Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.24.2.1
      1 /*	$NetBSD: localtime.c,v 1.24.2.1 2001/08/08 16:27:45 nathanw Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	7.70";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.24.2.1 2001/08/08 16:27:45 nathanw Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     19 ** POSIX-style TZ environment variable handling from Guy Harris
     20 ** (guy (at) auspex.com).
     21 */
     22 
     23 /*LINTLIBRARY*/
     24 
     25 #include "namespace.h"
     26 #include "private.h"
     27 #include "tzfile.h"
     28 #include "fcntl.h"
     29 #include "reentrant.h"
     30 
     31 #ifdef __weak_alias
     32 __weak_alias(ctime_r,_ctime_r)
     33 __weak_alias(gmtime_r,_gmtime_r)
     34 __weak_alias(localtime_r,_localtime_r)
     35 __weak_alias(offtime,_offtime)
     36 __weak_alias(posix2time,_posix2time)
     37 __weak_alias(time2posix,_time2posix)
     38 __weak_alias(timegm,_timegm)
     39 __weak_alias(timelocal,_timelocal)
     40 __weak_alias(timeoff,_timeoff)
     41 __weak_alias(tzname,_tzname)
     42 __weak_alias(tzset,_tzset)
     43 __weak_alias(tzsetwall,_tzsetwall)
     44 #endif
     45 
     46 /*
     47 ** SunOS 4.1.1 headers lack O_BINARY.
     48 */
     49 
     50 #ifdef O_BINARY
     51 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     52 #endif /* defined O_BINARY */
     53 #ifndef O_BINARY
     54 #define OPEN_MODE	O_RDONLY
     55 #endif /* !defined O_BINARY */
     56 
     57 #ifndef WILDABBR
     58 /*
     59 ** Someone might make incorrect use of a time zone abbreviation:
     60 **	1.	They might reference tzname[0] before calling tzset (explicitly
     61 **		or implicitly).
     62 **	2.	They might reference tzname[1] before calling tzset (explicitly
     63 **		or implicitly).
     64 **	3.	They might reference tzname[1] after setting to a time zone
     65 **		in which Daylight Saving Time is never observed.
     66 **	4.	They might reference tzname[0] after setting to a time zone
     67 **		in which Standard Time is never observed.
     68 **	5.	They might reference tm.TM_ZONE after calling offtime.
     69 ** What's best to do in the above cases is open to debate;
     70 ** for now, we just set things up so that in any of the five cases
     71 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     72 ** string "tzname[0] used before set", and similarly for the other cases.
     73 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     74 ** manual page of what this "time zone abbreviation" means (doing this so
     75 ** that tzname[0] has the "normal" length of three characters).
     76 */
     77 #define WILDABBR	"   "
     78 #endif /* !defined WILDABBR */
     79 
     80 static const char	wildabbr[] = "WILDABBR";
     81 
     82 static const char	gmt[] = "GMT";
     83 
     84 /*
     85 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     86 ** We default to US rules as of 1999-08-17.
     87 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     88 ** implementation dependent; for historical reasons, US rules are a
     89 ** common default.
     90 */
     91 #ifndef TZDEFRULESTRING
     92 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     93 #endif /* !defined TZDEFDST */
     94 
     95 struct ttinfo {				/* time type information */
     96 	long		tt_gmtoff;	/* UTC offset in seconds */
     97 	int		tt_isdst;	/* used to set tm_isdst */
     98 	int		tt_abbrind;	/* abbreviation list index */
     99 	int		tt_ttisstd;	/* TRUE if transition is std time */
    100 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    101 };
    102 
    103 struct lsinfo {				/* leap second information */
    104 	time_t		ls_trans;	/* transition time */
    105 	long		ls_corr;	/* correction to apply */
    106 };
    107 
    108 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    109 
    110 #ifdef TZNAME_MAX
    111 #define MY_TZNAME_MAX	TZNAME_MAX
    112 #endif /* defined TZNAME_MAX */
    113 #ifndef TZNAME_MAX
    114 #define MY_TZNAME_MAX	255
    115 #endif /* !defined TZNAME_MAX */
    116 
    117 struct state {
    118 	int		leapcnt;
    119 	int		timecnt;
    120 	int		typecnt;
    121 	int		charcnt;
    122 	time_t		ats[TZ_MAX_TIMES];
    123 	unsigned char	types[TZ_MAX_TIMES];
    124 	struct ttinfo	ttis[TZ_MAX_TYPES];
    125 	char		chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    126 				(2 * (MY_TZNAME_MAX + 1)))];
    127 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    128 };
    129 
    130 struct rule {
    131 	int		r_type;		/* type of rule--see below */
    132 	int		r_day;		/* day number of rule */
    133 	int		r_week;		/* week number of rule */
    134 	int		r_mon;		/* month number of rule */
    135 	long		r_time;		/* transition time of rule */
    136 };
    137 
    138 #define JULIAN_DAY		0	/* Jn - Julian day */
    139 #define DAY_OF_YEAR		1	/* n - day of year */
    140 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    141 
    142 /*
    143 ** Prototypes for static functions.
    144 */
    145 
    146 static long		detzcode P((const char * codep));
    147 static const char *	getzname P((const char * strp));
    148 static const char *	getnum P((const char * strp, int * nump, int min,
    149 				int max));
    150 static const char *	getsecs P((const char * strp, long * secsp));
    151 static const char *	getoffset P((const char * strp, long * offsetp));
    152 static const char *	getrule P((const char * strp, struct rule * rulep));
    153 static void		gmtload P((struct state * sp));
    154 static void		gmtsub P((const time_t * timep, long offset,
    155 				struct tm * tmp));
    156 static void		localsub P((const time_t * timep, long offset,
    157 				struct tm * tmp));
    158 static int		increment_overflow P((int * number, int delta));
    159 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    160 				int base));
    161 static void		settzname P((void));
    162 static time_t		time1 P((struct tm * tmp,
    163 				void(*funcp) P((const time_t *,
    164 				long, struct tm *)),
    165 				long offset));
    166 static time_t		time2 P((struct tm *tmp,
    167 				void(*funcp) P((const time_t *,
    168 				long, struct tm*)),
    169 				long offset, int * okayp));
    170 static time_t		time2sub P((struct tm *tmp,
    171 				void(*funcp) P((const time_t *,
    172 				long, struct tm*)),
    173 				long offset, int * okayp, int do_norm_secs));
    174 static void		timesub P((const time_t * timep, long offset,
    175 				const struct state * sp, struct tm * tmp));
    176 static int		tmcomp P((const struct tm * atmp,
    177 				const struct tm * btmp));
    178 static time_t		transtime P((time_t janfirst, int year,
    179 				const struct rule * rulep, long offset));
    180 static int		tzload P((const char * name, struct state * sp));
    181 static int		tzparse P((const char * name, struct state * sp,
    182 				int lastditch));
    183 static void		tzset_unlocked P((void));
    184 static void		tzsetwall_unlocked P((void));
    185 #ifdef STD_INSPIRED
    186 static long		leapcorr P((time_t * timep));
    187 #endif
    188 
    189 #ifdef ALL_STATE
    190 static struct state *	lclptr;
    191 static struct state *	gmtptr;
    192 #endif /* defined ALL_STATE */
    193 
    194 #ifndef ALL_STATE
    195 static struct state	lclmem;
    196 static struct state	gmtmem;
    197 #define lclptr		(&lclmem)
    198 #define gmtptr		(&gmtmem)
    199 #endif /* State Farm */
    200 
    201 #ifndef TZ_STRLEN_MAX
    202 #define TZ_STRLEN_MAX 255
    203 #endif /* !defined TZ_STRLEN_MAX */
    204 
    205 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    206 static int		lcl_is_set;
    207 static int		gmt_is_set;
    208 
    209 __aconst char *		tzname[2] = {
    210 	/* LINTED const castaway */
    211 	(__aconst char *)wildabbr,
    212 	/* LINTED const castaway */
    213 	(__aconst char *)wildabbr
    214 };
    215 
    216 #ifdef _REENTRANT
    217 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    218 #endif
    219 
    220 /*
    221 ** Section 4.12.3 of X3.159-1989 requires that
    222 **	Except for the strftime function, these functions [asctime,
    223 **	ctime, gmtime, localtime] return values in one of two static
    224 **	objects: a broken-down time structure and an array of char.
