localtime.c revision 1.20 1 /* $NetBSD: localtime.c,v 1.20 1998/10/16 12:56:44 kleink Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char elsieid[] = "@(#)localtime.c 7.66";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.20 1998/10/16 12:56:44 kleink Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18
19 /*
20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy (at) auspex.com).
23 */
24
25 /*LINTLIBRARY*/
26
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #ifdef __weak_alias
34 __weak_alias(ctime_r,_ctime_r);
35 __weak_alias(gmtime_r,_gmtime_r);
36 __weak_alias(localtime_r,_localtime_r);
37 __weak_alias(offtime,_offtime);
38 __weak_alias(posix2time,_posix2time);
39 __weak_alias(time2posix,_time2posix);
40 __weak_alias(timegm,_timegm);
41 __weak_alias(timelocal,_timelocal);
42 __weak_alias(timeoff,_timeoff);
43 __weak_alias(tzname,_tzname);
44 __weak_alias(tzset,_tzset);
45 __weak_alias(tzsetwall,_tzsetwall);
46 #endif
47
48 /*
49 ** SunOS 4.1.1 headers lack O_BINARY.
50 */
51
52 #ifdef O_BINARY
53 #define OPEN_MODE (O_RDONLY | O_BINARY)
54 #endif /* defined O_BINARY */
55 #ifndef O_BINARY
56 #define OPEN_MODE O_RDONLY
57 #endif /* !defined O_BINARY */
58
59 #ifndef WILDABBR
60 /*
61 ** Someone might make incorrect use of a time zone abbreviation:
62 ** 1. They might reference tzname[0] before calling tzset (explicitly
63 ** or implicitly).
64 ** 2. They might reference tzname[1] before calling tzset (explicitly
65 ** or implicitly).
66 ** 3. They might reference tzname[1] after setting to a time zone
67 ** in which Daylight Saving Time is never observed.
68 ** 4. They might reference tzname[0] after setting to a time zone
69 ** in which Standard Time is never observed.
70 ** 5. They might reference tm.TM_ZONE after calling offtime.
71 ** What's best to do in the above cases is open to debate;
72 ** for now, we just set things up so that in any of the five cases
73 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
74 ** string "tzname[0] used before set", and similarly for the other cases.
75 ** And another: initialize tzname[0] to "ERA", with an explanation in the
76 ** manual page of what this "time zone abbreviation" means (doing this so
77 ** that tzname[0] has the "normal" length of three characters).
78 */
79 #define WILDABBR " "
80 #endif /* !defined WILDABBR */
81
82 static const char wildabbr[] = "WILDABBR";
83
84 static const char gmt[] = "GMT";
85
86 struct ttinfo { /* time type information */
87 long tt_gmtoff; /* UTC offset in seconds */
88 int tt_isdst; /* used to set tm_isdst */
89 int tt_abbrind; /* abbreviation list index */
90 int tt_ttisstd; /* TRUE if transition is std time */
91 int tt_ttisgmt; /* TRUE if transition is UTC */
92 };
93
94 struct lsinfo { /* leap second information */
95 time_t ls_trans; /* transition time */
96 long ls_corr; /* correction to apply */
97 };
98
99 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
100
101 #ifdef TZNAME_MAX
102 #define MY_TZNAME_MAX TZNAME_MAX
103 #endif /* defined TZNAME_MAX */
104 #ifndef TZNAME_MAX
105 #define MY_TZNAME_MAX 255
106 #endif /* !defined TZNAME_MAX */
107
108 struct state {
109 int leapcnt;
110 int timecnt;
111 int typecnt;
112 int charcnt;
113 time_t ats[TZ_MAX_TIMES];
114 unsigned char types[TZ_MAX_TIMES];
115 struct ttinfo ttis[TZ_MAX_TYPES];
116 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
117 (2 * (MY_TZNAME_MAX + 1)))];
118 struct lsinfo lsis[TZ_MAX_LEAPS];
119 };
120
121 struct rule {
122 int r_type; /* type of rule--see below */
123 int r_day; /* day number of rule */
124 int r_week; /* week number of rule */
125 int r_mon; /* month number of rule */
126 long r_time; /* transition time of rule */
127 };
128
129 #define JULIAN_DAY 0 /* Jn - Julian day */
130 #define DAY_OF_YEAR 1 /* n - day of year */
131 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
132
133 /*
134 ** Prototypes for static functions.
135 */
136
137 static long detzcode P((const char * codep));
138 static const char * getzname P((const char * strp));
139 static const char * getnum P((const char * strp, int * nump, int min,
140 int max));
141 static const char * getsecs P((const char * strp, long * secsp));
142 static const char * getoffset P((const char * strp, long * offsetp));
143 static const char * getrule P((const char * strp, struct rule * rulep));
144 static void gmtload P((struct state * sp));
145 static void gmtsub P((const time_t * timep, long offset,
146 struct tm * tmp));
147 static void localsub P((const time_t * timep, long offset,
148 struct tm * tmp));
149 static int increment_overflow P((int * number, int delta));
150 static int normalize_overflow P((int * tensptr, int * unitsptr,
151 int base));
152 static void settzname P((void));
153 static time_t time1 P((struct tm * tmp,
154 void(*funcp) P((const time_t *,
155 long, struct tm *)),
156 long offset));
157 static time_t time2 P((struct tm *tmp,
158 void(*funcp) P((const time_t *,
159 long, struct tm*)),
160 long offset, int * okayp));
161 static time_t time2sub P((struct tm *tmp,
162 void(*funcp) P((const time_t *,
163 long, struct tm*)),
164 long offset, int * okayp, int do_norm_secs));
165 static void timesub P((const time_t * timep, long offset,
166 const struct state * sp, struct tm * tmp));
167 static int tmcomp P((const struct tm * atmp,
168 const struct tm * btmp));
169 static time_t transtime P((time_t janfirst, int year,
170 const struct rule * rulep, long offset));
171 static int tzload P((const char * name, struct state * sp));
172 static int tzparse P((const char * name, struct state * sp,
173 int lastditch));
174 static void tzset_unlocked P((void));
175 static void tzsetwall_unlocked P((void));
176 #ifdef STD_INSPIRED
177 static long leapcorr P((time_t * timep));
178 #endif
179
180 #ifdef ALL_STATE
181 static struct state * lclptr;
182 static struct state * gmtptr;
183 #endif /* defined ALL_STATE */
184
185 #ifndef ALL_STATE
186 static struct state lclmem;
187 static struct state gmtmem;
188 #define lclptr (&lclmem)
189 #define gmtptr (&gmtmem)
190 #endif /* State Farm */
191
192 #ifndef TZ_STRLEN_MAX
193 #define TZ_STRLEN_MAX 255
194 #endif /* !defined TZ_STRLEN_MAX */
195
196 static char lcl_TZname[TZ_STRLEN_MAX + 1];
197 static int lcl_is_set;
198 static int gmt_is_set;
199
200 __aconst char * tzname[2] = {
201 (__aconst char *)wildabbr,
202 (__aconst char *)wildabbr
203 };
204
205 #ifdef _REENT
206 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
207 #endif
208
209 /*
210 ** Section 4.12.3 of X3.159-1989 requires that
211 ** Except for the strftime function, these functions [asctime,
212 ** ctime, gmtime, localtime] return values in one of two static
213 ** objects: a broken-down time structure and an array of char.
