localtime.c revision 1.21 1 /* $NetBSD: localtime.c,v 1.21 1998/11/15 17:11:06 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #ifndef lint
10 #ifndef NOID
11 #if 0
12 static char elsieid[] = "@(#)localtime.c 7.66";
13 #else
14 __RCSID("$NetBSD: localtime.c,v 1.21 1998/11/15 17:11:06 christos Exp $");
15 #endif
16 #endif /* !defined NOID */
17 #endif /* !defined lint */
18
19 /*
20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 ** POSIX-style TZ environment variable handling from Guy Harris
22 ** (guy (at) auspex.com).
23 */
24
25 /*LINTLIBRARY*/
26
27 #include "namespace.h"
28 #include "private.h"
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #ifdef __weak_alias
34 __weak_alias(ctime_r,_ctime_r);
35 __weak_alias(gmtime_r,_gmtime_r);
36 __weak_alias(localtime_r,_localtime_r);
37 __weak_alias(offtime,_offtime);
38 __weak_alias(posix2time,_posix2time);
39 __weak_alias(time2posix,_time2posix);
40 __weak_alias(timegm,_timegm);
41 __weak_alias(timelocal,_timelocal);
42 __weak_alias(timeoff,_timeoff);
43 __weak_alias(tzname,_tzname);
44 __weak_alias(tzset,_tzset);
45 __weak_alias(tzsetwall,_tzsetwall);
46 #endif
47
48 /*
49 ** SunOS 4.1.1 headers lack O_BINARY.
50 */
51
52 #ifdef O_BINARY
53 #define OPEN_MODE (O_RDONLY | O_BINARY)
54 #endif /* defined O_BINARY */
55 #ifndef O_BINARY
56 #define OPEN_MODE O_RDONLY
57 #endif /* !defined O_BINARY */
58
59 #ifndef WILDABBR
60 /*
61 ** Someone might make incorrect use of a time zone abbreviation:
62 ** 1. They might reference tzname[0] before calling tzset (explicitly
63 ** or implicitly).
64 ** 2. They might reference tzname[1] before calling tzset (explicitly
65 ** or implicitly).
66 ** 3. They might reference tzname[1] after setting to a time zone
67 ** in which Daylight Saving Time is never observed.
68 ** 4. They might reference tzname[0] after setting to a time zone
69 ** in which Standard Time is never observed.
70 ** 5. They might reference tm.TM_ZONE after calling offtime.
71 ** What's best to do in the above cases is open to debate;
72 ** for now, we just set things up so that in any of the five cases
73 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
74 ** string "tzname[0] used before set", and similarly for the other cases.
75 ** And another: initialize tzname[0] to "ERA", with an explanation in the
76 ** manual page of what this "time zone abbreviation" means (doing this so
77 ** that tzname[0] has the "normal" length of three characters).
78 */
79 #define WILDABBR " "
80 #endif /* !defined WILDABBR */
81
82 static const char wildabbr[] = "WILDABBR";
83
84 static const char gmt[] = "GMT";
85
86 struct ttinfo { /* time type information */
87 long tt_gmtoff; /* UTC offset in seconds */
88 int tt_isdst; /* used to set tm_isdst */
89 int tt_abbrind; /* abbreviation list index */
90 int tt_ttisstd; /* TRUE if transition is std time */
91 int tt_ttisgmt; /* TRUE if transition is UTC */
92 };
93
94 struct lsinfo { /* leap second information */
95 time_t ls_trans; /* transition time */
96 long ls_corr; /* correction to apply */
97 };
98
99 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
100
101 #ifdef TZNAME_MAX
102 #define MY_TZNAME_MAX TZNAME_MAX
103 #endif /* defined TZNAME_MAX */
104 #ifndef TZNAME_MAX
105 #define MY_TZNAME_MAX 255
106 #endif /* !defined TZNAME_MAX */
107
108 struct state {
109 int leapcnt;
110 int timecnt;
111 int typecnt;
112 int charcnt;
113 time_t ats[TZ_MAX_TIMES];
114 unsigned char types[TZ_MAX_TIMES];
115 struct ttinfo ttis[TZ_MAX_TYPES];
116 char chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
117 (2 * (MY_TZNAME_MAX + 1)))];
118 struct lsinfo lsis[TZ_MAX_LEAPS];
119 };
120
121 struct rule {
122 int r_type; /* type of rule--see below */
123 int r_day; /* day number of rule */
124 int r_week; /* week number of rule */
125 int r_mon; /* month number of rule */
126 long r_time; /* transition time of rule */
127 };
128
129 #define JULIAN_DAY 0 /* Jn - Julian day */
130 #define DAY_OF_YEAR 1 /* n - day of year */
131 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
132
133 /*
134 ** Prototypes for static functions.
135 */
136
137 static long detzcode P((const char * codep));
138 static const char * getzname P((const char * strp));
139 static const char * getnum P((const char * strp, int * nump, int min,
140 int max));
141 static const char * getsecs P((const char * strp, long * secsp));
142 static const char * getoffset P((const char * strp, long * offsetp));
143 static const char * getrule P((const char * strp, struct rule * rulep));
144 static void gmtload P((struct state * sp));
145 static void gmtsub P((const time_t * timep, long offset,
146 struct tm * tmp));
147 static void localsub P((const time_t * timep, long offset,
148 struct tm * tmp));
149 static int increment_overflow P((int * number, int delta));
150 static int normalize_overflow P((int * tensptr, int * unitsptr,
151 int base));
152 static void settzname P((void));
153 static time_t time1 P((struct tm * tmp,
154 void(*funcp) P((const time_t *,
155 long, struct tm *)),
156 long offset));
157 static time_t time2 P((struct tm *tmp,
158 void(*funcp) P((const time_t *,
159 long, struct tm*)),
160 long offset, int * okayp));
161 static time_t time2sub P((struct tm *tmp,
162 void(*funcp) P((const time_t *,
163 long, struct tm*)),
164 long offset, int * okayp, int do_norm_secs));
165 static void timesub P((const time_t * timep, long offset,
166 const struct state * sp, struct tm * tmp));
167 static int tmcomp P((const struct tm * atmp,
168 const struct tm * btmp));
169 static time_t transtime P((time_t janfirst, int year,
170 const struct rule * rulep, long offset));
171 static int tzload P((const char * name, struct state * sp));
172 static int tzparse P((const char * name, struct state * sp,
173 int lastditch));
174 static void tzset_unlocked P((void));
175 static void tzsetwall_unlocked P((void));
176 #ifdef STD_INSPIRED
177 static long leapcorr P((time_t * timep));
178 #endif
179
180 #ifdef ALL_STATE
181 static struct state * lclptr;
182 static struct state * gmtptr;
183 #endif /* defined ALL_STATE */
184
185 #ifndef ALL_STATE
186 static struct state lclmem;
187 static struct state gmtmem;
188 #define lclptr (&lclmem)
189 #define gmtptr (&gmtmem)
190 #endif /* State Farm */
191
192 #ifndef TZ_STRLEN_MAX
193 #define TZ_STRLEN_MAX 255
194 #endif /* !defined TZ_STRLEN_MAX */
195
196 static char lcl_TZname[TZ_STRLEN_MAX + 1];
197 static int lcl_is_set;
198 static int gmt_is_set;
199
200 __aconst char * tzname[2] = {
201 /* LINTED const castaway */
202 (__aconst char *)wildabbr,
203 /* LINTED const castaway */
204 (__aconst char *)wildabbr
205 };
206
207 #ifdef _REENT
208 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
209 #endif
210
211 /*
212 ** Section 4.12.3 of X3.159-1989 requires that
213 ** Except for the strftime function, these functions [asctime,
214 ** ctime, gmtime, localtime] return values in one of two static
215 ** objects: a broken-down time structure and an array of char.
