localtime.c revision 1.24 1 /* $NetBSD: localtime.c,v 1.24 2000/09/13 22:32:28 msaitoh Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 7.70";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.24 2000/09/13 22:32:28 msaitoh Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 ** POSIX-style TZ environment variable handling from Guy Harris
20 ** (guy (at) auspex.com).
21 */
22
23 /*LINTLIBRARY*/
24
25 #include "namespace.h"
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #ifdef __weak_alias
32 __weak_alias(ctime_r,_ctime_r)
33 __weak_alias(gmtime_r,_gmtime_r)
34 __weak_alias(localtime_r,_localtime_r)
35 __weak_alias(offtime,_offtime)
36 __weak_alias(posix2time,_posix2time)
37 __weak_alias(time2posix,_time2posix)
38 __weak_alias(timegm,_timegm)
39 __weak_alias(timelocal,_timelocal)
40 __weak_alias(timeoff,_timeoff)
41 __weak_alias(tzname,_tzname)
42 __weak_alias(tzset,_tzset)
43 __weak_alias(tzsetwall,_tzsetwall)
44 #endif
45
46 /*
47 ** SunOS 4.1.1 headers lack O_BINARY.
48 */
49
50 #ifdef O_BINARY
51 #define OPEN_MODE (O_RDONLY | O_BINARY)
52 #endif /* defined O_BINARY */
53 #ifndef O_BINARY
54 #define OPEN_MODE O_RDONLY
55 #endif /* !defined O_BINARY */
56
57 #ifndef WILDABBR
58 /*
59 ** Someone might make incorrect use of a time zone abbreviation:
60 ** 1. They might reference tzname[0] before calling tzset (explicitly
61 ** or implicitly).
62 ** 2. They might reference tzname[1] before calling tzset (explicitly
63 ** or implicitly).
64 ** 3. They might reference tzname[1] after setting to a time zone
65 ** in which Daylight Saving Time is never observed.
66 ** 4. They might reference tzname[0] after setting to a time zone
67 ** in which Standard Time is never observed.
68 ** 5. They might reference tm.TM_ZONE after calling offtime.
69 ** What's best to do in the above cases is open to debate;
70 ** for now, we just set things up so that in any of the five cases
71 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
72 ** string "tzname[0] used before set", and similarly for the other cases.
73 ** And another: initialize tzname[0] to "ERA", with an explanation in the
74 ** manual page of what this "time zone abbreviation" means (doing this so
75 ** that tzname[0] has the "normal" length of three characters).
76 */
77 #define WILDABBR " "
78 #endif /* !defined WILDABBR */
79
80 static const char wildabbr[] = "WILDABBR";
81
82 static const char gmt[] = "GMT";
83
84 /*
85 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
86 ** We default to US rules as of 1999-08-17.
87 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
88 ** implementation dependent; for historical reasons, US rules are a
89 ** common default.
90 */
91 #ifndef TZDEFRULESTRING
92 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
93 #endif /* !defined TZDEFDST */
94
95 struct ttinfo { /* time type information */
96 long tt_gmtoff; /* UTC offset in seconds */
97 int tt_isdst; /* used to set tm_isdst */
98 int tt_abbrind; /* abbreviation list index */
99 int tt_ttisstd; /* TRUE if transition is std time */
100 int tt_ttisgmt; /* TRUE if transition is UTC */
101 };
102
103 struct lsinfo { /* leap second information */
104 time_t ls_trans; /* transition time */
105 long ls_corr; /* correction to apply */
106 };
107
108 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
109
110 #ifdef TZNAME_MAX
111 #define MY_TZNAME_MAX TZNAME_MAX
112 #endif /* defined TZNAME_MAX */
113 #ifndef TZNAME_MAX
114 #define MY_TZNAME_MAX 255
115 #endif /* !defined TZNAME_MAX */
116
117 struct state {
118 int leapcnt;
119 int timecnt;
120 int typecnt;
121 int charcnt;
122 time_t ats[TZ_MAX_TIMES];
123 unsigned char types[TZ_MAX_TIMES];
124 struct ttinfo ttis[TZ_MAX_TYPES];
125 char chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
126 (2 * (MY_TZNAME_MAX + 1)))];
127 struct lsinfo lsis[TZ_MAX_LEAPS];
128 };
129
130 struct rule {
131 int r_type; /* type of rule--see below */
132 int r_day; /* day number of rule */
133 int r_week; /* week number of rule */
134 int r_mon; /* month number of rule */
135 long r_time; /* transition time of rule */
136 };
137
138 #define JULIAN_DAY 0 /* Jn - Julian day */
139 #define DAY_OF_YEAR 1 /* n - day of year */
140 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
141
142 /*
143 ** Prototypes for static functions.
144 */
145
146 static long detzcode P((const char * codep));
147 static const char * getzname P((const char * strp));
148 static const char * getnum P((const char * strp, int * nump, int min,
149 int max));
150 static const char * getsecs P((const char * strp, long * secsp));
151 static const char * getoffset P((const char * strp, long * offsetp));
152 static const char * getrule P((const char * strp, struct rule * rulep));
153 static void gmtload P((struct state * sp));
154 static void gmtsub P((const time_t * timep, long offset,
155 struct tm * tmp));
156 static void localsub P((const time_t * timep, long offset,
157 struct tm * tmp));
158 static int increment_overflow P((int * number, int delta));
159 static int normalize_overflow P((int * tensptr, int * unitsptr,
160 int base));
161 static void settzname P((void));
162 static time_t time1 P((struct tm * tmp,
163 void(*funcp) P((const time_t *,
164 long, struct tm *)),
165 long offset));
166 static time_t time2 P((struct tm *tmp,
167 void(*funcp) P((const time_t *,
168 long, struct tm*)),
169 long offset, int * okayp));
170 static time_t time2sub P((struct tm *tmp,
171 void(*funcp) P((const time_t *,
172 long, struct tm*)),
173 long offset, int * okayp, int do_norm_secs));
174 static void timesub P((const time_t * timep, long offset,
175 const struct state * sp, struct tm * tmp));
176 static int tmcomp P((const struct tm * atmp,
177 const struct tm * btmp));
178 static time_t transtime P((time_t janfirst, int year,
179 const struct rule * rulep, long offset));
180 static int tzload P((const char * name, struct state * sp));
181 static int tzparse P((const char * name, struct state * sp,
182 int lastditch));
183 static void tzset_unlocked P((void));
184 static void tzsetwall_unlocked P((void));
185 #ifdef STD_INSPIRED
186 static long leapcorr P((time_t * timep));
187 #endif
188
189 #ifdef ALL_STATE
190 static struct state * lclptr;
191 static struct state * gmtptr;
192 #endif /* defined ALL_STATE */
193
194 #ifndef ALL_STATE
195 static struct state lclmem;
196 static struct state gmtmem;
197 #define lclptr (&lclmem)
198 #define gmtptr (&gmtmem)
199 #endif /* State Farm */
200
201 #ifndef TZ_STRLEN_MAX
202 #define TZ_STRLEN_MAX 255
203 #endif /* !defined TZ_STRLEN_MAX */
204
205 static char lcl_TZname[TZ_STRLEN_MAX + 1];
206 static int lcl_is_set;
207 static int gmt_is_set;
208
209 __aconst char * tzname[2] = {
210 /* LINTED const castaway */
211 (__aconst char *)wildabbr,
212 /* LINTED const castaway */
213 (__aconst char *)wildabbr
214 };
215
216 #ifdef _REENT
217 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
218 #endif
219
220 /*
221 ** Section 4.12.3 of X3.159-1989 requires that
222 ** Except for the strftime function, these functions [asctime,
223 ** ctime, gmtime, localtime] return values in one of two static
224 ** objects: a broken-down time structure and an array of char.
