localtime.c revision 1.3 1 /* $NetBSD: localtime.c,v 1.3 1995/03/10 05:57:35 jtc Exp $ */
2
3 #ifndef lint
4 #ifndef NOID
5 static char elsieid[] = "@(#)localtime.c 7.43";
6 #endif /* !defined NOID */
7 #endif /* !defined lint */
8
9 /*
10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
11 ** POSIX-style TZ environment variable handling from Guy Harris
12 ** (guy (at) auspex.com).
13 */
14
15 /*LINTLIBRARY*/
16
17 #include "private.h"
18 #include "tzfile.h"
19 #include "fcntl.h"
20
21 /*
22 ** SunOS 4.1.1 headers lack O_BINARY.
23 */
24
25 #ifdef O_BINARY
26 #define OPEN_MODE (O_RDONLY | O_BINARY)
27 #endif /* defined O_BINARY */
28 #ifndef O_BINARY
29 #define OPEN_MODE O_RDONLY
30 #endif /* !defined O_BINARY */
31
32 #ifndef WILDABBR
33 /*
34 ** Someone might make incorrect use of a time zone abbreviation:
35 ** 1. They might reference tzname[0] before calling tzset (explicitly
36 ** or implicitly).
37 ** 2. They might reference tzname[1] before calling tzset (explicitly
38 ** or implicitly).
39 ** 3. They might reference tzname[1] after setting to a time zone
40 ** in which Daylight Saving Time is never observed.
41 ** 4. They might reference tzname[0] after setting to a time zone
42 ** in which Standard Time is never observed.
43 ** 5. They might reference tm.TM_ZONE after calling offtime.
44 ** What's best to do in the above cases is open to debate;
45 ** for now, we just set things up so that in any of the five cases
46 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
47 ** string "tzname[0] used before set", and similarly for the other cases.
48 ** And another: initialize tzname[0] to "ERA", with an explanation in the
49 ** manual page of what this "time zone abbreviation" means (doing this so
50 ** that tzname[0] has the "normal" length of three characters).
51 */
52 #define WILDABBR " "
53 #endif /* !defined WILDABBR */
54
55 static char wildabbr[] = "WILDABBR";
56
57 static const char gmt[] = "GMT";
58
59 struct ttinfo { /* time type information */
60 long tt_gmtoff; /* GMT offset in seconds */
61 int tt_isdst; /* used to set tm_isdst */
62 int tt_abbrind; /* abbreviation list index */
63 int tt_ttisstd; /* TRUE if transition is std time */
64 int tt_ttisgmt; /* TRUE if transition is GMT */
65 };
66
67 struct lsinfo { /* leap second information */
68 time_t ls_trans; /* transition time */
69 long ls_corr; /* correction to apply */
70 };
71
72 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
73
74 #ifdef TZNAME_MAX
75 #define MY_TZNAME_MAX TZNAME_MAX
76 #endif /* defined TZNAME_MAX */
77 #ifndef TZNAME_MAX
78 #define MY_TZNAME_MAX 255
79 #endif /* !defined TZNAME_MAX */
80
81 struct state {
82 int leapcnt;
83 int timecnt;
84 int typecnt;
85 int charcnt;
86 time_t ats[TZ_MAX_TIMES];
87 unsigned char types[TZ_MAX_TIMES];
88 struct ttinfo ttis[TZ_MAX_TYPES];
89 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
90 (2 * (MY_TZNAME_MAX + 1)))];
91 struct lsinfo lsis[TZ_MAX_LEAPS];
92 };
93
94 struct rule {
95 int r_type; /* type of rule--see below */
96 int r_day; /* day number of rule */
97 int r_week; /* week number of rule */
98 int r_mon; /* month number of rule */
99 long r_time; /* transition time of rule */
100 };
101
102 #define JULIAN_DAY 0 /* Jn - Julian day */
103 #define DAY_OF_YEAR 1 /* n - day of year */
104 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
105
106 /*
107 ** Prototypes for static functions.