214 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
215 */
216
217 static struct tm tm;
218
219 #ifdef USG_COMPAT
220 time_t timezone = 0;
221 int daylight = 0;
222 #endif /* defined USG_COMPAT */
223
224 #ifdef ALTZONE
225 time_t altzone = 0;
226 #endif /* defined ALTZONE */
227
228 static long
229 detzcode(codep)
230 const char * const codep;
231 {
232 register long result;
233
234 /*
235 ** The first character must be sign extended on systems with >32bit
236 ** longs. This was solved differently in the master tzcode sources
237 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
238 ** that this implementation is superior.
239 */
240
241 #ifdef __STDC__
242 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
243 #else
244 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
245 #endif
246
247 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
248 | (codep[1] & 0xff) << 16 \
249 | (codep[2] & 0xff) << 8
250 | (codep[3] & 0xff);
251 return result;
252 }
253
254 static void
255 settzname P((void))
256 {
257 register struct state * const sp = lclptr;
258 register int i;
259
260 tzname[0] = (__aconst char *)wildabbr;
261 tzname[1] = (__aconst char *)wildabbr;
262 #ifdef USG_COMPAT
263 daylight = 0;
264 timezone = 0;
265 #endif /* defined USG_COMPAT */
266 #ifdef ALTZONE
267 altzone = 0;
268 #endif /* defined ALTZONE */
269 #ifdef ALL_STATE
270 if (sp == NULL) {
271 tzname[0] = tzname[1] = (__aconst char *)gmt;
272 return;
273 }
274 #endif /* defined ALL_STATE */
275 for (i = 0; i < sp->typecnt; ++i) {
276 register const struct ttinfo * const ttisp = &sp->ttis[i];
277
278 tzname[ttisp->tt_isdst] =
279 &sp->chars[ttisp->tt_abbrind];
280 #ifdef USG_COMPAT
281 if (ttisp->tt_isdst)
282 daylight = 1;
283 if (i == 0 || !ttisp->tt_isdst)
284 timezone = -(ttisp->tt_gmtoff);
285 #endif /* defined USG_COMPAT */
286 #ifdef ALTZONE
287 if (i == 0 || ttisp->tt_isdst)
288 altzone = -(ttisp->tt_gmtoff);
289 #endif /* defined ALTZONE */
290 }
291 /*
292 ** And to get the latest zone names into tzname. . .
293 */
294 for (i = 0; i < sp->timecnt; ++i) {
295 register const struct ttinfo * const ttisp =
296 &sp->ttis[
297 sp->types[i]];
298
299 tzname[ttisp->tt_isdst] =
300 &sp->chars[ttisp->tt_abbrind];
301 }
302 }
303
304 static int
305 tzload(name, sp)
306 register const char * name;
307 register struct state * const sp;
308 {
309 register const char * p;
310 register int i;
311 register int fid;
312
313 if (name == NULL && (name = TZDEFAULT) == NULL)
314 return -1;
315
316 {
317 register int doaccess;
318 /*
319 ** Section 4.9.1 of the C standard says that
320 ** "FILENAME_MAX expands to an integral constant expression
321 ** that is the size needed for an array of char large enough
322 ** to hold the longest file name string that the implementation
323 ** guarantees can be opened."
324 */
325 char fullname[FILENAME_MAX + 1];
326
327 if (name[0] == ':')
328 ++name;
329 doaccess = name[0] == '/';
330 if (!doaccess) {
331 if ((p = TZDIR) == NULL)
332 return -1;
333 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
334 return -1;
335 (void) strcpy(fullname, p); /* XXX strcpy is safe */
336 (void) strcat(fullname, "/"); /* XXX strcat is safe */
337 (void) strcat(fullname, name); /* XXX strcat is safe */
338 /*
339 ** Set doaccess if '.' (as in "../") shows up in name.
340 */
341 if (strchr(name, '.') != NULL)
342 doaccess = TRUE;
343 name = fullname;
344 }
345 if (doaccess && access(name, R_OK) != 0)
346 return -1;
347 /*
348 * XXX potential security problem here if user of a set-id
349 * program has set TZ (which is passed in as name) here,
350 * and uses a race condition trick to defeat the access(2)
351 * above.
352 */
353 if ((fid = open(name, OPEN_MODE)) == -1)
354 return -1;
355 }
356 {
357 struct tzhead * tzhp;
358 union {
359 struct tzhead tzhead;
360 char buf[sizeof *sp + sizeof *tzhp];
361 } u;
362 int ttisstdcnt;
363 int ttisgmtcnt;
364
365 i = read(fid, u.buf, sizeof u.buf);
366 if (close(fid) != 0)
367 return -1;
368 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
369 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
370 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
371 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
372 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
373 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
374 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
375 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
376 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
377 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
378 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
379 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
380 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
381 return -1;
382 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
383 sp->timecnt + /* types */
384 sp->typecnt * (4 + 2) + /* ttinfos */
385 sp->charcnt + /* chars */
386 sp->leapcnt * (4 + 4) + /* lsinfos */
387 ttisstdcnt + /* ttisstds */
388 ttisgmtcnt) /* ttisgmts */
389 return -1;
390 for (i = 0; i < sp->timecnt; ++i) {
391 sp->ats[i] = detzcode(p);
392 p += 4;
393 }
394 for (i = 0; i < sp->timecnt; ++i) {
395 sp->types[i] = (unsigned char) *p++;
396 if (sp->types[i] >= sp->typecnt)
397 return -1;
398 }
399 for (i = 0; i < sp->typecnt; ++i) {
400 register struct ttinfo * ttisp;
401
402 ttisp = &sp->ttis[i];
403 ttisp->tt_gmtoff = detzcode(p);
404 p += 4;
405 ttisp->tt_isdst = (unsigned char) *p++;
406 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
407 return -1;
408 ttisp->tt_abbrind = (unsigned char) *p++;
409 if (ttisp->tt_abbrind < 0 ||
410 ttisp->tt_abbrind > sp->charcnt)
411 return -1;
412 }
413 for (i = 0; i < sp->charcnt; ++i)
414 sp->chars[i] = *p++;
415 sp->chars[i] = '\0'; /* ensure '\0' at end */
416 for (i = 0; i < sp->leapcnt; ++i) {
417 register struct lsinfo * lsisp;
418
419 lsisp = &sp->lsis[i];
420 lsisp->ls_trans = detzcode(p);
421 p += 4;
422 lsisp->ls_corr = detzcode(p);
423 p += 4;
424 }
425 for (i = 0; i < sp->typecnt; ++i) {
426 register struct ttinfo * ttisp;
427
428 ttisp = &sp->ttis[i];
429 if (ttisstdcnt == 0)
430 ttisp->tt_ttisstd = FALSE;
431 else {
432 ttisp->tt_ttisstd = *p++;
433 if (ttisp->tt_ttisstd != TRUE &&
434 ttisp->tt_ttisstd != FALSE)
435 return -1;
436 }
437 }
438 for (i = 0; i < sp->typecnt; ++i) {
439 register struct ttinfo * ttisp;
440
441 ttisp = &sp->ttis[i];
442 if (ttisgmtcnt == 0)
443 ttisp->tt_ttisgmt = FALSE;
444 else {
445 ttisp->tt_ttisgmt = *p++;
446 if (ttisp->tt_ttisgmt != TRUE &&
447 ttisp->tt_ttisgmt != FALSE)
448 return -1;
449 }
450 }
451 }
452 return 0;
453 }
454
455 static const int mon_lengths[2][MONSPERYEAR] = {
456 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
457 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
458 };
459
460 static const int year_lengths[2] = {
461 DAYSPERNYEAR, DAYSPERLYEAR
462 };
463
464 /*
465 ** Given a pointer into a time zone string, scan until a character that is not
466 ** a valid character in a zone name is found. Return a pointer to that
467 ** character.