225 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
226 */
227
228 static struct tm tm;
229
230 #ifdef USG_COMPAT
231 time_t timezone = 0;
232 int daylight = 0;
233 #endif /* defined USG_COMPAT */
234
235 #ifdef ALTZONE
236 time_t altzone = 0;
237 #endif /* defined ALTZONE */
238
239 static long
240 detzcode(codep)
241 const char * const codep;
242 {
243 register long result;
244
245 /*
246 ** The first character must be sign extended on systems with >32bit
247 ** longs. This was solved differently in the master tzcode sources
248 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
249 ** that this implementation is superior.
250 */
251
252 #ifdef __STDC__
253 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
254 #else
255 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
256 #endif
257
258 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
259 | (codep[1] & 0xff) << 16 \
260 | (codep[2] & 0xff) << 8
261 | (codep[3] & 0xff);
262 return result;
263 }
264
265 static void
266 settzname P((void))
267 {
268 register struct state * const sp = lclptr;
269 register int i;
270
271 /* LINTED const castaway */
272 tzname[0] = (__aconst char *)wildabbr;
273 /* LINTED const castaway */
274 tzname[1] = (__aconst char *)wildabbr;
275 #ifdef USG_COMPAT
276 daylight = 0;
277 timezone = 0;
278 #endif /* defined USG_COMPAT */
279 #ifdef ALTZONE
280 altzone = 0;
281 #endif /* defined ALTZONE */
282 #ifdef ALL_STATE
283 if (sp == NULL) {
284 tzname[0] = tzname[1] = (__aconst char *)gmt;
285 return;
286 }
287 #endif /* defined ALL_STATE */
288 for (i = 0; i < sp->typecnt; ++i) {
289 register const struct ttinfo * const ttisp = &sp->ttis[i];
290
291 tzname[ttisp->tt_isdst] =
292 &sp->chars[ttisp->tt_abbrind];
293 #ifdef USG_COMPAT
294 if (ttisp->tt_isdst)
295 daylight = 1;
296 if (i == 0 || !ttisp->tt_isdst)
297 timezone = -(ttisp->tt_gmtoff);
298 #endif /* defined USG_COMPAT */
299 #ifdef ALTZONE
300 if (i == 0 || ttisp->tt_isdst)
301 altzone = -(ttisp->tt_gmtoff);
302 #endif /* defined ALTZONE */
303 }
304 /*
305 ** And to get the latest zone names into tzname. . .
306 */
307 for (i = 0; i < sp->timecnt; ++i) {
308 register const struct ttinfo * const ttisp =
309 &sp->ttis[
310 sp->types[i]];
311
312 tzname[ttisp->tt_isdst] =
313 &sp->chars[ttisp->tt_abbrind];
314 }
315 }
316
317 static int
318 tzload(name, sp)
319 register const char * name;
320 register struct state * const sp;
321 {
322 register const char * p;
323 register int i;
324 register int fid;
325
326 if (name == NULL && (name = TZDEFAULT) == NULL)
327 return -1;
328
329 {
330 register int doaccess;
331 /*
332 ** Section 4.9.1 of the C standard says that
333 ** "FILENAME_MAX expands to an integral constant expression
334 ** that is the size needed for an array of char large enough
335 ** to hold the longest file name string that the implementation
336 ** guarantees can be opened."
337 */
338 char fullname[FILENAME_MAX + 1];
339
340 if (name[0] == ':')
341 ++name;
342 doaccess = name[0] == '/';
343 if (!doaccess) {
344 if ((p = TZDIR) == NULL)
345 return -1;
346 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
347 return -1;
348 (void) strcpy(fullname, p); /* XXX strcpy is safe */
349 (void) strcat(fullname, "/"); /* XXX strcat is safe */
350 (void) strcat(fullname, name); /* XXX strcat is safe */
351 /*
352 ** Set doaccess if '.' (as in "../") shows up in name.
353 */
354 if (strchr(name, '.') != NULL)
355 doaccess = TRUE;
356 name = fullname;
357 }
358 if (doaccess && access(name, R_OK) != 0)
359 return -1;
360 /*
361 * XXX potential security problem here if user of a set-id
362 * program has set TZ (which is passed in as name) here,
363 * and uses a race condition trick to defeat the access(2)
364 * above.