    225 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    226 */
    227 
    228 static struct tm	tm;
    229 
    230 #ifdef USG_COMPAT
    231 time_t			timezone = 0;
    232 int			daylight = 0;
    233 #endif /* defined USG_COMPAT */
    234 
    235 #ifdef ALTZONE
    236 time_t			altzone = 0;
    237 #endif /* defined ALTZONE */
    238 
    239 static long
    240 detzcode(codep)
    241 const char * const	codep;
    242 {
    243 	register long	result;
    244 
    245 	/*
    246         ** The first character must be sign extended on systems with >32bit
    247         ** longs.  This was solved differently in the master tzcode sources
    248         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    249 	** that this implementation is superior.
    250         */
    251 
    252 #ifdef __STDC__
    253 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    254 #else
    255 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
    256 #endif
    257 
    258 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    259 	       | (codep[1] & 0xff) << 16 \
    260 	       | (codep[2] & 0xff) << 8
    261 	       | (codep[3] & 0xff);
    262 	return result;
    263 }
    264 
    265 static void
    266 settzname P((void))
    267 {
    268 	register struct state * const	sp = lclptr;
    269 	register int			i;
    270 
    271 	/* LINTED const castaway */
    272 	tzname[0] = (__aconst char *)wildabbr;
    273 	/* LINTED const castaway */
    274 	tzname[1] = (__aconst char *)wildabbr;
    275 #ifdef USG_COMPAT
    276 	daylight = 0;
    277 	timezone = 0;
    278 #endif /* defined USG_COMPAT */
    279 #ifdef ALTZONE
    280 	altzone = 0;
    281 #endif /* defined ALTZONE */
    282 #ifdef ALL_STATE
    283 	if (sp == NULL) {
    284 		tzname[0] = tzname[1] = (__aconst char *)gmt;
    285 		return;
    286 	}
    287 #endif /* defined ALL_STATE */
    288 	for (i = 0; i < sp->typecnt; ++i) {
    289 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    290 
    291 		tzname[ttisp->tt_isdst] =
    292 			&sp->chars[ttisp->tt_abbrind];
    293 #ifdef USG_COMPAT
    294 		if (ttisp->tt_isdst)
    295 			daylight = 1;
    296 		if (i == 0 || !ttisp->tt_isdst)
    297 			timezone = -(ttisp->tt_gmtoff);
    298 #endif /* defined USG_COMPAT */
    299 #ifdef ALTZONE
    300 		if (i == 0 || ttisp->tt_isdst)
    301 			altzone = -(ttisp->tt_gmtoff);
    302 #endif /* defined ALTZONE */
    303 	}
    304 	/*
    305 	** And to get the latest zone names into tzname. . .
    306 	*/
    307 	for (i = 0; i < sp->timecnt; ++i) {
    308 		register const struct ttinfo * const	ttisp =
    309 							&sp->ttis[
    310 								sp->types[i]];
    311 
    312 		tzname[ttisp->tt_isdst] =
    313 			&sp->chars[ttisp->tt_abbrind];
    314 	}
    315 }
    316 
    317 static int
    318 tzload(name, sp)
    319 register const char *		name;
    320 register struct state * const	sp;
    321 {
    322 	register const char *	p;
    323 	register int		i;
    324 	register int		fid;
    325 
    326 	if (name == NULL && (name = TZDEFAULT) == NULL)
    327 		return -1;
    328 
    329 	{
    330 		register int	doaccess;
    331 		/*
    332 		** Section 4.9.1 of the C standard says that
    333 		** "FILENAME_MAX expands to an integral constant expression
    334 		** that is the size needed for an array of char large enough
    335 		** to hold the longest file name string that the implementation
    336 		** guarantees can be opened."
    337 		*/
    338 		char		fullname[FILENAME_MAX + 1];
    339 
    340 		if (name[0] == ':')
    341 			++name;
    342 		doaccess = name[0] == '/';
    343 		if (!doaccess) {
    344 			if ((p = TZDIR) == NULL)
    345 				return -1;
    346 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    347 				return -1;
    348 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    349 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    350 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    351 			/*
    352 			** Set doaccess if '.' (as in "../") shows up in name.
    353 			*/
    354 			if (strchr(name, '.') != NULL)
    355 				doaccess = TRUE;
    356 			name = fullname;
    357 		}
    358 		if (doaccess && access(name, R_OK) != 0)
    359 			return -1;
    360 		/*
    361 		 * XXX potential security problem here if user of a set-id
    362 		 * program has set TZ (which is passed in as name) here,
    363 		 * and uses a race condition trick to defeat the access(2)
    364 		 * above.
    365 		 */
    366 		if ((fid = open(name, OPEN_MODE)) == -1)
    367 			return -1;
    368 	}
    369 	{
    370 		struct tzhead *	tzhp;
    371 		union {
    372 		  struct tzhead tzhead;
    373 		  char		buf[sizeof *sp + sizeof *tzhp];
    374 		} u;
    375 		int		ttisstdcnt;
    376 		int		ttisgmtcnt;
    377 
    378 		i = read(fid, u.buf, sizeof u.buf);
    379 		if (close(fid) != 0)
    380 			return -1;
    381 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    382 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    383 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    384 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    385 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    386 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    387 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    388 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    389 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    390 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    391 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    392 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    393 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    394 				return -1;
    395 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
    396 			sp->timecnt +			/* types */
    397 			sp->typecnt * (4 + 2) +		/* ttinfos */
    398 			sp->charcnt +			/* chars */
    399 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    400 			ttisstdcnt +			/* ttisstds */
    401 			ttisgmtcnt)			/* ttisgmts */
    402 				return -1;
    403 		for (i = 0; i < sp->timecnt; ++i) {
    404 			sp->ats[i] = detzcode(p);
    405 			p += 4;
    406 		}
    407 		for (i = 0; i < sp->timecnt; ++i) {
    408 			sp->types[i] = (unsigned char) *p++;
    409 			if (sp->types[i] >= sp->typecnt)
    410 				return -1;
    411 		}
    412 		for (i = 0; i < sp->typecnt; ++i) {
    413 			register struct ttinfo *	ttisp;
    414 
    415 			ttisp = &sp->ttis[i];
    416 			ttisp->tt_gmtoff = detzcode(p);
    417 			p += 4;
    418 			ttisp->tt_isdst = (unsigned char) *p++;
    419 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    420 				return -1;
    421 			ttisp->tt_abbrind = (unsigned char) *p++;
    422 			if (ttisp->tt_abbrind < 0 ||
    423 				ttisp->tt_abbrind > sp->charcnt)
    424 					return -1;
    425 		}
    426 		for (i = 0; i < sp->charcnt; ++i)
    427 			sp->chars[i] = *p++;
    428 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    429 		for (i = 0; i < sp->leapcnt; ++i) {
    430 			register struct lsinfo *	lsisp;
    431 
    432 			lsisp = &sp->lsis[i];
    433 			lsisp->ls_trans = detzcode(p);
    434 			p += 4;
    435 			lsisp->ls_corr = detzcode(p);
    436 			p += 4;
    437 		}
    438 		for (i = 0; i < sp->typecnt; ++i) {
    439 			register struct ttinfo *	ttisp;
    440 
    441 			ttisp = &sp->ttis[i];
    442 			if (ttisstdcnt == 0)
    443 				ttisp->tt_ttisstd = FALSE;
    444 			else {
    445 				ttisp->tt_ttisstd = *p++;
    446 				if (ttisp->tt_ttisstd != TRUE &&
    447 					ttisp->tt_ttisstd != FALSE)
    448 						return -1;
    449 			}
    450 		}
    451 		for (i = 0; i < sp->typecnt; ++i) {
    452 			register struct ttinfo *	ttisp;
    453 
    454 			ttisp = &sp->ttis[i];
    455 			if (ttisgmtcnt == 0)
    456 				ttisp->tt_ttisgmt = FALSE;
    457 			else {
    458 				ttisp->tt_ttisgmt = *p++;
    459 				if (ttisp->tt_ttisgmt != TRUE &&
    460 					ttisp->tt_ttisgmt != FALSE)
    461 						return -1;
    462 			}
    463 		}
    464 	}
    465 	return 0;
    466 }
    467 
    468 static const int	mon_lengths[2][MONSPERYEAR] = {
    469 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    470 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    471 };
    472 
    473 static const int	year_lengths[2] = {
    474 	DAYSPERNYEAR, DAYSPERLYEAR
    475 };
    476 
    477 /*
    478 ** Given a pointer into a time zone string, scan until a character that is not
    479 ** a valid character in a zone name is found.  Return a pointer to that
    480 ** character.