468 */
469
470 static const char *
471 getzname(strp)
472 register const char * strp;
473 {
474 register char c;
475
476 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
477 c != '+')
478 ++strp;
479 return strp;
480 }
481
482 /*
483 ** Given a pointer into a time zone string, extract a number from that string.
484 ** Check that the number is within a specified range; if it is not, return
485 ** NULL.
486 ** Otherwise, return a pointer to the first character not part of the number.
487 */
488
489 static const char *
490 getnum(strp, nump, min, max)
491 register const char * strp;
492 int * const nump;
493 const int min;
494 const int max;
495 {
496 register char c;
497 register int num;
498
499 if (strp == NULL || !is_digit(c = *strp))
500 return NULL;
501 num = 0;
502 do {
503 num = num * 10 + (c - '0');
504 if (num > max)
505 return NULL; /* illegal value */
506 c = *++strp;
507 } while (is_digit(c));
508 if (num < min)
509 return NULL; /* illegal value */
510 *nump = num;
511 return strp;
512 }
513
514 /*
515 ** Given a pointer into a time zone string, extract a number of seconds,
516 ** in hh[:mm[:ss]] form, from the string.
517 ** If any error occurs, return NULL.
518 ** Otherwise, return a pointer to the first character not part of the number
519 ** of seconds.
520 */
521
522 static const char *
523 getsecs(strp, secsp)
524 register const char * strp;
525 long * const secsp;
526 {
527 int num;
528
529 /*
530 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
531 ** "M10.4.6/26", which does not conform to Posix,
532 ** but which specifies the equivalent of
533 ** ``02:00 on the first Sunday on or after 23 Oct''.
534 */
535 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
536 if (strp == NULL)
537 return NULL;
538 *secsp = num * (long) SECSPERHOUR;
539 if (*strp == ':') {
540 ++strp;
541 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
542 if (strp == NULL)
543 return NULL;
544 *secsp += num * SECSPERMIN;
545 if (*strp == ':') {
546 ++strp;
547 /* `SECSPERMIN' allows for leap seconds. */
548 strp = getnum(strp, &num, 0, SECSPERMIN);
549 if (strp == NULL)
550 return NULL;
551 *secsp += num;
552 }
553 }
554 return strp;
555 }
556
557 /*
558 ** Given a pointer into a time zone string, extract an offset, in
559 ** [+-]hh[:mm[:ss]] form, from the string.
560 ** If any error occurs, return NULL.
561 ** Otherwise, return a pointer to the first character not part of the time.
562 */
563
564 static const char *
565 getoffset(strp, offsetp)
566 register const char * strp;
567 long * const offsetp;
568 {
569 register int neg = 0;
570
571 if (*strp == '-') {
572 neg = 1;
573 ++strp;
574 } else if (*strp == '+')
575 ++strp;
576 strp = getsecs(strp, offsetp);
577 if (strp == NULL)
578 return NULL; /* illegal time */
579 if (neg)
580 *offsetp = -*offsetp;
581 return strp;
582 }
583
584 /*
585 ** Given a pointer into a time zone string, extract a rule in the form
586 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
587 ** If a valid rule is not found, return NULL.
588 ** Otherwise, return a pointer to the first character not part of the rule.
589 */
590
591 static const char *
592 getrule(strp, rulep)
593 const char * strp;
594 register struct rule * const rulep;
595 {
596 if (*strp == 'J') {
597 /*
598 ** Julian day.
599 */
600 rulep->r_type = JULIAN_DAY;
601 ++strp;
602 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
603 } else if (*strp == 'M') {
604 /*
605 ** Month, week, day.
606 */
607 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
608 ++strp;
609 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
610 if (strp == NULL)
611 return NULL;
612 if (*strp++ != '.')
613 return NULL;
614 strp = getnum(strp, &rulep->r_week, 1, 5);
615 if (strp == NULL)
616 return NULL;
617 if (*strp++ != '.')
618 return NULL;
619 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
620 } else if (is_digit(*strp)) {
621 /*
622 ** Day of year.
623 */
624 rulep->r_type = DAY_OF_YEAR;
625 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
626 } else return NULL; /* invalid format */
627 if (strp == NULL)
628 return NULL;
629 if (*strp == '/') {
630 /*
631 ** Time specified.
632 */
633 ++strp;
634 strp = getsecs(strp, &rulep->r_time);
635 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
636 return strp;
637 }
638
639 /*
640 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
641 ** year, a rule, and the offset from UTC at the time that rule takes effect,
642 ** calculate the Epoch-relative time that rule takes effect.
643 */
644
645 static time_t
646 transtime(janfirst, year, rulep, offset)
647 const time_t janfirst;
648 const int year;
649 register const struct rule * const rulep;
650 const long offset;
651 {
652 register int leapyear;
653 register time_t value;
654 register int i;
655 int d, m1, yy0, yy1, yy2, dow;
656
657 INITIALIZE(value);
658 leapyear = isleap(year);
659 switch (rulep->r_type) {
660
661 case JULIAN_DAY:
662 /*
663 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
664 ** years.