365 */
366 if ((fid = open(name, OPEN_MODE)) == -1)
367 return -1;
368 }
369 {
370 struct tzhead * tzhp;
371 union {
372 struct tzhead tzhead;
373 char buf[sizeof *sp + sizeof *tzhp];
374 } u;
375 int ttisstdcnt;
376 int ttisgmtcnt;
377
378 i = read(fid, u.buf, sizeof u.buf);
379 if (close(fid) != 0)
380 return -1;
381 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
382 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
383 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
384 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
385 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
386 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
387 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
388 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
389 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
390 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
391 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
392 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
393 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
394 return -1;
395 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
396 sp->timecnt + /* types */
397 sp->typecnt * (4 + 2) + /* ttinfos */
398 sp->charcnt + /* chars */
399 sp->leapcnt * (4 + 4) + /* lsinfos */
400 ttisstdcnt + /* ttisstds */
401 ttisgmtcnt) /* ttisgmts */
402 return -1;
403 for (i = 0; i < sp->timecnt; ++i) {
404 sp->ats[i] = detzcode(p);
405 p += 4;
406 }
407 for (i = 0; i < sp->timecnt; ++i) {
408 sp->types[i] = (unsigned char) *p++;
409 if (sp->types[i] >= sp->typecnt)
410 return -1;
411 }
412 for (i = 0; i < sp->typecnt; ++i) {
413 register struct ttinfo * ttisp;
414
415 ttisp = &sp->ttis[i];
416 ttisp->tt_gmtoff = detzcode(p);
417 p += 4;
418 ttisp->tt_isdst = (unsigned char) *p++;
419 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
420 return -1;
421 ttisp->tt_abbrind = (unsigned char) *p++;
422 if (ttisp->tt_abbrind < 0 ||
423 ttisp->tt_abbrind > sp->charcnt)
424 return -1;
425 }
426 for (i = 0; i < sp->charcnt; ++i)
427 sp->chars[i] = *p++;
428 sp->chars[i] = '\0'; /* ensure '\0' at end */
429 for (i = 0; i < sp->leapcnt; ++i) {
430 register struct lsinfo * lsisp;
431
432 lsisp = &sp->lsis[i];
433 lsisp->ls_trans = detzcode(p);
434 p += 4;
435 lsisp->ls_corr = detzcode(p);
436 p += 4;
437 }
438 for (i = 0; i < sp->typecnt; ++i) {
439 register struct ttinfo * ttisp;
440
441 ttisp = &sp->ttis[i];
442 if (ttisstdcnt == 0)
443 ttisp->tt_ttisstd = FALSE;
444 else {
445 ttisp->tt_ttisstd = *p++;
446 if (ttisp->tt_ttisstd != TRUE &&
447 ttisp->tt_ttisstd != FALSE)
448 return -1;
449 }
450 }
451 for (i = 0; i < sp->typecnt; ++i) {
452 register struct ttinfo * ttisp;
453
454 ttisp = &sp->ttis[i];
455 if (ttisgmtcnt == 0)
456 ttisp->tt_ttisgmt = FALSE;
457 else {
458 ttisp->tt_ttisgmt = *p++;
459 if (ttisp->tt_ttisgmt != TRUE &&
460 ttisp->tt_ttisgmt != FALSE)
461 return -1;
462 }
463 }
464 }
465 return 0;
466 }
467
468 static const int mon_lengths[2][MONSPERYEAR] = {
469 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
470 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
471 };
472
473 static const int year_lengths[2] = {
474 DAYSPERNYEAR, DAYSPERLYEAR
475 };
476
477 /*
478 ** Given a pointer into a time zone string, scan until a character that is not
479 ** a valid character in a zone name is found. Return a pointer to that
480 ** character.
481 */
482
483 static const char *
484 getzname(strp)
485 register const char * strp;
486 {
487 register char c;
488
489 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
490 c != '+')
491 ++strp;
492 return strp;
493 }
494
495 /*
496 ** Given a pointer into a time zone string, extract a number from that string.
497 ** Check that the number is within a specified range; if it is not, return
498 ** NULL.
499 ** Otherwise, return a pointer to the first character not part of the number.
500 */
501
502 static const char *
503 getnum(strp, nump, min, max)
504 register const char * strp;
505 int * const nump;
506 const int min;
507 const int max;
508 {
509 register char c;
510 register int num;
511
512 if (strp == NULL || !is_digit(c = *strp))
513 return NULL;
514 num = 0;
515 do {
516 num = num * 10 + (c - '0');
517 if (num > max)
518 return NULL; /* illegal value */
519 c = *++strp;
520 } while (is_digit(c));
521 if (num < min)
522 return NULL; /* illegal value */
523 *nump = num;
524 return strp;
525 }
526
527 /*
528 ** Given a pointer into a time zone string, extract a number of seconds,
529 ** in hh[:mm[:ss]] form, from the string.
530 ** If any error occurs, return NULL.
531 ** Otherwise, return a pointer to the first character not part of the number
532 ** of seconds.
533 */
534
535 static const char *
536 getsecs(strp, secsp)
537 register const char * strp;
538 long * const secsp;
539 {
540 int num;
541
542 /*
543 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
544 ** "M10.4.6/26", which does not conform to Posix,
545 ** but which specifies the equivalent of
546 ** ``02:00 on the first Sunday on or after 23 Oct''.
547 */
548 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
549 if (strp == NULL)
550 return NULL;
551 *secsp = num * (long) SECSPERHOUR;
552 if (*strp == ':') {
553 ++strp;
554 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
555 if (strp == NULL)
556 return NULL;
557 *secsp += num * SECSPERMIN;
558 if (*strp == ':') {
559 ++strp;
560 /* `SECSPERMIN' allows for leap seconds. */
561 strp = getnum(strp, &num, 0, SECSPERMIN);
562 if (strp == NULL)
563 return NULL;
564 *secsp += num;
565 }
566 }
567 return strp;
568 }
569
570 /*
571 ** Given a pointer into a time zone string, extract an offset, in
572 ** [+-]hh[:mm[:ss]] form, from the string.
573 ** If any error occurs, return NULL.
574 ** Otherwise, return a pointer to the first character not part of the time.
575 */
576
577 static const char *
578 getoffset(strp, offsetp)
579 register const char * strp;
580 long * const offsetp;
581 {
582 register int neg = 0;
583
584 if (*strp == '-') {
585 neg = 1;
586 ++strp;
587 } else if (*strp == '+')
588 ++strp;
589 strp = getsecs(strp, offsetp);
590 if (strp == NULL)
591 return NULL; /* illegal time */
592 if (neg)
593 *offsetp = -*offsetp;
594 return strp;
595 }
596
597 /*
598 ** Given a pointer into a time zone string, extract a rule in the form
599 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
600 ** If a valid rule is not found, return NULL.
601 ** Otherwise, return a pointer to the first character not part of the rule.
602 */
603
604 static const char *
605 getrule(strp, rulep)
606 const char * strp;
607 register struct rule * const rulep;
608 {
609 if (*strp == 'J') {
610 /*
611 ** Julian day.
612 */
613 rulep->r_type = JULIAN_DAY;
614 ++strp;
615 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
616 } else if (*strp == 'M') {
617 /*
618 ** Month, week, day.
619 */
620 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
621 ++strp;
622 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
623 if (strp == NULL)
624 return NULL;
625 if (*strp++ != '.')
626 return NULL;
627 strp = getnum(strp, &rulep->r_week, 1, 5);
628 if (strp == NULL)
629 return NULL;
630 if (*strp++ != '.')
631 return NULL;
632 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
633 } else if (is_digit(*strp)) {
634 /*
635 ** Day of year.
636 */
637 rulep->r_type = DAY_OF_YEAR;
638 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
639 } else return NULL; /* invalid format */
640 if (strp == NULL)
641 return NULL;
642 if (*strp == '/') {
643 /*
644 ** Time specified.
645 */
646 ++strp;
647 strp = getsecs(strp, &rulep->r_time);
648 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
649 return strp;
650 }
651
652 /*
653 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
654 ** year, a rule, and the offset from UTC at the time that rule takes effect,
655 ** calculate the Epoch-relative time that rule takes effect.
656 */
657
658 static time_t
659 transtime(janfirst, year, rulep, offset)
660 const time_t janfirst;
661 const int year;
662 register const struct rule * const rulep;
663 const long offset;
664 {
665 register int leapyear;
666 register time_t value;
667 register int i;
668 int d, m1, yy0, yy1, yy2, dow;
669
670 INITIALIZE(value);
671 leapyear = isleap(year);
672 switch (rulep->r_type) {
673
674 case JULIAN_DAY:
675 /*
676 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
677 ** years.
