcp)(&t, offset, &mytm);
   1411 		dir = tmcomp(&mytm, &yourtm);
   1412 		if (dir != 0) {
   1413 			if (bits-- < 0)
   1414 				return WRONG;
   1415 			if (bits < 0)
   1416 				--t; /* may be needed if new t is minimal */
   1417 			else if (dir > 0)
   1418 				t -= ((time_t) 1) << bits;
   1419 			else	t += ((time_t) 1) << bits;
   1420 			continue;
   1421 		}
   1422 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1423 			break;
   1424 		/*
   1425 		** Right time, wrong type.
   1426 		** Hunt for right time, right type.
   1427 		** It's okay to guess wrong since the guess
   1428 		** gets checked.
   1429 		*/
   1430 		/*
   1431 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1432 		*/
   1433 		sp = (const struct state *)
   1434 			(((void *) funcp == (void *) localsub) ?
   1435 			lclptr : gmtptr);
   1436 #ifdef ALL_STATE
   1437 		if (sp == NULL)
   1438 			return WRONG;
   1439 #endif /* defined ALL_STATE */
   1440 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1441 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1442 				continue;
   1443 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1444 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1445 					continue;
   1446 				newt = t + sp->ttis[j].tt_gmtoff -
   1447 					sp->ttis[i].tt_gmtoff;
   1448 				(*funcp)(&newt, offset, &mytm);
   1449 				if (tmcomp(&mytm, &yourtm) != 0)
   1450 					continue;
   1451 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1452 					continue;
   1453 				/*
   1454 				** We have a match.
   1455 				*/
   1456 				t = newt;
   1457 				goto label;
   1458 			}
   1459 		}
   1460 		return WRONG;
   1461 	}
   1462 label:
   1463 	newt = t + saved_seconds;
   1464 	if ((newt < t) != (saved_seconds < 0))
   1465 		return WRONG;
   1466 	t = newt;
   1467 	(*funcp)(&t, offset, tmp);
   1468 	*okayp = TRUE;
   1469 	return t;
   1470 }
   1471 
   1472 static time_t
   1473 time2(tmp, funcp, offset, okayp)
   1474 struct tm * const	tmp;
   1475 void (* const		funcp) P((const time_t*, long, struct tm*));
   1476 const long		offset;
   1477 int * const		okayp;
   1478 {
   1479 	time_t	t;
   1480 
   1481 	/*
   1482 	** First try without normalization of seconds
   1483 	** (in case tm_sec contains a value associated with a leap second).
   1484 	** If that fails, try with normalization of seconds.
   1485 	*/
   1486 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1487 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1488 }
   1489 
   1490 static time_t
   1491 time1(tmp, funcp, offset)
   1492 struct tm * const	tmp;
   1493 void (* const		funcp) P((const time_t *, long, struct tm *));
   1494 const long		offset;
   1495 {
   1496 	register time_t			t;
   1497 	register const struct state *	sp;
   1498 	register int			samei, otheri;
   1499 	int				okay;
   1500 
   1501 	if (tmp->tm_isdst > 1)
   1502 		tmp->tm_isdst = 1;
   1503 	t = time2(tmp, funcp, offset, &okay);
   1504 #ifdef PCTS
   1505 	/*
   1506 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1507 	*/
   1508 	if (okay)
   1509 		return t;
   1510 	if (tmp->tm_isdst < 0)
   1511 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1512 #endif /* defined PCTS */
   1513 #ifndef PCTS
   1514 	if (okay || tmp->tm_isdst < 0)
   1515 		return t;
   1516 #endif /* !defined PCTS */
   1517 	/*
   1518 	** We're supposed to assume that somebody took a time of one type
   1519 	** and did some math on it that yielded a "struct tm" that's bad.
   1520 	** We try to divine the type they started from and adjust to the
   1521 	** type they need.