108 */
109
110 static long detzcode P((const char * codep));
111 static const char * getzname P((const char * strp));
112 static const char * getnum P((const char * strp, int * nump, int min,
113 int max));
114 static const char * getsecs P((const char * strp, long * secsp));
115 static const char * getoffset P((const char * strp, long * offsetp));
116 static const char * getrule P((const char * strp, struct rule * rulep));
117 static void gmtload P((struct state * sp));
118 static void gmtsub P((const time_t * timep, long offset,
119 struct tm * tmp));
120 static void localsub P((const time_t * timep, long offset,
121 struct tm * tmp));
122 static int increment_overflow P((int * number, int delta));
123 static int normalize_overflow P((int * tensptr, int * unitsptr,
124 int base));
125 static void settzname P((void));
126 static time_t time1 P((struct tm * tmp,
127 void(*funcp) P((const time_t *,
128 long, struct tm *)),
129 long offset));
130 static time_t time2 P((struct tm *tmp,
131 void(*funcp) P((const time_t *,
132 long, struct tm*)),
133 long offset, int * okayp));
134 static void timesub P((const time_t * timep, long offset,
135 const struct state * sp, struct tm * tmp));
136 static int tmcomp P((const struct tm * atmp,
137 const struct tm * btmp));
138 static time_t transtime P((time_t janfirst, int year,
139 const struct rule * rulep, long offset));
140 static int tzload P((const char * name, struct state * sp));
141 static int tzparse P((const char * name, struct state * sp,
142 int lastditch));
143
144 #ifdef ALL_STATE
145 static struct state * lclptr;
146 static struct state * gmtptr;
147 #endif /* defined ALL_STATE */
148
149 #ifndef ALL_STATE
150 static struct state lclmem;
151 static struct state gmtmem;
152 #define lclptr (&lclmem)
153 #define gmtptr (&gmtmem)
154 #endif /* State Farm */
155
156 #ifndef TZ_STRLEN_MAX
157 #define TZ_STRLEN_MAX 255
158 #endif /* !defined TZ_STRLEN_MAX */
159
160 static char lcl_TZname[TZ_STRLEN_MAX + 1];
161 static int lcl_is_set;
162 static int gmt_is_set;
163
164 char * tzname[2] = {
165 wildabbr,
166 wildabbr
167 };
168
169 /*
170 ** Section 4.12.3 of X3.159-1989 requires that
171 ** Except for the strftime function, these functions [asctime,
172 ** ctime, gmtime, localtime] return values in one of two static
173 ** objects: a broken-down time structure and an array of char.
174 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
175 */
176
177 static struct tm tm;
178
179 #ifdef USG_COMPAT
180 time_t timezone = 0;
181 int daylight = 0;
182 #endif /* defined USG_COMPAT */
183
184 #ifdef ALTZONE
185 time_t altzone = 0;
186 #endif /* defined ALTZONE */
187
188 static long
189 detzcode(codep)
190 const char * const codep;
191 {
192 register long result;
193
194 result = (codep[0] << 24) \
195 | (codep[1] & 0xff) << 16 \
196 | (codep[2] & 0xff) << 8
197 | (codep[3] & 0xff);
198 return result;
199 }
200
201 static void
202 settzname P((void))
203 {
204 register struct state * const sp = lclptr;
205 register int i;
206
207 tzname[0] = wildabbr;
208 tzname[1] = wildabbr;
209 #ifdef USG_COMPAT
210 daylight = 0;
211 timezone = 0;
212 #endif /* defined USG_COMPAT */
213 #ifdef ALTZONE
214 altzone = 0;
215 #endif /* defined ALTZONE */
216 #ifdef ALL_STATE
217 if (sp == NULL) {
218 tzname[0] = tzname[1] = gmt;
219 return;
220 }
221 #endif /* defined ALL_STATE */
222 for (i = 0; i < sp->typecnt; ++i) {
223 register const struct ttinfo * const ttisp = &sp->ttis[i];
224
225 tzname[ttisp->tt_isdst] =
226 &sp->chars[ttisp->tt_abbrind];
227 #ifdef USG_COMPAT
228 if (ttisp->tt_isdst)
229 daylight = 1;
230 if (i == 0 || !ttisp->tt_isdst)
231 timezone = -(ttisp->tt_gmtoff);
232 #endif /* defined USG_COMPAT */
233 #ifdef ALTZONE
234 if (i == 0 || ttisp->tt_isdst)
235 altzone = -(ttisp->tt_gmtoff);
236 #endif /* defined ALTZONE */
237 }
238 /*
239 ** And to get the latest zone names into tzname. . .
240 */
241 for (i = 0; i < sp->timecnt; ++i) {
242 register const struct ttinfo * const ttisp =
243 &sp->ttis[
244 sp->types[i]];
245
246 tzname[ttisp->tt_isdst] =
247 &sp->chars[ttisp->tt_abbrind];
248 }
249 }
250
251 static int
252 tzload(name, sp)
253 register const char * name;
254 register struct state * const sp;
255 {
256 register const char * p;
257 register int i;
258 register int fid;
259
260 if (name == NULL && (name = TZDEFAULT) == NULL)
261 return -1;
262 {
263 register int doaccess;
264 /*
265 ** Section 4.9.1 of the C standard says that
266 ** "FILENAME_MAX expands to an integral constant expression
267 ** that is the sie needed for an array of char large enough
268 ** to hold the longest file name string that the implementation
269 ** guarantees can be opened."
