Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.22
      1 /*	$NetBSD: localtime.c,v 1.22 1999/11/10 20:32:31 kleink Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #ifndef lint
     10 #ifndef NOID
     11 #if 0
     12 static char	elsieid[] = "@(#)localtime.c	7.70";
     13 #else
     14 __RCSID("$NetBSD: localtime.c,v 1.22 1999/11/10 20:32:31 kleink Exp $");
     15 #endif
     16 #endif /* !defined NOID */
     17 #endif /* !defined lint */
     18 
     19 /*
     20 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     21 ** POSIX-style TZ environment variable handling from Guy Harris
     22 ** (guy (at) auspex.com).
     23 */
     24 
     25 /*LINTLIBRARY*/
     26 
     27 #include "namespace.h"
     28 #include "private.h"
     29 #include "tzfile.h"
     30 #include "fcntl.h"
     31 #include "reentrant.h"
     32 
     33 #ifdef __weak_alias
     34 __weak_alias(ctime_r,_ctime_r);
     35 __weak_alias(gmtime_r,_gmtime_r);
     36 __weak_alias(localtime_r,_localtime_r);
     37 __weak_alias(offtime,_offtime);
     38 __weak_alias(posix2time,_posix2time);
     39 __weak_alias(time2posix,_time2posix);
     40 __weak_alias(timegm,_timegm);
     41 __weak_alias(timelocal,_timelocal);
     42 __weak_alias(timeoff,_timeoff);
     43 __weak_alias(tzname,_tzname);
     44 __weak_alias(tzset,_tzset);
     45 __weak_alias(tzsetwall,_tzsetwall);
     46 #endif
     47 
     48 /*
     49 ** SunOS 4.1.1 headers lack O_BINARY.
     50 */
     51 
     52 #ifdef O_BINARY
     53 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     54 #endif /* defined O_BINARY */
     55 #ifndef O_BINARY
     56 #define OPEN_MODE	O_RDONLY
     57 #endif /* !defined O_BINARY */
     58 
     59 #ifndef WILDABBR
     60 /*
     61 ** Someone might make incorrect use of a time zone abbreviation:
     62 **	1.	They might reference tzname[0] before calling tzset (explicitly
     63 **		or implicitly).
     64 **	2.	They might reference tzname[1] before calling tzset (explicitly
     65 **		or implicitly).
     66 **	3.	They might reference tzname[1] after setting to a time zone
     67 **		in which Daylight Saving Time is never observed.
     68 **	4.	They might reference tzname[0] after setting to a time zone
     69 **		in which Standard Time is never observed.
     70 **	5.	They might reference tm.TM_ZONE after calling offtime.
     71 ** What's best to do in the above cases is open to debate;
     72 ** for now, we just set things up so that in any of the five cases
     73 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     74 ** string "tzname[0] used before set", and similarly for the other cases.
     75 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     76 ** manual page of what this "time zone abbreviation" means (doing this so
     77 ** that tzname[0] has the "normal" length of three characters).
     78 */
     79 #define WILDABBR	"   "
     80 #endif /* !defined WILDABBR */
     81 
     82 static const char	wildabbr[] = "WILDABBR";
     83 
     84 static const char	gmt[] = "GMT";
     85 
     86 /*
     87 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     88 ** We default to US rules as of 1999-08-17.
     89 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     90 ** implementation dependent; for historical reasons, US rules are a
     91 ** common default.
     92 */
     93 #ifndef TZDEFRULESTRING
     94 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     95 #endif /* !defined TZDEFDST */
     96 
     97 struct ttinfo {				/* time type information */
     98 	long		tt_gmtoff;	/* UTC offset in seconds */
     99 	int		tt_isdst;	/* used to set tm_isdst */
    100 	int		tt_abbrind;	/* abbreviation list index */
    101 	int		tt_ttisstd;	/* TRUE if transition is std time */
    102 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    103 };
    104 
    105 struct lsinfo {				/* leap second information */
    106 	time_t		ls_trans;	/* transition time */
    107 	long		ls_corr;	/* correction to apply */
    108 };
    109 
    110 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    111 
    112 #ifdef TZNAME_MAX
    113 #define MY_TZNAME_MAX	TZNAME_MAX
    114 #endif /* defined TZNAME_MAX */
    115 #ifndef TZNAME_MAX
    116 #define MY_TZNAME_MAX	255
    117 #endif /* !defined TZNAME_MAX */
    118 
    119 struct state {
    120 	int		leapcnt;
    121 	int		timecnt;
    122 	int		typecnt;
    123 	int		charcnt;
    124 	time_t		ats[TZ_MAX_TIMES];
    125 	unsigned char	types[TZ_MAX_TIMES];
    126 	struct ttinfo	ttis[TZ_MAX_TYPES];
    127 	char		chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    128 				(2 * (MY_TZNAME_MAX + 1)))];
    129 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    130 };
    131 
    132 struct rule {
    133 	int		r_type;		/* type of rule--see below */
    134 	int		r_day;		/* day number of rule */
    135 	int		r_week;		/* week number of rule */
    136 	int		r_mon;		/* month number of rule */
    137 	long		r_time;		/* transition time of rule */
    138 };
    139 
    140 #define JULIAN_DAY		0	/* Jn - Julian day */
    141 #define DAY_OF_YEAR		1	/* n - day of year */
    142 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    143 
    144 /*
    145 ** Prototypes for static functions.
    146 */
    147 
    148 static long		detzcode P((const char * codep));
    149 static const char *	getzname P((const char * strp));
    150 static const char *	getnum P((const char * strp, int * nump, int min,
    151 				int max));
    152 static const char *	getsecs P((const char * strp, long * secsp));
    153 static const char *	getoffset P((const char * strp, long * offsetp));
    154 static const char *	getrule P((const char * strp, struct rule * rulep));
    155 static void		gmtload P((struct state * sp));
    156 static void		gmtsub P((const time_t * timep, long offset,
    157 				struct tm * tmp));
    158 static void		localsub P((const time_t * timep, long offset,
    159 				struct tm * tmp));
    160 static int		increment_overflow P((int * number, int delta));
    161 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    162 				int base));
    163 static void		settzname P((void));
    164 static time_t		time1 P((struct tm * tmp,
    165 				void(*funcp) P((const time_t *,
    166 				long, struct tm *)),
    167 				long offset));
    168 static time_t		time2 P((struct tm *tmp,
    169 				void(*funcp) P((const time_t *,
    170 				long, struct tm*)),
    171 				long offset, int * okayp));
    172 static time_t		time2sub P((struct tm *tmp,
    173 				void(*funcp) P((const time_t *,
    174 				long, struct tm*)),
    175 				long offset, int * okayp, int do_norm_secs));
    176 static void		timesub P((const time_t * timep, long offset,
    177 				const struct state * sp, struct tm * tmp));
    178 static int		tmcomp P((const struct tm * atmp,
    179 				const struct tm * btmp));
    180 static time_t		transtime P((time_t janfirst, int year,
    181 				const struct rule * rulep, long offset));
    182 static int		tzload P((const char * name, struct state * sp));
    183 static int		tzparse P((const char * name, struct state * sp,
    184 				int lastditch));
    185 static void		tzset_unlocked P((void));
    186 static void		tzsetwall_unlocked P((void));
    187 #ifdef STD_INSPIRED
    188 static long		leapcorr P((time_t * timep));
    189 #endif
    190 
    191 #ifdef ALL_STATE
    192 static struct state *	lclptr;
    193 static struct state *	gmtptr;
    194 #endif /* defined ALL_STATE */
    195 
    196 #ifndef ALL_STATE
    197 static struct state	lclmem;
    198 static struct state	gmtmem;
    199 #define lclptr		(&lclmem)
    200 #define gmtptr		(&gmtmem)
    201 #endif /* State Farm */
    202 
    203 #ifndef TZ_STRLEN_MAX
    204 #define TZ_STRLEN_MAX 255
    205 #endif /* !defined TZ_STRLEN_MAX */
    206 
    207 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    208 static int		lcl_is_set;
    209 static int		gmt_is_set;
    210 
    211 __aconst char *		tzname[2] = {
    212 	/* LINTED const castaway */
    213 	(__aconst char *)wildabbr,
    214 	/* LINTED const castaway */
    215 	(__aconst char *)wildabbr
    216 };
    217 
    218 #ifdef _REENT
    219 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    220 #endif
    221 
    222 /*
    223 ** Section 4.12.3 of X3.159-1989 requires that
    224 **	Except for the strftime function, these functions [asctime,
    225 **	ctime, gmtime, localtime] return values in one of two static
    226 **	objects: a broken-down time structure and an array of char.
