Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.3
      1 /*	$NetBSD: localtime.c,v 1.3 1995/03/10 05:57:35 jtc Exp $	*/
      2 
      3 #ifndef lint
      4 #ifndef NOID
      5 static char	elsieid[] = "@(#)localtime.c	7.43";
      6 #endif /* !defined NOID */
      7 #endif /* !defined lint */
      8 
      9 /*
     10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     11 ** POSIX-style TZ environment variable handling from Guy Harris
     12 ** (guy (at) auspex.com).
     13 */
     14 
     15 /*LINTLIBRARY*/
     16 
     17 #include "private.h"
     18 #include "tzfile.h"
     19 #include "fcntl.h"
     20 
     21 /*
     22 ** SunOS 4.1.1 headers lack O_BINARY.
     23 */
     24 
     25 #ifdef O_BINARY
     26 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     27 #endif /* defined O_BINARY */
     28 #ifndef O_BINARY
     29 #define OPEN_MODE	O_RDONLY
     30 #endif /* !defined O_BINARY */
     31 
     32 #ifndef WILDABBR
     33 /*
     34 ** Someone might make incorrect use of a time zone abbreviation:
     35 **	1.	They might reference tzname[0] before calling tzset (explicitly
     36 **		or implicitly).
     37 **	2.	They might reference tzname[1] before calling tzset (explicitly
     38 **		or implicitly).
     39 **	3.	They might reference tzname[1] after setting to a time zone
     40 **		in which Daylight Saving Time is never observed.
     41 **	4.	They might reference tzname[0] after setting to a time zone
     42 **		in which Standard Time is never observed.
     43 **	5.	They might reference tm.TM_ZONE after calling offtime.
     44 ** What's best to do in the above cases is open to debate;
     45 ** for now, we just set things up so that in any of the five cases
     46 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     47 ** string "tzname[0] used before set", and similarly for the other cases.
     48 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     49 ** manual page of what this "time zone abbreviation" means (doing this so
     50 ** that tzname[0] has the "normal" length of three characters).
     51 */
     52 #define WILDABBR	"   "
     53 #endif /* !defined WILDABBR */
     54 
     55 static char		wildabbr[] = "WILDABBR";
     56 
     57 static const char	gmt[] = "GMT";
     58 
     59 struct ttinfo {				/* time type information */
     60 	long		tt_gmtoff;	/* GMT offset in seconds */
     61 	int		tt_isdst;	/* used to set tm_isdst */
     62 	int		tt_abbrind;	/* abbreviation list index */
     63 	int		tt_ttisstd;	/* TRUE if transition is std time */
     64 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
     65 };
     66 
     67 struct lsinfo {				/* leap second information */
     68 	time_t		ls_trans;	/* transition time */
     69 	long		ls_corr;	/* correction to apply */
     70 };
     71 
     72 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     73 
     74 #ifdef TZNAME_MAX
     75 #define MY_TZNAME_MAX	TZNAME_MAX
     76 #endif /* defined TZNAME_MAX */
     77 #ifndef TZNAME_MAX
     78 #define MY_TZNAME_MAX	255
     79 #endif /* !defined TZNAME_MAX */
     80 
     81 struct state {
     82 	int		leapcnt;
     83 	int		timecnt;
     84 	int		typecnt;
     85 	int		charcnt;
     86 	time_t		ats[TZ_MAX_TIMES];
     87 	unsigned char	types[TZ_MAX_TIMES];
     88 	struct ttinfo	ttis[TZ_MAX_TYPES];
     89 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
     90 				(2 * (MY_TZNAME_MAX + 1)))];
     91 	struct lsinfo	lsis[TZ_MAX_LEAPS];
     92 };
     93 
     94 struct rule {
     95 	int		r_type;		/* type of rule--see below */
     96 	int		r_day;		/* day number of rule */
     97 	int		r_week;		/* week number of rule */
     98 	int		r_mon;		/* month number of rule */
     99 	long		r_time;		/* transition time of rule */
    100 };
    101 
    102 #define JULIAN_DAY		0	/* Jn - Julian day */
    103 #define DAY_OF_YEAR		1	/* n - day of year */
    104 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    105 
    106 /*
    107 ** Prototypes for static functions.
    108 */
    109 
    110 static long		detzcode P((const char * codep));
    111 static const char *	getzname P((const char * strp));
    112 static const char *	getnum P((const char * strp, int * nump, int min,
    113 				int max));
    114 static const char *	getsecs P((const char * strp, long * secsp));
    115 static const char *	getoffset P((const char * strp, long * offsetp));
    116 static const char *	getrule P((const char * strp, struct rule * rulep));
    117 static void		gmtload P((struct state * sp));
    118 static void		gmtsub P((const time_t * timep, long offset,
    119 				struct tm * tmp));
    120 static void		localsub P((const time_t * timep, long offset,
    121 				struct tm * tmp));
    122 static int		increment_overflow P((int * number, int delta));
    123 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    124 				int base));
    125 static void		settzname P((void));
    126 static time_t		time1 P((struct tm * tmp,
    127 				void(*funcp) P((const time_t *,
    128 				long, struct tm *)),
    129 				long offset));
    130 static time_t		time2 P((struct tm *tmp,
    131 				void(*funcp) P((const time_t *,
    132 				long, struct tm*)),
    133 				long offset, int * okayp));
    134 static void		timesub P((const time_t * timep, long offset,
    135 				const struct state * sp, struct tm * tmp));
    136 static int		tmcomp P((const struct tm * atmp,
    137 				const struct tm * btmp));
    138 static time_t		transtime P((time_t janfirst, int year,
    139 				const struct rule * rulep, long offset));
    140 static int		tzload P((const char * name, struct state * sp));
    141 static int		tzparse P((const char * name, struct state * sp,
    142 				int lastditch));
    143 
    144 #ifdef ALL_STATE
    145 static struct state *	lclptr;
    146 static struct state *	gmtptr;
    147 #endif /* defined ALL_STATE */
    148 
    149 #ifndef ALL_STATE
    150 static struct state	lclmem;
    151 static struct state	gmtmem;
    152 #define lclptr		(&lclmem)
    153 #define gmtptr		(&gmtmem)
    154 #endif /* State Farm */
    155 
    156 #ifndef TZ_STRLEN_MAX
    157 #define TZ_STRLEN_MAX 255
    158 #endif /* !defined TZ_STRLEN_MAX */
    159 
    160 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    161 static int		lcl_is_set;
    162 static int		gmt_is_set;
    163 
    164 char *			tzname[2] = {
    165 	wildabbr,
    166 	wildabbr
    167 };
    168 
    169 /*
    170 ** Section 4.12.3 of X3.159-1989 requires that
    171 **	Except for the strftime function, these functions [asctime,
    172 **	ctime, gmtime, localtime] return values in one of two static
    173 **	objects: a broken-down time structure and an array of char.