678 ** In non-leap years, or if the day number is 59 or less, just
679 ** add SECSPERDAY times the day number-1 to the time of
680 ** January 1, midnight, to get the day.
681 */
682 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
683 if (leapyear && rulep->r_day >= 60)
684 value += SECSPERDAY;
685 break;
686
687 case DAY_OF_YEAR:
688 /*
689 ** n - day of year.
690 ** Just add SECSPERDAY times the day number to the time of
691 ** January 1, midnight, to get the day.
692 */
693 value = janfirst + rulep->r_day * SECSPERDAY;
694 break;
695
696 case MONTH_NTH_DAY_OF_WEEK:
697 /*
698 ** Mm.n.d - nth "dth day" of month m.
699 */
700 value = janfirst;
701 for (i = 0; i < rulep->r_mon - 1; ++i)
702 value += mon_lengths[leapyear][i] * SECSPERDAY;
703
704 /*
705 ** Use Zeller's Congruence to get day-of-week of first day of
706 ** month.
707 */
708 m1 = (rulep->r_mon + 9) % 12 + 1;
709 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
710 yy1 = yy0 / 100;
711 yy2 = yy0 % 100;
712 dow = ((26 * m1 - 2) / 10 +
713 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
714 if (dow < 0)
715 dow += DAYSPERWEEK;
716
717 /*
718 ** "dow" is the day-of-week of the first day of the month. Get
719 ** the day-of-month (zero-origin) of the first "dow" day of the
720 ** month.
721 */
722 d = rulep->r_day - dow;
723 if (d < 0)
724 d += DAYSPERWEEK;
725 for (i = 1; i < rulep->r_week; ++i) {
726 if (d + DAYSPERWEEK >=
727 mon_lengths[leapyear][rulep->r_mon - 1])
728 break;
729 d += DAYSPERWEEK;
730 }
731
732 /*
733 ** "d" is the day-of-month (zero-origin) of the day we want.
734 */
735 value += d * SECSPERDAY;
736 break;
737 }
738
739 /*
740 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
741 ** question. To get the Epoch-relative time of the specified local
742 ** time on that day, add the transition time and the current offset
743 ** from UTC.
744 */
745 return value + rulep->r_time + offset;
746 }
747
748 /*
749 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
750 ** appropriate.
751 */
752
753 static int
754 tzparse(name, sp, lastditch)
755 const char * name;
756 register struct state * const sp;
757 const int lastditch;
758 {
759 const char * stdname;
760 const char * dstname;
761 size_t stdlen;
762 size_t dstlen;
763 long stdoffset;
764 long dstoffset;
765 register time_t * atp;
766 register unsigned char * typep;
767 register char * cp;
768 register int load_result;
769
770 INITIALIZE(dstname);
771 stdname = name;
772 if (lastditch) {
773 stdlen = strlen(name); /* length of standard zone name */
774 name += stdlen;
775 if (stdlen >= sizeof sp->chars)
776 stdlen = (sizeof sp->chars) - 1;
777 stdoffset = 0;
778 } else {
779 name = getzname(name);
780 stdlen = name - stdname;
781 if (stdlen < 3)
782 return -1;
783 if (*name == '\0')
784 return -1;
785 name = getoffset(name, &stdoffset);
786 if (name == NULL)
787 return -1;
788 }
789 load_result = tzload(TZDEFRULES, sp);
790 if (load_result != 0)
791 sp->leapcnt = 0; /* so, we're off a little */
792 if (*name != '\0') {
793 dstname = name;
794 name = getzname(name);
795 dstlen = name - dstname; /* length of DST zone name */
796 if (dstlen < 3)
797 return -1;
798 if (*name != '\0' && *name != ',' && *name != ';') {
799 name = getoffset(name, &dstoffset);
800 if (name == NULL)
801 return -1;
802 } else dstoffset = stdoffset - SECSPERHOUR;
803 if (*name == '\0' && load_result != 0)
804 name = TZDEFRULESTRING;
805 if (*name == ',' || *name == ';') {
806 struct rule start;
807 struct rule end;
808 register int year;
809 register time_t janfirst;
810 time_t starttime;
811 time_t endtime;
812
813 ++name;
814 if ((name = getrule(name, &start)) == NULL)
815 return -1;
816 if (*name++ != ',')
817 return -1;
818 if ((name = getrule(name, &end)) == NULL)
819 return -1;
820 if (*name != '\0')
821 return -1;
822 sp->typecnt = 2; /* standard time and DST */
823 /*
824 ** Two transitions per year, from EPOCH_YEAR to 2037.
825 */
826 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
827 if (sp->timecnt > TZ_MAX_TIMES)
828 return -1;
829 sp->ttis[0].tt_gmtoff = -dstoffset;
830 sp->ttis[0].tt_isdst = 1;
831 sp->ttis[0].tt_abbrind = stdlen + 1;
832 sp->ttis[1].tt_gmtoff = -stdoffset;
833 sp->ttis[1].tt_isdst = 0;
834 sp->ttis[1].tt_abbrind = 0;
835 atp = sp->ats;
836 typep = sp->types;
837 janfirst = 0;
838 for (year = EPOCH_YEAR; year <= 2037; ++year) {
839 starttime = transtime(janfirst, year, &start,
840 stdoffset);
841 endtime = transtime(janfirst, year, &end,
842 dstoffset);
843 if (starttime > endtime) {
844 *atp++ = endtime;
845 *typep++ = 1; /* DST ends */
846 *atp++ = starttime;
847 *typep++ = 0; /* DST begins */
848 } else {
849 *atp++ = starttime;
850 *typep++ = 0; /* DST begins */
851 *atp++ = endtime;
852 *typep++ = 1; /* DST ends */
853 }
854 janfirst += year_lengths[isleap(year)] *
855 SECSPERDAY;
856 }
857 } else {
858 register long theirstdoffset;
859 register long theirdstoffset;
860 register long theiroffset;
861 register int isdst;
862 register int i;
863 register int j;
864
865 if (*name != '\0')
866 return -1;
867 /*
868 ** Initial values of theirstdoffset and theirdstoffset.
869 */
870 theirstdoffset = 0;
871 for (i = 0; i < sp->timecnt; ++i) {
872 j = sp->types[i];
873 if (!sp->ttis[j].tt_isdst) {
874 theirstdoffset =
875 -sp->ttis[j].tt_gmtoff;
876 break;
877 }
878 }
879 theirdstoffset = 0;
880 for (i = 0; i < sp->timecnt; ++i) {
881 j = sp->types[i];
882 if (sp->ttis[j].tt_isdst) {
883 theirdstoffset =
884 -sp->ttis[j].tt_gmtoff;
885 break;
886 }
887 }
888 /*
889 ** Initially we're assumed to be in standard time.