    227 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    228 */
    229 
    230 static struct tm	tm;
    231 
    232 #ifdef USG_COMPAT
    233 time_t			timezone = 0;
    234 int			daylight = 0;
    235 #endif /* defined USG_COMPAT */
    236 
    237 #ifdef ALTZONE
    238 time_t			altzone = 0;
    239 #endif /* defined ALTZONE */
    240 
    241 static long
    242 detzcode(codep)
    243 const char * const	codep;
    244 {
    245 	register long	result;
    246 
    247 	/*
    248         ** The first character must be sign extended on systems with >32bit
    249         ** longs.  This was solved differently in the master tzcode sources
    250         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    251 	** that this implementation is superior.
    252         */
    253 
    254 #ifdef __STDC__
    255 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    256 #else
    257 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
    258 #endif
    259 
    260 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    261 	       | (codep[1] & 0xff) << 16 \
    262 	       | (codep[2] & 0xff) << 8
    263 	       | (codep[3] & 0xff);
    264 	return result;
    265 }
    266 
    267 static void
    268 settzname P((void))
    269 {
    270 	register struct state * const	sp = lclptr;
    271 	register int			i;
    272 
    273 	/* LINTED const castaway */
    274 	tzname[0] = (__aconst char *)wildabbr;
    275 	/* LINTED const castaway */
    276 	tzname[1] = (__aconst char *)wildabbr;
    277 #ifdef USG_COMPAT
    278 	daylight = 0;
    279 	timezone = 0;
    280 #endif /* defined USG_COMPAT */
    281 #ifdef ALTZONE
    282 	altzone = 0;
    283 #endif /* defined ALTZONE */
    284 #ifdef ALL_STATE
    285 	if (sp == NULL) {
    286 		tzname[0] = tzname[1] = (__aconst char *)gmt;
    287 		return;
    288 	}
    289 #endif /* defined ALL_STATE */
    290 	for (i = 0; i < sp->typecnt; ++i) {
    291 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    292 
    293 		tzname[ttisp->tt_isdst] =
    294 			&sp->chars[ttisp->tt_abbrind];
    295 #ifdef USG_COMPAT
    296 		if (ttisp->tt_isdst)
    297 			daylight = 1;
    298 		if (i == 0 || !ttisp->tt_isdst)
    299 			timezone = -(ttisp->tt_gmtoff);
    300 #endif /* defined USG_COMPAT */
    301 #ifdef ALTZONE
    302 		if (i == 0 || ttisp->tt_isdst)
    303 			altzone = -(ttisp->tt_gmtoff);
    304 #endif /* defined ALTZONE */
    305 	}
    306 	/*
    307 	** And to get the latest zone names into tzname. . .
    308 	*/
    309 	for (i = 0; i < sp->timecnt; ++i) {
    310 		register const struct ttinfo * const	ttisp =
    311 							&sp->ttis[
    312 								sp->types[i]];
    313 
    314 		tzname[ttisp->tt_isdst] =
    315 			&sp->chars[ttisp->tt_abbrind];
    316 	}
    317 }
    318 
    319 static int
    320 tzload(name, sp)
    321 register const char *		name;
    322 register struct state * const	sp;
    323 {
    324 	register const char *	p;
    325 	register int		i;
    326 	register int		fid;
    327 
    328 	if (name == NULL && (name = TZDEFAULT) == NULL)
    329 		return -1;
    330 
    331 	{
    332 		register int	doaccess;
    333 		/*
    334 		** Section 4.9.1 of the C standard says that
    335 		** "FILENAME_MAX expands to an integral constant expression
    336 		** that is the size needed for an array of char large enough
    337 		** to hold the longest file name string that the implementation
    338 		** guarantees can be opened."
    339 		*/
    340 		char		fullname[FILENAME_MAX + 1];
    341 
    342 		if (name[0] == ':')
    343 			++name;
    344 		doaccess = name[0] == '/';
    345 		if (!doaccess) {
    346 			if ((p = TZDIR) == NULL)
    347 				return -1;
    348 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    349 				return -1;
    350 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    351 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    352 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    353 			/*
    354 			** Set doaccess if '.' (as in "../") shows up in name.
    355 			*/
    356 			if (strchr(name, '.') != NULL)
    357 				doaccess = TRUE;
    358 			name = fullname;
    359 		}
    360 		if (doaccess && access(name, R_OK) != 0)
    361 			return -1;
    362 		/*
    363 		 * XXX potential security problem here if user of a set-id
    364 		 * program has set TZ (which is passed in as name) here,
    365 		 * and uses a race condition trick to defeat the access(2)
    366 		 * above.