    481 */
    482 
    483 static const char *
    484 getzname(strp)
    485 register const char *	strp;
    486 {
    487 	register char	c;
    488 
    489 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    490 		c != '+')
    491 			++strp;
    492 	return strp;
    493 }
    494 
    495 /*
    496 ** Given a pointer into a time zone string, extract a number from that string.
    497 ** Check that the number is within a specified range; if it is not, return
    498 ** NULL.
    499 ** Otherwise, return a pointer to the first character not part of the number.
    500 */
    501 
    502 static const char *
    503 getnum(strp, nump, min, max)
    504 register const char *	strp;
    505 int * const		nump;
    506 const int		min;
    507 const int		max;
    508 {
    509 	register char	c;
    510 	register int	num;
    511 
    512 	if (strp == NULL || !is_digit(c = *strp))
    513 		return NULL;
    514 	num = 0;
    515 	do {
    516 		num = num * 10 + (c - '0');
    517 		if (num > max)
    518 			return NULL;	/* illegal value */
    519 		c = *++strp;
    520 	} while (is_digit(c));
    521 	if (num < min)
    522 		return NULL;		/* illegal value */
    523 	*nump = num;
    524 	return strp;
    525 }
    526 
    527 /*
    528 ** Given a pointer into a time zone string, extract a number of seconds,
    529 ** in hh[:mm[:ss]] form, from the string.
    530 ** If any error occurs, return NULL.
    531 ** Otherwise, return a pointer to the first character not part of the number
    532 ** of seconds.
    533 */
    534 
    535 static const char *
    536 getsecs(strp, secsp)
    537 register const char *	strp;
    538 long * const		secsp;
    539 {
    540 	int	num;
    541 
    542 	/*
    543 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    544 	** "M10.4.6/26", which does not conform to Posix,
    545 	** but which specifies the equivalent of
    546 	** ``02:00 on the first Sunday on or after 23 Oct''.
    547 	*/
    548 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    549 	if (strp == NULL)
    550 		return NULL;
    551 	*secsp = num * (long) SECSPERHOUR;
    552 	if (*strp == ':') {
    553 		++strp;
    554 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    555 		if (strp == NULL)
    556 			return NULL;
    557 		*secsp += num * SECSPERMIN;
    558 		if (*strp == ':') {
    559 			++strp;
    560 			/* `SECSPERMIN' allows for leap seconds.  */
    561 			strp = getnum(strp, &num, 0, SECSPERMIN);
    562 			if (strp == NULL)
    563 				return NULL;
    564 			*secsp += num;
    565 		}
    566 	}
    567 	return strp;
    568 }
    569 
    570 /*
    571 ** Given a pointer into a time zone string, extract an offset, in
    572 ** [+-]hh[:mm[:ss]] form, from the string.
    573 ** If any error occurs, return NULL.
    574 ** Otherwise, return a pointer to the first character not part of the time.
    575 */
    576 
    577 static const char *
    578 getoffset(strp, offsetp)
    579 register const char *	strp;
    580 long * const		offsetp;
    581 {
    582 	register int	neg = 0;
    583 
    584 	if (*strp == '-') {
    585 		neg = 1;
    586 		++strp;
    587 	} else if (*strp == '+')
    588 		++strp;
    589 	strp = getsecs(strp, offsetp);
    590 	if (strp == NULL)
    591 		return NULL;		/* illegal time */
    592 	if (neg)
    593 		*offsetp = -*offsetp;
    594 	return strp;
    595 }
    596 
    597 /*
    598 ** Given a pointer into a time zone string, extract a rule in the form
    599 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    600 ** If a valid rule is not found, return NULL.
    601 ** Otherwise, return a pointer to the first character not part of the rule.
    602 */
    603 
    604 static const char *
    605 getrule(strp, rulep)
    606 const char *			strp;
    607 register struct rule * const	rulep;
    608 {
    609 	if (*strp == 'J') {
    610 		/*
    611 		** Julian day.
    612 		*/
    613 		rulep->r_type = JULIAN_DAY;
    614 		++strp;
    615 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    616 	} else if (*strp == 'M') {
    617 		/*
    618 		** Month, week, day.
    619 		*/
    620 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    621 		++strp;
    622 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    623 		if (strp == NULL)
    624 			return NULL;
    625 		if (*strp++ != '.')
    626 			return NULL;
    627 		strp = getnum(strp, &rulep->r_week, 1, 5);
    628 		if (strp == NULL)
    629 			return NULL;
    630 		if (*strp++ != '.')
    631 			return NULL;
    632 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    633 	} else if (is_digit(*strp)) {
    634 		/*
    635 		** Day of year.
    636 		*/
    637 		rulep->r_type = DAY_OF_YEAR;
    638 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    639 	} else	return NULL;		/* invalid format */
    640 	if (strp == NULL)
    641 		return NULL;
    642 	if (*strp == '/') {
    643 		/*
    644 		** Time specified.
    645 		*/
    646 		++strp;
    647 		strp = getsecs(strp, &rulep->r_time);
    648 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    649 	return strp;
    650 }
    651 
    652 /*
    653 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    654 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    655 ** calculate the Epoch-relative time that rule takes effect.
    656 */
    657 
    658 static time_t
    659 transtime(janfirst, year, rulep, offset)
    660 const time_t				janfirst;
    661 const int				year;
    662 register const struct rule * const	rulep;
    663 const long				offset;
    664 {
    665 	register int	leapyear;
    666 	register time_t	value;
    667 	register int	i;
    668 	int		d, m1, yy0, yy1, yy2, dow;
    669 
    670 	INITIALIZE(value);
    671 	leapyear = isleap(year);
    672 	switch (rulep->r_type) {
    673 
    674 	case JULIAN_DAY:
    675 		/*
    676 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    677 		** years.
