localtime.c revision 1.19 1 /* $NetBSD: localtime.c,v 1.19 1998/09/13 16:26:14 kleink Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char elsieid[] = "@(#)localtime.c 7.66";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.19 1998/09/13 16:26:14 kleink Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18
19 /*
20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy (at) auspex.com).
23 */
24
25 /*LINTLIBRARY*/
26
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #ifdef __weak_alias
34 __weak_alias(ctime_r,_ctime_r);
35 __weak_alias(gmtime_r,_gmtime_r);
36 __weak_alias(localtime_r,_localtime_r);
37 __weak_alias(offtime,_offtime);
38 __weak_alias(posix2time,_posix2time);
39 __weak_alias(time2posix,_time2posix);
40 __weak_alias(timegm,_timegm);
41 __weak_alias(timelocal,_timelocal);
42 __weak_alias(timeoff,_timeoff);
43 __weak_alias(tzset,_tzset);
44 __weak_alias(tzsetwall,_tzsetwall);
45 #endif
46
47 /*
48 ** SunOS 4.1.1 headers lack O_BINARY.
49 */
50
51 #ifdef O_BINARY
52 #define OPEN_MODE (O_RDONLY | O_BINARY)
53 #endif /* defined O_BINARY */
54 #ifndef O_BINARY
55 #define OPEN_MODE O_RDONLY
56 #endif /* !defined O_BINARY */
57
58 #ifndef WILDABBR
59 /*
60 ** Someone might make incorrect use of a time zone abbreviation:
61 ** 1. They might reference tzname[0] before calling tzset (explicitly
62 ** or implicitly).
63 ** 2. They might reference tzname[1] before calling tzset (explicitly
64 ** or implicitly).
65 ** 3. They might reference tzname[1] after setting to a time zone
66 ** in which Daylight Saving Time is never observed.
67 ** 4. They might reference tzname[0] after setting to a time zone
68 ** in which Standard Time is never observed.
69 ** 5. They might reference tm.TM_ZONE after calling offtime.
70 ** What's best to do in the above cases is open to debate;
71 ** for now, we just set things up so that in any of the five cases
72 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
73 ** string "tzname[0] used before set", and similarly for the other cases.
74 ** And another: initialize tzname[0] to "ERA", with an explanation in the
75 ** manual page of what this "time zone abbreviation" means (doing this so
76 ** that tzname[0] has the "normal" length of three characters).
77 */
78 #define WILDABBR " "
79 #endif /* !defined WILDABBR */
80
81 static const char wildabbr[] = "WILDABBR";
82
83 static const char gmt[] = "GMT";
84
85 struct ttinfo { /* time type information */
86 long tt_gmtoff; /* UTC offset in seconds */
87 int tt_isdst; /* used to set tm_isdst */
88 int tt_abbrind; /* abbreviation list index */
89 int tt_ttisstd; /* TRUE if transition is std time */
90 int tt_ttisgmt; /* TRUE if transition is UTC */
91 };
92
93 struct lsinfo { /* leap second information */
94 time_t ls_trans; /* transition time */
95 long ls_corr; /* correction to apply */
96 };
97
98 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
99
100 #ifdef TZNAME_MAX
101 #define MY_TZNAME_MAX TZNAME_MAX
102 #endif /* defined TZNAME_MAX */
103 #ifndef TZNAME_MAX
104 #define MY_TZNAME_MAX 255
105 #endif /* !defined TZNAME_MAX */
106
107 struct state {
108 int leapcnt;
109 int timecnt;
110 int typecnt;
111 int charcnt;
112 time_t ats[TZ_MAX_TIMES];
113 unsigned char types[TZ_MAX_TIMES];
114 struct ttinfo ttis[TZ_MAX_TYPES];
115 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
116 (2 * (MY_TZNAME_MAX + 1)))];
117 struct lsinfo lsis[TZ_MAX_LEAPS];
118 };
119
120 struct rule {
121 int r_type; /* type of rule--see below */
122 int r_day; /* day number of rule */
123 int r_week; /* week number of rule */
124 int r_mon; /* month number of rule */
125 long r_time; /* transition time of rule */
126 };
127
128 #define JULIAN_DAY 0 /* Jn - Julian day */
129 #define DAY_OF_YEAR 1 /* n - day of year */
130 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
131
132 /*
133 ** Prototypes for static functions.
134 */
135
136 static long detzcode P((const char * codep));
137 static const char * getzname P((const char * strp));
138 static const char * getnum P((const char * strp, int * nump, int min,
139 int max));
140 static const char * getsecs P((const char * strp, long * secsp));
141 static const char * getoffset P((const char * strp, long * offsetp));
142 static const char * getrule P((const char * strp, struct rule * rulep));
143 static void gmtload P((struct state * sp));
144 static void gmtsub P((const time_t * timep, long offset,
145 struct tm * tmp));
146 static void localsub P((const time_t * timep, long offset,
147 struct tm * tmp));
148 static int increment_overflow P((int * number, int delta));
149 static int normalize_overflow P((int * tensptr, int * unitsptr,
150 int base));
151 static void settzname P((void));
152 static time_t time1 P((struct tm * tmp,
153 void(*funcp) P((const time_t *,
154 long, struct tm *)),
155 long offset));
156 static time_t time2 P((struct tm *tmp,
157 void(*funcp) P((const time_t *,
158 long, struct tm*)),
159 long offset, int * okayp));
160 static time_t time2sub P((struct tm *tmp,
161 void(*funcp) P((const time_t *,
162 long, struct tm*)),
163 long offset, int * okayp, int do_norm_secs));
164 static void timesub P((const time_t * timep, long offset,
165 const struct state * sp, struct tm * tmp));
166 static int tmcomp P((const struct tm * atmp,
167 const struct tm * btmp));
168 static time_t transtime P((time_t janfirst, int year,
169 const struct rule * rulep, long offset));
170 static int tzload P((const char * name, struct state * sp));
171 static int tzparse P((const char * name, struct state * sp,
172 int lastditch));
173 static void tzset_unlocked P((void));
174 static void tzsetwall_unlocked P((void));
175 #ifdef STD_INSPIRED
176 static long leapcorr P((time_t * timep));
177 #endif
178
179 #ifdef ALL_STATE
180 static struct state * lclptr;
181 static struct state * gmtptr;
182 #endif /* defined ALL_STATE */
183
184 #ifndef ALL_STATE
185 static struct state lclmem;
186 static struct state gmtmem;
187 #define lclptr (&lclmem)
188 #define gmtptr (&gmtmem)
189 #endif /* State Farm */
190
191 #ifndef TZ_STRLEN_MAX
192 #define TZ_STRLEN_MAX 255
193 #endif /* !defined TZ_STRLEN_MAX */
194
195 static char lcl_TZname[TZ_STRLEN_MAX + 1];
196 static int lcl_is_set;
197 static int gmt_is_set;
198
199 __aconst char * tzname[2] = {
200 (__aconst char *)wildabbr,
201 (__aconst char *)wildabbr
202 };
203
204 #ifdef _REENT
205 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
206 #endif
207
208 /*
209 ** Section 4.12.3 of X3.159-1989 requires that
210 ** Except for the strftime function, these functions [asctime,
211 ** ctime, gmtime, localtime] return values in one of two static
212 ** objects: a broken-down time structure and an array of char.