    367 		 */
    368 		if ((fid = open(name, OPEN_MODE)) == -1)
    369 			return -1;
    370 	}
    371 	{
    372 		struct tzhead *	tzhp;
    373 		union {
    374 		  struct tzhead tzhead;
    375 		  char		buf[sizeof *sp + sizeof *tzhp];
    376 		} u;
    377 		int		ttisstdcnt;
    378 		int		ttisgmtcnt;
    379 
    380 		i = read(fid, u.buf, sizeof u.buf);
    381 		if (close(fid) != 0)
    382 			return -1;
    383 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    384 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    385 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    386 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    387 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    388 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    389 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    390 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    391 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    392 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    393 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    394 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    395 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    396 				return -1;
    397 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
    398 			sp->timecnt +			/* types */
    399 			sp->typecnt * (4 + 2) +		/* ttinfos */
    400 			sp->charcnt +			/* chars */
    401 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    402 			ttisstdcnt +			/* ttisstds */
    403 			ttisgmtcnt)			/* ttisgmts */
    404 				return -1;
    405 		for (i = 0; i < sp->timecnt; ++i) {
    406 			sp->ats[i] = detzcode(p);
    407 			p += 4;
    408 		}
    409 		for (i = 0; i < sp->timecnt; ++i) {
    410 			sp->types[i] = (unsigned char) *p++;
    411 			if (sp->types[i] >= sp->typecnt)
    412 				return -1;
    413 		}
    414 		for (i = 0; i < sp->typecnt; ++i) {
    415 			register struct ttinfo *	ttisp;
    416 
    417 			ttisp = &sp->ttis[i];
    418 			ttisp->tt_gmtoff = detzcode(p);
    419 			p += 4;
    420 			ttisp->tt_isdst = (unsigned char) *p++;
    421 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    422 				return -1;
    423 			ttisp->tt_abbrind = (unsigned char) *p++;
    424 			if (ttisp->tt_abbrind < 0 ||
    425 				ttisp->tt_abbrind > sp->charcnt)
    426 					return -1;
    427 		}
    428 		for (i = 0; i < sp->charcnt; ++i)
    429 			sp->chars[i] = *p++;
    430 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    431 		for (i = 0; i < sp->leapcnt; ++i) {
    432 			register struct lsinfo *	lsisp;
    433 
    434 			lsisp = &sp->lsis[i];
    435 			lsisp->ls_trans = detzcode(p);
    436 			p += 4;
    437 			lsisp->ls_corr = detzcode(p);
    438 			p += 4;
    439 		}
    440 		for (i = 0; i < sp->typecnt; ++i) {
    441 			register struct ttinfo *	ttisp;
    442 
    443 			ttisp = &sp->ttis[i];
    444 			if (ttisstdcnt == 0)
    445 				ttisp->tt_ttisstd = FALSE;
    446 			else {
    447 				ttisp->tt_ttisstd = *p++;
    448 				if (ttisp->tt_ttisstd != TRUE &&
    449 					ttisp->tt_ttisstd != FALSE)
    450 						return -1;
    451 			}
    452 		}
    453 		for (i = 0; i < sp->typecnt; ++i) {
    454 			register struct ttinfo *	ttisp;
    455 
    456 			ttisp = &sp->ttis[i];
    457 			if (ttisgmtcnt == 0)
    458 				ttisp->tt_ttisgmt = FALSE;
    459 			else {
    460 				ttisp->tt_ttisgmt = *p++;
    461 				if (ttisp->tt_ttisgmt != TRUE &&
    462 					ttisp->tt_ttisgmt != FALSE)
    463 						return -1;
    464 			}
    465 		}
    466 	}
    467 	return 0;
    468 }
    469 
    470 static const int	mon_lengths[2][MONSPERYEAR] = {
    471 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    472 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    473 };
    474 
    475 static const int	year_lengths[2] = {
    476 	DAYSPERNYEAR, DAYSPERLYEAR
    477 };
    478 
    479 /*
    480 ** Given a pointer into a time zone string, scan until a character that is not
    481 ** a valid character in a zone name is found.  Return a pointer to that
    482 ** character.
    483 */
    484 
    485 static const char *
    486 getzname(strp)
    487 register const char *	strp;
    488 {
    489 	register char	c;
    490 
    491 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    492 		c != '+')
    493 			++strp;
    494 	return strp;
    495 }
    496 
    497 /*
    498 ** Given a pointer into a time zone string, extract a number from that string.
    499 ** Check that the number is within a specified range; if it is not, return
    500 ** NULL.
    501 ** Otherwise, return a pointer to the first character not part of the number.
    502 */
    503 
    504 static const char *
    505 getnum(strp, nump, min, max)
    506 register const char *	strp;
    507 int * const		nump;
    508 const int		min;
    509 const int		max;
    510 {
    511 	register char	c;
    512 	register int	num;
    513 
    514 	if (strp == NULL || !is_digit(c = *strp))
    515 		return NULL;
    516 	num = 0;
    517 	do {
    518 		num = num * 10 + (c - '0');
    519 		if (num > max)
    520 			return NULL;	/* illegal value */
    521 		c = *++strp;
    522 	} while (is_digit(c));
    523 	if (num < min)
    524 		return NULL;		/* illegal value */
    525 	*nump = num;
    526 	return strp;
    527 }
    528 
    529 /*
    530 ** Given a pointer into a time zone string, extract a number of seconds,
    531 ** in hh[:mm[:ss]] form, from the string.
    532 ** If any error occurs, return NULL.
    533 ** Otherwise, return a pointer to the first character not part of the number
    534 ** of seconds.
    535 */
    536 
    537 static const char *
    538 getsecs(strp, secsp)
    539 register const char *	strp;
    540 long * const		secsp;
    541 {
    542 	int	num;
    543 
    544 	/*
    545 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    546 	** "M10.4.6/26", which does not conform to Posix,
    547 	** but which specifies the equivalent of
    548 	** ``02:00 on the first Sunday on or after 23 Oct''.
    549 	*/
    550 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    551 	if (strp == NULL)
    552 		return NULL;
    553 	*secsp = num * (long) SECSPERHOUR;
    554 	if (*strp == ':') {
    555 		++strp;
    556 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    557 		if (strp == NULL)
    558 			return NULL;
    559 		*secsp += num * SECSPERMIN;
    560 		if (*strp == ':') {
    561 			++strp;
    562 			/* `SECSPERMIN' allows for leap seconds.  */
    563 			strp = getnum(strp, &num, 0, SECSPERMIN);
    564 			if (strp == NULL)
    565 				return NULL;
    566 			*secsp += num;
    567 		}
    568 	}
    569 	return strp;
    570 }
    571 
    572 /*
    573 ** Given a pointer into a time zone string, extract an offset, in
    574 ** [+-]hh[:mm[:ss]] form, from the string.
    575 ** If any error occurs, return NULL.
    576 ** Otherwise, return a pointer to the first character not part of the time.
    577 */
    578 
    579 static const char *
    580 getoffset(strp, offsetp)
    581 register const char *	strp;
    582 long * const		offsetp;
    583 {
    584 	register int	neg = 0;
    585 
    586 	if (*strp == '-') {
    587 		neg = 1;
    588 		++strp;
    589 	} else if (*strp == '+')
    590 		++strp;
    591 	strp = getsecs(strp, offsetp);
    592 	if (strp == NULL)
    593 		return NULL;		/* illegal time */
    594 	if (neg)
    595 		*offsetp = -*offsetp;
    596 	return strp;
    597 }
    598 
    599 /*
    600 ** Given a pointer into a time zone string, extract a rule in the form
    601 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    602 ** If a valid rule is not found, return NULL.
    603 ** Otherwise, return a pointer to the first character not part of the rule.
    604 */
    605 
    606 static const char *
    607 getrule(strp, rulep)
    608 const char *			strp;
    609 register struct rule * const	rulep;
    610 {
    611 	if (*strp == 'J') {
    612 		/*
    613 		** Julian day.
    614 		*/
    615 		rulep->r_type = JULIAN_DAY;
    616 		++strp;
    617 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    618 	} else if (*strp == 'M') {
    619 		/*
    620 		** Month, week, day.
    621 		*/
    622 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    623 		++strp;
    624 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    625 		if (strp == NULL)
    626 			return NULL;
    627 		if (*strp++ != '.')
    628 			return NULL;
    629 		strp = getnum(strp, &rulep->r_week, 1, 5);
    630 		if (strp == NULL)
    631 			return NULL;
    632 		if (*strp++ != '.')
    633 			return NULL;
    634 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    635 	} else if (is_digit(*strp)) {
    636 		/*
    637 		** Day of year.
    638 		*/
    639 		rulep->r_type = DAY_OF_YEAR;
    640 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    641 	} else	return NULL;		/* invalid format */
    642 	if (strp == NULL)
    643 		return NULL;
    644 	if (*strp == '/') {
    645 		/*
    646 		** Time specified.
    647 		*/
    648 		++strp;
    649 		strp = getsecs(strp, &rulep->r_time);
    650 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    651 	return strp;
    652 }
    653 
    654 /*
    655 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    656 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    657 ** calculate the Epoch-relative time that rule takes effect.