890 */
891 isdst = FALSE;
892 theiroffset = theirstdoffset;
893 /*
894 ** Now juggle transition times and types
895 ** tracking offsets as you do.
896 */
897 for (i = 0; i < sp->timecnt; ++i) {
898 j = sp->types[i];
899 sp->types[i] = sp->ttis[j].tt_isdst;
900 if (sp->ttis[j].tt_ttisgmt) {
901 /* No adjustment to transition time */
902 } else {
903 /*
904 ** If summer time is in effect, and the
905 ** transition time was not specified as
906 ** standard time, add the summer time
907 ** offset to the transition time;
908 ** otherwise, add the standard time
909 ** offset to the transition time.
910 */
911 /*
912 ** Transitions from DST to DDST
913 ** will effectively disappear since
914 ** POSIX provides for only one DST
915 ** offset.
916 */
917 if (isdst && !sp->ttis[j].tt_ttisstd) {
918 sp->ats[i] += dstoffset -
919 theirdstoffset;
920 } else {
921 sp->ats[i] += stdoffset -
922 theirstdoffset;
923 }
924 }
925 theiroffset = -sp->ttis[j].tt_gmtoff;
926 if (sp->ttis[j].tt_isdst)
927 theirdstoffset = theiroffset;
928 else theirstdoffset = theiroffset;
929 }
930 /*
931 ** Finally, fill in ttis.
932 ** ttisstd and ttisgmt need not be handled.
933 */
934 sp->ttis[0].tt_gmtoff = -stdoffset;
935 sp->ttis[0].tt_isdst = FALSE;
936 sp->ttis[0].tt_abbrind = 0;
937 sp->ttis[1].tt_gmtoff = -dstoffset;
938 sp->ttis[1].tt_isdst = TRUE;
939 sp->ttis[1].tt_abbrind = stdlen + 1;
940 sp->typecnt = 2;
941 }
942 } else {
943 dstlen = 0;
944 sp->typecnt = 1; /* only standard time */
945 sp->timecnt = 0;
946 sp->ttis[0].tt_gmtoff = -stdoffset;
947 sp->ttis[0].tt_isdst = 0;
948 sp->ttis[0].tt_abbrind = 0;
949 }
950 sp->charcnt = stdlen + 1;
951 if (dstlen != 0)
952 sp->charcnt += dstlen + 1;
953 if ((size_t) sp->charcnt > sizeof sp->chars)
954 return -1;
955 cp = sp->chars;
956 (void) strncpy(cp, stdname, stdlen);
957 cp += stdlen;
958 *cp++ = '\0';
959 if (dstlen != 0) {
960 (void) strncpy(cp, dstname, dstlen);
961 *(cp + dstlen) = '\0';
962 }
963 return 0;
964 }
965
966 static void
967 gmtload(sp)
968 struct state * const sp;
969 {
970 if (tzload(gmt, sp) != 0)
971 (void) tzparse(gmt, sp, TRUE);
972 }
973
974 static void
975 tzsetwall_unlocked P((void))
976 {
977 if (lcl_is_set < 0)
978 return;
979 lcl_is_set = -1;
980
981 #ifdef ALL_STATE
982 if (lclptr == NULL) {
983 lclptr = (struct state *) malloc(sizeof *lclptr);
984 if (lclptr == NULL) {
985 settzname(); /* all we can do */
986 return;
987 }
988 }
989 #endif /* defined ALL_STATE */
990 if (tzload((char *) NULL, lclptr) != 0)
991 gmtload(lclptr);
992 settzname();
993 }
994
995 #ifndef STD_INSPIRED
996 /*
997 ** A non-static declaration of tzsetwall in a system header file
998 ** may cause a warning about this upcoming static declaration...
999 */
1000 static
1001 #endif /* !defined STD_INSPIRED */
1002 void
1003 tzsetwall P((void))
1004 {
1005 rwlock_wrlock(&lcl_lock);
1006 tzsetwall_unlocked();
1007 rwlock_unlock(&lcl_lock);
1008 }
1009
1010 static void
1011 tzset_unlocked P((void))
1012 {
1013 register const char * name;
1014
1015 name = getenv("TZ");
1016 if (name == NULL) {
1017 tzsetwall_unlocked();
1018 return;
1019 }
1020
1021 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1022 return;
1023 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
1024 if (lcl_is_set)
1025 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
1026
1027 #ifdef ALL_STATE
1028 if (lclptr == NULL) {
1029 lclptr = (struct state *) malloc(sizeof *lclptr);
1030 if (lclptr == NULL) {
1031 settzname(); /* all we can do */
1032 return;
1033 }
1034 }
1035 #endif /* defined ALL_STATE */
1036 if (*name == '\0') {
1037 /*
1038 ** User wants it fast rather than right.
1039 */
1040 lclptr->leapcnt = 0; /* so, we're off a little */
1041 lclptr->timecnt = 0;
1042 lclptr->ttis[0].tt_gmtoff = 0;
1043 lclptr->ttis[0].tt_abbrind = 0;
1044 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1045 } else if (tzload(name, lclptr) != 0)
1046 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1047 (void) gmtload(lclptr);
1048 settzname();
1049 }
1050
1051 void
1052 tzset P((void))
1053 {
1054 rwlock_wrlock(&lcl_lock);
1055 tzset_unlocked();
1056 rwlock_unlock(&lcl_lock);
1057 }
1058
1059 /*
1060 ** The easy way to behave "as if no library function calls" localtime
1061 ** is to not call it--so we drop its guts into "localsub", which can be
1062 ** freely called. (And no, the PANS doesn't require the above behavior--
1063 ** but it *is* desirable.)
1064 **
1065 ** The unused offset argument is for the benefit of mktime variants.