213 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
214 */
215
216 static struct tm tm;
217
218 #ifdef USG_COMPAT
219 time_t timezone = 0;
220 int daylight = 0;
221 #endif /* defined USG_COMPAT */
222
223 #ifdef ALTZONE
224 time_t altzone = 0;
225 #endif /* defined ALTZONE */
226
227 static long
228 detzcode(codep)
229 const char * const codep;
230 {
231 register long result;
232
233 /*
234 ** The first character must be sign extended on systems with >32bit
235 ** longs. This was solved differently in the master tzcode sources
236 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
237 ** that this implementation is superior.
238 */
239
240 #ifdef __STDC__
241 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
242 #else
243 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
244 #endif
245
246 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
247 | (codep[1] & 0xff) << 16 \
248 | (codep[2] & 0xff) << 8
249 | (codep[3] & 0xff);
250 return result;
251 }
252
253 static void
254 settzname P((void))
255 {
256 register struct state * const sp = lclptr;
257 register int i;
258
259 tzname[0] = (__aconst char *)wildabbr;
260 tzname[1] = (__aconst char *)wildabbr;
261 #ifdef USG_COMPAT
262 daylight = 0;
263 timezone = 0;
264 #endif /* defined USG_COMPAT */
265 #ifdef ALTZONE
266 altzone = 0;
267 #endif /* defined ALTZONE */
268 #ifdef ALL_STATE
269 if (sp == NULL) {
270 tzname[0] = tzname[1] = (__aconst char *)gmt;
271 return;
272 }
273 #endif /* defined ALL_STATE */
274 for (i = 0; i < sp->typecnt; ++i) {
275 register const struct ttinfo * const ttisp = &sp->ttis[i];
276
277 tzname[ttisp->tt_isdst] =
278 &sp->chars[ttisp->tt_abbrind];
279 #ifdef USG_COMPAT
280 if (ttisp->tt_isdst)
281 daylight = 1;
282 if (i == 0 || !ttisp->tt_isdst)
283 timezone = -(ttisp->tt_gmtoff);
284 #endif /* defined USG_COMPAT */
285 #ifdef ALTZONE
286 if (i == 0 || ttisp->tt_isdst)
287 altzone = -(ttisp->tt_gmtoff);
288 #endif /* defined ALTZONE */
289 }
290 /*
291 ** And to get the latest zone names into tzname. . .
292 */
293 for (i = 0; i < sp->timecnt; ++i) {
294 register const struct ttinfo * const ttisp =
295 &sp->ttis[
296 sp->types[i]];
297
298 tzname[ttisp->tt_isdst] =
299 &sp->chars[ttisp->tt_abbrind];
300 }
301 }
302
303 static int
304 tzload(name, sp)
305 register const char * name;
306 register struct state * const sp;
307 {
308 register const char * p;
309 register int i;
310 register int fid;
311
312 if (name == NULL && (name = TZDEFAULT) == NULL)
313 return -1;
314
315 {
316 register int doaccess;
317 /*
318 ** Section 4.9.1 of the C standard says that
319 ** "FILENAME_MAX expands to an integral constant expression
320 ** that is the size needed for an array of char large enough
321 ** to hold the longest file name string that the implementation
322 ** guarantees can be opened."
323 */
324 char fullname[FILENAME_MAX + 1];
325
326 if (name[0] == ':')
327 ++name;
328 doaccess = name[0] == '/';
329 if (!doaccess) {
330 if ((p = TZDIR) == NULL)
331 return -1;
332 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
333 return -1;
334 (void) strcpy(fullname, p); /* XXX strcpy is safe */
335 (void) strcat(fullname, "/"); /* XXX strcat is safe */
336 (void) strcat(fullname, name); /* XXX strcat is safe */
337 /*
338 ** Set doaccess if '.' (as in "../") shows up in name.
339 */
340 if (strchr(name, '.') != NULL)
341 doaccess = TRUE;
342 name = fullname;
343 }
344 if (doaccess && access(name, R_OK) != 0)
345 return -1;
346 /*
347 * XXX potential security problem here if user of a set-id
348 * program has set TZ (which is passed in as name) here,
349 * and uses a race condition trick to defeat the access(2)
350 * above.
351 */
352 if ((fid = open(name, OPEN_MODE)) == -1)
353 return -1;
354 }
355 {
356 struct tzhead * tzhp;
357 union {
358 struct tzhead tzhead;
359 char buf[sizeof *sp + sizeof *tzhp];
360 } u;
361 int ttisstdcnt;
362 int ttisgmtcnt;
363
364 i = read(fid, u.buf, sizeof u.buf);
365 if (close(fid) != 0)
366 return -1;
367 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
368 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
369 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
370 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
371 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
372 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
373 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
374 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
375 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
376 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
377 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
378 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
379 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
380 return -1;
381 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
382 sp->timecnt + /* types */
383 sp->typecnt * (4 + 2) + /* ttinfos */
384 sp->charcnt + /* chars */
385 sp->leapcnt * (4 + 4) + /* lsinfos */
386 ttisstdcnt + /* ttisstds */
387 ttisgmtcnt) /* ttisgmts */
388 return -1;
389 for (i = 0; i < sp->timecnt; ++i) {
390 sp->ats[i] = detzcode(p);
391 p += 4;
392 }
393 for (i = 0; i < sp->timecnt; ++i) {
394 sp->types[i] = (unsigned char) *p++;
395 if (sp->types[i] >= sp->typecnt)
396 return -1;
397 }
398 for (i = 0; i < sp->typecnt; ++i) {
399 register struct ttinfo * ttisp;
400
401 ttisp = &sp->ttis[i];
402 ttisp->tt_gmtoff = detzcode(p);
403 p += 4;
404 ttisp->tt_isdst = (unsigned char) *p++;
405 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
406 return -1;
407 ttisp->tt_abbrind = (unsigned char) *p++;
408 if (ttisp->tt_abbrind < 0 ||
409 ttisp->tt_abbrind > sp->charcnt)
410 return -1;
411 }
412 for (i = 0; i < sp->charcnt; ++i)
413 sp->chars[i] = *p++;
414 sp->chars[i] = '\0'; /* ensure '\0' at end */
415 for (i = 0; i < sp->leapcnt; ++i) {
416 register struct lsinfo * lsisp;
417
418 lsisp = &sp->lsis[i];
419 lsisp->ls_trans = detzcode(p);
420 p += 4;
421 lsisp->ls_corr = detzcode(p);
422 p += 4;
423 }
424 for (i = 0; i < sp->typecnt; ++i) {
425 register struct ttinfo * ttisp;
426
427 ttisp = &sp->ttis[i];
428 if (ttisstdcnt == 0)
429 ttisp->tt_ttisstd = FALSE;
430 else {
431 ttisp->tt_ttisstd = *p++;
432 if (ttisp->tt_ttisstd != TRUE &&
433 ttisp->tt_ttisstd != FALSE)
434 return -1;
435 }
436 }
437 for (i = 0; i < sp->typecnt; ++i) {
438 register struct ttinfo * ttisp;
439
440 ttisp = &sp->ttis[i];
441 if (ttisgmtcnt == 0)
442 ttisp->tt_ttisgmt = FALSE;
443 else {
444 ttisp->tt_ttisgmt = *p++;
445 if (ttisp->tt_ttisgmt != TRUE &&
446 ttisp->tt_ttisgmt != FALSE)
447 return -1;
448 }
449 }
450 }
451 return 0;
452 }
453
454 static const int mon_lengths[2][MONSPERYEAR] = {
455 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
456 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
457 };
458
459 static const int year_lengths[2] = {
460 DAYSPERNYEAR, DAYSPERLYEAR
461 };
462
463 /*
464 ** Given a pointer into a time zone string, scan until a character that is not
465 ** a valid character in a zone name is found. Return a pointer to that
466 ** character.