    174 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    175 */
    176 
    177 static struct tm	tm;
    178 
    179 #ifdef USG_COMPAT
    180 time_t			timezone = 0;
    181 int			daylight = 0;
    182 #endif /* defined USG_COMPAT */
    183 
    184 #ifdef ALTZONE
    185 time_t			altzone = 0;
    186 #endif /* defined ALTZONE */
    187 
    188 static long
    189 detzcode(codep)
    190 const char * const	codep;
    191 {
    192 	register long	result;
    193 
    194 	result = (codep[0] << 24) \
    195 	       | (codep[1] & 0xff) << 16 \
    196 	       | (codep[2] & 0xff) << 8
    197 	       | (codep[3] & 0xff);
    198 	return result;
    199 }
    200 
    201 static void
    202 settzname P((void))
    203 {
    204 	register struct state * const		sp = lclptr;
    205 	register int				i;
    206 
    207 	tzname[0] = wildabbr;
    208 	tzname[1] = wildabbr;
    209 #ifdef USG_COMPAT
    210 	daylight = 0;
    211 	timezone = 0;
    212 #endif /* defined USG_COMPAT */
    213 #ifdef ALTZONE
    214 	altzone = 0;
    215 #endif /* defined ALTZONE */
    216 #ifdef ALL_STATE
    217 	if (sp == NULL) {
    218 		tzname[0] = tzname[1] = gmt;
    219 		return;
    220 	}
    221 #endif /* defined ALL_STATE */
    222 	for (i = 0; i < sp->typecnt; ++i) {
    223 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    224 
    225 		tzname[ttisp->tt_isdst] =
    226 			&sp->chars[ttisp->tt_abbrind];
    227 #ifdef USG_COMPAT
    228 		if (ttisp->tt_isdst)
    229 			daylight = 1;
    230 		if (i == 0 || !ttisp->tt_isdst)
    231 			timezone = -(ttisp->tt_gmtoff);
    232 #endif /* defined USG_COMPAT */
    233 #ifdef ALTZONE
    234 		if (i == 0 || ttisp->tt_isdst)
    235 			altzone = -(ttisp->tt_gmtoff);
    236 #endif /* defined ALTZONE */
    237 	}
    238 	/*
    239 	** And to get the latest zone names into tzname. . .
    240 	*/
    241 	for (i = 0; i < sp->timecnt; ++i) {
    242 		register const struct ttinfo * const	ttisp =
    243 							&sp->ttis[
    244 								sp->types[i]];
    245 
    246 		tzname[ttisp->tt_isdst] =
    247 			&sp->chars[ttisp->tt_abbrind];
    248 	}
    249 }
    250 
    251 static int
    252 tzload(name, sp)
    253 register const char *		name;
    254 register struct state * const	sp;
    255 {
    256 	register const char *	p;
    257 	register int		i;
    258 	register int		fid;
    259 
    260 	if (name == NULL && (name = TZDEFAULT) == NULL)
    261 		return -1;
    262 	{
    263 		register int	doaccess;
    264 		/*
    265 		** Section 4.9.1 of the C standard says that
    266 		** "FILENAME_MAX expands to an integral constant expression
    267 		** that is the sie needed for an array of char large enough
    268 		** to hold the longest file name string that the implementation
    269 		** guarantees can be opened."
    270 		*/
    271 		char		fullname[FILENAME_MAX + 1];
    272 
    273 		if (name[0] == ':')
    274 			++name;
    275 		doaccess = name[0] == '/';
    276 		if (!doaccess) {
    277 			if ((p = TZDIR) == NULL)
    278 				return -1;
    279 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    280 				return -1;
    281 			(void) strcpy(fullname, p);
    282 			(void) strcat(fullname, "/");
    283 			(void) strcat(fullname, name);
    284 			/*
    285 			** Set doaccess if '.' (as in "../") shows up in name.
    286 			*/
    287 			if (strchr(name, '.') != NULL)
    288 				doaccess = TRUE;
    289 			name = fullname;
    290 		}
    291 		if (doaccess && access(name, R_OK) != 0)
    292 			return -1;
    293 		if ((fid = open(name, OPEN_MODE)) == -1)
    294 			return -1;
    295 	}
    296 	{
    297 		struct tzhead *	tzhp;
    298 		char		buf[sizeof *sp + sizeof *tzhp];
    299 		int		ttisstdcnt;
    300 		int		ttisgmtcnt;
    301 
    302 		i = read(fid, buf, sizeof buf);
    303 		if (close(fid) != 0)
    304 			return -1;
    305 		p = buf;
    306 		p += sizeof tzhp->tzh_reserved;
    307 		ttisstdcnt = (int) detzcode(p);
    308 		p += 4;
    309 		ttisgmtcnt = (int) detzcode(p);
    310 		p += 4;
    311 		sp->leapcnt = (int) detzcode(p);
    312 		p += 4;
    313 		sp->timecnt = (int) detzcode(p);
    314 		p += 4;
    315 		sp->typecnt = (int) detzcode(p);
    316 		p += 4;
    317 		sp->charcnt = (int) detzcode(p);
    318 		p += 4;
    319 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    320 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    321 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    322 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    323 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    324 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    325 				return -1;
    326 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
    327 			sp->timecnt +			/* types */
    328 			sp->typecnt * (4 + 2) +		/* ttinfos */
    329 			sp->charcnt +			/* chars */
    330 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    331 			ttisstdcnt +			/* ttisstds */
    332 			ttisgmtcnt)			/* ttisgmts */
    333 				return -1;
    334 		for (i = 0; i < sp->timecnt; ++i) {
    335 			sp->ats[i] = detzcode(p);
    336 			p += 4;
    337 		}
    338 		for (i = 0; i < sp->timecnt; ++i) {
    339 			sp->types[i] = (unsigned char) *p++;
    340 			if (sp->types[i] >= sp->typecnt)
    341 				return -1;
    342 		}
    343 		for (i = 0; i < sp->typecnt; ++i) {
    344 			register struct ttinfo *	ttisp;
    345 
    346 			ttisp = &sp->ttis[i];
    347 			ttisp->tt_gmtoff = detzcode(p);
    348 			p += 4;
    349 			ttisp->tt_isdst = (unsigned char) *p++;
    350 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    351 				return -1;
    352 			ttisp->tt_abbrind = (unsigned char) *p++;
    353 			if (ttisp->tt_abbrind < 0 ||
    354 				ttisp->tt_abbrind > sp->charcnt)
    355 					return -1;
    356 		}
    357 		for (i = 0; i < sp->charcnt; ++i)
    358 			sp->chars[i] = *p++;
    359 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    360 		for (i = 0; i < sp->leapcnt; ++i) {
    361 			register struct lsinfo *	lsisp;
    362 
    363 			lsisp = &sp->lsis[i];
    364 			lsisp->ls_trans = detzcode(p);
    365 			p += 4;
    366 			lsisp->ls_corr = detzcode(p);
    367 			p += 4;
    368 		}
    369 		for (i = 0; i < sp->typecnt; ++i) {
    370 			register struct ttinfo *	ttisp;
    371 
    372 			ttisp = &sp->ttis[i];
    373 			if (ttisstdcnt == 0)
    374 				ttisp->tt_ttisstd = FALSE;
    375 			else {
    376 				ttisp->tt_ttisstd = *p++;
    377 				if (ttisp->tt_ttisstd != TRUE &&
    378 					ttisp->tt_ttisstd != FALSE)
    379 						return -1;
    380 			}
    381 		}
    382 		for (i = 0; i < sp->typecnt; ++i) {
    383 			register struct ttinfo *	ttisp;
    384 
    385 			ttisp = &sp->ttis[i];
    386 			if (ttisgmtcnt == 0)
    387 				ttisp->tt_ttisgmt = FALSE;
    388 			else {
    389 				ttisp->tt_ttisgmt = *p++;
    390 				if (ttisp->tt_ttisgmt != TRUE &&
    391 					ttisp->tt_ttisgmt != FALSE)
    392 						return -1;
    393 			}
    394 		}
    395 	}
    396 	return 0;
    397 }
    398 
    399 static const int	mon_lengths[2][MONSPERYEAR] = {
    400 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    401 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    402 };
    403 
    404 static const int	year_lengths[2] = {
    405 	DAYSPERNYEAR, DAYSPERLYEAR
    406 };
    407 
    408 /*
    409 ** Given a pointer into a time zone string, scan until a character that is not
    410 ** a valid character in a zone name is found.  Return a pointer to that
    411 ** character.