270 */
271 char fullname[FILENAME_MAX + 1];
272
273 if (name[0] == ':')
274 ++name;
275 doaccess = name[0] == '/';
276 if (!doaccess) {
277 if ((p = TZDIR) == NULL)
278 return -1;
279 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
280 return -1;
281 (void) strcpy(fullname, p);
282 (void) strcat(fullname, "/");
283 (void) strcat(fullname, name);
284 /*
285 ** Set doaccess if '.' (as in "../") shows up in name.
286 */
287 if (strchr(name, '.') != NULL)
288 doaccess = TRUE;
289 name = fullname;
290 }
291 if (doaccess && access(name, R_OK) != 0)
292 return -1;
293 if ((fid = open(name, OPEN_MODE)) == -1)
294 return -1;
295 }
296 {
297 struct tzhead * tzhp;
298 char buf[sizeof *sp + sizeof *tzhp];
299 int ttisstdcnt;
300 int ttisgmtcnt;
301
302 i = read(fid, buf, sizeof buf);
303 if (close(fid) != 0)
304 return -1;
305 p = buf;
306 p += sizeof tzhp->tzh_reserved;
307 ttisstdcnt = (int) detzcode(p);
308 p += 4;
309 ttisgmtcnt = (int) detzcode(p);
310 p += 4;
311 sp->leapcnt = (int) detzcode(p);
312 p += 4;
313 sp->timecnt = (int) detzcode(p);
314 p += 4;
315 sp->typecnt = (int) detzcode(p);
316 p += 4;
317 sp->charcnt = (int) detzcode(p);
318 p += 4;
319 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
320 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
321 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
322 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
323 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
324 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
325 return -1;
326 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
327 sp->timecnt + /* types */
328 sp->typecnt * (4 + 2) + /* ttinfos */
329 sp->charcnt + /* chars */
330 sp->leapcnt * (4 + 4) + /* lsinfos */
331 ttisstdcnt + /* ttisstds */
332 ttisgmtcnt) /* ttisgmts */
333 return -1;
334 for (i = 0; i < sp->timecnt; ++i) {
335 sp->ats[i] = detzcode(p);
336 p += 4;
337 }
338 for (i = 0; i < sp->timecnt; ++i) {
339 sp->types[i] = (unsigned char) *p++;
340 if (sp->types[i] >= sp->typecnt)
341 return -1;
342 }
343 for (i = 0; i < sp->typecnt; ++i) {
344 register struct ttinfo * ttisp;
345
346 ttisp = &sp->ttis[i];
347 ttisp->tt_gmtoff = detzcode(p);
348 p += 4;
349 ttisp->tt_isdst = (unsigned char) *p++;
350 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
351 return -1;
352 ttisp->tt_abbrind = (unsigned char) *p++;
353 if (ttisp->tt_abbrind < 0 ||
354 ttisp->tt_abbrind > sp->charcnt)
355 return -1;
356 }
357 for (i = 0; i < sp->charcnt; ++i)
358 sp->chars[i] = *p++;
359 sp->chars[i] = '\0'; /* ensure '\0' at end */
360 for (i = 0; i < sp->leapcnt; ++i) {
361 register struct lsinfo * lsisp;
362
363 lsisp = &sp->lsis[i];
364 lsisp->ls_trans = detzcode(p);
365 p += 4;
366 lsisp->ls_corr = detzcode(p);
367 p += 4;
368 }
369 for (i = 0; i < sp->typecnt; ++i) {
370 register struct ttinfo * ttisp;
371
372 ttisp = &sp->ttis[i];
373 if (ttisstdcnt == 0)
374 ttisp->tt_ttisstd = FALSE;
375 else {
376 ttisp->tt_ttisstd = *p++;
377 if (ttisp->tt_ttisstd != TRUE &&
378 ttisp->tt_ttisstd != FALSE)
379 return -1;
380 }
381 }
382 for (i = 0; i < sp->typecnt; ++i) {
383 register struct ttinfo * ttisp;
384
385 ttisp = &sp->ttis[i];
386 if (ttisgmtcnt == 0)
387 ttisp->tt_ttisgmt = FALSE;
388 else {
389 ttisp->tt_ttisgmt = *p++;
390 if (ttisp->tt_ttisgmt != TRUE &&
391 ttisp->tt_ttisgmt != FALSE)
392 return -1;
393 }
394 }
395 }
396 return 0;
397 }
398
399 static const int mon_lengths[2][MONSPERYEAR] = {
400 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
401 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
402 };
403
404 static const int year_lengths[2] = {
405 DAYSPERNYEAR, DAYSPERLYEAR
406 };
407
408 /*
409 ** Given a pointer into a time zone string, scan until a character that is not
410 ** a valid character in a zone name is found. Return a pointer to that
411 ** character.