467 */
468
469 static const char *
470 getzname(strp)
471 register const char * strp;
472 {
473 register char c;
474
475 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
476 c != '+')
477 ++strp;
478 return strp;
479 }
480
481 /*
482 ** Given a pointer into a time zone string, extract a number from that string.
483 ** Check that the number is within a specified range; if it is not, return
484 ** NULL.
485 ** Otherwise, return a pointer to the first character not part of the number.
486 */
487
488 static const char *
489 getnum(strp, nump, min, max)
490 register const char * strp;
491 int * const nump;
492 const int min;
493 const int max;
494 {
495 register char c;
496 register int num;
497
498 if (strp == NULL || !is_digit(c = *strp))
499 return NULL;
500 num = 0;
501 do {
502 num = num * 10 + (c - '0');
503 if (num > max)
504 return NULL; /* illegal value */
505 c = *++strp;
506 } while (is_digit(c));
507 if (num < min)
508 return NULL; /* illegal value */
509 *nump = num;
510 return strp;
511 }
512
513 /*
514 ** Given a pointer into a time zone string, extract a number of seconds,
515 ** in hh[:mm[:ss]] form, from the string.
516 ** If any error occurs, return NULL.
517 ** Otherwise, return a pointer to the first character not part of the number
518 ** of seconds.
519 */
520
521 static const char *
522 getsecs(strp, secsp)
523 register const char * strp;
524 long * const secsp;
525 {
526 int num;
527
528 /*
529 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
530 ** "M10.4.6/26", which does not conform to Posix,
531 ** but which specifies the equivalent of
532 ** ``02:00 on the first Sunday on or after 23 Oct''.
533 */
534 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
535 if (strp == NULL)
536 return NULL;
537 *secsp = num * (long) SECSPERHOUR;
538 if (*strp == ':') {
539 ++strp;
540 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
541 if (strp == NULL)
542 return NULL;
543 *secsp += num * SECSPERMIN;
544 if (*strp == ':') {
545 ++strp;
546 /* `SECSPERMIN' allows for leap seconds. */
547 strp = getnum(strp, &num, 0, SECSPERMIN);
548 if (strp == NULL)
549 return NULL;
550 *secsp += num;
551 }
552 }
553 return strp;
554 }
555
556 /*
557 ** Given a pointer into a time zone string, extract an offset, in
558 ** [+-]hh[:mm[:ss]] form, from the string.
559 ** If any error occurs, return NULL.
560 ** Otherwise, return a pointer to the first character not part of the time.
561 */
562
563 static const char *
564 getoffset(strp, offsetp)
565 register const char * strp;
566 long * const offsetp;
567 {
568 register int neg = 0;
569
570 if (*strp == '-') {
571 neg = 1;
572 ++strp;
573 } else if (*strp == '+')
574 ++strp;
575 strp = getsecs(strp, offsetp);
576 if (strp == NULL)
577 return NULL; /* illegal time */
578 if (neg)
579 *offsetp = -*offsetp;
580 return strp;
581 }
582
583 /*
584 ** Given a pointer into a time zone string, extract a rule in the form
585 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
586 ** If a valid rule is not found, return NULL.
587 ** Otherwise, return a pointer to the first character not part of the rule.
588 */
589
590 static const char *
591 getrule(strp, rulep)
592 const char * strp;
593 register struct rule * const rulep;
594 {
595 if (*strp == 'J') {
596 /*
597 ** Julian day.
598 */
599 rulep->r_type = JULIAN_DAY;
600 ++strp;
601 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
602 } else if (*strp == 'M') {
603 /*
604 ** Month, week, day.
605 */
606 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
607 ++strp;
608 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
609 if (strp == NULL)
610 return NULL;
611 if (*strp++ != '.')
612 return NULL;
613 strp = getnum(strp, &rulep->r_week, 1, 5);
614 if (strp == NULL)
615 return NULL;
616 if (*strp++ != '.')
617 return NULL;
618 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
619 } else if (is_digit(*strp)) {
620 /*
621 ** Day of year.
622 */
623 rulep->r_type = DAY_OF_YEAR;
624 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
625 } else return NULL; /* invalid format */
626 if (strp == NULL)
627 return NULL;
628 if (*strp == '/') {
629 /*
630 ** Time specified.
631 */
632 ++strp;
633 strp = getsecs(strp, &rulep->r_time);
634 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
635 return strp;
636 }
637
638 /*
639 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
640 ** year, a rule, and the offset from UTC at the time that rule takes effect,
641 ** calculate the Epoch-relative time that rule takes effect.
642 */
643
644 static time_t
645 transtime(janfirst, year, rulep, offset)
646 const time_t janfirst;
647 const int year;
648 register const struct rule * const rulep;
649 const long offset;
650 {
651 register int leapyear;
652 register time_t value;
653 register int i;
654 int d, m1, yy0, yy1, yy2, dow;
655
656 INITIALIZE(value);
657 leapyear = isleap(year);
658 switch (rulep->r_type) {
659
660 case JULIAN_DAY:
661 /*
662 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
663 ** years.