    412 */
    413 
    414 static const char *
    415 getzname(strp)
    416 register const char *	strp;
    417 {
    418 	register char	c;
    419 
    420 	while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
    421 		c != '+')
    422 			++strp;
    423 	return strp;
    424 }
    425 
    426 /*
    427 ** Given a pointer into a time zone string, extract a number from that string.
    428 ** Check that the number is within a specified range; if it is not, return
    429 ** NULL.
    430 ** Otherwise, return a pointer to the first character not part of the number.
    431 */
    432 
    433 static const char *
    434 getnum(strp, nump, min, max)
    435 register const char *	strp;
    436 int * const		nump;
    437 const int		min;
    438 const int		max;
    439 {
    440 	register char	c;
    441 	register int	num;
    442 
    443 	if (strp == NULL || !isdigit(*strp))
    444 		return NULL;
    445 	num = 0;
    446 	while ((c = *strp) != '\0' && isdigit(c)) {
    447 		num = num * 10 + (c - '0');
    448 		if (num > max)
    449 			return NULL;	/* illegal value */
    450 		++strp;
    451 	}
    452 	if (num < min)
    453 		return NULL;		/* illegal value */
    454 	*nump = num;
    455 	return strp;
    456 }
    457 
    458 /*
    459 ** Given a pointer into a time zone string, extract a number of seconds,
    460 ** in hh[:mm[:ss]] form, from the string.
    461 ** If any error occurs, return NULL.
    462 ** Otherwise, return a pointer to the first character not part of the number
    463 ** of seconds.
    464 */
    465 
    466 static const char *
    467 getsecs(strp, secsp)
    468 register const char *	strp;
    469 long * const		secsp;
    470 {
    471 	int	num;
    472 
    473 	/*
    474 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    475 	** "M10.4.6/26", which does not conform to Posix,
    476 	** but which specifies the equivalent of
    477 	** ``02:00 on the first Sunday on or after 23 Oct''.
    478 	*/
    479 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    480 	if (strp == NULL)
    481 		return NULL;
    482 	*secsp = num * (long) SECSPERHOUR;
    483 	if (*strp == ':') {
    484 		++strp;
    485 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    486 		if (strp == NULL)
    487 			return NULL;
    488 		*secsp += num * SECSPERMIN;
    489 		if (*strp == ':') {
    490 			++strp;
    491 			/* `SECSPERMIN' allows for leap seconds.  */
    492 			strp = getnum(strp, &num, 0, SECSPERMIN);
    493 			if (strp == NULL)
    494 				return NULL;
    495 			*secsp += num;
    496 		}
    497 	}
    498 	return strp;
    499 }
    500 
    501 /*
    502 ** Given a pointer into a time zone string, extract an offset, in
    503 ** [+-]hh[:mm[:ss]] form, from the string.
    504 ** If any error occurs, return NULL.
    505 ** Otherwise, return a pointer to the first character not part of the time.
    506 */
    507 
    508 static const char *
    509 getoffset(strp, offsetp)
    510 register const char *	strp;
    511 long * const		offsetp;
    512 {
    513 	register int	neg;
    514 
    515 	if (*strp == '-') {
    516 		neg = 1;
    517 		++strp;
    518 	} else if (isdigit(*strp) || *strp++ == '+')
    519 		neg = 0;
    520 	else	return NULL;		/* illegal offset */
    521 	strp = getsecs(strp, offsetp);
    522 	if (strp == NULL)
    523 		return NULL;		/* illegal time */
    524 	if (neg)
    525 		*offsetp = -*offsetp;
    526 	return strp;
    527 }
    528 
    529 /*
    530 ** Given a pointer into a time zone string, extract a rule in the form
    531 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    532 ** If a valid rule is not found, return NULL.
    533 ** Otherwise, return a pointer to the first character not part of the rule.
    534 */
    535 
    536 static const char *
    537 getrule(strp, rulep)
    538 const char *			strp;
    539 register struct rule * const	rulep;
    540 {
    541 	if (*strp == 'J') {
    542 		/*
    543 		** Julian day.
    544 		*/
    545 		rulep->r_type = JULIAN_DAY;
    546 		++strp;
    547 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    548 	} else if (*strp == 'M') {
    549 		/*
    550 		** Month, week, day.
    551 		*/
    552 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    553 		++strp;
    554 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    555 		if (strp == NULL)
    556 			return NULL;
    557 		if (*strp++ != '.')
    558 			return NULL;
    559 		strp = getnum(strp, &rulep->r_week, 1, 5);
    560 		if (strp == NULL)
    561 			return NULL;
    562 		if (*strp++ != '.')
    563 			return NULL;
    564 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    565 	} else if (isdigit(*strp)) {
    566 		/*
    567 		** Day of year.
    568 		*/
    569 		rulep->r_type = DAY_OF_YEAR;
    570 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    571 	} else	return NULL;		/* invalid format */
    572 	if (strp == NULL)
    573 		return NULL;
    574 	if (*strp == '/') {
    575 		/*
    576 		** Time specified.
    577 		*/
    578 		++strp;
    579 		strp = getsecs(strp, &rulep->r_time);
    580 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    581 	return strp;
    582 }
    583 
    584 /*
    585 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
    586 ** year, a rule, and the offset from GMT at the time that rule takes effect,
    587 ** calculate the Epoch-relative time that rule takes effect.