   1522 	*/
   1523 	/*
   1524 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1525 	*/
   1526 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1527 		lclptr : gmtptr);
   1528 #ifdef ALL_STATE
   1529 	if (sp == NULL)
   1530 		return WRONG;
   1531 #endif /* defined ALL_STATE */
   1532 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1533 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1534 			continue;
   1535 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1536 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1537 				continue;
   1538 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1539 					sp->ttis[samei].tt_gmtoff;
   1540 			tmp->tm_isdst = !tmp->tm_isdst;
   1541 			t = time2(tmp, funcp, offset, &okay);
   1542 			if (okay)
   1543 				return t;
   1544 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1545 					sp->ttis[samei].tt_gmtoff;
   1546 			tmp->tm_isdst = !tmp->tm_isdst;
   1547 		}
   1548 	}
   1549 	return WRONG;
   1550 }
   1551 
   1552 time_t
   1553 mktime(tmp)
   1554 struct tm * const	tmp;
   1555 {
   1556 	tzset();
   1557 	return time1(tmp, localsub, 0L);
   1558 }
   1559 
   1560 #ifdef STD_INSPIRED
   1561 
   1562 time_t
   1563 timelocal(tmp)
   1564 struct tm * const	tmp;
   1565 {
   1566 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1567 	return mktime(tmp);
   1568 }
   1569 
   1570 time_t
   1571 timegm(tmp)
   1572 struct tm * const	tmp;
   1573 {
   1574 	tmp->tm_isdst = 0;
   1575 	return time1(tmp, gmtsub, 0L);
   1576 }
   1577 
   1578 time_t
   1579 timeoff(tmp, offset)
   1580 struct tm * const	tmp;
   1581 const long		offset;
   1582 {
   1583 	tmp->tm_isdst = 0;
   1584 	return time1(tmp, gmtsub, offset);
   1585 }
   1586 
   1587 #endif /* defined STD_INSPIRED */
   1588 
   1589 #ifdef CMUCS
   1590 
   1591 /*
   1592 ** The following is supplied for compatibility with
   1593 ** previous versions of the CMUCS runtime library.
   1594 */
   1595 
   1596 long
   1597 gtime(tmp)
   1598 struct tm * const	tmp;
   1599 {
   1600 	const time_t	t = mktime(tmp);
   1601 
   1602 	if (t == WRONG)
   1603 		return -1;
   1604 	return t;
   1605 }
   1606 
   1607 #endif /* defined CMUCS */
   1608 
   1609 /*
   1610 ** XXX--is the below the right way to conditionalize??
   1611 */
   1612 
   1613 #ifdef STD_INSPIRED
   1614 
   1615 /*
   1616 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1617 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1618 ** is not the case if we are accounting for leap seconds.
   1619 ** So, we provide the following conversion routines for use
   1620 ** when exchanging timestamps with POSIX conforming systems.
   1621 */
   1622 
   1623 static long
   1624 leapcorr(timep)
   1625 time_t *	timep;
   1626 {
   1627 	register struct state *		sp;
   1628 	register struct lsinfo *	lp;
   1629 	register int			i;
   1630 
   1631 	sp = lclptr;
   1632 	i = sp->leapcnt;
   1633 	while (--i >= 0) {
   1634 		lp = &sp->lsis[i];
   1635 		if (*timep >= lp->ls_trans)
   1636 			return lp->ls_corr;
   1637 	}
   1638 	return 0;
   1639 }
   1640 
   1641 time_t
   1642 time2posix(t)
   1643 time_t	t;
   1644 {
   1645 	tzset();
   1646 	return t - leapcorr(&t);
   1647 }
   1648 
   1649 time_t
   1650 posix2time(t)
   1651 time_t	t;
   1652 {
   1653 	time_t	x;
   1654 	time_t	y;
   1655 
   1656 	tzset();
   1657 	/*
   1658 	** For a positive leap second hit, the result
   1659 	** is not unique.  For a negative leap second
   1660 	** hit, the corresponding time doesn't exist,
   1661 	** so we return an adjacent second.
   1662 	*/
   1663 	x = t + leapcorr(&t);
   1664 	y = x - leapcorr(&x);
   1665 	if (y < t) {
   1666 		do {
   1667 			x++;
   1668 			y = x - leapcorr(&x);
   1669 		} while (y < t);
   1670 		if (t != y)
   1671 			return x - 1;
   1672 	} else if (y > t) {
   1673 		do {
   1674 			--x;
   1675 			y = x - leapcorr(&x);
   1676 		} while (y > t);
   1677 		if (t != y)
   1678 			return x + 1;
   1679 	}
   1680 	return x;
   1681 }
   1682 
   1683 #endif /* defined STD_INSPIRED */
   1684