664 ** In non-leap years, or if the day number is 59 or less, just
665 ** add SECSPERDAY times the day number-1 to the time of
666 ** January 1, midnight, to get the day.
667 */
668 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
669 if (leapyear && rulep->r_day >= 60)
670 value += SECSPERDAY;
671 break;
672
673 case DAY_OF_YEAR:
674 /*
675 ** n - day of year.
676 ** Just add SECSPERDAY times the day number to the time of
677 ** January 1, midnight, to get the day.
678 */
679 value = janfirst + rulep->r_day * SECSPERDAY;
680 break;
681
682 case MONTH_NTH_DAY_OF_WEEK:
683 /*
684 ** Mm.n.d - nth "dth day" of month m.
685 */
686 value = janfirst;
687 for (i = 0; i < rulep->r_mon - 1; ++i)
688 value += mon_lengths[leapyear][i] * SECSPERDAY;
689
690 /*
691 ** Use Zeller's Congruence to get day-of-week of first day of
692 ** month.
693 */
694 m1 = (rulep->r_mon + 9) % 12 + 1;
695 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
696 yy1 = yy0 / 100;
697 yy2 = yy0 % 100;
698 dow = ((26 * m1 - 2) / 10 +
699 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
700 if (dow < 0)
701 dow += DAYSPERWEEK;
702
703 /*
704 ** "dow" is the day-of-week of the first day of the month. Get
705 ** the day-of-month (zero-origin) of the first "dow" day of the
706 ** month.
707 */
708 d = rulep->r_day - dow;
709 if (d < 0)
710 d += DAYSPERWEEK;
711 for (i = 1; i < rulep->r_week; ++i) {
712 if (d + DAYSPERWEEK >=
713 mon_lengths[leapyear][rulep->r_mon - 1])
714 break;
715 d += DAYSPERWEEK;
716 }
717
718 /*
719 ** "d" is the day-of-month (zero-origin) of the day we want.
720 */
721 value += d * SECSPERDAY;
722 break;
723 }
724
725 /*
726 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
727 ** question. To get the Epoch-relative time of the specified local
728 ** time on that day, add the transition time and the current offset
729 ** from UTC.
730 */
731 return value + rulep->r_time + offset;
732 }
733
734 /*
735 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
736 ** appropriate.
737 */
738
739 static int
740 tzparse(name, sp, lastditch)
741 const char * name;
742 register struct state * const sp;
743 const int lastditch;
744 {
745 const char * stdname;
746 const char * dstname;
747 size_t stdlen;
748 size_t dstlen;
749 long stdoffset;
750 long dstoffset;
751 register time_t * atp;
752 register unsigned char * typep;
753 register char * cp;
754 register int load_result;
755
756 INITIALIZE(dstname);
757 stdname = name;
758 if (lastditch) {
759 stdlen = strlen(name); /* length of standard zone name */
760 name += stdlen;
761 if (stdlen >= sizeof sp->chars)
762 stdlen = (sizeof sp->chars) - 1;
763 stdoffset = 0;
764 } else {
765 name = getzname(name);
766 stdlen = name - stdname;
767 if (stdlen < 3)
768 return -1;
769 if (*name == '\0')
770 return -1;
771 name = getoffset(name, &stdoffset);
772 if (name == NULL)
773 return -1;
774 }
775 load_result = tzload(TZDEFRULES, sp);
776 if (load_result != 0)
777 sp->leapcnt = 0; /* so, we're off a little */
778 if (*name != '\0') {
779 dstname = name;
780 name = getzname(name);
781 dstlen = name - dstname; /* length of DST zone name */
782 if (dstlen < 3)
783 return -1;
784 if (*name != '\0' && *name != ',' && *name != ';') {
785 name = getoffset(name, &dstoffset);
786 if (name == NULL)
787 return -1;
788 } else dstoffset = stdoffset - SECSPERHOUR;
789 if (*name == ',' || *name == ';') {
790 struct rule start;
791 struct rule end;
792 register int year;
793 register time_t janfirst;
794 time_t starttime;
795 time_t endtime;
796
797 ++name;
798 if ((name = getrule(name, &start)) == NULL)
799 return -1;
800 if (*name++ != ',')
801 return -1;
802 if ((name = getrule(name, &end)) == NULL)
803 return -1;
804 if (*name != '\0')
805 return -1;
806 sp->typecnt = 2; /* standard time and DST */
807 /*
808 ** Two transitions per year, from EPOCH_YEAR to 2037.
809 */
810 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
811 if (sp->timecnt > TZ_MAX_TIMES)
812 return -1;
813 sp->ttis[0].tt_gmtoff = -dstoffset;
814 sp->ttis[0].tt_isdst = 1;
815 sp->ttis[0].tt_abbrind = stdlen + 1;
816 sp->ttis[1].tt_gmtoff = -stdoffset;
817 sp->ttis[1].tt_isdst = 0;
818 sp->ttis[1].tt_abbrind = 0;
819 atp = sp->ats;
820 typep = sp->types;
821 janfirst = 0;
822 for (year = EPOCH_YEAR; year <= 2037; ++year) {
823 starttime = transtime(janfirst, year, &start,
824 stdoffset);
825 endtime = transtime(janfirst, year, &end,
826 dstoffset);
827 if (starttime > endtime) {
828 *atp++ = endtime;
829 *typep++ = 1; /* DST ends */
830 *atp++ = starttime;
831 *typep++ = 0; /* DST begins */
832 } else {
833 *atp++ = starttime;
834 *typep++ = 0; /* DST begins */
835 *atp++ = endtime;
836 *typep++ = 1; /* DST ends */
837 }
838 janfirst += year_lengths[isleap(year)] *
839 SECSPERDAY;
840 }
841 } else {
842 register long theirstdoffset;
843 register long theirdstoffset;
844 register long theiroffset;
845 register int isdst;
846 register int i;
847 register int j;
848
849 if (*name != '\0')
850 return -1;
851 if (load_result != 0)
852 return -1;
853 /*
854 ** Initial values of theirstdoffset and theirdstoffset.
855 */
856 theirstdoffset = 0;
857 for (i = 0; i < sp->timecnt; ++i) {
858 j = sp->types[i];
859 if (!sp->ttis[j].tt_isdst) {
860 theirstdoffset =
861 -sp->ttis[j].tt_gmtoff;
862 break;
863 }
864 }
865 theirdstoffset = 0;
866 for (i = 0; i < sp->timecnt; ++i) {
867 j = sp->types[i];
868 if (sp->ttis[j].tt_isdst) {
869 theirdstoffset =
870 -sp->ttis[j].tt_gmtoff;
871 break;
872 }
873 }
874 /*
875 ** Initially we're assumed to be in standard time.
876 */
877 isdst = FALSE;
878 theiroffset = theirstdoffset;
879 /*
880 ** Now juggle transition times and types
881 ** tracking offsets as you do.