    588 */
    589 
    590 static time_t
    591 transtime(janfirst, year, rulep, offset)
    592 const time_t				janfirst;
    593 const int				year;
    594 register const struct rule * const	rulep;
    595 const long				offset;
    596 {
    597 	register int	leapyear;
    598 	register time_t	value;
    599 	register int	i;
    600 	int		d, m1, yy0, yy1, yy2, dow;
    601 
    602 	INITIALIZE(value);
    603 	leapyear = isleap(year);
    604 	switch (rulep->r_type) {
    605 
    606 	case JULIAN_DAY:
    607 		/*
    608 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    609 		** years.
    610 		** In non-leap years, or if the day number is 59 or less, just
    611 		** add SECSPERDAY times the day number-1 to the time of
    612 		** January 1, midnight, to get the day.
    613 		*/
    614 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    615 		if (leapyear && rulep->r_day >= 60)
    616 			value += SECSPERDAY;
    617 		break;
    618 
    619 	case DAY_OF_YEAR:
    620 		/*
    621 		** n - day of year.
    622 		** Just add SECSPERDAY times the day number to the time of
    623 		** January 1, midnight, to get the day.
    624 		*/
    625 		value = janfirst + rulep->r_day * SECSPERDAY;
    626 		break;
    627 
    628 	case MONTH_NTH_DAY_OF_WEEK:
    629 		/*
    630 		** Mm.n.d - nth "dth day" of month m.
    631 		*/
    632 		value = janfirst;
    633 		for (i = 0; i < rulep->r_mon - 1; ++i)
    634 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    635 
    636 		/*
    637 		** Use Zeller's Congruence to get day-of-week of first day of
    638 		** month.
    639 		*/
    640 		m1 = (rulep->r_mon + 9) % 12 + 1;
    641 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    642 		yy1 = yy0 / 100;
    643 		yy2 = yy0 % 100;
    644 		dow = ((26 * m1 - 2) / 10 +
    645 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    646 		if (dow < 0)
    647 			dow += DAYSPERWEEK;
    648 
    649 		/*
    650 		** "dow" is the day-of-week of the first day of the month.  Get
    651 		** the day-of-month (zero-origin) of the first "dow" day of the
    652 		** month.
    653 		*/
    654 		d = rulep->r_day - dow;
    655 		if (d < 0)
    656 			d += DAYSPERWEEK;
    657 		for (i = 1; i < rulep->r_week; ++i) {
    658 			if (d + DAYSPERWEEK >=
    659 				mon_lengths[leapyear][rulep->r_mon - 1])
    660 					break;
    661 			d += DAYSPERWEEK;
    662 		}
    663 
    664 		/*
    665 		** "d" is the day-of-month (zero-origin) of the day we want.
    666 		*/
    667 		value += d * SECSPERDAY;
    668 		break;
    669 	}
    670 
    671 	/*
    672 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
    673 	** question.  To get the Epoch-relative time of the specified local
    674 	** time on that day, add the transition time and the current offset
    675 	** from GMT.
    676 	*/
    677 	return value + rulep->r_time + offset;
    678 }
    679 
    680 /*
    681 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    682 ** appropriate.
    683 */
    684 
    685 static int
    686 tzparse(name, sp, lastditch)
    687 const char *			name;
    688 register struct state * const	sp;
    689 const int			lastditch;
    690 {
    691 	const char *			stdname;
    692 	const char *			dstname;
    693 	size_t				stdlen;
    694 	size_t				dstlen;
    695 	long				stdoffset;
    696 	long				dstoffset;
    697 	register time_t *		atp;
    698 	register unsigned char *	typep;
    699 	register char *			cp;
    700 	register int			load_result;
    701 
    702 	INITIALIZE(dstname);
    703 	stdname = name;
    704 	if (lastditch) {
    705 		stdlen = strlen(name);	/* length of standard zone name */
    706 		name += stdlen;
    707 		if (stdlen >= sizeof sp->chars)
    708 			stdlen = (sizeof sp->chars) - 1;
    709 	} else {
    710 		name = getzname(name);
    711 		stdlen = name - stdname;
    712 		if (stdlen < 3)
    713 			return -1;
    714 	}
    715 	if (*name == '\0')
    716 		return -1;	/* was "stdoffset = 0;" */
    717 	else {
    718 		name = getoffset(name, &stdoffset);
    719 		if (name == NULL)
    720 			return -1;
    721 	}
    722 	load_result = tzload(TZDEFRULES, sp);
    723 	if (load_result != 0)
    724 		sp->leapcnt = 0;		/* so, we're off a little */
    725 	if (*name != '\0') {
    726 		dstname = name;
    727 		name = getzname(name);
    728 		dstlen = name - dstname;	/* length of DST zone name */
    729 		if (dstlen < 3)
    730 			return -1;
    731 		if (*name != '\0' && *name != ',' && *name != ';') {
    732 			name = getoffset(name, &dstoffset);
    733 			if (name == NULL)
    734 				return -1;
    735 		} else	dstoffset = stdoffset - SECSPERHOUR;
    736 		if (*name == ',' || *name == ';') {
    737 			struct rule	start;
    738 			struct rule	end;
    739 			register int	year;
    740 			register time_t	janfirst;
    741 			time_t		starttime;
    742 			time_t		endtime;
    743 
    744 			++name;
    745 			if ((name = getrule(name, &start)) == NULL)
    746 				return -1;
    747 			if (*name++ != ',')
    748 				return -1;
    749 			if ((name = getrule(name, &end)) == NULL)
    750 				return -1;
    751 			if (*name != '\0')
    752 				return -1;
    753 			sp->typecnt = 2;	/* standard time and DST */
    754 			/*
    755 			** Two transitions per year, from EPOCH_YEAR to 2037.
    756 			*/
    757 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    758 			if (sp->timecnt > TZ_MAX_TIMES)
    759 				return -1;
    760 			sp->ttis[0].tt_gmtoff = -dstoffset;
    761 			sp->ttis[0].tt_isdst = 1;
    762 			sp->ttis[0].tt_abbrind = stdlen + 1;
    763 			sp->ttis[1].tt_gmtoff = -stdoffset;
    764 			sp->ttis[1].tt_isdst = 0;
    765 			sp->ttis[1].tt_abbrind = 0;
    766 			atp = sp->ats;
    767 			typep = sp->types;
    768 			janfirst = 0;
    769 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    770 				starttime = transtime(janfirst, year, &start,
    771 					stdoffset);
    772 				endtime = transtime(janfirst, year, &end,
    773 					dstoffset);
    774 				if (starttime > endtime) {
    775 					*atp++ = endtime;
    776 					*typep++ = 1;	/* DST ends */
    777 					*atp++ = starttime;
    778 					*typep++ = 0;	/* DST begins */
    779 				} else {
    780 					*atp++ = starttime;
    781 					*typep++ = 0;	/* DST begins */
    782 					*atp++ = endtime;
    783 					*typep++ = 1;	/* DST ends */
    784 				}
    785 				janfirst += year_lengths[isleap(year)] *
    786 					SECSPERDAY;
    787 			}
    788 		} else {
    789 			register long	theirstdoffset;
    790 			register long	theirdstoffset;
    791 			register long	theiroffset;
    792 			register int	isdst;
    793 			register int	i;
    794 			register int	j;
    795 
    796 			if (*name != '\0')
    797 				return -1;
    798 			if (load_result != 0)
    799 				return -1;
    800 			/*
    801 			** Initial values of theirstdoffset and theirdstoffset.