216 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
217 */
218
219 static struct tm tm;
220
221 #ifdef USG_COMPAT
222 time_t timezone = 0;
223 int daylight = 0;
224 #endif /* defined USG_COMPAT */
225
226 #ifdef ALTZONE
227 time_t altzone = 0;
228 #endif /* defined ALTZONE */
229
230 static long
231 detzcode(codep)
232 const char * const codep;
233 {
234 register long result;
235
236 /*
237 ** The first character must be sign extended on systems with >32bit
238 ** longs. This was solved differently in the master tzcode sources
239 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
240 ** that this implementation is superior.
241 */
242
243 #ifdef __STDC__
244 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
245 #else
246 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
247 #endif
248
249 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
250 | (codep[1] & 0xff) << 16 \
251 | (codep[2] & 0xff) << 8
252 | (codep[3] & 0xff);
253 return result;
254 }
255
256 static void
257 settzname P((void))
258 {
259 register struct state * const sp = lclptr;
260 register int i;
261
262 /* LINTED const castaway */
263 tzname[0] = (__aconst char *)wildabbr;
264 /* LINTED const castaway */
265 tzname[1] = (__aconst char *)wildabbr;
266 #ifdef USG_COMPAT
267 daylight = 0;
268 timezone = 0;
269 #endif /* defined USG_COMPAT */
270 #ifdef ALTZONE
271 altzone = 0;
272 #endif /* defined ALTZONE */
273 #ifdef ALL_STATE
274 if (sp == NULL) {
275 tzname[0] = tzname[1] = (__aconst char *)gmt;
276 return;
277 }
278 #endif /* defined ALL_STATE */
279 for (i = 0; i < sp->typecnt; ++i) {
280 register const struct ttinfo * const ttisp = &sp->ttis[i];
281
282 tzname[ttisp->tt_isdst] =
283 &sp->chars[ttisp->tt_abbrind];
284 #ifdef USG_COMPAT
285 if (ttisp->tt_isdst)
286 daylight = 1;
287 if (i == 0 || !ttisp->tt_isdst)
288 timezone = -(ttisp->tt_gmtoff);
289 #endif /* defined USG_COMPAT */
290 #ifdef ALTZONE
291 if (i == 0 || ttisp->tt_isdst)
292 altzone = -(ttisp->tt_gmtoff);
293 #endif /* defined ALTZONE */
294 }
295 /*
296 ** And to get the latest zone names into tzname. . .
297 */
298 for (i = 0; i < sp->timecnt; ++i) {
299 register const struct ttinfo * const ttisp =
300 &sp->ttis[
301 sp->types[i]];
302
303 tzname[ttisp->tt_isdst] =
304 &sp->chars[ttisp->tt_abbrind];
305 }
306 }
307
308 static int
309 tzload(name, sp)
310 register const char * name;
311 register struct state * const sp;
312 {
313 register const char * p;
314 register int i;
315 register int fid;
316
317 if (name == NULL && (name = TZDEFAULT) == NULL)
318 return -1;
319
320 {
321 register int doaccess;
322 /*
323 ** Section 4.9.1 of the C standard says that
324 ** "FILENAME_MAX expands to an integral constant expression
325 ** that is the size needed for an array of char large enough
326 ** to hold the longest file name string that the implementation
327 ** guarantees can be opened."
328 */
329 char fullname[FILENAME_MAX + 1];
330
331 if (name[0] == ':')
332 ++name;
333 doaccess = name[0] == '/';
334 if (!doaccess) {
335 if ((p = TZDIR) == NULL)
336 return -1;
337 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
338 return -1;
339 (void) strcpy(fullname, p); /* XXX strcpy is safe */
340 (void) strcat(fullname, "/"); /* XXX strcat is safe */
341 (void) strcat(fullname, name); /* XXX strcat is safe */
342 /*
343 ** Set doaccess if '.' (as in "../") shows up in name.
344 */
345 if (strchr(name, '.') != NULL)
346 doaccess = TRUE;
347 name = fullname;
348 }
349 if (doaccess && access(name, R_OK) != 0)
350 return -1;
351 /*
352 * XXX potential security problem here if user of a set-id
353 * program has set TZ (which is passed in as name) here,
354 * and uses a race condition trick to defeat the access(2)
355 * above.