882 */
883 for (i = 0; i < sp->timecnt; ++i) {
884 j = sp->types[i];
885 sp->types[i] = sp->ttis[j].tt_isdst;
886 if (sp->ttis[j].tt_ttisgmt) {
887 /* No adjustment to transition time */
888 } else {
889 /*
890 ** If summer time is in effect, and the
891 ** transition time was not specified as
892 ** standard time, add the summer time
893 ** offset to the transition time;
894 ** otherwise, add the standard time
895 ** offset to the transition time.
896 */
897 /*
898 ** Transitions from DST to DDST
899 ** will effectively disappear since
900 ** POSIX provides for only one DST
901 ** offset.
902 */
903 if (isdst && !sp->ttis[j].tt_ttisstd) {
904 sp->ats[i] += dstoffset -
905 theirdstoffset;
906 } else {
907 sp->ats[i] += stdoffset -
908 theirstdoffset;
909 }
910 }
911 theiroffset = -sp->ttis[j].tt_gmtoff;
912 if (sp->ttis[j].tt_isdst)
913 theirdstoffset = theiroffset;
914 else theirstdoffset = theiroffset;
915 }
916 /*
917 ** Finally, fill in ttis.
918 ** ttisstd and ttisgmt need not be handled.
919 */
920 sp->ttis[0].tt_gmtoff = -stdoffset;
921 sp->ttis[0].tt_isdst = FALSE;
922 sp->ttis[0].tt_abbrind = 0;
923 sp->ttis[1].tt_gmtoff = -dstoffset;
924 sp->ttis[1].tt_isdst = TRUE;
925 sp->ttis[1].tt_abbrind = stdlen + 1;
926 sp->typecnt = 2;
927 }
928 } else {
929 dstlen = 0;
930 sp->typecnt = 1; /* only standard time */
931 sp->timecnt = 0;
932 sp->ttis[0].tt_gmtoff = -stdoffset;
933 sp->ttis[0].tt_isdst = 0;
934 sp->ttis[0].tt_abbrind = 0;
935 }
936 sp->charcnt = stdlen + 1;
937 if (dstlen != 0)
938 sp->charcnt += dstlen + 1;
939 if ((size_t) sp->charcnt > sizeof sp->chars)
940 return -1;
941 cp = sp->chars;
942 (void) strncpy(cp, stdname, stdlen);
943 cp += stdlen;
944 *cp++ = '\0';
945 if (dstlen != 0) {
946 (void) strncpy(cp, dstname, dstlen);
947 *(cp + dstlen) = '\0';
948 }
949 return 0;
950 }
951
952 static void
953 gmtload(sp)
954 struct state * const sp;
955 {
956 if (tzload(gmt, sp) != 0)
957 (void) tzparse(gmt, sp, TRUE);
958 }
959
960 static void
961 tzsetwall_unlocked P((void))
962 {
963 if (lcl_is_set < 0)
964 return;
965 lcl_is_set = -1;
966
967 #ifdef ALL_STATE
968 if (lclptr == NULL) {
969 lclptr = (struct state *) malloc(sizeof *lclptr);
970 if (lclptr == NULL) {
971 settzname(); /* all we can do */
972 return;
973 }
974 }
975 #endif /* defined ALL_STATE */
976 if (tzload((char *) NULL, lclptr) != 0)
977 gmtload(lclptr);
978 settzname();
979 }
980
981 #ifndef STD_INSPIRED
982 /*
983 ** A non-static declaration of tzsetwall in a system header file
984 ** may cause a warning about this upcoming static declaration...
985 */
986 static
987 #endif /* !defined STD_INSPIRED */
988 void
989 tzsetwall P((void))
990 {
991 rwlock_wrlock(&lcl_lock);
992 tzsetwall_unlocked();
993 rwlock_unlock(&lcl_lock);
994 }
995
996 static void
997 tzset_unlocked P((void))
998 {
999 register const char * name;
1000
1001 name = getenv("TZ");
1002 if (name == NULL) {
1003 tzsetwall_unlocked();
1004 return;
1005 }
1006
1007 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1008 return;
1009 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
1010 if (lcl_is_set)
1011 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
1012
1013 #ifdef ALL_STATE
1014 if (lclptr == NULL) {
1015 lclptr = (struct state *) malloc(sizeof *lclptr);
1016 if (lclptr == NULL) {
1017 settzname(); /* all we can do */
1018 return;
1019 }
1020 }
1021 #endif /* defined ALL_STATE */
1022 if (*name == '\0') {
1023 /*
1024 ** User wants it fast rather than right.
1025 */
1026 lclptr->leapcnt = 0; /* so, we're off a little */
1027 lclptr->timecnt = 0;
1028 lclptr->ttis[0].tt_gmtoff = 0;
1029 lclptr->ttis[0].tt_abbrind = 0;
1030 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1031 } else if (tzload(name, lclptr) != 0)
1032 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1033 (void) gmtload(lclptr);
1034 settzname();
1035 }
1036
1037 void
1038 tzset P((void))
1039 {
1040 rwlock_wrlock(&lcl_lock);
1041 tzset_unlocked();
1042 rwlock_unlock(&lcl_lock);
1043 }
1044
1045 /*
1046 ** The easy way to behave "as if no library function calls" localtime
1047 ** is to not call it--so we drop its guts into "localsub", which can be
1048 ** freely called. (And no, the PANS doesn't require the above behavior--
1049 ** but it *is* desirable.)
1050 **
1051 ** The unused offset argument is for the benefit of mktime variants.
1052 */
1053
1054 /*ARGSUSED*/
1055 static void
1056 localsub(timep, offset, tmp)
1057 const time_t * const timep;
1058 const long offset;
1059 struct tm * const tmp;
1060 {
1061 register struct state * sp;
1062 register const struct ttinfo * ttisp;
1063 register int i;
1064 const time_t t = *timep;
1065
1066 sp = lclptr;
1067 #ifdef ALL_STATE
1068 if (sp == NULL) {
1069 gmtsub(timep, offset, tmp);
1070 return;
1071 }
1072 #endif /* defined ALL_STATE */
1073 if (sp->timecnt == 0 || t < sp->ats[0]) {
1074 i = 0;
1075 while (sp->ttis[i].tt_isdst)
1076 if (++i >= sp->typecnt) {
1077 i = 0;
1078 break;
1079 }
1080 } else {
1081 for (i = 1; i < sp->timecnt; ++i)
1082 if (t < sp->ats[i])
1083 break;
1084 i = sp->types[i - 1];
1085 }
1086 ttisp = &sp->ttis[i];
1087 /*
1088 ** To get (wrong) behavior that's compatible with System V Release 2.0
1089 ** you'd replace the statement below with
1090 ** t += ttisp->tt_gmtoff;
1091 ** timesub(&t, 0L, sp, tmp);
1092 */
1093 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1094 tmp->tm_isdst = ttisp->tt_isdst;
1095 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1096 #ifdef TM_ZONE
1097 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1098 #endif /* defined TM_ZONE */
1099 }
1100
1101 struct tm *
1102 localtime(timep)
1103 const time_t * const timep;
1104 {
1105 rwlock_wrlock(&lcl_lock);
1106 tzset_unlocked();
1107 localsub(timep, 0L, &tm);
1108 rwlock_unlock(&lcl_lock);
1109 return &tm;
1110 }
1111
1112 /*
1113 * Re-entrant version of localtime
1114 */
1115 struct tm *
1116 localtime_r(timep, tm)
1117 const time_t * const timep;
1118 struct tm * tm;
1119 {
1120 rwlock_rdlock(&lcl_lock);
1121 localsub(timep, 0L, tm);
1122 rwlock_unlock(&lcl_lock);
1123 return tm;
1124 }
1125
1126 /*
1127 ** gmtsub is to gmtime as localsub is to localtime.