1066 */
1067
1068 /*ARGSUSED*/
1069 static void
1070 localsub(timep, offset, tmp)
1071 const time_t * const timep;
1072 const long offset;
1073 struct tm * const tmp;
1074 {
1075 register struct state * sp;
1076 register const struct ttinfo * ttisp;
1077 register int i;
1078 const time_t t = *timep;
1079
1080 sp = lclptr;
1081 #ifdef ALL_STATE
1082 if (sp == NULL) {
1083 gmtsub(timep, offset, tmp);
1084 return;
1085 }
1086 #endif /* defined ALL_STATE */
1087 if (sp->timecnt == 0 || t < sp->ats[0]) {
1088 i = 0;
1089 while (sp->ttis[i].tt_isdst)
1090 if (++i >= sp->typecnt) {
1091 i = 0;
1092 break;
1093 }
1094 } else {
1095 for (i = 1; i < sp->timecnt; ++i)
1096 if (t < sp->ats[i])
1097 break;
1098 i = sp->types[i - 1];
1099 }
1100 ttisp = &sp->ttis[i];
1101 /*
1102 ** To get (wrong) behavior that's compatible with System V Release 2.0
1103 ** you'd replace the statement below with
1104 ** t += ttisp->tt_gmtoff;
1105 ** timesub(&t, 0L, sp, tmp);
1106 */
1107 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1108 tmp->tm_isdst = ttisp->tt_isdst;
1109 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1110 #ifdef TM_ZONE
1111 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1112 #endif /* defined TM_ZONE */
1113 }
1114
1115 struct tm *
1116 localtime(timep)
1117 const time_t * const timep;
1118 {
1119 rwlock_wrlock(&lcl_lock);
1120 tzset_unlocked();
1121 localsub(timep, 0L, &tm);
1122 rwlock_unlock(&lcl_lock);
1123 return &tm;
1124 }
1125
1126 /*
1127 * Re-entrant version of localtime
1128 */
1129 struct tm *
1130 localtime_r(timep, tm)
1131 const time_t * const timep;
1132 struct tm * tm;
1133 {
1134 rwlock_rdlock(&lcl_lock);
1135 localsub(timep, 0L, tm);
1136 rwlock_unlock(&lcl_lock);
1137 return tm;
1138 }
1139
1140 /*
1141 ** gmtsub is to gmtime as localsub is to localtime.
1142 */
1143
1144 static void
1145 gmtsub(timep, offset, tmp)
1146 const time_t * const timep;
1147 const long offset;
1148 struct tm * const tmp;
1149 {
1150 #ifdef _REENT
1151 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1152 #endif
1153
1154 mutex_lock(&gmt_mutex);
1155 if (!gmt_is_set) {
1156 gmt_is_set = TRUE;
1157 #ifdef ALL_STATE
1158 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1159 if (gmtptr != NULL)
1160 #endif /* defined ALL_STATE */
1161 gmtload(gmtptr);
1162 }
1163 mutex_unlock(&gmt_mutex);
1164 timesub(timep, offset, gmtptr, tmp);
1165 #ifdef TM_ZONE
1166 /*
1167 ** Could get fancy here and deliver something such as
1168 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1169 ** but this is no time for a treasure hunt.
1170 */
1171 if (offset != 0)
1172 /* LINTED const castaway */
1173 tmp->TM_ZONE = (__aconst char *)wildabbr;
1174 else {
1175 #ifdef ALL_STATE
1176 if (gmtptr == NULL)
1177 tmp->TM_ZONE = (__aconst char *)gmt;
1178 else tmp->TM_ZONE = gmtptr->chars;
1179 #endif /* defined ALL_STATE */
1180 #ifndef ALL_STATE
1181 tmp->TM_ZONE = gmtptr->chars;
1182 #endif /* State Farm */
1183 }
1184 #endif /* defined TM_ZONE */
1185 }
1186
1187 struct tm *
1188 gmtime(timep)
1189 const time_t * const timep;
1190 {
1191 gmtsub(timep, 0L, &tm);
1192 return &tm;
1193 }
1194
1195 /*
1196 * Re-entrant version of gmtime
1197 */
1198 struct tm *
1199 gmtime_r(timep, tm)
1200 const time_t * const timep;
1201 struct tm * tm;
1202 {
1203 gmtsub(timep, 0L, tm);
1204 return tm;
1205 }
1206
1207 #ifdef STD_INSPIRED
1208
1209 struct tm *
1210 offtime(timep, offset)
1211 const time_t * const timep;
1212 const long offset;
1213 {
1214 gmtsub(timep, offset, &tm);
1215 return &tm;
1216 }
1217
1218 #endif /* defined STD_INSPIRED */
1219
1220 static void
1221 timesub(timep, offset, sp, tmp)
1222 const time_t * const timep;
1223 const long offset;
1224 register const struct state * const sp;
1225 register struct tm * const tmp;
1226 {
1227 register const struct lsinfo * lp;
1228 register long days;
1229 register long rem;
1230 register int y;
1231 register int yleap;
1232 register const int * ip;
1233 register long corr;
1234 register int hit;
1235 register int i;
1236
1237 corr = 0;
1238 hit = 0;
1239 #ifdef ALL_STATE
1240 i = (sp == NULL) ? 0 : sp->leapcnt;
1241 #endif /* defined ALL_STATE */
1242 #ifndef ALL_STATE
1243 i = sp->leapcnt;
1244 #endif /* State Farm */
1245 while (--i >= 0) {
1246 lp = &sp->lsis[i];
1247 if (*timep >= lp->ls_trans) {
1248 if (*timep == lp->ls_trans) {
1249 hit = ((i == 0 && lp->ls_corr > 0) ||
1250 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1251 if (hit)
1252 while (i > 0 &&
1253 sp->lsis[i].ls_trans ==
1254 sp->lsis[i - 1].ls_trans + 1 &&
1255 sp->lsis[i].ls_corr ==
1256 sp->lsis[i - 1].ls_corr + 1) {
1257 ++hit;
1258 --i;
1259 }
1260 }
1261 corr = lp->ls_corr;
1262 break;
1263 }
1264 }
1265 days = *timep / SECSPERDAY;
1266 rem = *timep % SECSPERDAY;
1267 #ifdef mc68k
1268 if (*timep == 0x80000000) {
1269 /*
1270 ** A 3B1 muffs the division on the most negative number.
1271 */
1272 days = -24855;
1273 rem = -11648;
1274 }
1275 #endif /* defined mc68k */
1276 rem += (offset - corr);
1277 while (rem < 0) {
1278 rem += SECSPERDAY;
1279 --days;
1280 }
1281 while (rem >= SECSPERDAY) {
1282 rem -= SECSPERDAY;
1283 ++days;
1284 }
1285 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1286 rem = rem % SECSPERHOUR;
1287 tmp->tm_min = (int) (rem / SECSPERMIN);
1288 /*
1289 ** A positive leap second requires a special
1290 ** representation. This uses "... ??:59:60" et seq.