356 */
357 if ((fid = open(name, OPEN_MODE)) == -1)
358 return -1;
359 }
360 {
361 struct tzhead * tzhp;
362 union {
363 struct tzhead tzhead;
364 char buf[sizeof *sp + sizeof *tzhp];
365 } u;
366 int ttisstdcnt;
367 int ttisgmtcnt;
368
369 i = read(fid, u.buf, sizeof u.buf);
370 if (close(fid) != 0)
371 return -1;
372 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
373 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
374 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
375 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
376 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
377 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
378 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
379 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
380 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
381 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
382 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
383 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
384 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
385 return -1;
386 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
387 sp->timecnt + /* types */
388 sp->typecnt * (4 + 2) + /* ttinfos */
389 sp->charcnt + /* chars */
390 sp->leapcnt * (4 + 4) + /* lsinfos */
391 ttisstdcnt + /* ttisstds */
392 ttisgmtcnt) /* ttisgmts */
393 return -1;
394 for (i = 0; i < sp->timecnt; ++i) {
395 sp->ats[i] = detzcode(p);
396 p += 4;
397 }
398 for (i = 0; i < sp->timecnt; ++i) {
399 sp->types[i] = (unsigned char) *p++;
400 if (sp->types[i] >= sp->typecnt)
401 return -1;
402 }
403 for (i = 0; i < sp->typecnt; ++i) {
404 register struct ttinfo * ttisp;
405
406 ttisp = &sp->ttis[i];
407 ttisp->tt_gmtoff = detzcode(p);
408 p += 4;
409 ttisp->tt_isdst = (unsigned char) *p++;
410 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
411 return -1;
412 ttisp->tt_abbrind = (unsigned char) *p++;
413 if (ttisp->tt_abbrind < 0 ||
414 ttisp->tt_abbrind > sp->charcnt)
415 return -1;
416 }
417 for (i = 0; i < sp->charcnt; ++i)
418 sp->chars[i] = *p++;
419 sp->chars[i] = '\0'; /* ensure '\0' at end */
420 for (i = 0; i < sp->leapcnt; ++i) {
421 register struct lsinfo * lsisp;
422
423 lsisp = &sp->lsis[i];
424 lsisp->ls_trans = detzcode(p);
425 p += 4;
426 lsisp->ls_corr = detzcode(p);
427 p += 4;
428 }
429 for (i = 0; i < sp->typecnt; ++i) {
430 register struct ttinfo * ttisp;
431
432 ttisp = &sp->ttis[i];
433 if (ttisstdcnt == 0)
434 ttisp->tt_ttisstd = FALSE;
435 else {
436 ttisp->tt_ttisstd = *p++;
437 if (ttisp->tt_ttisstd != TRUE &&
438 ttisp->tt_ttisstd != FALSE)
439 return -1;
440 }
441 }
442 for (i = 0; i < sp->typecnt; ++i) {
443 register struct ttinfo * ttisp;
444
445 ttisp = &sp->ttis[i];
446 if (ttisgmtcnt == 0)
447 ttisp->tt_ttisgmt = FALSE;
448 else {
449 ttisp->tt_ttisgmt = *p++;
450 if (ttisp->tt_ttisgmt != TRUE &&
451 ttisp->tt_ttisgmt != FALSE)
452 return -1;
453 }
454 }
455 }
456 return 0;
457 }
458
459 static const int mon_lengths[2][MONSPERYEAR] = {
460 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
461 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
462 };
463
464 static const int year_lengths[2] = {
465 DAYSPERNYEAR, DAYSPERLYEAR
466 };
467
468 /*
469 ** Given a pointer into a time zone string, scan until a character that is not
470 ** a valid character in a zone name is found. Return a pointer to that
471 ** character.
472 */
473
474 static const char *
475 getzname(strp)
476 register const char * strp;
477 {
478 register char c;
479
480 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
481 c != '+')
482 ++strp;
483 return strp;
484 }
485
486 /*
487 ** Given a pointer into a time zone string, extract a number from that string.
488 ** Check that the number is within a specified range; if it is not, return
489 ** NULL.
490 ** Otherwise, return a pointer to the first character not part of the number.
491 */
492
493 static const char *
494 getnum(strp, nump, min, max)
495 register const char * strp;
496 int * const nump;
497 const int min;
498 const int max;
499 {
500 register char c;
501 register int num;
502
503 if (strp == NULL || !is_digit(c = *strp))
504 return NULL;
505 num = 0;
506 do {
507 num = num * 10 + (c - '0');
508 if (num > max)
509 return NULL; /* illegal value */
510 c = *++strp;
511 } while (is_digit(c));
512 if (num < min)
513 return NULL; /* illegal value */
514 *nump = num;
515 return strp;
516 }
517
518 /*
519 ** Given a pointer into a time zone string, extract a number of seconds,
520 ** in hh[:mm[:ss]] form, from the string.
521 ** If any error occurs, return NULL.
522 ** Otherwise, return a pointer to the first character not part of the number
523 ** of seconds.
524 */
525
526 static const char *
527 getsecs(strp, secsp)
528 register const char * strp;
529 long * const secsp;
530 {
531 int num;
532
533 /*
534 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
535 ** "M10.4.6/26", which does not conform to Posix,
536 ** but which specifies the equivalent of
537 ** ``02:00 on the first Sunday on or after 23 Oct''.
538 */
539 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
540 if (strp == NULL)
541 return NULL;
542 *secsp = num * (long) SECSPERHOUR;
543 if (*strp == ':') {
544 ++strp;
545 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
546 if (strp == NULL)
547 return NULL;
548 *secsp += num * SECSPERMIN;
549 if (*strp == ':') {
550 ++strp;
551 /* `SECSPERMIN' allows for leap seconds. */
552 strp = getnum(strp, &num, 0, SECSPERMIN);
553 if (strp == NULL)
554 return NULL;
555 *secsp += num;
556 }
557 }
558 return strp;
559 }
560
561 /*
562 ** Given a pointer into a time zone string, extract an offset, in
563 ** [+-]hh[:mm[:ss]] form, from the string.
564 ** If any error occurs, return NULL.
565 ** Otherwise, return a pointer to the first character not part of the time.
566 */
567
568 static const char *
569 getoffset(strp, offsetp)
570 register const char * strp;
571 long * const offsetp;
572 {
573 register int neg = 0;
574
575 if (*strp == '-') {
576 neg = 1;
577 ++strp;
578 } else if (*strp == '+')
579 ++strp;
580 strp = getsecs(strp, offsetp);
581 if (strp == NULL)
582 return NULL; /* illegal time */
583 if (neg)
584 *offsetp = -*offsetp;
585 return strp;
586 }
587
588 /*
589 ** Given a pointer into a time zone string, extract a rule in the form
590 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
591 ** If a valid rule is not found, return NULL.
592 ** Otherwise, return a pointer to the first character not part of the rule.
593 */
594
595 static const char *
596 getrule(strp, rulep)
597 const char * strp;
598 register struct rule * const rulep;
599 {
600 if (*strp == 'J') {
601 /*
602 ** Julian day.
603 */
604 rulep->r_type = JULIAN_DAY;
605 ++strp;
606 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
607 } else if (*strp == 'M') {
608 /*
609 ** Month, week, day.
610 */
611 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
612 ++strp;
613 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
614 if (strp == NULL)
615 return NULL;
616 if (*strp++ != '.')
617 return NULL;
618 strp = getnum(strp, &rulep->r_week, 1, 5);
619 if (strp == NULL)
620 return NULL;
621 if (*strp++ != '.')
622 return NULL;
623 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
624 } else if (is_digit(*strp)) {
625 /*
626 ** Day of year.
627 */
628 rulep->r_type = DAY_OF_YEAR;
629 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
630 } else return NULL; /* invalid format */
631 if (strp == NULL)
632 return NULL;
633 if (*strp == '/') {
634 /*
635 ** Time specified.
636 */
637 ++strp;
638 strp = getsecs(strp, &rulep->r_time);
639 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
640 return strp;
641 }
642
643 /*
644 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
645 ** year, a rule, and the offset from UTC at the time that rule takes effect,
646 ** calculate the Epoch-relative time that rule takes effect.
647 */
648
649 static time_t
650 transtime(janfirst, year, rulep, offset)
651 const time_t janfirst;
652 const int year;
653 register const struct rule * const rulep;
654 const long offset;
655 {
656 register int leapyear;
657 register time_t value;
658 register int i;
659 int d, m1, yy0, yy1, yy2, dow;
660
661 INITIALIZE(value);
662 leapyear = isleap(year);
663 switch (rulep->r_type) {
664
665 case JULIAN_DAY:
666 /*
667 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
668 ** years.