1128 */
1129
1130 static void
1131 gmtsub(timep, offset, tmp)
1132 const time_t * const timep;
1133 const long offset;
1134 struct tm * const tmp;
1135 {
1136 #ifdef _REENT
1137 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1138 #endif
1139
1140 mutex_lock(&gmt_mutex);
1141 if (!gmt_is_set) {
1142 gmt_is_set = TRUE;
1143 #ifdef ALL_STATE
1144 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1145 if (gmtptr != NULL)
1146 #endif /* defined ALL_STATE */
1147 gmtload(gmtptr);
1148 }
1149 mutex_unlock(&gmt_mutex);
1150 timesub(timep, offset, gmtptr, tmp);
1151 #ifdef TM_ZONE
1152 /*
1153 ** Could get fancy here and deliver something such as
1154 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1155 ** but this is no time for a treasure hunt.
1156 */
1157 if (offset != 0)
1158 tmp->TM_ZONE = (__aconst char *)wildabbr;
1159 else {
1160 #ifdef ALL_STATE
1161 if (gmtptr == NULL)
1162 tmp->TM_ZONE = (__aconst char *)gmt;
1163 else tmp->TM_ZONE = gmtptr->chars;
1164 #endif /* defined ALL_STATE */
1165 #ifndef ALL_STATE
1166 tmp->TM_ZONE = gmtptr->chars;
1167 #endif /* State Farm */
1168 }
1169 #endif /* defined TM_ZONE */
1170 }
1171
1172 struct tm *
1173 gmtime(timep)
1174 const time_t * const timep;
1175 {
1176 gmtsub(timep, 0L, &tm);
1177 return &tm;
1178 }
1179
1180 /*
1181 * Re-entrant version of gmtime
1182 */
1183 struct tm *
1184 gmtime_r(timep, tm)
1185 const time_t * const timep;
1186 struct tm * tm;
1187 {
1188 gmtsub(timep, 0L, tm);
1189 return tm;
1190 }
1191
1192 #ifdef STD_INSPIRED
1193
1194 struct tm *
1195 offtime(timep, offset)
1196 const time_t * const timep;
1197 const long offset;
1198 {
1199 gmtsub(timep, offset, &tm);
1200 return &tm;
1201 }
1202
1203 #endif /* defined STD_INSPIRED */
1204
1205 static void
1206 timesub(timep, offset, sp, tmp)
1207 const time_t * const timep;
1208 const long offset;
1209 register const struct state * const sp;
1210 register struct tm * const tmp;
1211 {
1212 register const struct lsinfo * lp;
1213 register long days;
1214 register long rem;
1215 register int y;
1216 register int yleap;
1217 register const int * ip;
1218 register long corr;
1219 register int hit;
1220 register int i;
1221
1222 corr = 0;
1223 hit = 0;
1224 #ifdef ALL_STATE
1225 i = (sp == NULL) ? 0 : sp->leapcnt;
1226 #endif /* defined ALL_STATE */
1227 #ifndef ALL_STATE
1228 i = sp->leapcnt;
1229 #endif /* State Farm */
1230 while (--i >= 0) {
1231 lp = &sp->lsis[i];
1232 if (*timep >= lp->ls_trans) {
1233 if (*timep == lp->ls_trans) {
1234 hit = ((i == 0 && lp->ls_corr > 0) ||
1235 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1236 if (hit)
1237 while (i > 0 &&
1238 sp->lsis[i].ls_trans ==
1239 sp->lsis[i - 1].ls_trans + 1 &&
1240 sp->lsis[i].ls_corr ==
1241 sp->lsis[i - 1].ls_corr + 1) {
1242 ++hit;
1243 --i;
1244 }
1245 }
1246 corr = lp->ls_corr;
1247 break;
1248 }
1249 }
1250 days = *timep / SECSPERDAY;
1251 rem = *timep % SECSPERDAY;
1252 #ifdef mc68k
1253 if (*timep == 0x80000000) {
1254 /*
1255 ** A 3B1 muffs the division on the most negative number.
1256 */
1257 days = -24855;
1258 rem = -11648;
1259 }
1260 #endif /* defined mc68k */
1261 rem += (offset - corr);
1262 while (rem < 0) {
1263 rem += SECSPERDAY;
1264 --days;
1265 }
1266 while (rem >= SECSPERDAY) {
1267 rem -= SECSPERDAY;
1268 ++days;
1269 }
1270 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1271 rem = rem % SECSPERHOUR;
1272 tmp->tm_min = (int) (rem / SECSPERMIN);
1273 /*
1274 ** A positive leap second requires a special
1275 ** representation. This uses "... ??:59:60" et seq.
1276 */
1277 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1278 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1279 if (tmp->tm_wday < 0)
1280 tmp->tm_wday += DAYSPERWEEK;
1281 y = EPOCH_YEAR;
1282 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1283 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1284 register int newy;
1285
1286 newy = y + days / DAYSPERNYEAR;
1287 if (days < 0)
1288 --newy;
1289 days -= (newy - y) * DAYSPERNYEAR +
1290 LEAPS_THRU_END_OF(newy - 1) -
1291 LEAPS_THRU_END_OF(y - 1);
1292 y = newy;
1293 }
1294 tmp->tm_year = y - TM_YEAR_BASE;
1295 tmp->tm_yday = (int) days;
1296 ip = mon_lengths[yleap];
1297 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1298 days = days - (long) ip[tmp->tm_mon];
1299 tmp->tm_mday = (int) (days + 1);
1300 tmp->tm_isdst = 0;
1301 #ifdef TM_GMTOFF
1302 tmp->TM_GMTOFF = offset;
1303 #endif /* defined TM_GMTOFF */
1304 }
1305
1306 char *
1307 ctime(timep)
1308 const time_t * const timep;
1309 {
1310 /*
1311 ** Section 4.12.3.2 of X3.159-1989 requires that
1312 ** The ctime function converts the calendar time pointed to by timer
1313 ** to local time in the form of a string. It is equivalent to
1314 ** asctime(localtime(timer))
1315 */
1316 return asctime(localtime(timep));
1317 }
1318
1319 char *
1320 ctime_r(timep, buf)
1321 const time_t * const timep;
1322 char * buf;
1323 {
1324 struct tm tm;
1325
1326 return asctime_r(localtime_r(timep, &tm), buf);
1327 }
1328
1329 /*
1330 ** Adapted from code provided by Robert Elz, who writes:
1331 ** The "best" way to do mktime I think is based on an idea of Bob
1332 ** Kridle's (so its said...) from a long time ago.