    678 		** In non-leap years, or if the day number is 59 or less, just
    679 		** add SECSPERDAY times the day number-1 to the time of
    680 		** January 1, midnight, to get the day.
    681 		*/
    682 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    683 		if (leapyear && rulep->r_day >= 60)
    684 			value += SECSPERDAY;
    685 		break;
    686 
    687 	case DAY_OF_YEAR:
    688 		/*
    689 		** n - day of year.
    690 		** Just add SECSPERDAY times the day number to the time of
    691 		** January 1, midnight, to get the day.
    692 		*/
    693 		value = janfirst + rulep->r_day * SECSPERDAY;
    694 		break;
    695 
    696 	case MONTH_NTH_DAY_OF_WEEK:
    697 		/*
    698 		** Mm.n.d - nth "dth day" of month m.
    699 		*/
    700 		value = janfirst;
    701 		for (i = 0; i < rulep->r_mon - 1; ++i)
    702 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    703 
    704 		/*
    705 		** Use Zeller's Congruence to get day-of-week of first day of
    706 		** month.
    707 		*/
    708 		m1 = (rulep->r_mon + 9) % 12 + 1;
    709 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    710 		yy1 = yy0 / 100;
    711 		yy2 = yy0 % 100;
    712 		dow = ((26 * m1 - 2) / 10 +
    713 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    714 		if (dow < 0)
    715 			dow += DAYSPERWEEK;
    716 
    717 		/*
    718 		** "dow" is the day-of-week of the first day of the month.  Get
    719 		** the day-of-month (zero-origin) of the first "dow" day of the
    720 		** month.
    721 		*/
    722 		d = rulep->r_day - dow;
    723 		if (d < 0)
    724 			d += DAYSPERWEEK;
    725 		for (i = 1; i < rulep->r_week; ++i) {
    726 			if (d + DAYSPERWEEK >=
    727 				mon_lengths[leapyear][rulep->r_mon - 1])
    728 					break;
    729 			d += DAYSPERWEEK;
    730 		}
    731 
    732 		/*
    733 		** "d" is the day-of-month (zero-origin) of the day we want.
    734 		*/
    735 		value += d * SECSPERDAY;
    736 		break;
    737 	}
    738 
    739 	/*
    740 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    741 	** question.  To get the Epoch-relative time of the specified local
    742 	** time on that day, add the transition time and the current offset
    743 	** from UTC.
    744 	*/
    745 	return value + rulep->r_time + offset;
    746 }
    747 
    748 /*
    749 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    750 ** appropriate.
    751 */
    752 
    753 static int
    754 tzparse(name, sp, lastditch)
    755 const char *			name;
    756 register struct state * const	sp;
    757 const int			lastditch;
    758 {
    759 	const char *			stdname;
    760 	const char *			dstname;
    761 	size_t				stdlen;
    762 	size_t				dstlen;
    763 	long				stdoffset;
    764 	long				dstoffset;
    765 	register time_t *		atp;
    766 	register unsigned char *	typep;
    767 	register char *			cp;
    768 	register int			load_result;
    769 
    770 	INITIALIZE(dstname);
    771 	stdname = name;
    772 	if (lastditch) {
    773 		stdlen = strlen(name);	/* length of standard zone name */
    774 		name += stdlen;
    775 		if (stdlen >= sizeof sp->chars)
    776 			stdlen = (sizeof sp->chars) - 1;
    777 		stdoffset = 0;
    778 	} else {
    779 		name = getzname(name);
    780 		stdlen = name - stdname;
    781 		if (stdlen < 3)
    782 			return -1;
    783 		if (*name == '\0')
    784 			return -1;
    785 		name = getoffset(name, &stdoffset);
    786 		if (name == NULL)
    787 			return -1;
    788 	}
    789 	load_result = tzload(TZDEFRULES, sp);
    790 	if (load_result != 0)
    791 		sp->leapcnt = 0;		/* so, we're off a little */
    792 	if (*name != '\0') {
    793 		dstname = name;
    794 		name = getzname(name);
    795 		dstlen = name - dstname;	/* length of DST zone name */
    796 		if (dstlen < 3)
    797 			return -1;
    798 		if (*name != '\0' && *name != ',' && *name != ';') {
    799 			name = getoffset(name, &dstoffset);
    800 			if (name == NULL)
    801 				return -1;
    802 		} else	dstoffset = stdoffset - SECSPERHOUR;
    803 		if (*name == '\0' && load_result != 0)
    804 			name = TZDEFRULESTRING;
    805 		if (*name == ',' || *name == ';') {
    806 			struct rule	start;
    807 			struct rule	end;
    808 			register int	year;
    809 			register time_t	janfirst;
    810 			time_t		starttime;
    811 			time_t		endtime;
    812 
    813 			++name;
    814 			if ((name = getrule(name, &start)) == NULL)
    815 				return -1;
    816 			if (*name++ != ',')
    817 				return -1;
    818 			if ((name = getrule(name, &end)) == NULL)
    819 				return -1;
    820 			if (*name != '\0')
    821 				return -1;
    822 			sp->typecnt = 2;	/* standard time and DST */
    823 			/*
    824 			** Two transitions per year, from EPOCH_YEAR to 2037.
    825 			*/
    826 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    827 			if (sp->timecnt > TZ_MAX_TIMES)
    828 				return -1;
    829 			sp->ttis[0].tt_gmtoff = -dstoffset;
    830 			sp->ttis[0].tt_isdst = 1;
    831 			sp->ttis[0].tt_abbrind = stdlen + 1;
    832 			sp->ttis[1].tt_gmtoff = -stdoffset;
    833 			sp->ttis[1].tt_isdst = 0;
    834 			sp->ttis[1].tt_abbrind = 0;
    835 			atp = sp->ats;
    836 			typep = sp->types;
    837 			janfirst = 0;
    838 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    839 				starttime = transtime(janfirst, year, &start,
    840 					stdoffset);
    841 				endtime = transtime(janfirst, year, &end,
    842 					dstoffset);
    843 				if (starttime > endtime) {
    844 					*atp++ = endtime;
    845 					*typep++ = 1;	/* DST ends */
    846 					*atp++ = starttime;
    847 					*typep++ = 0;	/* DST begins */
    848 				} else {
    849 					*atp++ = starttime;
    850 					*typep++ = 0;	/* DST begins */
    851 					*atp++ = endtime;
    852 					*typep++ = 1;	/* DST ends */
    853 				}
    854 				janfirst += year_lengths[isleap(year)] *
    855 					SECSPERDAY;
    856 			}
    857 		} else {
    858 			register long	theirstdoffset;
    859 			register long	theirdstoffset;
    860 			register long	theiroffset;
    861 			register int	isdst;
    862 			register int	i;
    863 			register int	j;
    864 
    865 			if (*name != '\0')
    866 				return -1;
    867 			/*
    868 			** Initial values of theirstdoffset and theirdstoffset.
    869 			*/
    870 			theirstdoffset = 0;
    871 			for (i = 0; i < sp->timecnt; ++i) {
    872 				j = sp->types[i];
    873 				if (!sp->ttis[j].tt_isdst) {
    874 					theirstdoffset =
    875 						-sp->ttis[j].tt_gmtoff;
    876 					break;
    877 				}
    878 			}
    879 			theirdstoffset = 0;
    880 			for (i = 0; i < sp->timecnt; ++i) {
    881 				j = sp->types[i];
    882 				if (sp->ttis[j].tt_isdst) {
    883 					theirdstoffset =
    884 						-sp->ttis[j].tt_gmtoff;
    885 					break;
    886 				}
    887 			}
    888 			/*
    889 			** Initially we're assumed to be in standard time.