669 ** In non-leap years, or if the day number is 59 or less, just
670 ** add SECSPERDAY times the day number-1 to the time of
671 ** January 1, midnight, to get the day.
672 */
673 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
674 if (leapyear && rulep->r_day >= 60)
675 value += SECSPERDAY;
676 break;
677
678 case DAY_OF_YEAR:
679 /*
680 ** n - day of year.
681 ** Just add SECSPERDAY times the day number to the time of
682 ** January 1, midnight, to get the day.
683 */
684 value = janfirst + rulep->r_day * SECSPERDAY;
685 break;
686
687 case MONTH_NTH_DAY_OF_WEEK:
688 /*
689 ** Mm.n.d - nth "dth day" of month m.
690 */
691 value = janfirst;
692 for (i = 0; i < rulep->r_mon - 1; ++i)
693 value += mon_lengths[leapyear][i] * SECSPERDAY;
694
695 /*
696 ** Use Zeller's Congruence to get day-of-week of first day of
697 ** month.
698 */
699 m1 = (rulep->r_mon + 9) % 12 + 1;
700 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
701 yy1 = yy0 / 100;
702 yy2 = yy0 % 100;
703 dow = ((26 * m1 - 2) / 10 +
704 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
705 if (dow < 0)
706 dow += DAYSPERWEEK;
707
708 /*
709 ** "dow" is the day-of-week of the first day of the month. Get
710 ** the day-of-month (zero-origin) of the first "dow" day of the
711 ** month.
712 */
713 d = rulep->r_day - dow;
714 if (d < 0)
715 d += DAYSPERWEEK;
716 for (i = 1; i < rulep->r_week; ++i) {
717 if (d + DAYSPERWEEK >=
718 mon_lengths[leapyear][rulep->r_mon - 1])
719 break;
720 d += DAYSPERWEEK;
721 }
722
723 /*
724 ** "d" is the day-of-month (zero-origin) of the day we want.
725 */
726 value += d * SECSPERDAY;
727 break;
728 }
729
730 /*
731 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
732 ** question. To get the Epoch-relative time of the specified local
733 ** time on that day, add the transition time and the current offset
734 ** from UTC.
735 */
736 return value + rulep->r_time + offset;
737 }
738
739 /*
740 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
741 ** appropriate.
742 */
743
744 static int
745 tzparse(name, sp, lastditch)
746 const char * name;
747 register struct state * const sp;
748 const int lastditch;
749 {
750 const char * stdname;
751 const char * dstname;
752 size_t stdlen;
753 size_t dstlen;
754 long stdoffset;
755 long dstoffset;
756 register time_t * atp;
757 register unsigned char * typep;
758 register char * cp;
759 register int load_result;
760
761 INITIALIZE(dstname);
762 stdname = name;
763 if (lastditch) {
764 stdlen = strlen(name); /* length of standard zone name */
765 name += stdlen;
766 if (stdlen >= sizeof sp->chars)
767 stdlen = (sizeof sp->chars) - 1;
768 stdoffset = 0;
769 } else {
770 name = getzname(name);
771 stdlen = name - stdname;
772 if (stdlen < 3)
773 return -1;
774 if (*name == '\0')
775 return -1;
776 name = getoffset(name, &stdoffset);
777 if (name == NULL)
778 return -1;
779 }
780 load_result = tzload(TZDEFRULES, sp);
781 if (load_result != 0)
782 sp->leapcnt = 0; /* so, we're off a little */
783 if (*name != '\0') {
784 dstname = name;
785 name = getzname(name);
786 dstlen = name - dstname; /* length of DST zone name */
787 if (dstlen < 3)
788 return -1;
789 if (*name != '\0' && *name != ',' && *name != ';') {
790 name = getoffset(name, &dstoffset);
791 if (name == NULL)
792 return -1;
793 } else dstoffset = stdoffset - SECSPERHOUR;
794 if (*name == ',' || *name == ';') {
795 struct rule start;
796 struct rule end;
797 register int year;
798 register time_t janfirst;
799 time_t starttime;
800 time_t endtime;
801
802 ++name;
803 if ((name = getrule(name, &start)) == NULL)
804 return -1;
805 if (*name++ != ',')
806 return -1;
807 if ((name = getrule(name, &end)) == NULL)
808 return -1;
809 if (*name != '\0')
810 return -1;
811 sp->typecnt = 2; /* standard time and DST */
812 /*
813 ** Two transitions per year, from EPOCH_YEAR to 2037.
814 */
815 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
816 if (sp->timecnt > TZ_MAX_TIMES)
817 return -1;
818 sp->ttis[0].tt_gmtoff = -dstoffset;
819 sp->ttis[0].tt_isdst = 1;
820 sp->ttis[0].tt_abbrind = stdlen + 1;
821 sp->ttis[1].tt_gmtoff = -stdoffset;
822 sp->ttis[1].tt_isdst = 0;
823 sp->ttis[1].tt_abbrind = 0;
824 atp = sp->ats;
825 typep = sp->types;
826 janfirst = 0;
827 for (year = EPOCH_YEAR; year <= 2037; ++year) {
828 starttime = transtime(janfirst, year, &start,
829 stdoffset);
830 endtime = transtime(janfirst, year, &end,
831 dstoffset);
832 if (starttime > endtime) {
833 *atp++ = endtime;
834 *typep++ = 1; /* DST ends */
835 *atp++ = starttime;
836 *typep++ = 0; /* DST begins */
837 } else {
838 *atp++ = starttime;
839 *typep++ = 0; /* DST begins */
840 *atp++ = endtime;
841 *typep++ = 1; /* DST ends */
842 }
843 janfirst += year_lengths[isleap(year)] *
844 SECSPERDAY;
845 }
846 } else {
847 register long theirstdoffset;
848 register long theirdstoffset;
849 register long theiroffset;
850 register int isdst;
851 register int i;
852 register int j;
853
854 if (*name != '\0')
855 return -1;
856 if (load_result != 0)
857 return -1;
858 /*
859 ** Initial values of theirstdoffset and theirdstoffset.
860 */
861 theirstdoffset = 0;
862 for (i = 0; i < sp->timecnt; ++i) {
863 j = sp->types[i];
864 if (!sp->ttis[j].tt_isdst) {
865 theirstdoffset =
866 -sp->ttis[j].tt_gmtoff;
867 break;
868 }
869 }
870 theirdstoffset = 0;
871 for (i = 0; i < sp->timecnt; ++i) {
872 j = sp->types[i];
873 if (sp->ttis[j].tt_isdst) {
874 theirdstoffset =
875 -sp->ttis[j].tt_gmtoff;
876 break;
877 }
878 }
879 /*
880 ** Initially we're assumed to be in standard time.