665 ** In non-leap years, or if the day number is 59 or less, just
666 ** add SECSPERDAY times the day number-1 to the time of
667 ** January 1, midnight, to get the day.
668 */
669 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
670 if (leapyear && rulep->r_day >= 60)
671 value += SECSPERDAY;
672 break;
673
674 case DAY_OF_YEAR:
675 /*
676 ** n - day of year.
677 ** Just add SECSPERDAY times the day number to the time of
678 ** January 1, midnight, to get the day.
679 */
680 value = janfirst + rulep->r_day * SECSPERDAY;
681 break;
682
683 case MONTH_NTH_DAY_OF_WEEK:
684 /*
685 ** Mm.n.d - nth "dth day" of month m.
686 */
687 value = janfirst;
688 for (i = 0; i < rulep->r_mon - 1; ++i)
689 value += mon_lengths[leapyear][i] * SECSPERDAY;
690
691 /*
692 ** Use Zeller's Congruence to get day-of-week of first day of
693 ** month.
694 */
695 m1 = (rulep->r_mon + 9) % 12 + 1;
696 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
697 yy1 = yy0 / 100;
698 yy2 = yy0 % 100;
699 dow = ((26 * m1 - 2) / 10 +
700 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
701 if (dow < 0)
702 dow += DAYSPERWEEK;
703
704 /*
705 ** "dow" is the day-of-week of the first day of the month. Get
706 ** the day-of-month (zero-origin) of the first "dow" day of the
707 ** month.
708 */
709 d = rulep->r_day - dow;
710 if (d < 0)
711 d += DAYSPERWEEK;
712 for (i = 1; i < rulep->r_week; ++i) {
713 if (d + DAYSPERWEEK >=
714 mon_lengths[leapyear][rulep->r_mon - 1])
715 break;
716 d += DAYSPERWEEK;
717 }
718
719 /*
720 ** "d" is the day-of-month (zero-origin) of the day we want.
721 */
722 value += d * SECSPERDAY;
723 break;
724 }
725
726 /*
727 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
728 ** question. To get the Epoch-relative time of the specified local
729 ** time on that day, add the transition time and the current offset
730 ** from UTC.
731 */
732 return value + rulep->r_time + offset;
733 }
734
735 /*
736 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
737 ** appropriate.
738 */
739
740 static int
741 tzparse(name, sp, lastditch)
742 const char * name;
743 register struct state * const sp;
744 const int lastditch;
745 {
746 const char * stdname;
747 const char * dstname;
748 size_t stdlen;
749 size_t dstlen;
750 long stdoffset;
751 long dstoffset;
752 register time_t * atp;
753 register unsigned char * typep;
754 register char * cp;
755 register int load_result;
756
757 INITIALIZE(dstname);
758 stdname = name;
759 if (lastditch) {
760 stdlen = strlen(name); /* length of standard zone name */
761 name += stdlen;
762 if (stdlen >= sizeof sp->chars)
763 stdlen = (sizeof sp->chars) - 1;
764 stdoffset = 0;
765 } else {
766 name = getzname(name);
767 stdlen = name - stdname;
768 if (stdlen < 3)
769 return -1;
770 if (*name == '\0')
771 return -1;
772 name = getoffset(name, &stdoffset);
773 if (name == NULL)
774 return -1;
775 }
776 load_result = tzload(TZDEFRULES, sp);
777 if (load_result != 0)
778 sp->leapcnt = 0; /* so, we're off a little */
779 if (*name != '\0') {
780 dstname = name;
781 name = getzname(name);
782 dstlen = name - dstname; /* length of DST zone name */
783 if (dstlen < 3)
784 return -1;
785 if (*name != '\0' && *name != ',' && *name != ';') {
786 name = getoffset(name, &dstoffset);
787 if (name == NULL)
788 return -1;
789 } else dstoffset = stdoffset - SECSPERHOUR;
790 if (*name == ',' || *name == ';') {
791 struct rule start;
792 struct rule end;
793 register int year;
794 register time_t janfirst;
795 time_t starttime;
796 time_t endtime;
797
798 ++name;
799 if ((name = getrule(name, &start)) == NULL)
800 return -1;
801 if (*name++ != ',')
802 return -1;
803 if ((name = getrule(name, &end)) == NULL)
804 return -1;
805 if (*name != '\0')
806 return -1;
807 sp->typecnt = 2; /* standard time and DST */
808 /*
809 ** Two transitions per year, from EPOCH_YEAR to 2037.
810 */
811 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
812 if (sp->timecnt > TZ_MAX_TIMES)
813 return -1;
814 sp->ttis[0].tt_gmtoff = -dstoffset;
815 sp->ttis[0].tt_isdst = 1;
816 sp->ttis[0].tt_abbrind = stdlen + 1;
817 sp->ttis[1].tt_gmtoff = -stdoffset;
818 sp->ttis[1].tt_isdst = 0;
819 sp->ttis[1].tt_abbrind = 0;
820 atp = sp->ats;
821 typep = sp->types;
822 janfirst = 0;
823 for (year = EPOCH_YEAR; year <= 2037; ++year) {
824 starttime = transtime(janfirst, year, &start,
825 stdoffset);
826 endtime = transtime(janfirst, year, &end,
827 dstoffset);
828 if (starttime > endtime) {
829 *atp++ = endtime;
830 *typep++ = 1; /* DST ends */
831 *atp++ = starttime;
832 *typep++ = 0; /* DST begins */
833 } else {
834 *atp++ = starttime;
835 *typep++ = 0; /* DST begins */
836 *atp++ = endtime;
837 *typep++ = 1; /* DST ends */
838 }
839 janfirst += year_lengths[isleap(year)] *
840 SECSPERDAY;
841 }
842 } else {
843 register long theirstdoffset;
844 register long theirdstoffset;
845 register long theiroffset;
846 register int isdst;
847 register int i;
848 register int j;
849
850 if (*name != '\0')
851 return -1;
852 if (load_result != 0)
853 return -1;
854 /*
855 ** Initial values of theirstdoffset and theirdstoffset.
856 */
857 theirstdoffset = 0;
858 for (i = 0; i < sp->timecnt; ++i) {
859 j = sp->types[i];
860 if (!sp->ttis[j].tt_isdst) {
861 theirstdoffset =
862 -sp->ttis[j].tt_gmtoff;
863 break;
864 }
865 }
866 theirdstoffset = 0;
867 for (i = 0; i < sp->timecnt; ++i) {
868 j = sp->types[i];
869 if (sp->ttis[j].tt_isdst) {
870 theirdstoffset =
871 -sp->ttis[j].tt_gmtoff;
872 break;
873 }
874 }
875 /*
876 ** Initially we're assumed to be in standard time.
877 */
878 isdst = FALSE;
879 theiroffset = theirstdoffset;
880 /*
881 ** Now juggle transition times and types
882 ** tracking offsets as you do.