412 */
413
414 static const char *
415 getzname(strp)
416 register const char * strp;
417 {
418 register char c;
419
420 while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
421 c != '+')
422 ++strp;
423 return strp;
424 }
425
426 /*
427 ** Given a pointer into a time zone string, extract a number from that string.
428 ** Check that the number is within a specified range; if it is not, return
429 ** NULL.
430 ** Otherwise, return a pointer to the first character not part of the number.
431 */
432
433 static const char *
434 getnum(strp, nump, min, max)
435 register const char * strp;
436 int * const nump;
437 const int min;
438 const int max;
439 {
440 register char c;
441 register int num;
442
443 if (strp == NULL || !isdigit(*strp))
444 return NULL;
445 num = 0;
446 while ((c = *strp) != '\0' && isdigit(c)) {
447 num = num * 10 + (c - '0');
448 if (num > max)
449 return NULL; /* illegal value */
450 ++strp;
451 }
452 if (num < min)
453 return NULL; /* illegal value */
454 *nump = num;
455 return strp;
456 }
457
458 /*
459 ** Given a pointer into a time zone string, extract a number of seconds,
460 ** in hh[:mm[:ss]] form, from the string.
461 ** If any error occurs, return NULL.
462 ** Otherwise, return a pointer to the first character not part of the number
463 ** of seconds.
464 */
465
466 static const char *
467 getsecs(strp, secsp)
468 register const char * strp;
469 long * const secsp;
470 {
471 int num;
472
473 /*
474 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
475 ** "M10.4.6/26", which does not conform to Posix,
476 ** but which specifies the equivalent of
477 ** ``02:00 on the first Sunday on or after 23 Oct''.
478 */
479 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
480 if (strp == NULL)
481 return NULL;
482 *secsp = num * (long) SECSPERHOUR;
483 if (*strp == ':') {
484 ++strp;
485 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
486 if (strp == NULL)
487 return NULL;
488 *secsp += num * SECSPERMIN;
489 if (*strp == ':') {
490 ++strp;
491 /* `SECSPERMIN' allows for leap seconds. */
492 strp = getnum(strp, &num, 0, SECSPERMIN);
493 if (strp == NULL)
494 return NULL;
495 *secsp += num;
496 }
497 }
498 return strp;
499 }
500
501 /*
502 ** Given a pointer into a time zone string, extract an offset, in
503 ** [+-]hh[:mm[:ss]] form, from the string.
504 ** If any error occurs, return NULL.
505 ** Otherwise, return a pointer to the first character not part of the time.
506 */
507
508 static const char *
509 getoffset(strp, offsetp)
510 register const char * strp;
511 long * const offsetp;
512 {
513 register int neg;
514
515 if (*strp == '-') {
516 neg = 1;
517 ++strp;
518 } else if (isdigit(*strp) || *strp++ == '+')
519 neg = 0;
520 else return NULL; /* illegal offset */
521 strp = getsecs(strp, offsetp);
522 if (strp == NULL)
523 return NULL; /* illegal time */
524 if (neg)
525 *offsetp = -*offsetp;
526 return strp;
527 }
528
529 /*
530 ** Given a pointer into a time zone string, extract a rule in the form
531 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
532 ** If a valid rule is not found, return NULL.
533 ** Otherwise, return a pointer to the first character not part of the rule.
534 */
535
536 static const char *
537 getrule(strp, rulep)
538 const char * strp;
539 register struct rule * const rulep;
540 {
541 if (*strp == 'J') {
542 /*
543 ** Julian day.
544 */
545 rulep->r_type = JULIAN_DAY;
546 ++strp;
547 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
548 } else if (*strp == 'M') {
549 /*
550 ** Month, week, day.
551 */
552 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
553 ++strp;
554 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
555 if (strp == NULL)
556 return NULL;
557 if (*strp++ != '.')
558 return NULL;
559 strp = getnum(strp, &rulep->r_week, 1, 5);
560 if (strp == NULL)
561 return NULL;
562 if (*strp++ != '.')