881 */
882 isdst = FALSE;
883 theiroffset = theirstdoffset;
884 /*
885 ** Now juggle transition times and types
886 ** tracking offsets as you do.
887 */
888 for (i = 0; i < sp->timecnt; ++i) {
889 j = sp->types[i];
890 sp->types[i] = sp->ttis[j].tt_isdst;
891 if (sp->ttis[j].tt_ttisgmt) {
892 /* No adjustment to transition time */
893 } else {
894 /*
895 ** If summer time is in effect, and the
896 ** transition time was not specified as
897 ** standard time, add the summer time
898 ** offset to the transition time;
899 ** otherwise, add the standard time
900 ** offset to the transition time.
901 */
902 /*
903 ** Transitions from DST to DDST
904 ** will effectively disappear since
905 ** POSIX provides for only one DST
906 ** offset.
907 */
908 if (isdst && !sp->ttis[j].tt_ttisstd) {
909 sp->ats[i] += dstoffset -
910 theirdstoffset;
911 } else {
912 sp->ats[i] += stdoffset -
913 theirstdoffset;
914 }
915 }
916 theiroffset = -sp->ttis[j].tt_gmtoff;
917 if (sp->ttis[j].tt_isdst)
918 theirdstoffset = theiroffset;
919 else theirstdoffset = theiroffset;
920 }
921 /*
922 ** Finally, fill in ttis.
923 ** ttisstd and ttisgmt need not be handled.
924 */
925 sp->ttis[0].tt_gmtoff = -stdoffset;
926 sp->ttis[0].tt_isdst = FALSE;
927 sp->ttis[0].tt_abbrind = 0;
928 sp->ttis[1].tt_gmtoff = -dstoffset;
929 sp->ttis[1].tt_isdst = TRUE;
930 sp->ttis[1].tt_abbrind = stdlen + 1;
931 sp->typecnt = 2;
932 }
933 } else {
934 dstlen = 0;
935 sp->typecnt = 1; /* only standard time */
936 sp->timecnt = 0;
937 sp->ttis[0].tt_gmtoff = -stdoffset;
938 sp->ttis[0].tt_isdst = 0;
939 sp->ttis[0].tt_abbrind = 0;
940 }
941 sp->charcnt = stdlen + 1;
942 if (dstlen != 0)
943 sp->charcnt += dstlen + 1;
944 if ((size_t) sp->charcnt > sizeof sp->chars)
945 return -1;
946 cp = sp->chars;
947 (void) strncpy(cp, stdname, stdlen);
948 cp += stdlen;
949 *cp++ = '\0';
950 if (dstlen != 0) {
951 (void) strncpy(cp, dstname, dstlen);
952 *(cp + dstlen) = '\0';
953 }
954 return 0;
955 }
956
957 static void
958 gmtload(sp)
959 struct state * const sp;
960 {
961 if (tzload(gmt, sp) != 0)
962 (void) tzparse(gmt, sp, TRUE);
963 }
964
965 static void
966 tzsetwall_unlocked P((void))
967 {
968 if (lcl_is_set < 0)
969 return;
970 lcl_is_set = -1;
971
972 #ifdef ALL_STATE
973 if (lclptr == NULL) {
974 lclptr = (struct state *) malloc(sizeof *lclptr);
975 if (lclptr == NULL) {
976 settzname(); /* all we can do */
977 return;
978 }
979 }
980 #endif /* defined ALL_STATE */
981 if (tzload((char *) NULL, lclptr) != 0)
982 gmtload(lclptr);
983 settzname();
984 }
985
986 #ifndef STD_INSPIRED
987 /*
988 ** A non-static declaration of tzsetwall in a system header file
989 ** may cause a warning about this upcoming static declaration...
990 */
991 static
992 #endif /* !defined STD_INSPIRED */
993 void
994 tzsetwall P((void))
995 {
996 rwlock_wrlock(&lcl_lock);
997 tzsetwall_unlocked();
998 rwlock_unlock(&lcl_lock);
999 }
1000
1001 static void
1002 tzset_unlocked P((void))
1003 {
1004 register const char * name;
1005
1006 name = getenv("TZ");
1007 if (name == NULL) {
1008 tzsetwall_unlocked();
1009 return;
1010 }
1011
1012 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1013 return;
1014 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
1015 if (lcl_is_set)
1016 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
1017
1018 #ifdef ALL_STATE
1019 if (lclptr == NULL) {
1020 lclptr = (struct state *) malloc(sizeof *lclptr);
1021 if (lclptr == NULL) {
1022 settzname(); /* all we can do */
1023 return;
1024 }
1025 }
1026 #endif /* defined ALL_STATE */
1027 if (*name == '\0') {
1028 /*
1029 ** User wants it fast rather than right.
1030 */
1031 lclptr->leapcnt = 0; /* so, we're off a little */
1032 lclptr->timecnt = 0;
1033 lclptr->ttis[0].tt_gmtoff = 0;
1034 lclptr->ttis[0].tt_abbrind = 0;
1035 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1036 } else if (tzload(name, lclptr) != 0)
1037 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1038 (void) gmtload(lclptr);
1039 settzname();
1040 }
1041
1042 void
1043 tzset P((void))
1044 {
1045 rwlock_wrlock(&lcl_lock);
1046 tzset_unlocked();
1047 rwlock_unlock(&lcl_lock);
1048 }
1049
1050 /*
1051 ** The easy way to behave "as if no library function calls" localtime
1052 ** is to not call it--so we drop its guts into "localsub", which can be
1053 ** freely called. (And no, the PANS doesn't require the above behavior--
1054 ** but it *is* desirable.)
1055 **
1056 ** The unused offset argument is for the benefit of mktime variants.