1291 */
1292 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1293 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1294 if (tmp->tm_wday < 0)
1295 tmp->tm_wday += DAYSPERWEEK;
1296 y = EPOCH_YEAR;
1297 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1298 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1299 register int newy;
1300
1301 newy = (int)(y + days / DAYSPERNYEAR);
1302 if (days < 0)
1303 --newy;
1304 days -= (newy - y) * DAYSPERNYEAR +
1305 LEAPS_THRU_END_OF(newy - 1) -
1306 LEAPS_THRU_END_OF(y - 1);
1307 y = newy;
1308 }
1309 tmp->tm_year = y - TM_YEAR_BASE;
1310 tmp->tm_yday = (int) days;
1311 ip = mon_lengths[yleap];
1312 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1313 days = days - (long) ip[tmp->tm_mon];
1314 tmp->tm_mday = (int) (days + 1);
1315 tmp->tm_isdst = 0;
1316 #ifdef TM_GMTOFF
1317 tmp->TM_GMTOFF = offset;
1318 #endif /* defined TM_GMTOFF */
1319 }
1320
1321 char *
1322 ctime(timep)
1323 const time_t * const timep;
1324 {
1325 /*
1326 ** Section 4.12.3.2 of X3.159-1989 requires that
1327 ** The ctime function converts the calendar time pointed to by timer
1328 ** to local time in the form of a string. It is equivalent to
1329 ** asctime(localtime(timer))
1330 */
1331 return asctime(localtime(timep));
1332 }
1333
1334 char *
1335 ctime_r(timep, buf)
1336 const time_t * const timep;
1337 char * buf;
1338 {
1339 struct tm tmp;
1340
1341 return asctime_r(localtime_r(timep, &tmp), buf);
1342 }
1343
1344 /*
1345 ** Adapted from code provided by Robert Elz, who writes:
1346 ** The "best" way to do mktime I think is based on an idea of Bob
1347 ** Kridle's (so its said...) from a long time ago.
1348 ** [kridle (at) xinet.com as of 1996-01-16.]
1349 ** It does a binary search of the time_t space. Since time_t's are
1350 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1351 ** would still be very reasonable).
1352 */
1353
1354 #ifndef WRONG
1355 #define WRONG (-1)
1356 #endif /* !defined WRONG */
1357
1358 /*
1359 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1360 */
1361
1362 static int
1363 increment_overflow(number, delta)
1364 int * number;
1365 int delta;
1366 {
1367 int number0;
1368
1369 number0 = *number;
1370 *number += delta;
1371 return (*number < number0) != (delta < 0);
1372 }
1373
1374 static int
1375 normalize_overflow(tensptr, unitsptr, base)
1376 int * const tensptr;
1377 int * const unitsptr;
1378 const int base;
1379 {
1380 register int tensdelta;
1381
1382 tensdelta = (*unitsptr >= 0) ?
1383 (*unitsptr / base) :
1384 (-1 - (-1 - *unitsptr) / base);
1385 *unitsptr -= tensdelta * base;
1386 return increment_overflow(tensptr, tensdelta);
1387 }
1388
1389 static int
1390 tmcomp(atmp, btmp)
1391 register const struct tm * const atmp;
1392 register const struct tm * const btmp;
1393 {
1394 register int result;
1395
1396 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1397 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1398 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1399 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1400 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1401 result = atmp->tm_sec - btmp->tm_sec;
1402 return result;
1403 }
1404
1405 static time_t
1406 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1407 struct tm * const tmp;
1408 void (* const funcp) P((const time_t*, long, struct tm*));
1409 const long offset;
1410 int * const okayp;
1411 const int do_norm_secs;
1412 {
1413 register const struct state * sp;
1414 register int dir;
1415 register int bits;
1416 register int i, j ;
1417 register int saved_seconds;
1418 time_t newt;
1419 time_t t;
1420 struct tm yourtm, mytm;
1421
1422 *okayp = FALSE;
1423 yourtm = *tmp;
1424 if (do_norm_secs) {
1425 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1426 SECSPERMIN))
1427 return WRONG;
1428 }
1429 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1430 return WRONG;
1431 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1432 return WRONG;
1433 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1434 return WRONG;
1435 /*
1436 ** Turn yourtm.tm_year into an actual year number for now.
1437 ** It is converted back to an offset from TM_YEAR_BASE later.
1438 */
1439 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1440 return WRONG;
1441 while (yourtm.tm_mday <= 0) {
1442 if (increment_overflow(&yourtm.tm_year, -1))
1443 return WRONG;
1444 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1445 yourtm.tm_mday += year_lengths[isleap(i)];
1446 }
1447 while (yourtm.tm_mday > DAYSPERLYEAR) {
1448 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1449 yourtm.tm_mday -= year_lengths[isleap(i)];
1450 if (increment_overflow(&yourtm.tm_year, 1))
1451 return WRONG;
1452 }
1453 for ( ; ; ) {
1454 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1455 if (yourtm.tm_mday <= i)
1456 break;
1457 yourtm.tm_mday -= i;
1458 if (++yourtm.tm_mon >= MONSPERYEAR) {
1459 yourtm.tm_mon = 0;
1460 if (increment_overflow(&yourtm.tm_year, 1))
1461 return WRONG;
1462 }
1463 }
1464 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1465 return WRONG;
1466 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1467 /*
1468 ** We can't set tm_sec to 0, because that might push the
1469 ** time below the minimum representable time.
1470 ** Set tm_sec to 59 instead.
1471 ** This assumes that the minimum representable time is
1472 ** not in the same minute that a leap second was deleted from,
1473 ** which is a safer assumption than using 58 would be.
1474 */
1475 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1476 return WRONG;
1477 saved_seconds = yourtm.tm_sec;
1478 yourtm.tm_sec = SECSPERMIN - 1;
1479 } else {
1480 saved_seconds = yourtm.tm_sec;
1481 yourtm.tm_sec = 0;
1482 }
1483 /*
1484 ** Divide the search space in half
1485 ** (this works whether time_t is signed or unsigned).
1486 */
1487 bits = TYPE_BIT(time_t) - 1;
1488 /*
1489 ** If time_t is signed, then 0 is just above the median,
1490 ** assuming two's complement arithmetic.
1491 ** If time_t is unsigned, then (1 << bits) is just above the median.
1492 */
1493 /* LINTED constant in conditional context */
1494 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1495 for ( ; ; ) {
1496 (*funcp)(&t, offset, &mytm);
1497 dir = tmcomp(&mytm, &yourtm);
1498 if (dir != 0) {
1499 if (bits-- < 0)
1500 return WRONG;
1501 if (bits < 0)
1502 --t; /* may be needed if new t is minimal */
1503 else if (dir > 0)
1504 t -= ((time_t) 1) << bits;
1505 else t += ((time_t) 1) << bits;
1506 continue;
1507 }
1508 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1509 break;
1510 /*
1511 ** Right time, wrong type.
1512 ** Hunt for right time, right type.
1513 ** It's okay to guess wrong since the guess
1514 ** gets checked.
1515 */
1516 /*
1517 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1518 */
1519 sp = (const struct state *)
1520 (((void *) funcp == (void *) localsub) ?
1521 lclptr : gmtptr);
1522 #ifdef ALL_STATE
1523 if (sp == NULL)
1524 return WRONG;
1525 #endif /* defined ALL_STATE */
1526 for (i = sp->typecnt - 1; i >= 0; --i) {
1527 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1528 continue;
1529 for (j = sp->typecnt - 1; j >= 0; --j) {
1530 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1531 continue;
1532 newt = t + sp->ttis[j].tt_gmtoff -
1533 sp->ttis[i].tt_gmtoff;
1534 (*funcp)(&newt, offset, &mytm);
1535 if (tmcomp(&mytm, &yourtm) != 0)
1536 continue;
1537 if (mytm.tm_isdst != yourtm.tm_isdst)
1538 continue;
1539 /*
1540 ** We have a match.