1333 ** [kridle (at) xinet.com as of 1996-01-16.]
1334 ** It does a binary search of the time_t space. Since time_t's are
1335 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1336 ** would still be very reasonable).
1337 */
1338
1339 #ifndef WRONG
1340 #define WRONG (-1)
1341 #endif /* !defined WRONG */
1342
1343 /*
1344 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1345 */
1346
1347 static int
1348 increment_overflow(number, delta)
1349 int * number;
1350 int delta;
1351 {
1352 int number0;
1353
1354 number0 = *number;
1355 *number += delta;
1356 return (*number < number0) != (delta < 0);
1357 }
1358
1359 static int
1360 normalize_overflow(tensptr, unitsptr, base)
1361 int * const tensptr;
1362 int * const unitsptr;
1363 const int base;
1364 {
1365 register int tensdelta;
1366
1367 tensdelta = (*unitsptr >= 0) ?
1368 (*unitsptr / base) :
1369 (-1 - (-1 - *unitsptr) / base);
1370 *unitsptr -= tensdelta * base;
1371 return increment_overflow(tensptr, tensdelta);
1372 }
1373
1374 static int
1375 tmcomp(atmp, btmp)
1376 register const struct tm * const atmp;
1377 register const struct tm * const btmp;
1378 {
1379 register int result;
1380
1381 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1382 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1383 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1384 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1385 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1386 result = atmp->tm_sec - btmp->tm_sec;
1387 return result;
1388 }
1389
1390 static time_t
1391 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1392 struct tm * const tmp;
1393 void (* const funcp) P((const time_t*, long, struct tm*));
1394 const long offset;
1395 int * const okayp;
1396 const int do_norm_secs;
1397 {
1398 register const struct state * sp;
1399 register int dir;
1400 register int bits;
1401 register int i, j ;
1402 register int saved_seconds;
1403 time_t newt;
1404 time_t t;
1405 struct tm yourtm, mytm;
1406
1407 *okayp = FALSE;
1408 yourtm = *tmp;
1409 if (do_norm_secs) {
1410 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1411 SECSPERMIN))
1412 return WRONG;
1413 }
1414 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1415 return WRONG;
1416 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1417 return WRONG;
1418 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1419 return WRONG;
1420 /*
1421 ** Turn yourtm.tm_year into an actual year number for now.
1422 ** It is converted back to an offset from TM_YEAR_BASE later.
1423 */
1424 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1425 return WRONG;
1426 while (yourtm.tm_mday <= 0) {
1427 if (increment_overflow(&yourtm.tm_year, -1))
1428 return WRONG;
1429 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1430 yourtm.tm_mday += year_lengths[isleap(i)];
1431 }
1432 while (yourtm.tm_mday > DAYSPERLYEAR) {
1433 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1434 yourtm.tm_mday -= year_lengths[isleap(i)];
1435 if (increment_overflow(&yourtm.tm_year, 1))
1436 return WRONG;
1437 }
1438 for ( ; ; ) {
1439 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1440 if (yourtm.tm_mday <= i)
1441 break;
1442 yourtm.tm_mday -= i;
1443 if (++yourtm.tm_mon >= MONSPERYEAR) {
1444 yourtm.tm_mon = 0;
1445 if (increment_overflow(&yourtm.tm_year, 1))
1446 return WRONG;
1447 }
1448 }
1449 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1450 return WRONG;
1451 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1452 /*
1453 ** We can't set tm_sec to 0, because that might push the
1454 ** time below the minimum representable time.
1455 ** Set tm_sec to 59 instead.
1456 ** This assumes that the minimum representable time is
1457 ** not in the same minute that a leap second was deleted from,
1458 ** which is a safer assumption than using 58 would be.
1459 */
1460 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1461 return WRONG;
1462 saved_seconds = yourtm.tm_sec;
1463 yourtm.tm_sec = SECSPERMIN - 1;
1464 } else {
1465 saved_seconds = yourtm.tm_sec;
1466 yourtm.tm_sec = 0;
1467 }
1468 /*
1469 ** Divide the search space in half
1470 ** (this works whether time_t is signed or unsigned).
1471 */
1472 bits = TYPE_BIT(time_t) - 1;
1473 /*
1474 ** If time_t is signed, then 0 is just above the median,
1475 ** assuming two's complement arithmetic.
1476 ** If time_t is unsigned, then (1 << bits) is just above the median.
1477 */
1478 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1479 for ( ; ; ) {
1480 (*funcp)(&t, offset, &mytm);
1481 dir = tmcomp(&mytm, &yourtm);
1482 if (dir != 0) {
1483 if (bits-- < 0)
1484 return WRONG;
1485 if (bits < 0)
1486 --t; /* may be needed if new t is minimal */
1487 else if (dir > 0)
1488 t -= ((time_t) 1) << bits;
1489 else t += ((time_t) 1) << bits;
1490 continue;
1491 }
1492 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1493 break;
1494 /*
1495 ** Right time, wrong type.
1496 ** Hunt for right time, right type.
1497 ** It's okay to guess wrong since the guess
1498 ** gets checked.
1499 */
1500 /*
1501 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1502 */
1503 sp = (const struct state *)
1504 (((void *) funcp == (void *) localsub) ?
1505 lclptr : gmtptr);
1506 #ifdef ALL_STATE
1507 if (sp == NULL)
1508 return WRONG;
1509 #endif /* defined ALL_STATE */
1510 for (i = sp->typecnt - 1; i >= 0; --i) {
1511 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1512 continue;
1513 for (j = sp->typecnt - 1; j >= 0; --j) {
1514 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1515 continue;
1516 newt = t + sp->ttis[j].tt_gmtoff -
1517 sp->ttis[i].tt_gmtoff;
1518 (*funcp)(&newt, offset, &mytm);
1519 if (tmcomp(&mytm, &yourtm) != 0)
1520 continue;
1521 if (mytm.tm_isdst != yourtm.tm_isdst)
1522 continue;
1523 /*
1524 ** We have a match.