    658 */
    659 
    660 static time_t
    661 transtime(janfirst, year, rulep, offset)
    662 const time_t				janfirst;
    663 const int				year;
    664 register const struct rule * const	rulep;
    665 const long				offset;
    666 {
    667 	register int	leapyear;
    668 	register time_t	value;
    669 	register int	i;
    670 	int		d, m1, yy0, yy1, yy2, dow;
    671 
    672 	INITIALIZE(value);
    673 	leapyear = isleap(year);
    674 	switch (rulep->r_type) {
    675 
    676 	case JULIAN_DAY:
    677 		/*
    678 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    679 		** years.
    680 		** In non-leap years, or if the day number is 59 or less, just
    681 		** add SECSPERDAY times the day number-1 to the time of
    682 		** January 1, midnight, to get the day.
    683 		*/
    684 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    685 		if (leapyear && rulep->r_day >= 60)
    686 			value += SECSPERDAY;
    687 		break;
    688 
    689 	case DAY_OF_YEAR:
    690 		/*
    691 		** n - day of year.
    692 		** Just add SECSPERDAY times the day number to the time of
    693 		** January 1, midnight, to get the day.
    694 		*/
    695 		value = janfirst + rulep->r_day * SECSPERDAY;
    696 		break;
    697 
    698 	case MONTH_NTH_DAY_OF_WEEK:
    699 		/*
    700 		** Mm.n.d - nth "dth day" of month m.
    701 		*/
    702 		value = janfirst;
    703 		for (i = 0; i < rulep->r_mon - 1; ++i)
    704 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    705 
    706 		/*
    707 		** Use Zeller's Congruence to get day-of-week of first day of
    708 		** month.
    709 		*/
    710 		m1 = (rulep->r_mon + 9) % 12 + 1;
    711 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    712 		yy1 = yy0 / 100;
    713 		yy2 = yy0 % 100;
    714 		dow = ((26 * m1 - 2) / 10 +
    715 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    716 		if (dow < 0)
    717 			dow += DAYSPERWEEK;
    718 
    719 		/*
    720 		** "dow" is the day-of-week of the first day of the month.  Get
    721 		** the day-of-month (zero-origin) of the first "dow" day of the
    722 		** month.
    723 		*/
    724 		d = rulep->r_day - dow;
    725 		if (d < 0)
    726 			d += DAYSPERWEEK;
    727 		for (i = 1; i < rulep->r_week; ++i) {
    728 			if (d + DAYSPERWEEK >=
    729 				mon_lengths[leapyear][rulep->r_mon - 1])
    730 					break;
    731 			d += DAYSPERWEEK;
    732 		}
    733 
    734 		/*
    735 		** "d" is the day-of-month (zero-origin) of the day we want.
    736 		*/
    737 		value += d * SECSPERDAY;
    738 		break;
    739 	}
    740 
    741 	/*
    742 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    743 	** question.  To get the Epoch-relative time of the specified local
    744 	** time on that day, add the transition time and the current offset
    745 	** from UTC.
    746 	*/
    747 	return value + rulep->r_time + offset;
    748 }
    749 
    750 /*
    751 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    752 ** appropriate.
    753 */
    754 
    755 static int
    756 tzparse(name, sp, lastditch)
    757 const char *			name;
    758 register struct state * const	sp;
    759 const int			lastditch;
    760 {
    761 	const char *			stdname;
    762 	const char *			dstname;
    763 	size_t				stdlen;
    764 	size_t				dstlen;
    765 	long				stdoffset;
    766 	long				dstoffset;
    767 	register time_t *		atp;
    768 	register unsigned char *	typep;
    769 	register char *			cp;
    770 	register int			load_result;
    771 
    772 	INITIALIZE(dstname);
    773 	stdname = name;
    774 	if (lastditch) {
    775 		stdlen = strlen(name);	/* length of standard zone name */
    776 		name += stdlen;
    777 		if (stdlen >= sizeof sp->chars)
    778 			stdlen = (sizeof sp->chars) - 1;
    779 		stdoffset = 0;
    780 	} else {
    781 		name = getzname(name);
    782 		stdlen = name - stdname;
    783 		if (stdlen < 3)
    784 			return -1;
    785 		if (*name == '\0')
    786 			return -1;
    787 		name = getoffset(name, &stdoffset);
    788 		if (name == NULL)
    789 			return -1;
    790 	}
    791 	load_result = tzload(TZDEFRULES, sp);
    792 	if (load_result != 0)
    793 		sp->leapcnt = 0;		/* so, we're off a little */
    794 	if (*name != '\0') {
    795 		dstname = name;
    796 		name = getzname(name);
    797 		dstlen = name - dstname;	/* length of DST zone name */
    798 		if (dstlen < 3)
    799 			return -1;
    800 		if (*name != '\0' && *name != ',' && *name != ';') {
    801 			name = getoffset(name, &dstoffset);
    802 			if (name == NULL)
    803 				return -1;
    804 		} else	dstoffset = stdoffset - SECSPERHOUR;
    805 		if (*name == '\0' && load_result != 0)
    806 			name = TZDEFRULESTRING;
    807 		if (*name == ',' || *name == ';') {
    808 			struct rule	start;
    809 			struct rule	end;
    810 			register int	year;
    811 			register time_t	janfirst;
    812 			time_t		starttime;
    813 			time_t		endtime;
    814 
    815 			++name;
    816 			if ((name = getrule(name, &start)) == NULL)
    817 				return -1;
    818 			if (*name++ != ',')
    819 				return -1;
    820 			if ((name = getrule(name, &end)) == NULL)
    821 				return -1;
    822 			if (*name != '\0')
    823 				return -1;
    824 			sp->typecnt = 2;	/* standard time and DST */
    825 			/*
    826 			** Two transitions per year, from EPOCH_YEAR to 2037.
    827 			*/
    828 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    829 			if (sp->timecnt > TZ_MAX_TIMES)
    830 				return -1;
    831 			sp->ttis[0].tt_gmtoff = -dstoffset;
    832 			sp->ttis[0].tt_isdst = 1;
    833 			sp->ttis[0].tt_abbrind = stdlen + 1;
    834 			sp->ttis[1].tt_gmtoff = -stdoffset;
    835 			sp->ttis[1].tt_isdst = 0;
    836 			sp->ttis[1].tt_abbrind = 0;
    837 			atp = sp->ats;
    838 			typep = sp->types;
    839 			janfirst = 0;
    840 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    841 				starttime = transtime(janfirst, year, &start,
    842 					stdoffset);
    843 				endtime = transtime(janfirst, year, &end,
    844 					dstoffset);
    845 				if (starttime > endtime) {
    846 					*atp++ = endtime;
    847 					*typep++ = 1;	/* DST ends */
    848 					*atp++ = starttime;
    849 					*typep++ = 0;	/* DST begins */
    850 				} else {
    851 					*atp++ = starttime;
    852 					*typep++ = 0;	/* DST begins */
    853 					*atp++ = endtime;
    854 					*typep++ = 1;	/* DST ends */
    855 				}
    856 				janfirst += year_lengths[isleap(year)] *
    857 					SECSPERDAY;
    858 			}
    859 		} else {
    860 			register long	theirstdoffset;
    861 			register long	theirdstoffset;
    862 			register long	theiroffset;
    863 			register int	isdst;
    864 			register int	i;
    865 			register int	j;
    866 
    867 			if (*name != '\0')
    868 				return -1;
    869 			/*
    870 			** Initial values of theirstdoffset and theirdstoffset.