883 */
884 for (i = 0; i < sp->timecnt; ++i) {
885 j = sp->types[i];
886 sp->types[i] = sp->ttis[j].tt_isdst;
887 if (sp->ttis[j].tt_ttisgmt) {
888 /* No adjustment to transition time */
889 } else {
890 /*
891 ** If summer time is in effect, and the
892 ** transition time was not specified as
893 ** standard time, add the summer time
894 ** offset to the transition time;
895 ** otherwise, add the standard time
896 ** offset to the transition time.
897 */
898 /*
899 ** Transitions from DST to DDST
900 ** will effectively disappear since
901 ** POSIX provides for only one DST
902 ** offset.
903 */
904 if (isdst && !sp->ttis[j].tt_ttisstd) {
905 sp->ats[i] += dstoffset -
906 theirdstoffset;
907 } else {
908 sp->ats[i] += stdoffset -
909 theirstdoffset;
910 }
911 }
912 theiroffset = -sp->ttis[j].tt_gmtoff;
913 if (sp->ttis[j].tt_isdst)
914 theirdstoffset = theiroffset;
915 else theirstdoffset = theiroffset;
916 }
917 /*
918 ** Finally, fill in ttis.
919 ** ttisstd and ttisgmt need not be handled.
920 */
921 sp->ttis[0].tt_gmtoff = -stdoffset;
922 sp->ttis[0].tt_isdst = FALSE;
923 sp->ttis[0].tt_abbrind = 0;
924 sp->ttis[1].tt_gmtoff = -dstoffset;
925 sp->ttis[1].tt_isdst = TRUE;
926 sp->ttis[1].tt_abbrind = stdlen + 1;
927 sp->typecnt = 2;
928 }
929 } else {
930 dstlen = 0;
931 sp->typecnt = 1; /* only standard time */
932 sp->timecnt = 0;
933 sp->ttis[0].tt_gmtoff = -stdoffset;
934 sp->ttis[0].tt_isdst = 0;
935 sp->ttis[0].tt_abbrind = 0;
936 }
937 sp->charcnt = stdlen + 1;
938 if (dstlen != 0)
939 sp->charcnt += dstlen + 1;
940 if ((size_t) sp->charcnt > sizeof sp->chars)
941 return -1;
942 cp = sp->chars;
943 (void) strncpy(cp, stdname, stdlen);
944 cp += stdlen;
945 *cp++ = '\0';
946 if (dstlen != 0) {
947 (void) strncpy(cp, dstname, dstlen);
948 *(cp + dstlen) = '\0';
949 }
950 return 0;
951 }
952
953 static void
954 gmtload(sp)
955 struct state * const sp;
956 {
957 if (tzload(gmt, sp) != 0)
958 (void) tzparse(gmt, sp, TRUE);
959 }
960
961 static void
962 tzsetwall_unlocked P((void))
963 {
964 if (lcl_is_set < 0)
965 return;
966 lcl_is_set = -1;
967
968 #ifdef ALL_STATE
969 if (lclptr == NULL) {
970 lclptr = (struct state *) malloc(sizeof *lclptr);
971 if (lclptr == NULL) {
972 settzname(); /* all we can do */
973 return;
974 }
975 }
976 #endif /* defined ALL_STATE */
977 if (tzload((char *) NULL, lclptr) != 0)
978 gmtload(lclptr);
979 settzname();
980 }
981
982 #ifndef STD_INSPIRED
983 /*
984 ** A non-static declaration of tzsetwall in a system header file
985 ** may cause a warning about this upcoming static declaration...
986 */
987 static
988 #endif /* !defined STD_INSPIRED */
989 void
990 tzsetwall P((void))
991 {
992 rwlock_wrlock(&lcl_lock);
993 tzsetwall_unlocked();
994 rwlock_unlock(&lcl_lock);
995 }
996
997 static void
998 tzset_unlocked P((void))
999 {
1000 register const char * name;
1001
1002 name = getenv("TZ");
1003 if (name == NULL) {
1004 tzsetwall_unlocked();
1005 return;
1006 }
1007
1008 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1009 return;
1010 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
1011 if (lcl_is_set)
1012 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
1013
1014 #ifdef ALL_STATE
1015 if (lclptr == NULL) {
1016 lclptr = (struct state *) malloc(sizeof *lclptr);
1017 if (lclptr == NULL) {
1018 settzname(); /* all we can do */
1019 return;
1020 }
1021 }
1022 #endif /* defined ALL_STATE */
1023 if (*name == '\0') {
1024 /*
1025 ** User wants it fast rather than right.
1026 */
1027 lclptr->leapcnt = 0; /* so, we're off a little */
1028 lclptr->timecnt = 0;
1029 lclptr->ttis[0].tt_gmtoff = 0;
1030 lclptr->ttis[0].tt_abbrind = 0;
1031 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1032 } else if (tzload(name, lclptr) != 0)
1033 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1034 (void) gmtload(lclptr);
1035 settzname();
1036 }
1037
1038 void
1039 tzset P((void))
1040 {
1041 rwlock_wrlock(&lcl_lock);
1042 tzset_unlocked();
1043 rwlock_unlock(&lcl_lock);
1044 }
1045
1046 /*
1047 ** The easy way to behave "as if no library function calls" localtime
1048 ** is to not call it--so we drop its guts into "localsub", which can be
1049 ** freely called. (And no, the PANS doesn't require the above behavior--
1050 ** but it *is* desirable.)
1051 **
1052 ** The unused offset argument is for the benefit of mktime variants.
1053 */
1054
1055 /*ARGSUSED*/
1056 static void
1057 localsub(timep, offset, tmp)
1058 const time_t * const timep;
1059 const long offset;
1060 struct tm * const tmp;
1061 {
1062 register struct state * sp;
1063 register const struct ttinfo * ttisp;
1064 register int i;
1065 const time_t t = *timep;
1066
1067 sp = lclptr;
1068 #ifdef ALL_STATE
1069 if (sp == NULL) {
1070 gmtsub(timep, offset, tmp);
1071 return;
1072 }
1073 #endif /* defined ALL_STATE */
1074 if (sp->timecnt == 0 || t < sp->ats[0]) {
1075 i = 0;
1076 while (sp->ttis[i].tt_isdst)
1077 if (++i >= sp->typecnt) {
1078 i = 0;
1079 break;
1080 }
1081 } else {
1082 for (i = 1; i < sp->timecnt; ++i)
1083 if (t < sp->ats[i])
1084 break;
1085 i = sp->types[i - 1];
1086 }
1087 ttisp = &sp->ttis[i];
1088 /*
1089 ** To get (wrong) behavior that's compatible with System V Release 2.0
1090 ** you'd replace the statement below with
1091 ** t += ttisp->tt_gmtoff;
1092 ** timesub(&t, 0L, sp, tmp);
1093 */
1094 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1095 tmp->tm_isdst = ttisp->tt_isdst;
1096 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1097 #ifdef TM_ZONE
1098 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1099 #endif /* defined TM_ZONE */
1100 }
1101
1102 struct tm *
1103 localtime(timep)
1104 const time_t * const timep;
1105 {
1106 rwlock_wrlock(&lcl_lock);
1107 tzset_unlocked();
1108 localsub(timep, 0L, &tm);
1109 rwlock_unlock(&lcl_lock);
1110 return &tm;
1111 }
1112
1113 /*
1114 * Re-entrant version of localtime
1115 */
1116 struct tm *
1117 localtime_r(timep, tm)
1118 const time_t * const timep;
1119 struct tm * tm;
1120 {
1121 rwlock_rdlock(&lcl_lock);
1122 localsub(timep, 0L, tm);
1123 rwlock_unlock(&lcl_lock);
1124 return tm;
1125 }
1126
1127 /*
1128 ** gmtsub is to gmtime as localsub is to localtime.