    802 			*/
    803 			theirstdoffset = 0;
    804 			for (i = 0; i < sp->timecnt; ++i) {
    805 				j = sp->types[i];
    806 				if (!sp->ttis[j].tt_isdst) {
    807 					theirstdoffset = -sp->ttis[j].tt_gmtoff;
    808 					break;
    809 				}
    810 			}
    811 			theirdstoffset = 0;
    812 			for (i = 0; i < sp->timecnt; ++i) {
    813 				j = sp->types[i];
    814 				if (sp->ttis[j].tt_isdst) {
    815 					theirdstoffset = -sp->ttis[j].tt_gmtoff;
    816 					break;
    817 				}
    818 			}
    819 			/*
    820 			** Initially we're assumed to be in standard time.
    821 			*/
    822 			isdst = FALSE;
    823 			theiroffset = theirstdoffset;
    824 			/*
    825 			** Now juggle transition times and types
    826 			** tracking offsets as you do.
    827 			*/
    828 			for (i = 0; i < sp->timecnt; ++i) {
    829 				j = sp->types[i];
    830 				sp->types[i] = sp->ttis[j].tt_isdst;
    831 				if (sp->ttis[j].tt_ttisgmt) {
    832 					/* No adjustment to transition time */
    833 				} else {
    834 					/*
    835 					** If summer time is in effect, and the
    836 					** transition time was not specified as
    837 					** standard time, add the summer time
    838 					** offset to the transition time;
    839 					** otherwise, add the standard time
    840 					** offset to the transition time.
    841 					*/
    842 					/*
    843 					** Transitions from DST to DDST
    844 					** will effectively disappear since
    845 					** POSIX provides for only one DST
    846 					** offset.
    847 					*/
    848 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    849 						sp->ats[i] += dstoffset -
    850 							theirdstoffset;
    851 					} else {
    852 						sp->ats[i] += stdoffset -
    853 							theirstdoffset;
    854 					}
    855 				}
    856 				theiroffset = -sp->ttis[j].tt_gmtoff;
    857 				if (sp->ttis[j].tt_isdst)
    858 					theirdstoffset = theiroffset;
    859 				else	theirstdoffset = theiroffset;
    860 			}
    861 			/*
    862 			** Finally, fill in ttis.
    863 			** ttisstd and ttisgmt need not be handled.
    864 			*/
    865 			sp->ttis[0].tt_gmtoff = -stdoffset;
    866 			sp->ttis[0].tt_isdst = FALSE;
    867 			sp->ttis[0].tt_abbrind = 0;
    868 			sp->ttis[1].tt_gmtoff = -dstoffset;
    869 			sp->ttis[1].tt_isdst = TRUE;
    870 			sp->ttis[1].tt_abbrind = stdlen + 1;
    871 		}
    872 	} else {
    873 		dstlen = 0;
    874 		sp->typecnt = 1;		/* only standard time */
    875 		sp->timecnt = 0;
    876 		sp->ttis[0].tt_gmtoff = -stdoffset;
    877 		sp->ttis[0].tt_isdst = 0;
    878 		sp->ttis[0].tt_abbrind = 0;
    879 	}
    880 	sp->charcnt = stdlen + 1;
    881 	if (dstlen != 0)
    882 		sp->charcnt += dstlen + 1;
    883 	if (sp->charcnt > sizeof sp->chars)
    884 		return -1;
    885 	cp = sp->chars;
    886 	(void) strncpy(cp, stdname, stdlen);
    887 	cp += stdlen;
    888 	*cp++ = '\0';
    889 	if (dstlen != 0) {
    890 		(void) strncpy(cp, dstname, dstlen);
    891 		*(cp + dstlen) = '\0';
    892 	}
    893 	return 0;
    894 }
    895 
    896 static void
    897 gmtload(sp)
    898 struct state * const	sp;
    899 {
    900 	if (tzload(gmt, sp) != 0)
    901 		(void) tzparse(gmt, sp, TRUE);
    902 }
    903 
    904 #ifndef STD_INSPIRED
    905 /*
    906 ** A non-static declaration of tzsetwall in a system header file
    907 ** may cause a warning about this upcoming static declaration...
    908 */
    909 static
    910 #endif /* !defined STD_INSPIRED */
    911 void
    912 tzsetwall P((void))
    913 {
    914 	if (lcl_is_set < 0)
    915 		return;
    916 	lcl_is_set = -1;
    917 
    918 #ifdef ALL_STATE
    919 	if (lclptr == NULL) {
    920 		lclptr = (struct state *) malloc(sizeof *lclptr);
    921 		if (lclptr == NULL) {
    922 			settzname();	/* all we can do */
    923 			return;
    924 		}
    925 	}
    926 #endif /* defined ALL_STATE */
    927 	if (tzload((char *) NULL, lclptr) != 0)
    928 		gmtload(lclptr);
    929 	settzname();
    930 }
    931 
    932 void
    933 tzset P((void))
    934 {
    935 	register const char *	name;
    936 
    937 	name = getenv("TZ");
    938 	if (name == NULL) {
    939 		tzsetwall();
    940 		return;
    941 	}
    942 
    943 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    944 		return;
    945 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    946 	if (lcl_is_set)
    947 		(void) strcpy(lcl_TZname, name);
    948 
    949 #ifdef ALL_STATE
    950 	if (lclptr == NULL) {
    951 		lclptr = (struct state *) malloc(sizeof *lclptr);
    952 		if (lclptr == NULL) {
    953 			settzname();	/* all we can do */
    954 			return;
    955 		}
    956 	}
    957 #endif /* defined ALL_STATE */
    958 	if (*name == '\0') {
    959 		/*
    960 		** User wants it fast rather than right.
    961 		*/
    962 		lclptr->leapcnt = 0;		/* so, we're off a little */
    963 		lclptr->timecnt = 0;
    964 		lclptr->ttis[0].tt_gmtoff = 0;
    965 		lclptr->ttis[0].tt_abbrind = 0;
    966 		(void) strcpy(lclptr->chars, gmt);
    967 	} else if (tzload(name, lclptr) != 0)
    968 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
    969 			(void) gmtload(lclptr);
    970 	settzname();
    971 }
    972 
    973 /*
    974 ** The easy way to behave "as if no library function calls" localtime
    975 ** is to not call it--so we drop its guts into "localsub", which can be
    976 ** freely called.  (And no, the PANS doesn't require the above behavior--
    977 ** but it *is* desirable.)
    978 **
    979 ** The unused offset argument is for the benefit of mktime variants.