    871 			*/
    872 			theirstdoffset = 0;
    873 			for (i = 0; i < sp->timecnt; ++i) {
    874 				j = sp->types[i];
    875 				if (!sp->ttis[j].tt_isdst) {
    876 					theirstdoffset =
    877 						-sp->ttis[j].tt_gmtoff;
    878 					break;
    879 				}
    880 			}
    881 			theirdstoffset = 0;
    882 			for (i = 0; i < sp->timecnt; ++i) {
    883 				j = sp->types[i];
    884 				if (sp->ttis[j].tt_isdst) {
    885 					theirdstoffset =
    886 						-sp->ttis[j].tt_gmtoff;
    887 					break;
    888 				}
    889 			}
    890 			/*
    891 			** Initially we're assumed to be in standard time.
    892 			*/
    893 			isdst = FALSE;
    894 			theiroffset = theirstdoffset;
    895 			/*
    896 			** Now juggle transition times and types
    897 			** tracking offsets as you do.
    898 			*/
    899 			for (i = 0; i < sp->timecnt; ++i) {
    900 				j = sp->types[i];
    901 				sp->types[i] = sp->ttis[j].tt_isdst;
    902 				if (sp->ttis[j].tt_ttisgmt) {
    903 					/* No adjustment to transition time */
    904 				} else {
    905 					/*
    906 					** If summer time is in effect, and the
    907 					** transition time was not specified as
    908 					** standard time, add the summer time
    909 					** offset to the transition time;
    910 					** otherwise, add the standard time
    911 					** offset to the transition time.
    912 					*/
    913 					/*
    914 					** Transitions from DST to DDST
    915 					** will effectively disappear since
    916 					** POSIX provides for only one DST
    917 					** offset.
    918 					*/
    919 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    920 						sp->ats[i] += dstoffset -
    921 							theirdstoffset;
    922 					} else {
    923 						sp->ats[i] += stdoffset -
    924 							theirstdoffset;
    925 					}
    926 				}
    927 				theiroffset = -sp->ttis[j].tt_gmtoff;
    928 				if (sp->ttis[j].tt_isdst)
    929 					theirdstoffset = theiroffset;
    930 				else	theirstdoffset = theiroffset;
    931 			}
    932 			/*
    933 			** Finally, fill in ttis.
    934 			** ttisstd and ttisgmt need not be handled.
    935 			*/
    936 			sp->ttis[0].tt_gmtoff = -stdoffset;
    937 			sp->ttis[0].tt_isdst = FALSE;
    938 			sp->ttis[0].tt_abbrind = 0;
    939 			sp->ttis[1].tt_gmtoff = -dstoffset;
    940 			sp->ttis[1].tt_isdst = TRUE;
    941 			sp->ttis[1].tt_abbrind = stdlen + 1;
    942 			sp->typecnt = 2;
    943 		}
    944 	} else {
    945 		dstlen = 0;
    946 		sp->typecnt = 1;		/* only standard time */
    947 		sp->timecnt = 0;
    948 		sp->ttis[0].tt_gmtoff = -stdoffset;
    949 		sp->ttis[0].tt_isdst = 0;
    950 		sp->ttis[0].tt_abbrind = 0;
    951 	}
    952 	sp->charcnt = stdlen + 1;
    953 	if (dstlen != 0)
    954 		sp->charcnt += dstlen + 1;
    955 	if ((size_t) sp->charcnt > sizeof sp->chars)
    956 		return -1;
    957 	cp = sp->chars;
    958 	(void) strncpy(cp, stdname, stdlen);
    959 	cp += stdlen;
    960 	*cp++ = '\0';
    961 	if (dstlen != 0) {
    962 		(void) strncpy(cp, dstname, dstlen);
    963 		*(cp + dstlen) = '\0';
    964 	}
    965 	return 0;
    966 }
    967 
    968 static void
    969 gmtload(sp)
    970 struct state * const	sp;
    971 {
    972 	if (tzload(gmt, sp) != 0)
    973 		(void) tzparse(gmt, sp, TRUE);
    974 }
    975 
    976 static void
    977 tzsetwall_unlocked P((void))
    978 {
    979 	if (lcl_is_set < 0)
    980 		return;
    981 	lcl_is_set = -1;
    982 
    983 #ifdef ALL_STATE
    984 	if (lclptr == NULL) {
    985 		lclptr = (struct state *) malloc(sizeof *lclptr);
    986 		if (lclptr == NULL) {
    987 			settzname();	/* all we can do */
    988 			return;
    989 		}
    990 	}
    991 #endif /* defined ALL_STATE */
    992 	if (tzload((char *) NULL, lclptr) != 0)
    993 		gmtload(lclptr);
    994 	settzname();
    995 }
    996 
    997 #ifndef STD_INSPIRED
    998 /*
    999 ** A non-static declaration of tzsetwall in a system header file
   1000 ** may cause a warning about this upcoming static declaration...
   1001 */
   1002 static
   1003 #endif /* !defined STD_INSPIRED */
   1004 void
   1005 tzsetwall P((void))
   1006 {
   1007 	rwlock_wrlock(&lcl_lock);
   1008 	tzsetwall_unlocked();
   1009 	rwlock_unlock(&lcl_lock);
   1010 }
   1011 
   1012 static void
   1013 tzset_unlocked P((void))
   1014 {
   1015 	register const char *	name;
   1016 
   1017 	name = getenv("TZ");
   1018 	if (name == NULL) {
   1019 		tzsetwall_unlocked();
   1020 		return;
   1021 	}
   1022 
   1023 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
   1024 		return;
   1025 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
   1026 	if (lcl_is_set)
   1027 		(void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
   1028 
   1029 #ifdef ALL_STATE
   1030 	if (lclptr == NULL) {
   1031 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1032 		if (lclptr == NULL) {
   1033 			settzname();	/* all we can do */
   1034 			return;
   1035 		}
   1036 	}
   1037 #endif /* defined ALL_STATE */
   1038 	if (*name == '\0') {
   1039 		/*
   1040 		** User wants it fast rather than right.
   1041 		*/
   1042 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1043 		lclptr->timecnt = 0;
   1044 		lclptr->ttis[0].tt_gmtoff = 0;
   1045 		lclptr->ttis[0].tt_abbrind = 0;
   1046 		(void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
   1047 	} else if (tzload(name, lclptr) != 0)
   1048 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1049 			(void) gmtload(lclptr);
   1050 	settzname();
   1051 }
   1052 
   1053 void
   1054 tzset P((void))
   1055 {
   1056 	rwlock_wrlock(&lcl_lock);
   1057 	tzset_unlocked();
   1058 	rwlock_unlock(&lcl_lock);
   1059 }
   1060 
   1061 /*
   1062 ** The easy way to behave "as if no library function calls" localtime
   1063 ** is to not call it--so we drop its guts into "localsub", which can be
   1064 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1065 ** but it *is* desirable.)
   1066 **
   1067 ** The unused offset argument is for the benefit of mktime variants.