1129 */
1130
1131 static void
1132 gmtsub(timep, offset, tmp)
1133 const time_t * const timep;
1134 const long offset;
1135 struct tm * const tmp;
1136 {
1137 #ifdef _REENT
1138 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1139 #endif
1140
1141 mutex_lock(&gmt_mutex);
1142 if (!gmt_is_set) {
1143 gmt_is_set = TRUE;
1144 #ifdef ALL_STATE
1145 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1146 if (gmtptr != NULL)
1147 #endif /* defined ALL_STATE */
1148 gmtload(gmtptr);
1149 }
1150 mutex_unlock(&gmt_mutex);
1151 timesub(timep, offset, gmtptr, tmp);
1152 #ifdef TM_ZONE
1153 /*
1154 ** Could get fancy here and deliver something such as
1155 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1156 ** but this is no time for a treasure hunt.
1157 */
1158 if (offset != 0)
1159 tmp->TM_ZONE = (__aconst char *)wildabbr;
1160 else {
1161 #ifdef ALL_STATE
1162 if (gmtptr == NULL)
1163 tmp->TM_ZONE = (__aconst char *)gmt;
1164 else tmp->TM_ZONE = gmtptr->chars;
1165 #endif /* defined ALL_STATE */
1166 #ifndef ALL_STATE
1167 tmp->TM_ZONE = gmtptr->chars;
1168 #endif /* State Farm */
1169 }
1170 #endif /* defined TM_ZONE */
1171 }
1172
1173 struct tm *
1174 gmtime(timep)
1175 const time_t * const timep;
1176 {
1177 gmtsub(timep, 0L, &tm);
1178 return &tm;
1179 }
1180
1181 /*
1182 * Re-entrant version of gmtime
1183 */
1184 struct tm *
1185 gmtime_r(timep, tm)
1186 const time_t * const timep;
1187 struct tm * tm;
1188 {
1189 gmtsub(timep, 0L, tm);
1190 return tm;
1191 }
1192
1193 #ifdef STD_INSPIRED
1194
1195 struct tm *
1196 offtime(timep, offset)
1197 const time_t * const timep;
1198 const long offset;
1199 {
1200 gmtsub(timep, offset, &tm);
1201 return &tm;
1202 }
1203
1204 #endif /* defined STD_INSPIRED */
1205
1206 static void
1207 timesub(timep, offset, sp, tmp)
1208 const time_t * const timep;
1209 const long offset;
1210 register const struct state * const sp;
1211 register struct tm * const tmp;
1212 {
1213 register const struct lsinfo * lp;
1214 register long days;
1215 register long rem;
1216 register int y;
1217 register int yleap;
1218 register const int * ip;
1219 register long corr;
1220 register int hit;
1221 register int i;
1222
1223 corr = 0;
1224 hit = 0;
1225 #ifdef ALL_STATE
1226 i = (sp == NULL) ? 0 : sp->leapcnt;
1227 #endif /* defined ALL_STATE */
1228 #ifndef ALL_STATE
1229 i = sp->leapcnt;
1230 #endif /* State Farm */
1231 while (--i >= 0) {
1232 lp = &sp->lsis[i];
1233 if (*timep >= lp->ls_trans) {
1234 if (*timep == lp->ls_trans) {
1235 hit = ((i == 0 && lp->ls_corr > 0) ||
1236 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1237 if (hit)
1238 while (i > 0 &&
1239 sp->lsis[i].ls_trans ==
1240 sp->lsis[i - 1].ls_trans + 1 &&
1241 sp->lsis[i].ls_corr ==
1242 sp->lsis[i - 1].ls_corr + 1) {
1243 ++hit;
1244 --i;
1245 }
1246 }
1247 corr = lp->ls_corr;
1248 break;
1249 }
1250 }
1251 days = *timep / SECSPERDAY;
1252 rem = *timep % SECSPERDAY;
1253 #ifdef mc68k
1254 if (*timep == 0x80000000) {
1255 /*
1256 ** A 3B1 muffs the division on the most negative number.
1257 */
1258 days = -24855;
1259 rem = -11648;
1260 }
1261 #endif /* defined mc68k */
1262 rem += (offset - corr);
1263 while (rem < 0) {
1264 rem += SECSPERDAY;
1265 --days;
1266 }
1267 while (rem >= SECSPERDAY) {
1268 rem -= SECSPERDAY;
1269 ++days;
1270 }
1271 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1272 rem = rem % SECSPERHOUR;
1273 tmp->tm_min = (int) (rem / SECSPERMIN);
1274 /*
1275 ** A positive leap second requires a special
1276 ** representation. This uses "... ??:59:60" et seq.
1277 */
1278 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1279 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1280 if (tmp->tm_wday < 0)
1281 tmp->tm_wday += DAYSPERWEEK;
1282 y = EPOCH_YEAR;
1283 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1284 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1285 register int newy;
1286
1287 newy = y + days / DAYSPERNYEAR;
1288 if (days < 0)
1289 --newy;
1290 days -= (newy - y) * DAYSPERNYEAR +
1291 LEAPS_THRU_END_OF(newy - 1) -
1292 LEAPS_THRU_END_OF(y - 1);
1293 y = newy;
1294 }
1295 tmp->tm_year = y - TM_YEAR_BASE;
1296 tmp->tm_yday = (int) days;
1297 ip = mon_lengths[yleap];
1298 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1299 days = days - (long) ip[tmp->tm_mon];
1300 tmp->tm_mday = (int) (days + 1);
1301 tmp->tm_isdst = 0;
1302 #ifdef TM_GMTOFF
1303 tmp->TM_GMTOFF = offset;
1304 #endif /* defined TM_GMTOFF */
1305 }
1306
1307 char *
1308 ctime(timep)
1309 const time_t * const timep;
1310 {
1311 /*
1312 ** Section 4.12.3.2 of X3.159-1989 requires that
1313 ** The ctime function converts the calendar time pointed to by timer
1314 ** to local time in the form of a string. It is equivalent to
1315 ** asctime(localtime(timer))
1316 */
1317 return asctime(localtime(timep));
1318 }
1319
1320 char *
1321 ctime_r(timep, buf)
1322 const time_t * const timep;
1323 char * buf;
1324 {
1325 struct tm tm;
1326
1327 return asctime_r(localtime_r(timep, &tm), buf);
1328 }
1329
1330 /*
1331 ** Adapted from code provided by Robert Elz, who writes:
1332 ** The "best" way to do mktime I think is based on an idea of Bob
1333 ** Kridle's (so its said...) from a long time ago.