563 return NULL;
564 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
565 } else if (isdigit(*strp)) {
566 /*
567 ** Day of year.
568 */
569 rulep->r_type = DAY_OF_YEAR;
570 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
571 } else return NULL; /* invalid format */
572 if (strp == NULL)
573 return NULL;
574 if (*strp == '/') {
575 /*
576 ** Time specified.
577 */
578 ++strp;
579 strp = getsecs(strp, &rulep->r_time);
580 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
581 return strp;
582 }
583
584 /*
585 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
586 ** year, a rule, and the offset from GMT at the time that rule takes effect,
587 ** calculate the Epoch-relative time that rule takes effect.
588 */
589
590 static time_t
591 transtime(janfirst, year, rulep, offset)
592 const time_t janfirst;
593 const int year;
594 register const struct rule * const rulep;
595 const long offset;
596 {
597 register int leapyear;
598 register time_t value;
599 register int i;
600 int d, m1, yy0, yy1, yy2, dow;
601
602 INITIALIZE(value);
603 leapyear = isleap(year);
604 switch (rulep->r_type) {
605
606 case JULIAN_DAY:
607 /*
608 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
609 ** years.
610 ** In non-leap years, or if the day number is 59 or less, just
611 ** add SECSPERDAY times the day number-1 to the time of
612 ** January 1, midnight, to get the day.
613 */
614 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
615 if (leapyear && rulep->r_day >= 60)
616 value += SECSPERDAY;
617 break;
618
619 case DAY_OF_YEAR:
620 /*
621 ** n - day of year.
622 ** Just add SECSPERDAY times the day number to the time of
623 ** January 1, midnight, to get the day.
624 */
625 value = janfirst + rulep->r_day * SECSPERDAY;
626 break;
627
628 case MONTH_NTH_DAY_OF_WEEK:
629 /*
630 ** Mm.n.d - nth "dth day" of month m.
631 */
632 value = janfirst;
633 for (i = 0; i < rulep->r_mon - 1; ++i)
634 value += mon_lengths[leapyear][i] * SECSPERDAY;
635
636 /*
637 ** Use Zeller's Congruence to get day-of-week of first day of
638 ** month.
639 */
640 m1 = (rulep->r_mon + 9) % 12 + 1;
641 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
642 yy1 = yy0 / 100;
643 yy2 = yy0 % 100;
644 dow = ((26 * m1 - 2) / 10 +
645 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
646 if (dow < 0)
647 dow += DAYSPERWEEK;
648
649 /*
650 ** "dow" is the day-of-week of the first day of the month. Get
651 ** the day-of-month (zero-origin) of the first "dow" day of the
652 ** month.
653 */
654 d = rulep->r_day - dow;
655 if (d < 0)
656 d += DAYSPERWEEK;
657 for (i = 1; i < rulep->r_week; ++i) {
658 if (d + DAYSPERWEEK >=
659 mon_lengths[leapyear][rulep->r_mon - 1])
660 break;
661 d += DAYSPERWEEK;
662 }
663
664 /*
665 ** "d" is the day-of-month (zero-origin) of the day we want.
666 */
667 value += d * SECSPERDAY;
668 break;
669 }
670
671 /*
672 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
673 ** question. To get the Epoch-relative time of the specified local
674 ** time on that day, add the transition time and the current offset
675 ** from GMT.
676 */
677 return value + rulep->r_time + offset;
678 }
679
680 /*
681 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
682 ** appropriate.