1541 */
1542 t = newt;
1543 goto label;
1544 }
1545 }
1546 return WRONG;
1547 }
1548 label:
1549 newt = t + saved_seconds;
1550 if ((newt < t) != (saved_seconds < 0))
1551 return WRONG;
1552 t = newt;
1553 (*funcp)(&t, offset, tmp);
1554 *okayp = TRUE;
1555 return t;
1556 }
1557
1558 static time_t
1559 time2(tmp, funcp, offset, okayp)
1560 struct tm * const tmp;
1561 void (* const funcp) P((const time_t*, long, struct tm*));
1562 const long offset;
1563 int * const okayp;
1564 {
1565 time_t t;
1566
1567 /*
1568 ** First try without normalization of seconds
1569 ** (in case tm_sec contains a value associated with a leap second).
1570 ** If that fails, try with normalization of seconds.
1571 */
1572 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1573 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1574 }
1575
1576 static time_t
1577 time1(tmp, funcp, offset)
1578 struct tm * const tmp;
1579 void (* const funcp) P((const time_t *, long, struct tm *));
1580 const long offset;
1581 {
1582 register time_t t;
1583 register const struct state * sp;
1584 register int samei, otheri;
1585 int okay;
1586
1587 if (tmp->tm_isdst > 1)
1588 tmp->tm_isdst = 1;
1589 t = time2(tmp, funcp, offset, &okay);
1590 #ifdef PCTS
1591 /*
1592 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1593 */
1594 if (okay)
1595 return t;
1596 if (tmp->tm_isdst < 0)
1597 tmp->tm_isdst = 0; /* reset to std and try again */
1598 #endif /* defined PCTS */
1599 #ifndef PCTS
1600 if (okay || tmp->tm_isdst < 0)
1601 return t;
1602 #endif /* !defined PCTS */
1603 /*
1604 ** We're supposed to assume that somebody took a time of one type
1605 ** and did some math on it that yielded a "struct tm" that's bad.
1606 ** We try to divine the type they started from and adjust to the
1607 ** type they need.
1608 */
1609 /*
1610 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1611 */
1612 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1613 lclptr : gmtptr);
1614 #ifdef ALL_STATE
1615 if (sp == NULL)
1616 return WRONG;
1617 #endif /* defined ALL_STATE */
1618 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1619 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1620 continue;
1621 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1622 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1623 continue;
1624 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1625 sp->ttis[samei].tt_gmtoff);
1626 tmp->tm_isdst = !tmp->tm_isdst;
1627 t = time2(tmp, funcp, offset, &okay);
1628 if (okay)
1629 return t;
1630 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1631 sp->ttis[samei].tt_gmtoff);
1632 tmp->tm_isdst = !tmp->tm_isdst;
1633 }
1634 }
1635 return WRONG;
1636 }
1637
1638 time_t
1639 mktime(tmp)
1640 struct tm * const tmp;
1641 {
1642 time_t result;
1643
1644 rwlock_wrlock(&lcl_lock);
1645 tzset_unlocked();
1646 result = time1(tmp, localsub, 0L);
1647 rwlock_unlock(&lcl_lock);
1648 return (result);
1649 }
1650
1651 #ifdef STD_INSPIRED
1652
1653 time_t
1654 timelocal(tmp)
1655 struct tm * const tmp;
1656 {
1657 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1658 return mktime(tmp);
1659 }
1660
1661 time_t
1662 timegm(tmp)
1663 struct tm * const tmp;
1664 {
1665 tmp->tm_isdst = 0;
1666 return time1(tmp, gmtsub, 0L);
1667 }
1668
1669 time_t
1670 timeoff(tmp, offset)
1671 struct tm * const tmp;
1672 const long offset;
1673 {
1674 tmp->tm_isdst = 0;
1675 return time1(tmp, gmtsub, offset);
1676 }
1677
1678 #endif /* defined STD_INSPIRED */
1679
1680 #ifdef CMUCS
1681
1682 /*
1683 ** The following is supplied for compatibility with
1684 ** previous versions of the CMUCS runtime library.
1685 */
1686
1687 long
1688 gtime(tmp)
1689 struct tm * const tmp;
1690 {
1691 const time_t t = mktime(tmp);
1692
1693 if (t == WRONG)
1694 return -1;
1695 return t;
1696 }
1697
1698 #endif /* defined CMUCS */
1699
1700 /*
1701 ** XXX--is the below the right way to conditionalize??
1702 */
1703
1704 #ifdef STD_INSPIRED
1705
1706 /*
1707 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1708 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1709 ** is not the case if we are accounting for leap seconds.
1710 ** So, we provide the following conversion routines for use
1711 ** when exchanging timestamps with POSIX conforming systems.
1712 */
1713
1714 static long
1715 leapcorr(timep)
1716 time_t * timep;
1717 {
1718 register struct state * sp;
1719 register struct lsinfo * lp;
1720 register int i;
1721
1722 sp = lclptr;
1723 i = sp->leapcnt;
1724 while (--i >= 0) {
1725 lp = &sp->lsis[i];
1726 if (*timep >= lp->ls_trans)
1727 return lp->ls_corr;
1728 }
1729 return 0;
1730 }
1731
1732 time_t
1733 time2posix(t)
1734 time_t t;
1735 {
1736 time_t result;
1737
1738 rwlock_wrlock(&lcl_lock);
1739 tzset_unlocked();
1740 result = t - leapcorr(&t);
1741 rwlock_unlock(&lcl_lock);
1742 return (result);
1743 }
1744
1745 time_t
1746 posix2time(t)
1747 time_t t;
1748 {
1749 time_t x;
1750 time_t y;
1751
1752 rwlock_wrlock(&lcl_lock);
1753 tzset_unlocked();
1754 /*
1755 ** For a positive leap second hit, the result
1756 ** is not unique. For a negative leap second
1757 ** hit, the corresponding time doesn't exist,
1758 ** so we return an adjacent second.
1759 */
1760 x = t + leapcorr(&t);
1761 y = x - leapcorr(&x);
1762 if (y < t) {
1763 do {
1764 x++;
1765 y = x - leapcorr(&x);
1766 } while (y < t);
1767 if (t != y) {
1768 rwlock_unlock(&lcl_lock);
1769 return x - 1;
1770 }
1771 } else if (y > t) {
1772 do {
1773 --x;
1774 y = x - leapcorr(&x);
1775 } while (y > t);
1776 if (t != y) {
1777 rwlock_unlock(&lcl_lock);
1778 return x + 1;
1779 }
1780 }
1781 rwlock_unlock(&lcl_lock);
1782 return x;
1783 }
1784
1785 #endif /* defined STD_INSPIRED */
1786