    890 			*/
    891 			isdst = FALSE;
    892 			theiroffset = theirstdoffset;
    893 			/*
    894 			** Now juggle transition times and types
    895 			** tracking offsets as you do.
    896 			*/
    897 			for (i = 0; i < sp->timecnt; ++i) {
    898 				j = sp->types[i];
    899 				sp->types[i] = sp->ttis[j].tt_isdst;
    900 				if (sp->ttis[j].tt_ttisgmt) {
    901 					/* No adjustment to transition time */
    902 				} else {
    903 					/*
    904 					** If summer time is in effect, and the
    905 					** transition time was not specified as
    906 					** standard time, add the summer time
    907 					** offset to the transition time;
    908 					** otherwise, add the standard time
    909 					** offset to the transition time.
    910 					*/
    911 					/*
    912 					** Transitions from DST to DDST
    913 					** will effectively disappear since
    914 					** POSIX provides for only one DST
    915 					** offset.
    916 					*/
    917 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    918 						sp->ats[i] += dstoffset -
    919 							theirdstoffset;
    920 					} else {
    921 						sp->ats[i] += stdoffset -
    922 							theirstdoffset;
    923 					}
    924 				}
    925 				theiroffset = -sp->ttis[j].tt_gmtoff;
    926 				if (sp->ttis[j].tt_isdst)
    927 					theirdstoffset = theiroffset;
    928 				else	theirstdoffset = theiroffset;
    929 			}
    930 			/*
    931 			** Finally, fill in ttis.
    932 			** ttisstd and ttisgmt need not be handled.
    933 			*/
    934 			sp->ttis[0].tt_gmtoff = -stdoffset;
    935 			sp->ttis[0].tt_isdst = FALSE;
    936 			sp->ttis[0].tt_abbrind = 0;
    937 			sp->ttis[1].tt_gmtoff = -dstoffset;
    938 			sp->ttis[1].tt_isdst = TRUE;
    939 			sp->ttis[1].tt_abbrind = stdlen + 1;
    940 			sp->typecnt = 2;
    941 		}
    942 	} else {
    943 		dstlen = 0;
    944 		sp->typecnt = 1;		/* only standard time */
    945 		sp->timecnt = 0;
    946 		sp->ttis[0].tt_gmtoff = -stdoffset;
    947 		sp->ttis[0].tt_isdst = 0;
    948 		sp->ttis[0].tt_abbrind = 0;
    949 	}
    950 	sp->charcnt = stdlen + 1;
    951 	if (dstlen != 0)
    952 		sp->charcnt += dstlen + 1;
    953 	if ((size_t) sp->charcnt > sizeof sp->chars)
    954 		return -1;
    955 	cp = sp->chars;
    956 	(void) strncpy(cp, stdname, stdlen);
    957 	cp += stdlen;
    958 	*cp++ = '\0';
    959 	if (dstlen != 0) {
    960 		(void) strncpy(cp, dstname, dstlen);
    961 		*(cp + dstlen) = '\0';
    962 	}
    963 	return 0;
    964 }
    965 
    966 static void
    967 gmtload(sp)
    968 struct state * const	sp;
    969 {
    970 	if (tzload(gmt, sp) != 0)
    971 		(void) tzparse(gmt, sp, TRUE);
    972 }
    973 
    974 static void
    975 tzsetwall_unlocked P((void))
    976 {
    977 	if (lcl_is_set < 0)
    978 		return;
    979 	lcl_is_set = -1;
    980 
    981 #ifdef ALL_STATE
    982 	if (lclptr == NULL) {
    983 		lclptr = (struct state *) malloc(sizeof *lclptr);
    984 		if (lclptr == NULL) {
    985 			settzname();	/* all we can do */
    986 			return;
    987 		}
    988 	}
    989 #endif /* defined ALL_STATE */
    990 	if (tzload((char *) NULL, lclptr) != 0)
    991 		gmtload(lclptr);
    992 	settzname();
    993 }
    994 
    995 #ifndef STD_INSPIRED
    996 /*
    997 ** A non-static declaration of tzsetwall in a system header file
    998 ** may cause a warning about this upcoming static declaration...
    999 */
   1000 static
   1001 #endif /* !defined STD_INSPIRED */
   1002 void
   1003 tzsetwall P((void))
   1004 {
   1005 	rwlock_wrlock(&lcl_lock);
   1006 	tzsetwall_unlocked();
   1007 	rwlock_unlock(&lcl_lock);
   1008 }
   1009 
   1010 static void
   1011 tzset_unlocked P((void))
   1012 {
   1013 	register const char *	name;
   1014 
   1015 	name = getenv("TZ");
   1016 	if (name == NULL) {
   1017 		tzsetwall_unlocked();
   1018 		return;
   1019 	}
   1020 
   1021 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
   1022 		return;
   1023 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
   1024 	if (lcl_is_set)
   1025 		(void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
   1026 
   1027 #ifdef ALL_STATE
   1028 	if (lclptr == NULL) {
   1029 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1030 		if (lclptr == NULL) {
   1031 			settzname();	/* all we can do */
   1032 			return;
   1033 		}
   1034 	}
   1035 #endif /* defined ALL_STATE */
   1036 	if (*name == '\0') {
   1037 		/*
   1038 		** User wants it fast rather than right.
   1039 		*/
   1040 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1041 		lclptr->timecnt = 0;
   1042 		lclptr->ttis[0].tt_gmtoff = 0;
   1043 		lclptr->ttis[0].tt_abbrind = 0;
   1044 		(void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
   1045 	} else if (tzload(name, lclptr) != 0)
   1046 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1047 			(void) gmtload(lclptr);
   1048 	settzname();
   1049 }
   1050 
   1051 void
   1052 tzset P((void))
   1053 {
   1054 	rwlock_wrlock(&lcl_lock);
   1055 	tzset_unlocked();
   1056 	rwlock_unlock(&lcl_lock);
   1057 }
   1058 
   1059 /*
   1060 ** The easy way to behave "as if no library function calls" localtime
   1061 ** is to not call it--so we drop its guts into "localsub", which can be
   1062 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1063 ** but it *is* desirable.)
   1064 **
   1065 ** The unused offset argument is for the benefit of mktime variants.