683 */
684
685 static int
686 tzparse(name, sp, lastditch)
687 const char * name;
688 register struct state * const sp;
689 const int lastditch;
690 {
691 const char * stdname;
692 const char * dstname;
693 size_t stdlen;
694 size_t dstlen;
695 long stdoffset;
696 long dstoffset;
697 register time_t * atp;
698 register unsigned char * typep;
699 register char * cp;
700 register int load_result;
701
702 INITIALIZE(dstname);
703 stdname = name;
704 if (lastditch) {
705 stdlen = strlen(name); /* length of standard zone name */
706 name += stdlen;
707 if (stdlen >= sizeof sp->chars)
708 stdlen = (sizeof sp->chars) - 1;
709 } else {
710 name = getzname(name);
711 stdlen = name - stdname;
712 if (stdlen < 3)
713 return -1;
714 }
715 if (*name == '\0')
716 return -1; /* was "stdoffset = 0;" */
717 else {
718 name = getoffset(name, &stdoffset);
719 if (name == NULL)
720 return -1;
721 }
722 load_result = tzload(TZDEFRULES, sp);
723 if (load_result != 0)
724 sp->leapcnt = 0; /* so, we're off a little */
725 if (*name != '\0') {
726 dstname = name;
727 name = getzname(name);
728 dstlen = name - dstname; /* length of DST zone name */
729 if (dstlen < 3)
730 return -1;
731 if (*name != '\0' && *name != ',' && *name != ';') {
732 name = getoffset(name, &dstoffset);
733 if (name == NULL)
734 return -1;
735 } else dstoffset = stdoffset - SECSPERHOUR;
736 if (*name == ',' || *name == ';') {
737 struct rule start;
738 struct rule end;
739 register int year;
740 register time_t janfirst;
741 time_t starttime;
742 time_t endtime;
743
744 ++name;
745 if ((name = getrule(name, &start)) == NULL)
746 return -1;
747 if (*name++ != ',')
748 return -1;
749 if ((name = getrule(name, &end)) == NULL)
750 return -1;
751 if (*name != '\0')
752 return -1;
753 sp->typecnt = 2; /* standard time and DST */
754 /*
755 ** Two transitions per year, from EPOCH_YEAR to 2037.
756 */
757 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
758 if (sp->timecnt > TZ_MAX_TIMES)
759 return -1;
760 sp->ttis[0].tt_gmtoff = -dstoffset;
761 sp->ttis[0].tt_isdst = 1;
762 sp->ttis[0].tt_abbrind = stdlen + 1;
763 sp->ttis[1].tt_gmtoff = -stdoffset;
764 sp->ttis[1].tt_isdst = 0;
765 sp->ttis[1].tt_abbrind = 0;
766 atp = sp->ats;
767 typep = sp->types;
768 janfirst = 0;
769 for (year = EPOCH_YEAR; year <= 2037; ++year) {
770 starttime = transtime(janfirst, year, &start,
771 stdoffset);
772 endtime = transtime(janfirst, year, &end,
773 dstoffset);
774 if (starttime > endtime) {
775 *atp++ = endtime;
776 *typep++ = 1; /* DST ends */
777 *atp++ = starttime;
778 *typep++ = 0; /* DST begins */
779 } else {
780 *atp++ = starttime;
781 *typep++ = 0; /* DST begins */
782 *atp++ = endtime;
783 *typep++ = 1; /* DST ends */
784 }
785 janfirst += year_lengths[isleap(year)] *
786 SECSPERDAY;
787 }
788 } else {
789 register long theirstdoffset;
790 register long theirdstoffset;
791 register long theiroffset;
792 register int isdst;
793 register int i;
794 register int j;
795
796 if (*name != '\0')
797 return -1;
798 if (load_result != 0)
799 return -1;
800 /*
801 ** Initial values of theirstdoffset and theirdstoffset.
802 */
803 theirstdoffset = 0;
804 for (i = 0; i < sp->timecnt; ++i) {
805 j = sp->types[i];
806 if (!sp->ttis[j].tt_isdst) {
807 theirstdoffset = -sp->ttis[j].tt_gmtoff;
808 break;
809 }
810 }
811 theirdstoffset = 0;
812 for (i = 0; i < sp->timecnt; ++i) {
813 j = sp->types[i];
814 if (sp->ttis[j].tt_isdst) {
815 theirdstoffset = -sp->ttis[j].tt_gmtoff;
816 break;
817 }
818 }
819 /*
820 ** Initially we're assumed to be in standard time.
821 */
822 isdst = FALSE;
823 theiroffset = theirstdoffset;
824 /*
825 ** Now juggle transition times and types
826 ** tracking offsets as you do.
827 */
828 for (i = 0; i < sp->timecnt; ++i) {
829 j = sp->types[i];
830 sp->types[i] = sp->ttis[j].tt_isdst;
831 if (sp->ttis[j].tt_ttisgmt) {
832 /* No adjustment to transition time */
833 } else {
834 /*
835 ** If summer time is in effect, and the
836 ** transition time was not specified as
837 ** standard time, add the summer time
838 ** offset to the transition time;
839 ** otherwise, add the standard time
840 ** offset to the transition time.
841 */
842 /*
843 ** Transitions from DST to DDST
844 ** will effectively disappear since
845 ** POSIX provides for only one DST
846 ** offset.