1057 */
1058
1059 /*ARGSUSED*/
1060 static void
1061 localsub(timep, offset, tmp)
1062 const time_t * const timep;
1063 const long offset;
1064 struct tm * const tmp;
1065 {
1066 register struct state * sp;
1067 register const struct ttinfo * ttisp;
1068 register int i;
1069 const time_t t = *timep;
1070
1071 sp = lclptr;
1072 #ifdef ALL_STATE
1073 if (sp == NULL) {
1074 gmtsub(timep, offset, tmp);
1075 return;
1076 }
1077 #endif /* defined ALL_STATE */
1078 if (sp->timecnt == 0 || t < sp->ats[0]) {
1079 i = 0;
1080 while (sp->ttis[i].tt_isdst)
1081 if (++i >= sp->typecnt) {
1082 i = 0;
1083 break;
1084 }
1085 } else {
1086 for (i = 1; i < sp->timecnt; ++i)
1087 if (t < sp->ats[i])
1088 break;
1089 i = sp->types[i - 1];
1090 }
1091 ttisp = &sp->ttis[i];
1092 /*
1093 ** To get (wrong) behavior that's compatible with System V Release 2.0
1094 ** you'd replace the statement below with
1095 ** t += ttisp->tt_gmtoff;
1096 ** timesub(&t, 0L, sp, tmp);
1097 */
1098 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1099 tmp->tm_isdst = ttisp->tt_isdst;
1100 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1101 #ifdef TM_ZONE
1102 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1103 #endif /* defined TM_ZONE */
1104 }
1105
1106 struct tm *
1107 localtime(timep)
1108 const time_t * const timep;
1109 {
1110 rwlock_wrlock(&lcl_lock);
1111 tzset_unlocked();
1112 localsub(timep, 0L, &tm);
1113 rwlock_unlock(&lcl_lock);
1114 return &tm;
1115 }
1116
1117 /*
1118 * Re-entrant version of localtime
1119 */
1120 struct tm *
1121 localtime_r(timep, tm)
1122 const time_t * const timep;
1123 struct tm * tm;
1124 {
1125 rwlock_rdlock(&lcl_lock);
1126 localsub(timep, 0L, tm);
1127 rwlock_unlock(&lcl_lock);
1128 return tm;
1129 }
1130
1131 /*
1132 ** gmtsub is to gmtime as localsub is to localtime.
1133 */
1134
1135 static void
1136 gmtsub(timep, offset, tmp)
1137 const time_t * const timep;
1138 const long offset;
1139 struct tm * const tmp;
1140 {
1141 #ifdef _REENT
1142 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1143 #endif
1144
1145 mutex_lock(&gmt_mutex);
1146 if (!gmt_is_set) {
1147 gmt_is_set = TRUE;
1148 #ifdef ALL_STATE
1149 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1150 if (gmtptr != NULL)
1151 #endif /* defined ALL_STATE */
1152 gmtload(gmtptr);
1153 }
1154 mutex_unlock(&gmt_mutex);
1155 timesub(timep, offset, gmtptr, tmp);
1156 #ifdef TM_ZONE
1157 /*
1158 ** Could get fancy here and deliver something such as
1159 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1160 ** but this is no time for a treasure hunt.
1161 */
1162 if (offset != 0)
1163 /* LINTED const castaway */
1164 tmp->TM_ZONE = (__aconst char *)wildabbr;
1165 else {
1166 #ifdef ALL_STATE
1167 if (gmtptr == NULL)
1168 tmp->TM_ZONE = (__aconst char *)gmt;
1169 else tmp->TM_ZONE = gmtptr->chars;
1170 #endif /* defined ALL_STATE */
1171 #ifndef ALL_STATE
1172 tmp->TM_ZONE = gmtptr->chars;
1173 #endif /* State Farm */
1174 }
1175 #endif /* defined TM_ZONE */
1176 }
1177
1178 struct tm *
1179 gmtime(timep)
1180 const time_t * const timep;
1181 {
1182 gmtsub(timep, 0L, &tm);
1183 return &tm;
1184 }
1185
1186 /*
1187 * Re-entrant version of gmtime
1188 */
1189 struct tm *
1190 gmtime_r(timep, tm)
1191 const time_t * const timep;
1192 struct tm * tm;
1193 {
1194 gmtsub(timep, 0L, tm);
1195 return tm;
1196 }
1197
1198 #ifdef STD_INSPIRED
1199
1200 struct tm *
1201 offtime(timep, offset)
1202 const time_t * const timep;
1203 const long offset;
1204 {
1205 gmtsub(timep, offset, &tm);
1206 return &tm;
1207 }
1208
1209 #endif /* defined STD_INSPIRED */
1210
1211 static void
1212 timesub(timep, offset, sp, tmp)
1213 const time_t * const timep;
1214 const long offset;
1215 register const struct state * const sp;
1216 register struct tm * const tmp;
1217 {
1218 register const struct lsinfo * lp;
1219 register long days;
1220 register long rem;
1221 register int y;
1222 register int yleap;
1223 register const int * ip;
1224 register long corr;
1225 register int hit;
1226 register int i;
1227
1228 corr = 0;
1229 hit = 0;
1230 #ifdef ALL_STATE
1231 i = (sp == NULL) ? 0 : sp->leapcnt;
1232 #endif /* defined ALL_STATE */
1233 #ifndef ALL_STATE
1234 i = sp->leapcnt;
1235 #endif /* State Farm */
1236 while (--i >= 0) {
1237 lp = &sp->lsis[i];
1238 if (*timep >= lp->ls_trans) {
1239 if (*timep == lp->ls_trans) {
1240 hit = ((i == 0 && lp->ls_corr > 0) ||
1241 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1242 if (hit)
1243 while (i > 0 &&
1244 sp->lsis[i].ls_trans ==
1245 sp->lsis[i - 1].ls_trans + 1 &&
1246 sp->lsis[i].ls_corr ==
1247 sp->lsis[i - 1].ls_corr + 1) {
1248 ++hit;
1249 --i;
1250 }
1251 }
1252 corr = lp->ls_corr;
1253 break;
1254 }
1255 }
1256 days = *timep / SECSPERDAY;
1257 rem = *timep % SECSPERDAY;
1258 #ifdef mc68k
1259 if (*timep == 0x80000000) {
1260 /*
1261 ** A 3B1 muffs the division on the most negative number.
1262 */
1263 days = -24855;
1264 rem = -11648;
1265 }
1266 #endif /* defined mc68k */
1267 rem += (offset - corr);
1268 while (rem < 0) {
1269 rem += SECSPERDAY;
1270 --days;
1271 }
1272 while (rem >= SECSPERDAY) {
1273 rem -= SECSPERDAY;
1274 ++days;
1275 }
1276 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1277 rem = rem % SECSPERHOUR;
1278 tmp->tm_min = (int) (rem / SECSPERMIN);
1279 /*
1280 ** A positive leap second requires a special
1281 ** representation. This uses "... ??:59:60" et seq.