   1068 */
   1069 
   1070 /*ARGSUSED*/
   1071 static void
   1072 localsub(timep, offset, tmp)
   1073 const time_t * const	timep;
   1074 const long		offset;
   1075 struct tm * const	tmp;
   1076 {
   1077 	register struct state *		sp;
   1078 	register const struct ttinfo *	ttisp;
   1079 	register int			i;
   1080 	const time_t			t = *timep;
   1081 
   1082 	sp = lclptr;
   1083 #ifdef ALL_STATE
   1084 	if (sp == NULL) {
   1085 		gmtsub(timep, offset, tmp);
   1086 		return;
   1087 	}
   1088 #endif /* defined ALL_STATE */
   1089 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1090 		i = 0;
   1091 		while (sp->ttis[i].tt_isdst)
   1092 			if (++i >= sp->typecnt) {
   1093 				i = 0;
   1094 				break;
   1095 			}
   1096 	} else {
   1097 		for (i = 1; i < sp->timecnt; ++i)
   1098 			if (t < sp->ats[i])
   1099 				break;
   1100 		i = sp->types[i - 1];
   1101 	}
   1102 	ttisp = &sp->ttis[i];
   1103 	/*
   1104 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1105 	** you'd replace the statement below with
   1106 	**	t += ttisp->tt_gmtoff;
   1107 	**	timesub(&t, 0L, sp, tmp);
   1108 	*/
   1109 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1110 	tmp->tm_isdst = ttisp->tt_isdst;
   1111 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1112 #ifdef TM_ZONE
   1113 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1114 #endif /* defined TM_ZONE */
   1115 }
   1116 
   1117 struct tm *
   1118 localtime(timep)
   1119 const time_t * const	timep;
   1120 {
   1121 	rwlock_wrlock(&lcl_lock);
   1122 	tzset_unlocked();
   1123 	localsub(timep, 0L, &tm);
   1124 	rwlock_unlock(&lcl_lock);
   1125 	return &tm;
   1126 }
   1127 
   1128 /*
   1129  * Re-entrant version of localtime
   1130  */
   1131 struct tm *
   1132 localtime_r(timep, tm)
   1133 const time_t * const	timep;
   1134 struct tm *		tm;
   1135 {
   1136 	rwlock_rdlock(&lcl_lock);
   1137 	localsub(timep, 0L, tm);
   1138 	rwlock_unlock(&lcl_lock);
   1139 	return tm;
   1140 }
   1141 
   1142 /*
   1143 ** gmtsub is to gmtime as localsub is to localtime.
   1144 */
   1145 
   1146 static void
   1147 gmtsub(timep, offset, tmp)
   1148 const time_t * const	timep;
   1149 const long		offset;
   1150 struct tm * const	tmp;
   1151 {
   1152 #ifdef _REENT
   1153 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1154 #endif
   1155 
   1156 	mutex_lock(&gmt_mutex);
   1157 	if (!gmt_is_set) {
   1158 		gmt_is_set = TRUE;
   1159 #ifdef ALL_STATE
   1160 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1161 		if (gmtptr != NULL)
   1162 #endif /* defined ALL_STATE */
   1163 			gmtload(gmtptr);
   1164 	}
   1165 	mutex_unlock(&gmt_mutex);
   1166 	timesub(timep, offset, gmtptr, tmp);
   1167 #ifdef TM_ZONE
   1168 	/*
   1169 	** Could get fancy here and deliver something such as
   1170 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1171 	** but this is no time for a treasure hunt.
   1172 	*/
   1173 	if (offset != 0)
   1174 		/* LINTED const castaway */
   1175 		tmp->TM_ZONE = (__aconst char *)wildabbr;
   1176 	else {
   1177 #ifdef ALL_STATE
   1178 		if (gmtptr == NULL)
   1179 			tmp->TM_ZONE = (__aconst char *)gmt;
   1180 		else	tmp->TM_ZONE = gmtptr->chars;
   1181 #endif /* defined ALL_STATE */
   1182 #ifndef ALL_STATE
   1183 		tmp->TM_ZONE = gmtptr->chars;
   1184 #endif /* State Farm */
   1185 	}
   1186 #endif /* defined TM_ZONE */
   1187 }
   1188 
   1189 struct tm *
   1190 gmtime(timep)
   1191 const time_t * const	timep;
   1192 {
   1193 	gmtsub(timep, 0L, &tm);
   1194 	return &tm;
   1195 }
   1196 
   1197 /*
   1198  * Re-entrant version of gmtime
   1199  */
   1200 struct tm *
   1201 gmtime_r(timep, tm)
   1202 const time_t * const	timep;
   1203 struct tm *		tm;
   1204 {
   1205 	gmtsub(timep, 0L, tm);
   1206 	return tm;
   1207 }
   1208 
   1209 #ifdef STD_INSPIRED
   1210 
   1211 struct tm *
   1212 offtime(timep, offset)
   1213 const time_t * const	timep;
   1214 const long		offset;
   1215 {
   1216 	gmtsub(timep, offset, &tm);
   1217 	return &tm;
   1218 }
   1219 
   1220 #endif /* defined STD_INSPIRED */
   1221 
   1222 static void
   1223 timesub(timep, offset, sp, tmp)
   1224 const time_t * const			timep;
   1225 const long				offset;
   1226 register const struct state * const	sp;
   1227 register struct tm * const		tmp;
   1228 {
   1229 	register const struct lsinfo *	lp;
   1230 	register long			days;
   1231 	register long			rem;
   1232 	register int			y;
   1233 	register int			yleap;
   1234 	register const int *		ip;
   1235 	register long			corr;
   1236 	register int			hit;
   1237 	register int			i;
   1238 
   1239 	corr = 0;
   1240 	hit = 0;
   1241 #ifdef ALL_STATE
   1242 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1243 #endif /* defined ALL_STATE */
   1244 #ifndef ALL_STATE
   1245 	i = sp->leapcnt;
   1246 #endif /* State Farm */
   1247 	while (--i >= 0) {
   1248 		lp = &sp->lsis[i];
   1249 		if (*timep >= lp->ls_trans) {
   1250 			if (*timep == lp->ls_trans) {
   1251 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1252 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1253 				if (hit)
   1254 					while (i > 0 &&
   1255 						sp->lsis[i].ls_trans ==
   1256 						sp->lsis[i - 1].ls_trans + 1 &&
   1257 						sp->lsis[i].ls_corr ==
   1258 						sp->lsis[i - 1].ls_corr + 1) {
   1259 							++hit;
   1260 							--i;
   1261 					}
   1262 			}
   1263 			corr = lp->ls_corr;
   1264 			break;
   1265 		}
   1266 	}
   1267 	days = *timep / SECSPERDAY;
   1268 	rem = *timep % SECSPERDAY;
   1269 #ifdef mc68k
   1270 	if (*timep == 0x80000000) {
   1271 		/*
   1272 		** A 3B1 muffs the division on the most negative number.
   1273 		*/
   1274 		days = -24855;
   1275 		rem = -11648;
   1276 	}
   1277 #endif /* defined mc68k */
   1278 	rem += (offset - corr);
   1279 	while (rem < 0) {
   1280 		rem += SECSPERDAY;
   1281 		--days;
   1282 	}
   1283 	while (rem >= SECSPERDAY) {
   1284 		rem -= SECSPERDAY;
   1285 		++days;
   1286 	}
   1287 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1288 	rem = rem % SECSPERHOUR;
   1289 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1290 	/*
   1291 	** A positive leap second requires a special
   1292 	** representation.  This uses "... ??:59:60" et seq.