847 */
848 if (isdst && !sp->ttis[j].tt_ttisstd) {
849 sp->ats[i] += dstoffset -
850 theirdstoffset;
851 } else {
852 sp->ats[i] += stdoffset -
853 theirstdoffset;
854 }
855 }
856 theiroffset = -sp->ttis[j].tt_gmtoff;
857 if (sp->ttis[j].tt_isdst)
858 theirdstoffset = theiroffset;
859 else theirstdoffset = theiroffset;
860 }
861 /*
862 ** Finally, fill in ttis.
863 ** ttisstd and ttisgmt need not be handled.
864 */
865 sp->ttis[0].tt_gmtoff = -stdoffset;
866 sp->ttis[0].tt_isdst = FALSE;
867 sp->ttis[0].tt_abbrind = 0;
868 sp->ttis[1].tt_gmtoff = -dstoffset;
869 sp->ttis[1].tt_isdst = TRUE;
870 sp->ttis[1].tt_abbrind = stdlen + 1;
871 }
872 } else {
873 dstlen = 0;
874 sp->typecnt = 1; /* only standard time */
875 sp->timecnt = 0;
876 sp->ttis[0].tt_gmtoff = -stdoffset;
877 sp->ttis[0].tt_isdst = 0;
878 sp->ttis[0].tt_abbrind = 0;
879 }
880 sp->charcnt = stdlen + 1;
881 if (dstlen != 0)
882 sp->charcnt += dstlen + 1;
883 if (sp->charcnt > sizeof sp->chars)
884 return -1;
885 cp = sp->chars;
886 (void) strncpy(cp, stdname, stdlen);
887 cp += stdlen;
888 *cp++ = '\0';
889 if (dstlen != 0) {
890 (void) strncpy(cp, dstname, dstlen);
891 *(cp + dstlen) = '\0';
892 }
893 return 0;
894 }
895
896 static void
897 gmtload(sp)
898 struct state * const sp;
899 {
900 if (tzload(gmt, sp) != 0)
901 (void) tzparse(gmt, sp, TRUE);
902 }
903
904 #ifndef STD_INSPIRED
905 /*
906 ** A non-static declaration of tzsetwall in a system header file
907 ** may cause a warning about this upcoming static declaration...
908 */
909 static
910 #endif /* !defined STD_INSPIRED */
911 void
912 tzsetwall P((void))
913 {
914 if (lcl_is_set < 0)
915 return;
916 lcl_is_set = -1;
917
918 #ifdef ALL_STATE
919 if (lclptr == NULL) {
920 lclptr = (struct state *) malloc(sizeof *lclptr);
921 if (lclptr == NULL) {
922 settzname(); /* all we can do */
923 return;
924 }
925 }
926 #endif /* defined ALL_STATE */
927 if (tzload((char *) NULL, lclptr) != 0)
928 gmtload(lclptr);
929 settzname();
930 }
931
932 void
933 tzset P((void))
934 {
935 register const char * name;
936
937 name = getenv("TZ");
938 if (name == NULL) {
939 tzsetwall();
940 return;
941 }
942
943 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
944 return;
945 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
946 if (lcl_is_set)
947 (void) strcpy(lcl_TZname, name);
948
949 #ifdef ALL_STATE
950 if (lclptr == NULL) {
951 lclptr = (struct state *) malloc(sizeof *lclptr);
952 if (lclptr == NULL) {
953 settzname(); /* all we can do */
954 return;
955 }
956 }
957 #endif /* defined ALL_STATE */
958 if (*name == '\0') {
959 /*
960 ** User wants it fast rather than right.
961 */
962 lclptr->leapcnt = 0; /* so, we're off a little */
963 lclptr->timecnt = 0;
964 lclptr->ttis[0].tt_gmtoff = 0;
965 lclptr->ttis[0].tt_abbrind = 0;
966 (void) strcpy(lclptr->chars, gmt);
967 } else if (tzload(name, lclptr) != 0)
968 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
969 (void) gmtload(lclptr);
970 settzname();
971 }
972
973 /*
974 ** The easy way to behave "as if no library function calls" localtime
975 ** is to not call it--so we drop its guts into "localsub", which can be
976 ** freely called. (And no, the PANS doesn't require the above behavior--
977 ** but it *is* desirable.)
978 **
979 ** The unused offset argument is for the benefit of mktime variants.