1282 */
1283 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1284 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1285 if (tmp->tm_wday < 0)
1286 tmp->tm_wday += DAYSPERWEEK;
1287 y = EPOCH_YEAR;
1288 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1289 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1290 register int newy;
1291
1292 newy = (int)(y + days / DAYSPERNYEAR);
1293 if (days < 0)
1294 --newy;
1295 days -= (newy - y) * DAYSPERNYEAR +
1296 LEAPS_THRU_END_OF(newy - 1) -
1297 LEAPS_THRU_END_OF(y - 1);
1298 y = newy;
1299 }
1300 tmp->tm_year = y - TM_YEAR_BASE;
1301 tmp->tm_yday = (int) days;
1302 ip = mon_lengths[yleap];
1303 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1304 days = days - (long) ip[tmp->tm_mon];
1305 tmp->tm_mday = (int) (days + 1);
1306 tmp->tm_isdst = 0;
1307 #ifdef TM_GMTOFF
1308 tmp->TM_GMTOFF = offset;
1309 #endif /* defined TM_GMTOFF */
1310 }
1311
1312 char *
1313 ctime(timep)
1314 const time_t * const timep;
1315 {
1316 /*
1317 ** Section 4.12.3.2 of X3.159-1989 requires that
1318 ** The ctime function converts the calendar time pointed to by timer
1319 ** to local time in the form of a string. It is equivalent to
1320 ** asctime(localtime(timer))
1321 */
1322 return asctime(localtime(timep));
1323 }
1324
1325 char *
1326 ctime_r(timep, buf)
1327 const time_t * const timep;
1328 char * buf;
1329 {
1330 struct tm tmp;
1331
1332 return asctime_r(localtime_r(timep, &tmp), buf);
1333 }
1334
1335 /*
1336 ** Adapted from code provided by Robert Elz, who writes:
1337 ** The "best" way to do mktime I think is based on an idea of Bob
1338 ** Kridle's (so its said...) from a long time ago.
1339 ** [kridle (at) xinet.com as of 1996-01-16.]
1340 ** It does a binary search of the time_t space. Since time_t's are
1341 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1342 ** would still be very reasonable).
1343 */
1344
1345 #ifndef WRONG
1346 #define WRONG (-1)
1347 #endif /* !defined WRONG */
1348
1349 /*
1350 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1351 */
1352
1353 static int
1354 increment_overflow(number, delta)
1355 int * number;
1356 int delta;
1357 {
1358 int number0;
1359
1360 number0 = *number;
1361 *number += delta;
1362 return (*number < number0) != (delta < 0);
1363 }
1364
1365 static int
1366 normalize_overflow(tensptr, unitsptr, base)
1367 int * const tensptr;
1368 int * const unitsptr;
1369 const int base;
1370 {
1371 register int tensdelta;
1372
1373 tensdelta = (*unitsptr >= 0) ?
1374 (*unitsptr / base) :
1375 (-1 - (-1 - *unitsptr) / base);
1376 *unitsptr -= tensdelta * base;
1377 return increment_overflow(tensptr, tensdelta);
1378 }
1379
1380 static int
1381 tmcomp(atmp, btmp)
1382 register const struct tm * const atmp;
1383 register const struct tm * const btmp;
1384 {
1385 register int result;
1386
1387 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1388 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1389 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1390 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1391 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1392 result = atmp->tm_sec - btmp->tm_sec;
1393 return result;
1394 }
1395
1396 static time_t
1397 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1398 struct tm * const tmp;
1399 void (* const funcp) P((const time_t*, long, struct tm*));
1400 const long offset;
1401 int * const okayp;
1402 const int do_norm_secs;
1403 {
1404 register const struct state * sp;
1405 register int dir;
1406 register int bits;
1407 register int i, j ;
1408 register int saved_seconds;
1409 time_t newt;
1410 time_t t;
1411 struct tm yourtm, mytm;
1412
1413 *okayp = FALSE;
1414 yourtm = *tmp;
1415 if (do_norm_secs) {
1416 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1417 SECSPERMIN))
1418 return WRONG;
1419 }
1420 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1421 return WRONG;
1422 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1423 return WRONG;
1424 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1425 return WRONG;
1426 /*
1427 ** Turn yourtm.tm_year into an actual year number for now.
1428 ** It is converted back to an offset from TM_YEAR_BASE later.
1429 */
1430 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1431 return WRONG;
1432 while (yourtm.tm_mday <= 0) {
1433 if (increment_overflow(&yourtm.tm_year, -1))
1434 return WRONG;
1435 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1436 yourtm.tm_mday += year_lengths[isleap(i)];
1437 }
1438 while (yourtm.tm_mday > DAYSPERLYEAR) {
1439 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1440 yourtm.tm_mday -= year_lengths[isleap(i)];
1441 if (increment_overflow(&yourtm.tm_year, 1))
1442 return WRONG;
1443 }
1444 for ( ; ; ) {
1445 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1446 if (yourtm.tm_mday <= i)
1447 break;
1448 yourtm.tm_mday -= i;
1449 if (++yourtm.tm_mon >= MONSPERYEAR) {
1450 yourtm.tm_mon = 0;
1451 if (increment_overflow(&yourtm.tm_year, 1))
1452 return WRONG;
1453 }
1454 }
1455 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1456 return WRONG;
1457 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1458 /*
1459 ** We can't set tm_sec to 0, because that might push the
1460 ** time below the minimum representable time.
1461 ** Set tm_sec to 59 instead.
1462 ** This assumes that the minimum representable time is
1463 ** not in the same minute that a leap second was deleted from,
1464 ** which is a safer assumption than using 58 would be.
1465 */
1466 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1467 return WRONG;
1468 saved_seconds = yourtm.tm_sec;
1469 yourtm.tm_sec = SECSPERMIN - 1;
1470 } else {
1471 saved_seconds = yourtm.tm_sec;
1472 yourtm.tm_sec = 0;
1473 }
1474 /*
1475 ** Divide the search space in half
1476 ** (this works whether time_t is signed or unsigned).
1477 */
1478 bits = TYPE_BIT(time_t) - 1;
1479 /*
1480 ** If time_t is signed, then 0 is just above the median,
1481 ** assuming two's complement arithmetic.
1482 ** If time_t is unsigned, then (1 << bits) is just above the median.
1483 */
1484 /* LINTED constant in conditional context */
1485 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1486 for ( ; ; ) {
1487 (*funcp)(&t, offset, &mytm);
1488 dir = tmcomp(&mytm, &yourtm);
1489 if (dir != 0) {
1490 if (bits-- < 0)
1491 return WRONG;
1492 if (bits < 0)
1493 --t; /* may be needed if new t is minimal */
1494 else if (dir > 0)
1495 t -= ((time_t) 1) << bits;
1496 else t += ((time_t) 1) << bits;
1497 continue;
1498 }
1499 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1500 break;
1501 /*
1502 ** Right time, wrong type.
1503 ** Hunt for right time, right type.
1504 ** It's okay to guess wrong since the guess
1505 ** gets checked.
1506 */
1507 /*
1508 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1509 */
1510 sp = (const struct state *)
1511 (((void *) funcp == (void *) localsub) ?
1512 lclptr : gmtptr);
1513 #ifdef ALL_STATE
1514 if (sp == NULL)
1515 return WRONG;
1516 #endif /* defined ALL_STATE */
1517 for (i = sp->typecnt - 1; i >= 0; --i) {
1518 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1519 continue;
1520 for (j = sp->typecnt - 1; j >= 0; --j) {
1521 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1522 continue;
1523 newt = t + sp->ttis[j].tt_gmtoff -
1524 sp->ttis[i].tt_gmtoff;
1525 (*funcp)(&newt, offset, &mytm);
1526 if (tmcomp(&mytm, &yourtm) != 0)
1527 continue;
1528 if (mytm.tm_isdst != yourtm.tm_isdst)
1529 continue;
1530 /*
1531 ** We have a match.