   1293 	*/
   1294 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1295 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1296 	if (tmp->tm_wday < 0)
   1297 		tmp->tm_wday += DAYSPERWEEK;
   1298 	y = EPOCH_YEAR;
   1299 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1300 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1301 		register int	newy;
   1302 
   1303 		newy = (int)(y + days / DAYSPERNYEAR);
   1304 		if (days < 0)
   1305 			--newy;
   1306 		days -= (newy - y) * DAYSPERNYEAR +
   1307 			LEAPS_THRU_END_OF(newy - 1) -
   1308 			LEAPS_THRU_END_OF(y - 1);
   1309 		y = newy;
   1310 	}
   1311 	tmp->tm_year = y - TM_YEAR_BASE;
   1312 	tmp->tm_yday = (int) days;
   1313 	ip = mon_lengths[yleap];
   1314 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1315 		days = days - (long) ip[tmp->tm_mon];
   1316 	tmp->tm_mday = (int) (days + 1);
   1317 	tmp->tm_isdst = 0;
   1318 #ifdef TM_GMTOFF
   1319 	tmp->TM_GMTOFF = offset;
   1320 #endif /* defined TM_GMTOFF */
   1321 }
   1322 
   1323 char *
   1324 ctime(timep)
   1325 const time_t * const	timep;
   1326 {
   1327 /*
   1328 ** Section 4.12.3.2 of X3.159-1989 requires that
   1329 **	The ctime function converts the calendar time pointed to by timer
   1330 **	to local time in the form of a string.  It is equivalent to
   1331 **		asctime(localtime(timer))
   1332 */
   1333 	return asctime(localtime(timep));
   1334 }
   1335 
   1336 char *
   1337 ctime_r(timep, buf)
   1338 const time_t * const	timep;
   1339 char *			buf;
   1340 {
   1341 	struct tm	tmp;
   1342 
   1343 	return asctime_r(localtime_r(timep, &tmp), buf);
   1344 }
   1345 
   1346 /*
   1347 ** Adapted from code provided by Robert Elz, who writes:
   1348 **	The "best" way to do mktime I think is based on an idea of Bob
   1349 **	Kridle's (so its said...) from a long time ago.
   1350 **	[kridle (at) xinet.com as of 1996-01-16.]
   1351 **	It does a binary search of the time_t space.  Since time_t's are
   1352 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1353 **	would still be very reasonable).
   1354 */
   1355 
   1356 #ifndef WRONG
   1357 #define WRONG	(-1)
   1358 #endif /* !defined WRONG */
   1359 
   1360 /*
   1361 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1362 */
   1363 
   1364 static int
   1365 increment_overflow(number, delta)
   1366 int *	number;
   1367 int	delta;
   1368 {
   1369 	int	number0;
   1370 
   1371 	number0 = *number;
   1372 	*number += delta;
   1373 	return (*number < number0) != (delta < 0);
   1374 }
   1375 
   1376 static int
   1377 normalize_overflow(tensptr, unitsptr, base)
   1378 int * const	tensptr;
   1379 int * const	unitsptr;
   1380 const int	base;
   1381 {
   1382 	register int	tensdelta;
   1383 
   1384 	tensdelta = (*unitsptr >= 0) ?
   1385 		(*unitsptr / base) :
   1386 		(-1 - (-1 - *unitsptr) / base);
   1387 	*unitsptr -= tensdelta * base;
   1388 	return increment_overflow(tensptr, tensdelta);
   1389 }
   1390 
   1391 static int
   1392 tmcomp(atmp, btmp)
   1393 register const struct tm * const atmp;
   1394 register const struct tm * const btmp;
   1395 {
   1396 	register int	result;
   1397 
   1398 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1399 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1400 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1401 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1402 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1403 			result = atmp->tm_sec - btmp->tm_sec;
   1404 	return result;
   1405 }
   1406 
   1407 static time_t
   1408 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1409 struct tm * const	tmp;
   1410 void (* const		funcp) P((const time_t*, long, struct tm*));
   1411 const long		offset;
   1412 int * const		okayp;
   1413 const int		do_norm_secs;
   1414 {
   1415 	register const struct state *	sp;
   1416 	register int			dir;
   1417 	register int			bits;
   1418 	register int			i, j ;
   1419 	register int			saved_seconds;
   1420 	time_t				newt;
   1421 	time_t				t;
   1422 	struct tm			yourtm, mytm;
   1423 
   1424 	*okayp = FALSE;
   1425 	yourtm = *tmp;
   1426 	if (do_norm_secs) {
   1427 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1428 			SECSPERMIN))
   1429 				return WRONG;
   1430 	}
   1431 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1432 		return WRONG;
   1433 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1434 		return WRONG;
   1435 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1436 		return WRONG;
   1437 	/*
   1438 	** Turn yourtm.tm_year into an actual year number for now.
   1439 	** It is converted back to an offset from TM_YEAR_BASE later.
   1440 	*/
   1441 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1442 		return WRONG;
   1443 	while (yourtm.tm_mday <= 0) {
   1444 		if (increment_overflow(&yourtm.tm_year, -1))
   1445 			return WRONG;
   1446 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1447 		yourtm.tm_mday += year_lengths[isleap(i)];
   1448 	}
   1449 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1450 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1451 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1452 		if (increment_overflow(&yourtm.tm_year, 1))
   1453 			return WRONG;
   1454 	}
   1455 	for ( ; ; ) {
   1456 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1457 		if (yourtm.tm_mday <= i)
   1458 			break;
   1459 		yourtm.tm_mday -= i;
   1460 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1461 			yourtm.tm_mon = 0;
   1462 			if (increment_overflow(&yourtm.tm_year, 1))
   1463 				return WRONG;
   1464 		}
   1465 	}
   1466 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1467 		return WRONG;
   1468 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1469 		/*
   1470 		** We can't set tm_sec to 0, because that might push the
   1471 		** time below the minimum representable time.
   1472 		** Set tm_sec to 59 instead.
   1473 		** This assumes that the minimum representable time is
   1474 		** not in the same minute that a leap second was deleted from,
   1475 		** which is a safer assumption than using 58 would be.
   1476 		*/
   1477 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1478 			return WRONG;
   1479 		saved_seconds = yourtm.tm_sec;
   1480 		yourtm.tm_sec = SECSPERMIN - 1;
   1481 	} else {
   1482 		saved_seconds = yourtm.tm_sec;
   1483 		yourtm.tm_sec = 0;
   1484 	}
   1485 	/*
   1486 	** Divide the search space in half
   1487 	** (this works whether time_t is signed or unsigned).
   1488 	*/
   1489 	bits = TYPE_BIT(time_t) - 1;
   1490 	/*
   1491 	** If time_t is signed, then 0 is just above the median,
   1492 	** assuming two's complement arithmetic.
   1493 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1494 	*/
   1495 	/* LINTED constant in conditional context */
   1496 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1497 	for ( ; ; ) {
   1498 		(*funcp)(&t, offset, &mytm);
   1499 		dir = tmcomp(&mytm, &yourtm);
   1500 		if (dir != 0) {
   1501 			if (bits-- < 0)
   1502 				return WRONG;
   1503 			if (bits < 0)
   1504 				--t; /* may be needed if new t is minimal */
   1505 			else if (dir > 0)
   1506 				t -= ((time_t) 1) << bits;
   1507 			else	t += ((time_t) 1) << bits;
   1508 			continue;
   1509 		}
   1510 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1511 			break;
   1512 		/*
   1513 		** Right time, wrong type.
   1514 		** Hunt for right time, right type.
   1515 		** It's okay to guess wrong since the guess
   1516 		** gets checked.
   1517 		*/
   1518 		/*
   1519 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1520 		*/
   1521 		sp = (const struct state *)
   1522 			(((void *) funcp == (void *) localsub) ?
   1523 			lclptr : gmtptr);
   1524 #ifdef ALL_STATE
   1525 		if (sp == NULL)
   1526 			return WRONG;
   1527 #endif /* defined ALL_STATE */
   1528 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1529 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1530 				continue;
   1531 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1532 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1533 					continue;
   1534 				newt = t + sp->ttis[j].tt_gmtoff -
   1535 					sp->ttis[i].tt_gmtoff;
   1536 				(*funcp)(&newt, offset, &mytm);
   1537 				if (tmcomp(&mytm, &yourtm) != 0)
   1538 					continue;
   1539 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1540 					continue;
   1541 				/*
   1542 				** We have a match.