1334 ** [kridle (at) xinet.com as of 1996-01-16.]
1335 ** It does a binary search of the time_t space. Since time_t's are
1336 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1337 ** would still be very reasonable).
1338 */
1339
1340 #ifndef WRONG
1341 #define WRONG (-1)
1342 #endif /* !defined WRONG */
1343
1344 /*
1345 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1346 */
1347
1348 static int
1349 increment_overflow(number, delta)
1350 int * number;
1351 int delta;
1352 {
1353 int number0;
1354
1355 number0 = *number;
1356 *number += delta;
1357 return (*number < number0) != (delta < 0);
1358 }
1359
1360 static int
1361 normalize_overflow(tensptr, unitsptr, base)
1362 int * const tensptr;
1363 int * const unitsptr;
1364 const int base;
1365 {
1366 register int tensdelta;
1367
1368 tensdelta = (*unitsptr >= 0) ?
1369 (*unitsptr / base) :
1370 (-1 - (-1 - *unitsptr) / base);
1371 *unitsptr -= tensdelta * base;
1372 return increment_overflow(tensptr, tensdelta);
1373 }
1374
1375 static int
1376 tmcomp(atmp, btmp)
1377 register const struct tm * const atmp;
1378 register const struct tm * const btmp;
1379 {
1380 register int result;
1381
1382 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1383 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1384 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1385 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1386 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1387 result = atmp->tm_sec - btmp->tm_sec;
1388 return result;
1389 }
1390
1391 static time_t
1392 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1393 struct tm * const tmp;
1394 void (* const funcp) P((const time_t*, long, struct tm*));
1395 const long offset;
1396 int * const okayp;
1397 const int do_norm_secs;
1398 {
1399 register const struct state * sp;
1400 register int dir;
1401 register int bits;
1402 register int i, j ;
1403 register int saved_seconds;
1404 time_t newt;
1405 time_t t;
1406 struct tm yourtm, mytm;
1407
1408 *okayp = FALSE;
1409 yourtm = *tmp;
1410 if (do_norm_secs) {
1411 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1412 SECSPERMIN))
1413 return WRONG;
1414 }
1415 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1416 return WRONG;
1417 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1418 return WRONG;
1419 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1420 return WRONG;
1421 /*
1422 ** Turn yourtm.tm_year into an actual year number for now.
1423 ** It is converted back to an offset from TM_YEAR_BASE later.
1424 */
1425 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1426 return WRONG;
1427 while (yourtm.tm_mday <= 0) {
1428 if (increment_overflow(&yourtm.tm_year, -1))
1429 return WRONG;
1430 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1431 yourtm.tm_mday += year_lengths[isleap(i)];
1432 }
1433 while (yourtm.tm_mday > DAYSPERLYEAR) {
1434 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1435 yourtm.tm_mday -= year_lengths[isleap(i)];
1436 if (increment_overflow(&yourtm.tm_year, 1))
1437 return WRONG;
1438 }
1439 for ( ; ; ) {
1440 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1441 if (yourtm.tm_mday <= i)
1442 break;
1443 yourtm.tm_mday -= i;
1444 if (++yourtm.tm_mon >= MONSPERYEAR) {
1445 yourtm.tm_mon = 0;
1446 if (increment_overflow(&yourtm.tm_year, 1))
1447 return WRONG;
1448 }
1449 }
1450 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1451 return WRONG;
1452 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1453 /*
1454 ** We can't set tm_sec to 0, because that might push the
1455 ** time below the minimum representable time.
1456 ** Set tm_sec to 59 instead.
1457 ** This assumes that the minimum representable time is
1458 ** not in the same minute that a leap second was deleted from,
1459 ** which is a safer assumption than using 58 would be.
1460 */
1461 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1462 return WRONG;
1463 saved_seconds = yourtm.tm_sec;
1464 yourtm.tm_sec = SECSPERMIN - 1;
1465 } else {
1466 saved_seconds = yourtm.tm_sec;
1467 yourtm.tm_sec = 0;
1468 }
1469 /*
1470 ** Divide the search space in half
1471 ** (this works whether time_t is signed or unsigned).
1472 */
1473 bits = TYPE_BIT(time_t) - 1;
1474 /*
1475 ** If time_t is signed, then 0 is just above the median,
1476 ** assuming two's complement arithmetic.
1477 ** If time_t is unsigned, then (1 << bits) is just above the median.
1478 */
1479 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1480 for ( ; ; ) {
1481 (*funcp)(&t, offset, &mytm);
1482 dir = tmcomp(&mytm, &yourtm);
1483 if (dir != 0) {
1484 if (bits-- < 0)
1485 return WRONG;
1486 if (bits < 0)
1487 --t; /* may be needed if new t is minimal */
1488 else if (dir > 0)
1489 t -= ((time_t) 1) << bits;
1490 else t += ((time_t) 1) << bits;
1491 continue;
1492 }
1493 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1494 break;
1495 /*
1496 ** Right time, wrong type.
1497 ** Hunt for right time, right type.
1498 ** It's okay to guess wrong since the guess
1499 ** gets checked.
1500 */
1501 /*
1502 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1503 */
1504 sp = (const struct state *)
1505 (((void *) funcp == (void *) localsub) ?
1506 lclptr : gmtptr);
1507 #ifdef ALL_STATE
1508 if (sp == NULL)
1509 return WRONG;
1510 #endif /* defined ALL_STATE */
1511 for (i = sp->typecnt - 1; i >= 0; --i) {
1512 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1513 continue;
1514 for (j = sp->typecnt - 1; j >= 0; --j) {
1515 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1516 continue;
1517 newt = t + sp->ttis[j].tt_gmtoff -
1518 sp->ttis[i].tt_gmtoff;
1519 (*funcp)(&newt, offset, &mytm);
1520 if (tmcomp(&mytm, &yourtm) != 0)
1521 continue;
1522 if (mytm.tm_isdst != yourtm.tm_isdst)
1523 continue;
1524 /*
1525 ** We have a match.