    980 */
    981 
    982 /*ARGSUSED*/
    983 static void
    984 localsub(timep, offset, tmp)
    985 const time_t * const	timep;
    986 const long		offset;
    987 struct tm * const	tmp;
    988 {
    989 	register struct state *		sp;
    990 	register const struct ttinfo *	ttisp;
    991 	register int			i;
    992 	const time_t			t = *timep;
    993 
    994 	sp = lclptr;
    995 #ifdef ALL_STATE
    996 	if (sp == NULL) {
    997 		gmtsub(timep, offset, tmp);
    998 		return;
    999 	}
   1000 #endif /* defined ALL_STATE */
   1001 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1002 		i = 0;
   1003 		while (sp->ttis[i].tt_isdst)
   1004 			if (++i >= sp->typecnt) {
   1005 				i = 0;
   1006 				break;
   1007 			}
   1008 	} else {
   1009 		for (i = 1; i < sp->timecnt; ++i)
   1010 			if (t < sp->ats[i])
   1011 				break;
   1012 		i = sp->types[i - 1];
   1013 	}
   1014 	ttisp = &sp->ttis[i];
   1015 	/*
   1016 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1017 	** you'd replace the statement below with
   1018 	**	t += ttisp->tt_gmtoff;
   1019 	**	timesub(&t, 0L, sp, tmp);
   1020 	*/
   1021 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1022 	tmp->tm_isdst = ttisp->tt_isdst;
   1023 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1024 #ifdef TM_ZONE
   1025 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1026 #endif /* defined TM_ZONE */
   1027 }
   1028 
   1029 struct tm *
   1030 localtime(timep)
   1031 const time_t * const	timep;
   1032 {
   1033 	tzset();
   1034 	localsub(timep, 0L, &tm);
   1035 	return &tm;
   1036 }
   1037 
   1038 /*
   1039 ** gmtsub is to gmtime as localsub is to localtime.
   1040 */
   1041 
   1042 static void
   1043 gmtsub(timep, offset, tmp)
   1044 const time_t * const	timep;
   1045 const long		offset;
   1046 struct tm * const	tmp;
   1047 {
   1048 	if (!gmt_is_set) {
   1049 		gmt_is_set = TRUE;
   1050 #ifdef ALL_STATE
   1051 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1052 		if (gmtptr != NULL)
   1053 #endif /* defined ALL_STATE */
   1054 			gmtload(gmtptr);
   1055 	}
   1056 	timesub(timep, offset, gmtptr, tmp);
   1057 #ifdef TM_ZONE
   1058 	/*
   1059 	** Could get fancy here and deliver something such as
   1060 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
   1061 	** but this is no time for a treasure hunt.
   1062 	*/
   1063 	if (offset != 0)
   1064 		tmp->TM_ZONE = wildabbr;
   1065 	else {
   1066 #ifdef ALL_STATE
   1067 		if (gmtptr == NULL)
   1068 			tmp->TM_ZONE = gmt;
   1069 		else	tmp->TM_ZONE = gmtptr->chars;
   1070 #endif /* defined ALL_STATE */
   1071 #ifndef ALL_STATE
   1072 		tmp->TM_ZONE = gmtptr->chars;
   1073 #endif /* State Farm */
   1074 	}
   1075 #endif /* defined TM_ZONE */
   1076 }
   1077 
   1078 struct tm *
   1079 gmtime(timep)
   1080 const time_t * const	timep;
   1081 {
   1082 	gmtsub(timep, 0L, &tm);
   1083 	return &tm;
   1084 }
   1085 
   1086 #ifdef STD_INSPIRED
   1087 
   1088 struct tm *
   1089 offtime(timep, offset)
   1090 const time_t * const	timep;
   1091 const long		offset;
   1092 {
   1093 	gmtsub(timep, offset, &tm);
   1094 	return &tm;
   1095 }
   1096 
   1097 #endif /* defined STD_INSPIRED */
   1098 
   1099 static void
   1100 timesub(timep, offset, sp, tmp)
   1101 const time_t * const			timep;
   1102 const long				offset;
   1103 register const struct state * const	sp;
   1104 register struct tm * const		tmp;
   1105 {
   1106 	register const struct lsinfo *	lp;
   1107 	register long			days;
   1108 	register long			rem;
   1109 	register int			y;
   1110 	register int			yleap;
   1111 	register const int *		ip;
   1112 	register long			corr;
   1113 	register int			hit;
   1114 	register int			i;
   1115 
   1116 	corr = 0;
   1117 	hit = 0;
   1118 #ifdef ALL_STATE
   1119 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1120 #endif /* defined ALL_STATE */
   1121 #ifndef ALL_STATE
   1122 	i = sp->leapcnt;
   1123 #endif /* State Farm */
   1124 	while (--i >= 0) {
   1125 		lp = &sp->lsis[i];
   1126 		if (*timep >= lp->ls_trans) {
   1127 			if (*timep == lp->ls_trans) {
   1128 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1129 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1130 				if (hit)
   1131 					while (i > 0 &&
   1132 						sp->lsis[i].ls_trans ==
   1133 						sp->lsis[i - 1].ls_trans + 1 &&
   1134 						sp->lsis[i].ls_corr ==
   1135 						sp->lsis[i - 1].ls_corr + 1) {
   1136 							++hit;
   1137 							--i;
   1138 					}
   1139 			}
   1140 			corr = lp->ls_corr;
   1141 			break;
   1142 		}
   1143 	}
   1144 	days = *timep / SECSPERDAY;
   1145 	rem = *timep % SECSPERDAY;
   1146 #ifdef mc68k
   1147 	if (*timep == 0x80000000) {
   1148 		/*
   1149 		** A 3B1 muffs the division on the most negative number.
   1150 		*/
   1151 		days = -24855;
   1152 		rem = -11648;
   1153 	}
   1154 #endif /* defined mc68k */
   1155 	rem += (offset - corr);
   1156 	while (rem < 0) {
   1157 		rem += SECSPERDAY;
   1158 		--days;
   1159 	}
   1160 	while (rem >= SECSPERDAY) {
   1161 		rem -= SECSPERDAY;
   1162 		++days;
   1163 	}
   1164 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1165 	rem = rem % SECSPERHOUR;
   1166 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1167 	tmp->tm_sec = (int) (rem % SECSPERMIN);
   1168 	if (hit)
   1169 		/*
   1170 		** A positive leap second requires a special
   1171 		** representation.  This uses "... ??:59:60" et seq.