   1066 */
   1067 
   1068 /*ARGSUSED*/
   1069 static void
   1070 localsub(timep, offset, tmp)
   1071 const time_t * const	timep;
   1072 const long		offset;
   1073 struct tm * const	tmp;
   1074 {
   1075 	register struct state *		sp;
   1076 	register const struct ttinfo *	ttisp;
   1077 	register int			i;
   1078 	const time_t			t = *timep;
   1079 
   1080 	sp = lclptr;
   1081 #ifdef ALL_STATE
   1082 	if (sp == NULL) {
   1083 		gmtsub(timep, offset, tmp);
   1084 		return;
   1085 	}
   1086 #endif /* defined ALL_STATE */
   1087 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1088 		i = 0;
   1089 		while (sp->ttis[i].tt_isdst)
   1090 			if (++i >= sp->typecnt) {
   1091 				i = 0;
   1092 				break;
   1093 			}
   1094 	} else {
   1095 		for (i = 1; i < sp->timecnt; ++i)
   1096 			if (t < sp->ats[i])
   1097 				break;
   1098 		i = sp->types[i - 1];
   1099 	}
   1100 	ttisp = &sp->ttis[i];
   1101 	/*
   1102 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1103 	** you'd replace the statement below with
   1104 	**	t += ttisp->tt_gmtoff;
   1105 	**	timesub(&t, 0L, sp, tmp);
   1106 	*/
   1107 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1108 	tmp->tm_isdst = ttisp->tt_isdst;
   1109 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1110 #ifdef TM_ZONE
   1111 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1112 #endif /* defined TM_ZONE */
   1113 }
   1114 
   1115 struct tm *
   1116 localtime(timep)
   1117 const time_t * const	timep;
   1118 {
   1119 	rwlock_wrlock(&lcl_lock);
   1120 	tzset_unlocked();
   1121 	localsub(timep, 0L, &tm);
   1122 	rwlock_unlock(&lcl_lock);
   1123 	return &tm;
   1124 }
   1125 
   1126 /*
   1127  * Re-entrant version of localtime
   1128  */
   1129 struct tm *
   1130 localtime_r(timep, tm)
   1131 const time_t * const	timep;
   1132 struct tm *		tm;
   1133 {
   1134 	rwlock_rdlock(&lcl_lock);
   1135 	localsub(timep, 0L, tm);
   1136 	rwlock_unlock(&lcl_lock);
   1137 	return tm;
   1138 }
   1139 
   1140 /*
   1141 ** gmtsub is to gmtime as localsub is to localtime.
   1142 */
   1143 
   1144 static void
   1145 gmtsub(timep, offset, tmp)
   1146 const time_t * const	timep;
   1147 const long		offset;
   1148 struct tm * const	tmp;
   1149 {
   1150 #ifdef _REENTRANT
   1151 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1152 #endif
   1153 
   1154 	mutex_lock(&gmt_mutex);
   1155 	if (!gmt_is_set) {
   1156 		gmt_is_set = TRUE;
   1157 #ifdef ALL_STATE
   1158 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1159 		if (gmtptr != NULL)
   1160 #endif /* defined ALL_STATE */
   1161 			gmtload(gmtptr);
   1162 	}
   1163 	mutex_unlock(&gmt_mutex);
   1164 	timesub(timep, offset, gmtptr, tmp);
   1165 #ifdef TM_ZONE
   1166 	/*
   1167 	** Could get fancy here and deliver something such as
   1168 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1169 	** but this is no time for a treasure hunt.
   1170 	*/
   1171 	if (offset != 0)
   1172 		/* LINTED const castaway */
   1173 		tmp->TM_ZONE = (__aconst char *)wildabbr;
   1174 	else {
   1175 #ifdef ALL_STATE
   1176 		if (gmtptr == NULL)
   1177 			tmp->TM_ZONE = (__aconst char *)gmt;
   1178 		else	tmp->TM_ZONE = gmtptr->chars;
   1179 #endif /* defined ALL_STATE */
   1180 #ifndef ALL_STATE
   1181 		tmp->TM_ZONE = gmtptr->chars;
   1182 #endif /* State Farm */
   1183 	}
   1184 #endif /* defined TM_ZONE */
   1185 }
   1186 
   1187 struct tm *
   1188 gmtime(timep)
   1189 const time_t * const	timep;
   1190 {
   1191 	gmtsub(timep, 0L, &tm);
   1192 	return &tm;
   1193 }
   1194 
   1195 /*
   1196  * Re-entrant version of gmtime
   1197  */
   1198 struct tm *
   1199 gmtime_r(timep, tm)
   1200 const time_t * const	timep;
   1201 struct tm *		tm;
   1202 {
   1203 	gmtsub(timep, 0L, tm);
   1204 	return tm;
   1205 }
   1206 
   1207 #ifdef STD_INSPIRED
   1208 
   1209 struct tm *
   1210 offtime(timep, offset)
   1211 const time_t * const	timep;
   1212 const long		offset;
   1213 {
   1214 	gmtsub(timep, offset, &tm);
   1215 	return &tm;
   1216 }
   1217 
   1218 #endif /* defined STD_INSPIRED */
   1219 
   1220 static void
   1221 timesub(timep, offset, sp, tmp)
   1222 const time_t * const			timep;
   1223 const long				offset;
   1224 register const struct state * const	sp;
   1225 register struct tm * const		tmp;
   1226 {
   1227 	register const struct lsinfo *	lp;
   1228 	register long			days;
   1229 	register long			rem;
   1230 	register int			y;
   1231 	register int			yleap;
   1232 	register const int *		ip;
   1233 	register long			corr;
   1234 	register int			hit;
   1235 	register int			i;
   1236 
   1237 	corr = 0;
   1238 	hit = 0;
   1239 #ifdef ALL_STATE
   1240 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1241 #endif /* defined ALL_STATE */
   1242 #ifndef ALL_STATE
   1243 	i = sp->leapcnt;
   1244 #endif /* State Farm */
   1245 	while (--i >= 0) {
   1246 		lp = &sp->lsis[i];
   1247 		if (*timep >= lp->ls_trans) {
   1248 			if (*timep == lp->ls_trans) {
   1249 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1250 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1251 				if (hit)
   1252 					while (i > 0 &&
   1253 						sp->lsis[i].ls_trans ==
   1254 						sp->lsis[i - 1].ls_trans + 1 &&
   1255 						sp->lsis[i].ls_corr ==
   1256 						sp->lsis[i - 1].ls_corr + 1) {
   1257 							++hit;
   1258 							--i;
   1259 					}
   1260 			}
   1261 			corr = lp->ls_corr;
   1262 			break;
   1263 		}
   1264 	}
   1265 	days = *timep / SECSPERDAY;
   1266 	rem = *timep % SECSPERDAY;
   1267 #ifdef mc68k
   1268 	if (*timep == 0x80000000) {
   1269 		/*
   1270 		** A 3B1 muffs the division on the most negative number.
   1271 		*/
   1272 		days = -24855;
   1273 		rem = -11648;
   1274 	}
   1275 #endif /* defined mc68k */
   1276 	rem += (offset - corr);
   1277 	while (rem < 0) {
   1278 		rem += SECSPERDAY;
   1279 		--days;
   1280 	}
   1281 	while (rem >= SECSPERDAY) {
   1282 		rem -= SECSPERDAY;
   1283 		++days;
   1284 	}
   1285 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1286 	rem = rem % SECSPERHOUR;
   1287 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1288 	/*
   1289 	** A positive leap second requires a special
   1290 	** representation.  This uses "... ??:59:60" et seq.