1525 */
1526 t = newt;
1527 goto label;
1528 }
1529 }
1530 return WRONG;
1531 }
1532 label:
1533 newt = t + saved_seconds;
1534 if ((newt < t) != (saved_seconds < 0))
1535 return WRONG;
1536 t = newt;
1537 (*funcp)(&t, offset, tmp);
1538 *okayp = TRUE;
1539 return t;
1540 }
1541
1542 static time_t
1543 time2(tmp, funcp, offset, okayp)
1544 struct tm * const tmp;
1545 void (* const funcp) P((const time_t*, long, struct tm*));
1546 const long offset;
1547 int * const okayp;
1548 {
1549 time_t t;
1550
1551 /*
1552 ** First try without normalization of seconds
1553 ** (in case tm_sec contains a value associated with a leap second).
1554 ** If that fails, try with normalization of seconds.
1555 */
1556 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1557 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1558 }
1559
1560 static time_t
1561 time1(tmp, funcp, offset)
1562 struct tm * const tmp;
1563 void (* const funcp) P((const time_t *, long, struct tm *));
1564 const long offset;
1565 {
1566 register time_t t;
1567 register const struct state * sp;
1568 register int samei, otheri;
1569 int okay;
1570
1571 if (tmp->tm_isdst > 1)
1572 tmp->tm_isdst = 1;
1573 t = time2(tmp, funcp, offset, &okay);
1574 #ifdef PCTS
1575 /*
1576 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1577 */
1578 if (okay)
1579 return t;
1580 if (tmp->tm_isdst < 0)
1581 tmp->tm_isdst = 0; /* reset to std and try again */
1582 #endif /* defined PCTS */
1583 #ifndef PCTS
1584 if (okay || tmp->tm_isdst < 0)
1585 return t;
1586 #endif /* !defined PCTS */
1587 /*
1588 ** We're supposed to assume that somebody took a time of one type
1589 ** and did some math on it that yielded a "struct tm" that's bad.
1590 ** We try to divine the type they started from and adjust to the
1591 ** type they need.
1592 */
1593 /*
1594 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1595 */
1596 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1597 lclptr : gmtptr);
1598 #ifdef ALL_STATE
1599 if (sp == NULL)
1600 return WRONG;
1601 #endif /* defined ALL_STATE */
1602 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1603 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1604 continue;
1605 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1606 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1607 continue;
1608 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1609 sp->ttis[samei].tt_gmtoff;
1610 tmp->tm_isdst = !tmp->tm_isdst;
1611 t = time2(tmp, funcp, offset, &okay);
1612 if (okay)
1613 return t;
1614 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1615 sp->ttis[samei].tt_gmtoff;
1616 tmp->tm_isdst = !tmp->tm_isdst;
1617 }
1618 }
1619 return WRONG;
1620 }
1621
1622 time_t
1623 mktime(tmp)
1624 struct tm * const tmp;
1625 {
1626 time_t result;
1627
1628 rwlock_wrlock(&lcl_lock);
1629 tzset_unlocked();
1630 result = time1(tmp, localsub, 0L);
1631 rwlock_unlock(&lcl_lock);
1632 return (result);
1633 }
1634
1635 #ifdef STD_INSPIRED
1636
1637 time_t
1638 timelocal(tmp)
1639 struct tm * const tmp;
1640 {
1641 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1642 return mktime(tmp);
1643 }
1644
1645 time_t
1646 timegm(tmp)
1647 struct tm * const tmp;
1648 {
1649 tmp->tm_isdst = 0;
1650 return time1(tmp, gmtsub, 0L);
1651 }
1652
1653 time_t
1654 timeoff(tmp, offset)
1655 struct tm * const tmp;
1656 const long offset;
1657 {
1658 tmp->tm_isdst = 0;
1659 return time1(tmp, gmtsub, offset);
1660 }
1661
1662 #endif /* defined STD_INSPIRED */
1663
1664 #ifdef CMUCS
1665
1666 /*
1667 ** The following is supplied for compatibility with
1668 ** previous versions of the CMUCS runtime library.
1669 */
1670
1671 long
1672 gtime(tmp)
1673 struct tm * const tmp;
1674 {
1675 const time_t t = mktime(tmp);
1676
1677 if (t == WRONG)
1678 return -1;
1679 return t;
1680 }
1681
1682 #endif /* defined CMUCS */
1683
1684 /*
1685 ** XXX--is the below the right way to conditionalize??
1686 */
1687
1688 #ifdef STD_INSPIRED
1689
1690 /*
1691 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1692 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1693 ** is not the case if we are accounting for leap seconds.
1694 ** So, we provide the following conversion routines for use
1695 ** when exchanging timestamps with POSIX conforming systems.
1696 */
1697
1698 static long
1699 leapcorr(timep)
1700 time_t * timep;
1701 {
1702 register struct state * sp;
1703 register struct lsinfo * lp;
1704 register int i;
1705
1706 sp = lclptr;
1707 i = sp->leapcnt;
1708 while (--i >= 0) {
1709 lp = &sp->lsis[i];
1710 if (*timep >= lp->ls_trans)
1711 return lp->ls_corr;
1712 }
1713 return 0;
1714 }
1715
1716 time_t
1717 time2posix(t)
1718 time_t t;
1719 {
1720 time_t result;
1721
1722 rwlock_wrlock(&lcl_lock);
1723 tzset_unlocked();
1724 result = t - leapcorr(&t);
1725 rwlock_unlock(&lcl_lock);
1726 return (result);
1727 }
1728
1729 time_t
1730 posix2time(t)
1731 time_t t;
1732 {
1733 time_t x;
1734 time_t y;
1735
1736 rwlock_wrlock(&lcl_lock);
1737 tzset_unlocked();
1738 /*
1739 ** For a positive leap second hit, the result
1740 ** is not unique. For a negative leap second
1741 ** hit, the corresponding time doesn't exist,
1742 ** so we return an adjacent second.
1743 */
1744 x = t + leapcorr(&t);
1745 y = x - leapcorr(&x);
1746 if (y < t) {
1747 do {
1748 x++;
1749 y = x - leapcorr(&x);
1750 } while (y < t);
1751 if (t != y) {
1752 rwlock_unlock(&lcl_lock);
1753 return x - 1;
1754 }
1755 } else if (y > t) {
1756 do {
1757 --x;
1758 y = x - leapcorr(&x);
1759 } while (y > t);
1760 if (t != y) {
1761 rwlock_unlock(&lcl_lock);
1762 return x + 1;
1763 }
1764 }
1765 rwlock_unlock(&lcl_lock);
1766 return x;
1767 }
1768
1769 #endif /* defined STD_INSPIRED */
1770