   1172 		*/
   1173 		tmp->tm_sec += hit;
   1174 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1175 	if (tmp->tm_wday < 0)
   1176 		tmp->tm_wday += DAYSPERWEEK;
   1177 	y = EPOCH_YEAR;
   1178 	if (days >= 0)
   1179 		for ( ; ; ) {
   1180 			yleap = isleap(y);
   1181 			if (days < (long) year_lengths[yleap])
   1182 				break;
   1183 			++y;
   1184 			days = days - (long) year_lengths[yleap];
   1185 		}
   1186 	else do {
   1187 		--y;
   1188 		yleap = isleap(y);
   1189 		days = days + (long) year_lengths[yleap];
   1190 	} while (days < 0);
   1191 	tmp->tm_year = y - TM_YEAR_BASE;
   1192 	tmp->tm_yday = (int) days;
   1193 	ip = mon_lengths[yleap];
   1194 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1195 		days = days - (long) ip[tmp->tm_mon];
   1196 	tmp->tm_mday = (int) (days + 1);
   1197 	tmp->tm_isdst = 0;
   1198 #ifdef TM_GMTOFF
   1199 	tmp->TM_GMTOFF = offset;
   1200 #endif /* defined TM_GMTOFF */
   1201 }
   1202 
   1203 char *
   1204 ctime(timep)
   1205 const time_t * const	timep;
   1206 {
   1207 /*
   1208 ** Section 4.12.3.2 of X3.159-1989 requires that
   1209 **	The ctime funciton converts the calendar time pointed to by timer
   1210 **	to local time in the form of a string.  It is equivalent to
   1211 **		asctime(localtime(timer))
   1212 */
   1213 	return asctime(localtime(timep));
   1214 }
   1215 
   1216 /*
   1217 ** Adapted from code provided by Robert Elz, who writes:
   1218 **	The "best" way to do mktime I think is based on an idea of Bob
   1219 **	Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
   1220 **	It does a binary search of the time_t space.  Since time_t's are
   1221 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1222 **	would still be very reasonable).
   1223 */
   1224 
   1225 #ifndef WRONG
   1226 #define WRONG	(-1)
   1227 #endif /* !defined WRONG */
   1228 
   1229 /*
   1230 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1231 */
   1232 
   1233 static int
   1234 increment_overflow(number, delta)
   1235 int *	number;
   1236 int	delta;
   1237 {
   1238 	int	number0;
   1239 
   1240 	number0 = *number;
   1241 	*number += delta;
   1242 	return (*number < number0) != (delta < 0);
   1243 }
   1244 
   1245 static int
   1246 normalize_overflow(tensptr, unitsptr, base)
   1247 int * const	tensptr;
   1248 int * const	unitsptr;
   1249 const int	base;
   1250 {
   1251 	register int	tensdelta;
   1252 
   1253 	tensdelta = (*unitsptr >= 0) ?
   1254 		(*unitsptr / base) :
   1255 		(-1 - (-1 - *unitsptr) / base);
   1256 	*unitsptr -= tensdelta * base;
   1257 	return increment_overflow(tensptr, tensdelta);
   1258 }
   1259 
   1260 static int
   1261 tmcomp(atmp, btmp)
   1262 register const struct tm * const atmp;
   1263 register const struct tm * const btmp;
   1264 {
   1265 	register int	result;
   1266 
   1267 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1268 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1269 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1270 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1271 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1272 			result = atmp->tm_sec - btmp->tm_sec;
   1273 	return result;
   1274 }
   1275 
   1276 static time_t
   1277 time2(tmp, funcp, offset, okayp)
   1278 struct tm * const	tmp;
   1279 void (* const		funcp) P((const time_t*, long, struct tm*));
   1280 const long		offset;
   1281 int * const		okayp;
   1282 {
   1283 	register const struct state *	sp;
   1284 	register int			dir;
   1285 	register int			bits;
   1286 	register int			i, j ;
   1287 	register int			saved_seconds;
   1288 	time_t				newt;
   1289 	time_t				t;
   1290 	struct tm			yourtm, mytm;
   1291 
   1292 	*okayp = FALSE;
   1293 	yourtm = *tmp;
   1294 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1295 		return WRONG;
   1296 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1297 		return WRONG;
   1298 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1299 		return WRONG;
   1300 	/*
   1301 	** Turn yourtm.tm_year into an actual year number for now.
   1302 	** It is converted back to an offset from TM_YEAR_BASE later.
   1303 	*/
   1304 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1305 		return WRONG;
   1306 	while (yourtm.tm_mday <= 0) {
   1307 		if (increment_overflow(&yourtm.tm_year, -1))
   1308 			return WRONG;
   1309 		yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
   1310 	}
   1311 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1312 		yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
   1313 		if (increment_overflow(&yourtm.tm_year, 1))
   1314 			return WRONG;
   1315 	}
   1316 	for ( ; ; ) {
   1317 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1318 		if (yourtm.tm_mday <= i)
   1319 			break;
   1320 		yourtm.tm_mday -= i;
   1321 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1322 			yourtm.tm_mon = 0;
   1323 			if (increment_overflow(&yourtm.tm_year, 1))
   1324 				return WRONG;
   1325 		}
   1326 	}
   1327 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1328 		return WRONG;
   1329 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1330 		/*
   1331 		** We can't set tm_sec to 0, because that might push the
   1332 		** time below the minimum representable time.
   1333 		** Set tm_sec to 59 instead.
   1334 		** This assumes that the minimum representable time is
   1335 		** not in the same minute that a leap second was deleted from,
   1336 		** which is a safer assumption than using 58 would be.
   1337 		*/
   1338 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1339 			return WRONG;
   1340 		saved_seconds = yourtm.tm_sec;
   1341 		yourtm.tm_sec = SECSPERMIN - 1;
   1342 	} else {
   1343 		saved_seconds = yourtm.tm_sec;
   1344 		yourtm.tm_sec = 0;
   1345 	}
   1346 	/*
   1347 	** Calculate the number of magnitude bits in a time_t
   1348 	** (this works regardless of whether time_t is
   1349 	** signed or unsigned, though lint complains if unsigned).
   1350 	*/
   1351 	for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
   1352 		continue;
   1353 	/*
   1354 	** If time_t is signed, then 0 is the median value,
   1355 	** if time_t is unsigned, then 1 << bits is median.
   1356 	*/
   1357 	t = (t < 0) ? 0 : ((time_t) 1 << bits);
   1358 	for ( ; ; ) {
   1359 		(*funcp)(&t, offset, &mytm);
   1360 		dir = tmcomp(&mytm, &yourtm);
   1361 		if (dir != 0) {
   1362 			if (bits-- < 0)
   1363 				return WRONG;
   1364 			if (bits < 0)
   1365 				--t;
   1366 			else if (dir > 0)
   1367 				t -= (time_t) 1 << bits;
   1368 			else	t += (time_t) 1 << bits;
   1369 			continue;
   1370 		}
   1371 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1372 			break;
   1373 		/*
   1374 		** Right time, wrong type.
   1375 		** Hunt for right time, right type.
   1376 		** It's okay to guess wrong since the guess
   1377 		** gets checked.
   1378 		*/
   1379 		/*
   1380 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1381 		*/
   1382 		sp = (const struct state *)
   1383 			(((void *) funcp == (void *) localsub) ?