   1291 	*/
   1292 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1293 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1294 	if (tmp->tm_wday < 0)
   1295 		tmp->tm_wday += DAYSPERWEEK;
   1296 	y = EPOCH_YEAR;
   1297 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1298 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1299 		register int	newy;
   1300 
   1301 		newy = (int)(y + days / DAYSPERNYEAR);
   1302 		if (days < 0)
   1303 			--newy;
   1304 		days -= (newy - y) * DAYSPERNYEAR +
   1305 			LEAPS_THRU_END_OF(newy - 1) -
   1306 			LEAPS_THRU_END_OF(y - 1);
   1307 		y = newy;
   1308 	}
   1309 	tmp->tm_year = y - TM_YEAR_BASE;
   1310 	tmp->tm_yday = (int) days;
   1311 	ip = mon_lengths[yleap];
   1312 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1313 		days = days - (long) ip[tmp->tm_mon];
   1314 	tmp->tm_mday = (int) (days + 1);
   1315 	tmp->tm_isdst = 0;
   1316 #ifdef TM_GMTOFF
   1317 	tmp->TM_GMTOFF = offset;
   1318 #endif /* defined TM_GMTOFF */
   1319 }
   1320 
   1321 char *
   1322 ctime(timep)
   1323 const time_t * const	timep;
   1324 {
   1325 /*
   1326 ** Section 4.12.3.2 of X3.159-1989 requires that
   1327 **	The ctime function converts the calendar time pointed to by timer
   1328 **	to local time in the form of a string.  It is equivalent to
   1329 **		asctime(localtime(timer))
   1330 */
   1331 	return asctime(localtime(timep));
   1332 }
   1333 
   1334 char *
   1335 ctime_r(timep, buf)
   1336 const time_t * const	timep;
   1337 char *			buf;
   1338 {
   1339 	struct tm	tmp;
   1340 
   1341 	return asctime_r(localtime_r(timep, &tmp), buf);
   1342 }
   1343 
   1344 /*
   1345 ** Adapted from code provided by Robert Elz, who writes:
   1346 **	The "best" way to do mktime I think is based on an idea of Bob
   1347 **	Kridle's (so its said...) from a long time ago.
   1348 **	[kridle (at) xinet.com as of 1996-01-16.]
   1349 **	It does a binary search of the time_t space.  Since time_t's are
   1350 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1351 **	would still be very reasonable).
   1352 */
   1353 
   1354 #ifndef WRONG
   1355 #define WRONG	(-1)
   1356 #endif /* !defined WRONG */
   1357 
   1358 /*
   1359 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1360 */
   1361 
   1362 static int
   1363 increment_overflow(number, delta)
   1364 int *	number;
   1365 int	delta;
   1366 {
   1367 	int	number0;
   1368 
   1369 	number0 = *number;
   1370 	*number += delta;
   1371 	return (*number < number0) != (delta < 0);
   1372 }
   1373 
   1374 static int
   1375 normalize_overflow(tensptr, unitsptr, base)
   1376 int * const	tensptr;
   1377 int * const	unitsptr;
   1378 const int	base;
   1379 {
   1380 	register int	tensdelta;
   1381 
   1382 	tensdelta = (*unitsptr >= 0) ?
   1383 		(*unitsptr / base) :
   1384 		(-1 - (-1 - *unitsptr) / base);
   1385 	*unitsptr -= tensdelta * base;
   1386 	return increment_overflow(tensptr, tensdelta);
   1387 }
   1388 
   1389 static int
   1390 tmcomp(atmp, btmp)
   1391 register const struct tm * const atmp;
   1392 register const struct tm * const btmp;
   1393 {
   1394 	register int	result;
   1395 
   1396 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1397 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1398 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1399 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1400 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1401 			result = atmp->tm_sec - btmp->tm_sec;
   1402 	return result;
   1403 }
   1404 
   1405 static time_t
   1406 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1407 struct tm * const	tmp;
   1408 void (* const		funcp) P((const time_t*, long, struct tm*));
   1409 const long		offset;
   1410 int * const		okayp;
   1411 const int		do_norm_secs;
   1412 {
   1413 	register const struct state *	sp;
   1414 	register int			dir;
   1415 	register int			bits;
   1416 	register int			i, j ;
   1417 	register int			saved_seconds;
   1418 	time_t				newt;
   1419 	time_t				t;
   1420 	struct tm			yourtm, mytm;
   1421 
   1422 	*okayp = FALSE;
   1423 	yourtm = *tmp;
   1424 	if (do_norm_secs) {
   1425 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1426 			SECSPERMIN))
   1427 				return WRONG;
   1428 	}
   1429 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1430 		return WRONG;
   1431 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1432 		return WRONG;
   1433 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1434 		return WRONG;
   1435 	/*
   1436 	** Turn yourtm.tm_year into an actual year number for now.
   1437 	** It is converted back to an offset from TM_YEAR_BASE later.
   1438 	*/
   1439 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1440 		return WRONG;
   1441 	while (yourtm.tm_mday <= 0) {
   1442 		if (increment_overflow(&yourtm.tm_year, -1))
   1443 			return WRONG;
   1444 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1445 		yourtm.tm_mday += year_lengths[isleap(i)];
   1446 	}
   1447 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1448 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1449 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1450 		if (increment_overflow(&yourtm.tm_year, 1))
   1451 			return WRONG;
   1452 	}
   1453 	for ( ; ; ) {
   1454 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1455 		if (yourtm.tm_mday <= i)
   1456 			break;
   1457 		yourtm.tm_mday -= i;
   1458 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1459 			yourtm.tm_mon = 0;
   1460 			if (increment_overflow(&yourtm.tm_year, 1))
   1461 				return WRONG;
   1462 		}
   1463 	}
   1464 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1465 		return WRONG;
   1466 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1467 		/*
   1468 		** We can't set tm_sec to 0, because that might push the
   1469 		** time below the minimum representable time.
   1470 		** Set tm_sec to 59 instead.
   1471 		** This assumes that the minimum representable time is
   1472 		** not in the same minute that a leap second was deleted from,
   1473 		** which is a safer assumption than using 58 would be.
   1474 		*/
   1475 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1476 			return WRONG;
   1477 		saved_seconds = yourtm.tm_sec;
   1478 		yourtm.tm_sec = SECSPERMIN - 1;
   1479 	} else {
   1480 		saved_seconds = yourtm.tm_sec;
   1481 		yourtm.tm_sec = 0;
   1482 	}
   1483 	/*
   1484 	** Divide the search space in half
   1485 	** (this works whether time_t is signed or unsigned).
   1486 	*/
   1487 	bits = TYPE_BIT(time_t) - 1;
   1488 	/*
   1489 	** If time_t is signed, then 0 is just above the median,
   1490 	** assuming two's complement arithmetic.
   1491 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1492 	*/
   1493 	/* LINTED constant in conditional context */
   1494 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1495 	for ( ; ; ) {
   1496 		(*funcp)(&t, offset, &mytm);
   1497 		dir = tmcomp(&mytm, &yourtm);
   1498 		if (dir != 0) {
   1499 			if (bits-- < 0)
   1500 				return WRONG;
   1501 			if (bits < 0)
   1502 				--t; /* may be needed if new t is minimal */
   1503 			else if (dir > 0)
   1504 				t -= ((time_t) 1) << bits;
   1505 			else	t += ((time_t) 1) << bits;
   1506 			continue;
   1507 		}
   1508 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1509 			break;
   1510 		/*
   1511 		** Right time, wrong type.
   1512 		** Hunt for right time, right type.
   1513 		** It's okay to guess wrong since the guess
   1514 		** gets checked.
   1515 		*/
   1516 		/*
   1517 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1518 		*/
   1519 		sp = (const struct state *)
   1520 			(((void *) funcp == (void *) localsub) ?
   1521 			lclptr : gmtptr);
   1522 #ifdef ALL_STATE
   1523 		if (sp == NULL)
   1524 			return WRONG;
   1525 #endif /* defined ALL_STATE */
   1526 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1527 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1528 				continue;
   1529 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1530 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1531 					continue;
   1532 				newt = t + sp->ttis[j].tt_gmtoff -
   1533 					sp->ttis[i].tt_gmtoff;
   1534 				(*funcp)(&newt, offset, &mytm);
   1535 				if (tmcomp(&mytm, &yourtm) != 0)
   1536 					continue;
   1537 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1538 					continue;
   1539 				/*
   1540 				** We have a match.