1532 */
1533 t = newt;
1534 goto label;
1535 }
1536 }
1537 return WRONG;
1538 }
1539 label:
1540 newt = t + saved_seconds;
1541 if ((newt < t) != (saved_seconds < 0))
1542 return WRONG;
1543 t = newt;
1544 (*funcp)(&t, offset, tmp);
1545 *okayp = TRUE;
1546 return t;
1547 }
1548
1549 static time_t
1550 time2(tmp, funcp, offset, okayp)
1551 struct tm * const tmp;
1552 void (* const funcp) P((const time_t*, long, struct tm*));
1553 const long offset;
1554 int * const okayp;
1555 {
1556 time_t t;
1557
1558 /*
1559 ** First try without normalization of seconds
1560 ** (in case tm_sec contains a value associated with a leap second).
1561 ** If that fails, try with normalization of seconds.
1562 */
1563 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1564 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1565 }
1566
1567 static time_t
1568 time1(tmp, funcp, offset)
1569 struct tm * const tmp;
1570 void (* const funcp) P((const time_t *, long, struct tm *));
1571 const long offset;
1572 {
1573 register time_t t;
1574 register const struct state * sp;
1575 register int samei, otheri;
1576 int okay;
1577
1578 if (tmp->tm_isdst > 1)
1579 tmp->tm_isdst = 1;
1580 t = time2(tmp, funcp, offset, &okay);
1581 #ifdef PCTS
1582 /*
1583 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1584 */
1585 if (okay)
1586 return t;
1587 if (tmp->tm_isdst < 0)
1588 tmp->tm_isdst = 0; /* reset to std and try again */
1589 #endif /* defined PCTS */
1590 #ifndef PCTS
1591 if (okay || tmp->tm_isdst < 0)
1592 return t;
1593 #endif /* !defined PCTS */
1594 /*
1595 ** We're supposed to assume that somebody took a time of one type
1596 ** and did some math on it that yielded a "struct tm" that's bad.
1597 ** We try to divine the type they started from and adjust to the
1598 ** type they need.
1599 */
1600 /*
1601 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1602 */
1603 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1604 lclptr : gmtptr);
1605 #ifdef ALL_STATE
1606 if (sp == NULL)
1607 return WRONG;
1608 #endif /* defined ALL_STATE */
1609 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1610 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1611 continue;
1612 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1613 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1614 continue;
1615 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1616 sp->ttis[samei].tt_gmtoff);
1617 tmp->tm_isdst = !tmp->tm_isdst;
1618 t = time2(tmp, funcp, offset, &okay);
1619 if (okay)
1620 return t;
1621 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1622 sp->ttis[samei].tt_gmtoff);
1623 tmp->tm_isdst = !tmp->tm_isdst;
1624 }
1625 }
1626 return WRONG;
1627 }
1628
1629 time_t
1630 mktime(tmp)
1631 struct tm * const tmp;
1632 {
1633 time_t result;
1634
1635 rwlock_wrlock(&lcl_lock);
1636 tzset_unlocked();
1637 result = time1(tmp, localsub, 0L);
1638 rwlock_unlock(&lcl_lock);
1639 return (result);
1640 }
1641
1642 #ifdef STD_INSPIRED
1643
1644 time_t
1645 timelocal(tmp)
1646 struct tm * const tmp;
1647 {
1648 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1649 return mktime(tmp);
1650 }
1651
1652 time_t
1653 timegm(tmp)
1654 struct tm * const tmp;
1655 {
1656 tmp->tm_isdst = 0;
1657 return time1(tmp, gmtsub, 0L);
1658 }
1659
1660 time_t
1661 timeoff(tmp, offset)
1662 struct tm * const tmp;
1663 const long offset;
1664 {
1665 tmp->tm_isdst = 0;
1666 return time1(tmp, gmtsub, offset);
1667 }
1668
1669 #endif /* defined STD_INSPIRED */
1670
1671 #ifdef CMUCS
1672
1673 /*
1674 ** The following is supplied for compatibility with
1675 ** previous versions of the CMUCS runtime library.
1676 */
1677
1678 long
1679 gtime(tmp)
1680 struct tm * const tmp;
1681 {
1682 const time_t t = mktime(tmp);
1683
1684 if (t == WRONG)
1685 return -1;
1686 return t;
1687 }
1688
1689 #endif /* defined CMUCS */
1690
1691 /*
1692 ** XXX--is the below the right way to conditionalize??
1693 */
1694
1695 #ifdef STD_INSPIRED
1696
1697 /*
1698 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1699 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1700 ** is not the case if we are accounting for leap seconds.
1701 ** So, we provide the following conversion routines for use
1702 ** when exchanging timestamps with POSIX conforming systems.
1703 */
1704
1705 static long
1706 leapcorr(timep)
1707 time_t * timep;
1708 {
1709 register struct state * sp;
1710 register struct lsinfo * lp;
1711 register int i;
1712
1713 sp = lclptr;
1714 i = sp->leapcnt;
1715 while (--i >= 0) {
1716 lp = &sp->lsis[i];
1717 if (*timep >= lp->ls_trans)
1718 return lp->ls_corr;
1719 }
1720 return 0;
1721 }
1722
1723 time_t
1724 time2posix(t)
1725 time_t t;
1726 {
1727 time_t result;
1728
1729 rwlock_wrlock(&lcl_lock);
1730 tzset_unlocked();
1731 result = t - leapcorr(&t);
1732 rwlock_unlock(&lcl_lock);
1733 return (result);
1734 }
1735
1736 time_t
1737 posix2time(t)
1738 time_t t;
1739 {
1740 time_t x;
1741 time_t y;
1742
1743 rwlock_wrlock(&lcl_lock);
1744 tzset_unlocked();
1745 /*
1746 ** For a positive leap second hit, the result
1747 ** is not unique. For a negative leap second
1748 ** hit, the corresponding time doesn't exist,
1749 ** so we return an adjacent second.
1750 */
1751 x = t + leapcorr(&t);
1752 y = x - leapcorr(&x);
1753 if (y < t) {
1754 do {
1755 x++;
1756 y = x - leapcorr(&x);
1757 } while (y < t);
1758 if (t != y) {
1759 rwlock_unlock(&lcl_lock);
1760 return x - 1;
1761 }
1762 } else if (y > t) {
1763 do {
1764 --x;
1765 y = x - leapcorr(&x);
1766 } while (y > t);
1767 if (t != y) {
1768 rwlock_unlock(&lcl_lock);
1769 return x + 1;
1770 }
1771 }
1772 rwlock_unlock(&lcl_lock);
1773 return x;
1774 }
1775
1776 #endif /* defined STD_INSPIRED */
1777