   1543 				*/
   1544 				t = newt;
   1545 				goto label;
   1546 			}
   1547 		}
   1548 		return WRONG;
   1549 	}
   1550 label:
   1551 	newt = t + saved_seconds;
   1552 	if ((newt < t) != (saved_seconds < 0))
   1553 		return WRONG;
   1554 	t = newt;
   1555 	(*funcp)(&t, offset, tmp);
   1556 	*okayp = TRUE;
   1557 	return t;
   1558 }
   1559 
   1560 static time_t
   1561 time2(tmp, funcp, offset, okayp)
   1562 struct tm * const	tmp;
   1563 void (* const		funcp) P((const time_t*, long, struct tm*));
   1564 const long		offset;
   1565 int * const		okayp;
   1566 {
   1567 	time_t	t;
   1568 
   1569 	/*
   1570 	** First try without normalization of seconds
   1571 	** (in case tm_sec contains a value associated with a leap second).
   1572 	** If that fails, try with normalization of seconds.
   1573 	*/
   1574 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1575 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1576 }
   1577 
   1578 static time_t
   1579 time1(tmp, funcp, offset)
   1580 struct tm * const	tmp;
   1581 void (* const		funcp) P((const time_t *, long, struct tm *));
   1582 const long		offset;
   1583 {
   1584 	register time_t			t;
   1585 	register const struct state *	sp;
   1586 	register int			samei, otheri;
   1587 	int				okay;
   1588 
   1589 	if (tmp->tm_isdst > 1)
   1590 		tmp->tm_isdst = 1;
   1591 	t = time2(tmp, funcp, offset, &okay);
   1592 #ifdef PCTS
   1593 	/*
   1594 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1595 	*/
   1596 	if (okay)
   1597 		return t;
   1598 	if (tmp->tm_isdst < 0)
   1599 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1600 #endif /* defined PCTS */
   1601 #ifndef PCTS
   1602 	if (okay || tmp->tm_isdst < 0)
   1603 		return t;
   1604 #endif /* !defined PCTS */
   1605 	/*
   1606 	** We're supposed to assume that somebody took a time of one type
   1607 	** and did some math on it that yielded a "struct tm" that's bad.
   1608 	** We try to divine the type they started from and adjust to the
   1609 	** type they need.
   1610 	*/
   1611 	/*
   1612 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1613 	*/
   1614 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1615 		lclptr : gmtptr);
   1616 #ifdef ALL_STATE
   1617 	if (sp == NULL)
   1618 		return WRONG;
   1619 #endif /* defined ALL_STATE */
   1620 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1621 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1622 			continue;
   1623 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1624 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1625 				continue;
   1626 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   1627 					sp->ttis[samei].tt_gmtoff);
   1628 			tmp->tm_isdst = !tmp->tm_isdst;
   1629 			t = time2(tmp, funcp, offset, &okay);
   1630 			if (okay)
   1631 				return t;
   1632 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   1633 					sp->ttis[samei].tt_gmtoff);
   1634 			tmp->tm_isdst = !tmp->tm_isdst;
   1635 		}
   1636 	}
   1637 	return WRONG;
   1638 }
   1639 
   1640 time_t
   1641 mktime(tmp)
   1642 struct tm * const	tmp;
   1643 {
   1644 	time_t result;
   1645 
   1646 	rwlock_wrlock(&lcl_lock);
   1647 	tzset_unlocked();
   1648 	result = time1(tmp, localsub, 0L);
   1649 	rwlock_unlock(&lcl_lock);
   1650 	return (result);
   1651 }
   1652 
   1653 #ifdef STD_INSPIRED
   1654 
   1655 time_t
   1656 timelocal(tmp)
   1657 struct tm * const	tmp;
   1658 {
   1659 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1660 	return mktime(tmp);
   1661 }
   1662 
   1663 time_t
   1664 timegm(tmp)
   1665 struct tm * const	tmp;
   1666 {
   1667 	tmp->tm_isdst = 0;
   1668 	return time1(tmp, gmtsub, 0L);
   1669 }
   1670 
   1671 time_t
   1672 timeoff(tmp, offset)
   1673 struct tm * const	tmp;
   1674 const long		offset;
   1675 {
   1676 	tmp->tm_isdst = 0;
   1677 	return time1(tmp, gmtsub, offset);
   1678 }
   1679 
   1680 #endif /* defined STD_INSPIRED */
   1681 
   1682 #ifdef CMUCS
   1683 
   1684 /*
   1685 ** The following is supplied for compatibility with
   1686 ** previous versions of the CMUCS runtime library.
   1687 */
   1688 
   1689 long
   1690 gtime(tmp)
   1691 struct tm * const	tmp;
   1692 {
   1693 	const time_t	t = mktime(tmp);
   1694 
   1695 	if (t == WRONG)
   1696 		return -1;
   1697 	return t;
   1698 }
   1699 
   1700 #endif /* defined CMUCS */
   1701 
   1702 /*
   1703 ** XXX--is the below the right way to conditionalize??
   1704 */
   1705 
   1706 #ifdef STD_INSPIRED
   1707 
   1708 /*
   1709 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1710 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1711 ** is not the case if we are accounting for leap seconds.
   1712 ** So, we provide the following conversion routines for use
   1713 ** when exchanging timestamps with POSIX conforming systems.
   1714 */
   1715 
   1716 static long
   1717 leapcorr(timep)
   1718 time_t *	timep;
   1719 {
   1720 	register struct state *		sp;
   1721 	register struct lsinfo *	lp;
   1722 	register int			i;
   1723 
   1724 	sp = lclptr;
   1725 	i = sp->leapcnt;
   1726 	while (--i >= 0) {
   1727 		lp = &sp->lsis[i];
   1728 		if (*timep >= lp->ls_trans)
   1729 			return lp->ls_corr;
   1730 	}
   1731 	return 0;
   1732 }
   1733 
   1734 time_t
   1735 time2posix(t)
   1736 time_t	t;
   1737 {
   1738 	time_t result;
   1739 
   1740 	rwlock_wrlock(&lcl_lock);
   1741 	tzset_unlocked();
   1742 	result = t - leapcorr(&t);
   1743 	rwlock_unlock(&lcl_lock);
   1744 	return (result);
   1745 }
   1746 
   1747 time_t
   1748 posix2time(t)
   1749 time_t	t;
   1750 {
   1751 	time_t	x;
   1752 	time_t	y;
   1753 
   1754 	rwlock_wrlock(&lcl_lock);
   1755 	tzset_unlocked();
   1756 	/*
   1757 	** For a positive leap second hit, the result
   1758 	** is not unique.  For a negative leap second
   1759 	** hit, the corresponding time doesn't exist,
   1760 	** so we return an adjacent second.
   1761 	*/
   1762 	x = t + leapcorr(&t);
   1763 	y = x - leapcorr(&x);
   1764 	if (y < t) {
   1765 		do {
   1766 			x++;
   1767 			y = x - leapcorr(&x);
   1768 		} while (y < t);
   1769 		if (t != y) {
   1770 			rwlock_unlock(&lcl_lock);
   1771 			return x - 1;
   1772 		}
   1773 	} else if (y > t) {
   1774 		do {
   1775 			--x;
   1776 			y = x - leapcorr(&x);
   1777 		} while (y > t);
   1778 		if (t != y) {
   1779 			rwlock_unlock(&lcl_lock);
   1780 			return x + 1;
   1781 		}
   1782 	}
   1783 	rwlock_unlock(&lcl_lock);
   1784 	return x;
   1785 }
   1786 
   1787 #endif /* defined STD_INSPIRED */
   1788