   1541 				*/
   1542 				t = newt;
   1543 				goto label;
   1544 			}
   1545 		}
   1546 		return WRONG;
   1547 	}
   1548 label:
   1549 	newt = t + saved_seconds;
   1550 	if ((newt < t) != (saved_seconds < 0))
   1551 		return WRONG;
   1552 	t = newt;
   1553 	(*funcp)(&t, offset, tmp);
   1554 	*okayp = TRUE;
   1555 	return t;
   1556 }
   1557 
   1558 static time_t
   1559 time2(tmp, funcp, offset, okayp)
   1560 struct tm * const	tmp;
   1561 void (* const		funcp) P((const time_t*, long, struct tm*));
   1562 const long		offset;
   1563 int * const		okayp;
   1564 {
   1565 	time_t	t;
   1566 
   1567 	/*
   1568 	** First try without normalization of seconds
   1569 	** (in case tm_sec contains a value associated with a leap second).
   1570 	** If that fails, try with normalization of seconds.
   1571 	*/
   1572 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1573 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1574 }
   1575 
   1576 static time_t
   1577 time1(tmp, funcp, offset)
   1578 struct tm * const	tmp;
   1579 void (* const		funcp) P((const time_t *, long, struct tm *));
   1580 const long		offset;
   1581 {
   1582 	register time_t			t;
   1583 	register const struct state *	sp;
   1584 	register int			samei, otheri;
   1585 	int				okay;
   1586 
   1587 	if (tmp->tm_isdst > 1)
   1588 		tmp->tm_isdst = 1;
   1589 	t = time2(tmp, funcp, offset, &okay);
   1590 #ifdef PCTS
   1591 	/*
   1592 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1593 	*/
   1594 	if (okay)
   1595 		return t;
   1596 	if (tmp->tm_isdst < 0)
   1597 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1598 #endif /* defined PCTS */
   1599 #ifndef PCTS
   1600 	if (okay || tmp->tm_isdst < 0)
   1601 		return t;
   1602 #endif /* !defined PCTS */
   1603 	/*
   1604 	** We're supposed to assume that somebody took a time of one type
   1605 	** and did some math on it that yielded a "struct tm" that's bad.
   1606 	** We try to divine the type they started from and adjust to the
   1607 	** type they need.
   1608 	*/
   1609 	/*
   1610 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1611 	*/
   1612 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1613 		lclptr : gmtptr);
   1614 #ifdef ALL_STATE
   1615 	if (sp == NULL)
   1616 		return WRONG;
   1617 #endif /* defined ALL_STATE */
   1618 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1619 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1620 			continue;
   1621 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1622 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1623 				continue;
   1624 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   1625 					sp->ttis[samei].tt_gmtoff);
   1626 			tmp->tm_isdst = !tmp->tm_isdst;
   1627 			t = time2(tmp, funcp, offset, &okay);
   1628 			if (okay)
   1629 				return t;
   1630 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   1631 					sp->ttis[samei].tt_gmtoff);
   1632 			tmp->tm_isdst = !tmp->tm_isdst;
   1633 		}
   1634 	}
   1635 	return WRONG;
   1636 }
   1637 
   1638 time_t
   1639 mktime(tmp)
   1640 struct tm * const	tmp;
   1641 {
   1642 	time_t result;
   1643 
   1644 	rwlock_wrlock(&lcl_lock);
   1645 	tzset_unlocked();
   1646 	result = time1(tmp, localsub, 0L);
   1647 	rwlock_unlock(&lcl_lock);
   1648 	return (result);
   1649 }
   1650 
   1651 #ifdef STD_INSPIRED
   1652 
   1653 time_t
   1654 timelocal(tmp)
   1655 struct tm * const	tmp;
   1656 {
   1657 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1658 	return mktime(tmp);
   1659 }
   1660 
   1661 time_t
   1662 timegm(tmp)
   1663 struct tm * const	tmp;
   1664 {
   1665 	tmp->tm_isdst = 0;
   1666 	return time1(tmp, gmtsub, 0L);
   1667 }
   1668 
   1669 time_t
   1670 timeoff(tmp, offset)
   1671 struct tm * const	tmp;
   1672 const long		offset;
   1673 {
   1674 	tmp->tm_isdst = 0;
   1675 	return time1(tmp, gmtsub, offset);
   1676 }
   1677 
   1678 #endif /* defined STD_INSPIRED */
   1679 
   1680 #ifdef CMUCS
   1681 
   1682 /*
   1683 ** The following is supplied for compatibility with
   1684 ** previous versions of the CMUCS runtime library.
   1685 */
   1686 
   1687 long
   1688 gtime(tmp)
   1689 struct tm * const	tmp;
   1690 {
   1691 	const time_t	t = mktime(tmp);
   1692 
   1693 	if (t == WRONG)
   1694 		return -1;
   1695 	return t;
   1696 }
   1697 
   1698 #endif /* defined CMUCS */
   1699 
   1700 /*
   1701 ** XXX--is the below the right way to conditionalize??
   1702 */
   1703 
   1704 #ifdef STD_INSPIRED
   1705 
   1706 /*
   1707 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1708 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1709 ** is not the case if we are accounting for leap seconds.
   1710 ** So, we provide the following conversion routines for use
   1711 ** when exchanging timestamps with POSIX conforming systems.
   1712 */
   1713 
   1714 static long
   1715 leapcorr(timep)
   1716 time_t *	timep;
   1717 {
   1718 	register struct state *		sp;
   1719 	register struct lsinfo *	lp;
   1720 	register int			i;
   1721 
   1722 	sp = lclptr;
   1723 	i = sp->leapcnt;
   1724 	while (--i >= 0) {
   1725 		lp = &sp->lsis[i];
   1726 		if (*timep >= lp->ls_trans)
   1727 			return lp->ls_corr;
   1728 	}
   1729 	return 0;
   1730 }
   1731 
   1732 time_t
   1733 time2posix(t)
   1734 time_t	t;
   1735 {
   1736 	time_t result;
   1737 
   1738 	rwlock_wrlock(&lcl_lock);
   1739 	tzset_unlocked();
   1740 	result = t - leapcorr(&t);
   1741 	rwlock_unlock(&lcl_lock);
   1742 	return (result);
   1743 }
   1744 
   1745 time_t
   1746 posix2time(t)
   1747 time_t	t;
   1748 {
   1749 	time_t	x;
   1750 	time_t	y;
   1751 
   1752 	rwlock_wrlock(&lcl_lock);
   1753 	tzset_unlocked();
   1754 	/*
   1755 	** For a positive leap second hit, the result
   1756 	** is not unique.  For a negative leap second
   1757 	** hit, the corresponding time doesn't exist,
   1758 	** so we return an adjacent second.
   1759 	*/
   1760 	x = t + leapcorr(&t);
   1761 	y = x - leapcorr(&x);
   1762 	if (y < t) {
   1763 		do {
   1764 			x++;
   1765 			y = x - leapcorr(&x);
   1766 		} while (y < t);
   1767 		if (t != y) {
   1768 			rwlock_unlock(&lcl_lock);
   1769 			return x - 1;
   1770 		}
   1771 	} else if (y > t) {
   1772 		do {
   1773 			--x;
   1774 			y = x - leapcorr(&x);
   1775 		} while (y > t);
   1776 		if (t != y) {
   1777 			rwlock_unlock(&lcl_lock);
   1778 			return x + 1;
   1779 		}
   1780 	}
   1781 	rwlock_unlock(&lcl_lock);
   1782 	return x;
   1783 }
   1784 
   1785 #endif /* defined STD_INSPIRED */
   1786