   1384 			lclptr : gmtptr);
   1385 #ifdef ALL_STATE
   1386 		if (sp == NULL)
   1387 			return WRONG;
   1388 #endif /* defined ALL_STATE */
   1389 		for (i = 0; i < sp->typecnt; ++i) {
   1390 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1391 				continue;
   1392 			for (j = 0; j < sp->typecnt; ++j) {
   1393 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1394 					continue;
   1395 				newt = t + sp->ttis[j].tt_gmtoff -
   1396 					sp->ttis[i].tt_gmtoff;
   1397 				(*funcp)(&newt, offset, &mytm);
   1398 				if (tmcomp(&mytm, &yourtm) != 0)
   1399 					continue;
   1400 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1401 					continue;
   1402 				/*
   1403 				** We have a match.
   1404 				*/
   1405 				t = newt;
   1406 				goto label;
   1407 			}
   1408 		}
   1409 		return WRONG;
   1410 	}
   1411 label:
   1412 	newt = t + saved_seconds;
   1413 	if ((newt < t) != (saved_seconds < 0))
   1414 		return WRONG;
   1415 	t = newt;
   1416 	(*funcp)(&t, offset, tmp);
   1417 	*okayp = TRUE;
   1418 	return t;
   1419 }
   1420 
   1421 static time_t
   1422 time1(tmp, funcp, offset)
   1423 struct tm * const	tmp;
   1424 void (* const		funcp) P((const time_t*, long, struct tm*));
   1425 const long		offset;
   1426 {
   1427 	register time_t			t;
   1428 	register const struct state *	sp;
   1429 	register int			samei, otheri;
   1430 	int				okay;
   1431 
   1432 	if (tmp->tm_isdst > 1)
   1433 		tmp->tm_isdst = 1;
   1434 	t = time2(tmp, funcp, offset, &okay);
   1435 #ifdef PCTS
   1436 	/*
   1437 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1438 	*/
   1439 	if (okay)
   1440 		return t;
   1441 	if (tmp->tm_isdst < 0)
   1442 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1443 #endif /* defined PCTS */
   1444 #ifndef PCTS
   1445 	if (okay || tmp->tm_isdst < 0)
   1446 		return t;
   1447 #endif /* !defined PCTS */
   1448 	/*
   1449 	** We're supposed to assume that somebody took a time of one type
   1450 	** and did some math on it that yielded a "struct tm" that's bad.
   1451 	** We try to divine the type they started from and adjust to the
   1452 	** type they need.
   1453 	*/
   1454 	/*
   1455 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1456 	*/
   1457 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1458 		lclptr : gmtptr);
   1459 #ifdef ALL_STATE
   1460 	if (sp == NULL)
   1461 		return WRONG;
   1462 #endif /* defined ALL_STATE */
   1463 	for (samei = 0; samei < sp->typecnt; ++samei) {
   1464 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1465 			continue;
   1466 		for (otheri = 0; otheri < sp->typecnt; ++otheri) {
   1467 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1468 				continue;
   1469 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1470 					sp->ttis[samei].tt_gmtoff;
   1471 			tmp->tm_isdst = !tmp->tm_isdst;
   1472 			t = time2(tmp, funcp, offset, &okay);
   1473 			if (okay)
   1474 				return t;
   1475 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1476 					sp->ttis[samei].tt_gmtoff;
   1477 			tmp->tm_isdst = !tmp->tm_isdst;
   1478 		}
   1479 	}
   1480 	return WRONG;
   1481 }
   1482 
   1483 time_t
   1484 mktime(tmp)
   1485 struct tm * const	tmp;
   1486 {
   1487 	tzset();
   1488 	return time1(tmp, localsub, 0L);
   1489 }
   1490 
   1491 #ifdef STD_INSPIRED
   1492 
   1493 time_t
   1494 timelocal(tmp)
   1495 struct tm * const	tmp;
   1496 {
   1497 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1498 	return mktime(tmp);
   1499 }
   1500 
   1501 time_t
   1502 timegm(tmp)
   1503 struct tm * const	tmp;
   1504 {
   1505 	tmp->tm_isdst = 0;
   1506 	return time1(tmp, gmtsub, 0L);
   1507 }
   1508 
   1509 time_t
   1510 timeoff(tmp, offset)
   1511 struct tm * const	tmp;
   1512 const long		offset;
   1513 {
   1514 	tmp->tm_isdst = 0;
   1515 	return time1(tmp, gmtsub, offset);
   1516 }
   1517 
   1518 #endif /* defined STD_INSPIRED */
   1519 
   1520 #ifdef CMUCS
   1521 
   1522 /*
   1523 ** The following is supplied for compatibility with
   1524 ** previous versions of the CMUCS runtime library.
   1525 */
   1526 
   1527 long
   1528 gtime(tmp)
   1529 struct tm * const	tmp;
   1530 {
   1531 	const time_t	t = mktime(tmp);
   1532 
   1533 	if (t == WRONG)
   1534 		return -1;
   1535 	return t;
   1536 }
   1537 
   1538 #endif /* defined CMUCS */
   1539 
   1540 /*
   1541 ** XXX--is the below the right way to conditionalize??
   1542 */
   1543 
   1544 #ifdef STD_INSPIRED
   1545 
   1546 /*
   1547 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1548 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
   1549 ** is not the case if we are accounting for leap seconds.
   1550 ** So, we provide the following conversion routines for use
   1551 ** when exchanging timestamps with POSIX conforming systems.
   1552 */
   1553 
   1554 static long
   1555 leapcorr(timep)
   1556 time_t *	timep;
   1557 {
   1558 	register struct state *		sp;
   1559 	register struct lsinfo *	lp;
   1560 	register int			i;
   1561 
   1562 	sp = lclptr;
   1563 	i = sp->leapcnt;
   1564 	while (--i >= 0) {
   1565 		lp = &sp->lsis[i];
   1566 		if (*timep >= lp->ls_trans)
   1567 			return lp->ls_corr;
   1568 	}
   1569 	return 0;
   1570 }
   1571 
   1572 time_t
   1573 time2posix(t)
   1574 time_t	t;
   1575 {
   1576 	tzset();
   1577 	return t - leapcorr(&t);
   1578 }
   1579 
   1580 time_t
   1581 posix2time(t)
   1582 time_t	t;
   1583 {
   1584 	time_t	x;
   1585 	time_t	y;
   1586 
   1587 	tzset();
   1588 	/*
   1589 	** For a positive leap second hit, the result
   1590 	** is not unique.  For a negative leap second
   1591 	** hit, the corresponding time doesn't exist,
   1592 	** so we return an adjacent second.
   1593 	*/
   1594 	x = t + leapcorr(&t);
   1595 	y = x - leapcorr(&x);
   1596 	if (y < t) {
   1597 		do {
   1598 			x++;
   1599 			y = x - leapcorr(&x);
   1600 		} while (y < t);
   1601 		if (t != y)
   1602 			return x - 1;
   1603 	} else if (y > t) {
   1604 		do {
   1605 			--x;
   1606 			y = x - leapcorr(&x);
   1607 		} while (y > t);
   1608 		if (t != y)
   1609 			return x + 1;
   1610 	}
   1611 	return x;
   1612 }
   1613 
   1614 #endif /* defined STD_INSPIRED */
   1615