1526 */
1527 t = newt;
1528 goto label;
1529 }
1530 }
1531 return WRONG;
1532 }
1533 label:
1534 newt = t + saved_seconds;
1535 if ((newt < t) != (saved_seconds < 0))
1536 return WRONG;
1537 t = newt;
1538 (*funcp)(&t, offset, tmp);
1539 *okayp = TRUE;
1540 return t;
1541 }
1542
1543 static time_t
1544 time2(tmp, funcp, offset, okayp)
1545 struct tm * const tmp;
1546 void (* const funcp) P((const time_t*, long, struct tm*));
1547 const long offset;
1548 int * const okayp;
1549 {
1550 time_t t;
1551
1552 /*
1553 ** First try without normalization of seconds
1554 ** (in case tm_sec contains a value associated with a leap second).
1555 ** If that fails, try with normalization of seconds.
1556 */
1557 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1558 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1559 }
1560
1561 static time_t
1562 time1(tmp, funcp, offset)
1563 struct tm * const tmp;
1564 void (* const funcp) P((const time_t *, long, struct tm *));
1565 const long offset;
1566 {
1567 register time_t t;
1568 register const struct state * sp;
1569 register int samei, otheri;
1570 int okay;
1571
1572 if (tmp->tm_isdst > 1)
1573 tmp->tm_isdst = 1;
1574 t = time2(tmp, funcp, offset, &okay);
1575 #ifdef PCTS
1576 /*
1577 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1578 */
1579 if (okay)
1580 return t;
1581 if (tmp->tm_isdst < 0)
1582 tmp->tm_isdst = 0; /* reset to std and try again */
1583 #endif /* defined PCTS */
1584 #ifndef PCTS
1585 if (okay || tmp->tm_isdst < 0)
1586 return t;
1587 #endif /* !defined PCTS */
1588 /*
1589 ** We're supposed to assume that somebody took a time of one type
1590 ** and did some math on it that yielded a "struct tm" that's bad.
1591 ** We try to divine the type they started from and adjust to the
1592 ** type they need.
1593 */
1594 /*
1595 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1596 */
1597 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1598 lclptr : gmtptr);
1599 #ifdef ALL_STATE
1600 if (sp == NULL)
1601 return WRONG;
1602 #endif /* defined ALL_STATE */
1603 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1604 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1605 continue;
1606 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1607 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1608 continue;
1609 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1610 sp->ttis[samei].tt_gmtoff;
1611 tmp->tm_isdst = !tmp->tm_isdst;
1612 t = time2(tmp, funcp, offset, &okay);
1613 if (okay)
1614 return t;
1615 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1616 sp->ttis[samei].tt_gmtoff;
1617 tmp->tm_isdst = !tmp->tm_isdst;
1618 }
1619 }
1620 return WRONG;
1621 }
1622
1623 time_t
1624 mktime(tmp)
1625 struct tm * const tmp;
1626 {
1627 time_t result;
1628
1629 rwlock_wrlock(&lcl_lock);
1630 tzset_unlocked();
1631 result = time1(tmp, localsub, 0L);
1632 rwlock_unlock(&lcl_lock);
1633 return (result);
1634 }
1635
1636 #ifdef STD_INSPIRED
1637
1638 time_t
1639 timelocal(tmp)
1640 struct tm * const tmp;
1641 {
1642 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1643 return mktime(tmp);
1644 }
1645
1646 time_t
1647 timegm(tmp)
1648 struct tm * const tmp;
1649 {
1650 tmp->tm_isdst = 0;
1651 return time1(tmp, gmtsub, 0L);
1652 }
1653
1654 time_t
1655 timeoff(tmp, offset)
1656 struct tm * const tmp;
1657 const long offset;
1658 {
1659 tmp->tm_isdst = 0;
1660 return time1(tmp, gmtsub, offset);
1661 }
1662
1663 #endif /* defined STD_INSPIRED */
1664
1665 #ifdef CMUCS
1666
1667 /*
1668 ** The following is supplied for compatibility with
1669 ** previous versions of the CMUCS runtime library.
1670 */
1671
1672 long
1673 gtime(tmp)
1674 struct tm * const tmp;
1675 {
1676 const time_t t = mktime(tmp);
1677
1678 if (t == WRONG)
1679 return -1;
1680 return t;
1681 }
1682
1683 #endif /* defined CMUCS */
1684
1685 /*
1686 ** XXX--is the below the right way to conditionalize??
1687 */
1688
1689 #ifdef STD_INSPIRED
1690
1691 /*
1692 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1693 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1694 ** is not the case if we are accounting for leap seconds.
1695 ** So, we provide the following conversion routines for use
1696 ** when exchanging timestamps with POSIX conforming systems.
1697 */
1698
1699 static long
1700 leapcorr(timep)
1701 time_t * timep;
1702 {
1703 register struct state * sp;
1704 register struct lsinfo * lp;
1705 register int i;
1706
1707 sp = lclptr;
1708 i = sp->leapcnt;
1709 while (--i >= 0) {
1710 lp = &sp->lsis[i];
1711 if (*timep >= lp->ls_trans)
1712 return lp->ls_corr;
1713 }
1714 return 0;
1715 }
1716
1717 time_t
1718 time2posix(t)
1719 time_t t;
1720 {
1721 time_t result;
1722
1723 rwlock_wrlock(&lcl_lock);
1724 tzset_unlocked();
1725 result = t - leapcorr(&t);
1726 rwlock_unlock(&lcl_lock);
1727 return (result);
1728 }
1729
1730 time_t
1731 posix2time(t)
1732 time_t t;
1733 {
1734 time_t x;
1735 time_t y;
1736
1737 rwlock_wrlock(&lcl_lock);
1738 tzset_unlocked();
1739 /*
1740 ** For a positive leap second hit, the result
1741 ** is not unique. For a negative leap second
1742 ** hit, the corresponding time doesn't exist,
1743 ** so we return an adjacent second.
1744 */
1745 x = t + leapcorr(&t);
1746 y = x - leapcorr(&x);
1747 if (y < t) {
1748 do {
1749 x++;
1750 y = x - leapcorr(&x);
1751 } while (y < t);
1752 if (t != y) {
1753 rwlock_unlock(&lcl_lock);
1754 return x - 1;
1755 }
1756 } else if (y > t) {
1757 do {
1758 --x;
1759 y = x - leapcorr(&x);
1760 } while (y > t);
1761 if (t != y) {
1762 rwlock_unlock(&lcl_lock);
1763 return x + 1;
1764 }
1765 }
1766 rwlock_unlock(&lcl_lock);
1767 return x;
1768 }
1769
1770 #endif /* defined STD_INSPIRED */
1771