980 */
981
982 /*ARGSUSED*/
983 static void
984 localsub(timep, offset, tmp)
985 const time_t * const timep;
986 const long offset;
987 struct tm * const tmp;
988 {
989 register struct state * sp;
990 register const struct ttinfo * ttisp;
991 register int i;
992 const time_t t = *timep;
993
994 sp = lclptr;
995 #ifdef ALL_STATE
996 if (sp == NULL) {
997 gmtsub(timep, offset, tmp);
998 return;
999 }
1000 #endif /* defined ALL_STATE */
1001 if (sp->timecnt == 0 || t < sp->ats[0]) {
1002 i = 0;
1003 while (sp->ttis[i].tt_isdst)
1004 if (++i >= sp->typecnt) {
1005 i = 0;
1006 break;
1007 }
1008 } else {
1009 for (i = 1; i < sp->timecnt; ++i)
1010 if (t < sp->ats[i])
1011 break;
1012 i = sp->types[i - 1];
1013 }
1014 ttisp = &sp->ttis[i];
1015 /*
1016 ** To get (wrong) behavior that's compatible with System V Release 2.0
1017 ** you'd replace the statement below with
1018 ** t += ttisp->tt_gmtoff;
1019 ** timesub(&t, 0L, sp, tmp);
1020 */
1021 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1022 tmp->tm_isdst = ttisp->tt_isdst;
1023 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1024 #ifdef TM_ZONE
1025 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1026 #endif /* defined TM_ZONE */
1027 }
1028
1029 struct tm *
1030 localtime(timep)
1031 const time_t * const timep;
1032 {
1033 tzset();
1034 localsub(timep, 0L, &tm);
1035 return &tm;
1036 }
1037
1038 /*
1039 ** gmtsub is to gmtime as localsub is to localtime.
1040 */
1041
1042 static void
1043 gmtsub(timep, offset, tmp)
1044 const time_t * const timep;
1045 const long offset;
1046 struct tm * const tmp;
1047 {
1048 if (!gmt_is_set) {
1049 gmt_is_set = TRUE;
1050 #ifdef ALL_STATE
1051 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1052 if (gmtptr != NULL)
1053 #endif /* defined ALL_STATE */
1054 gmtload(gmtptr);
1055 }
1056 timesub(timep, offset, gmtptr, tmp);
1057 #ifdef TM_ZONE
1058 /*
1059 ** Could get fancy here and deliver something such as
1060 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1061 ** but this is no time for a treasure hunt.
1062 */
1063 if (offset != 0)
1064 tmp->TM_ZONE = wildabbr;
1065 else {
1066 #ifdef ALL_STATE
1067 if (gmtptr == NULL)
1068 tmp->TM_ZONE = gmt;
1069 else tmp->TM_ZONE = gmtptr->chars;
1070 #endif /* defined ALL_STATE */
1071 #ifndef ALL_STATE
1072 tmp->TM_ZONE = gmtptr->chars;
1073 #endif /* State Farm */
1074 }
1075 #endif /* defined TM_ZONE */
1076 }
1077
1078 struct tm *
1079 gmtime(timep)
1080 const time_t * const timep;
1081 {
1082 gmtsub(timep, 0L, &tm);
1083 return &tm;
1084 }
1085
1086 #ifdef STD_INSPIRED
1087
1088 struct tm *
1089 offtime(timep, offset)
1090 const time_t * const timep;
1091 const long offset;
1092 {
1093 gmtsub(timep, offset, &tm);
1094 return &tm;
1095 }
1096
1097 #endif /* defined STD_INSPIRED */
1098
1099 static void
1100 timesub(timep, offset, sp, tmp)
1101 const time_t * const timep;
1102 const long offset;
1103 register const struct state * const sp;
1104 register struct tm * const tmp;
1105 {
1106 register const struct lsinfo * lp;
1107 register long days;
1108 register long rem;
1109 register int y;
1110 register int yleap;
1111 register const int * ip;
1112 register long corr;
1113 register int hit;
1114 register int i;
1115
1116 corr = 0;
1117 hit = 0;
1118 #ifdef ALL_STATE
1119 i = (sp == NULL) ? 0 : sp->leapcnt;
1120 #endif /* defined ALL_STATE */
1121 #ifndef ALL_STATE
1122 i = sp->leapcnt;
1123 #endif /* State Farm */
1124 while (--i >= 0) {
1125 lp = &sp->lsis[i];
1126 if (*timep >= lp->ls_trans) {
1127 if (*timep == lp->ls_trans) {
1128 hit = ((i == 0 && lp->ls_corr > 0) ||
1129 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1130 if (hit)
1131 while (i > 0 &&
1132 sp->lsis[i].ls_trans ==
1133 sp->lsis[i - 1].ls_trans + 1 &&
1134 sp->lsis[i].ls_corr ==
1135 sp->lsis[i - 1].ls_corr + 1) {
1136 ++hit;
1137 --i;
1138 }
1139 }
1140 corr = lp->ls_corr;
1141 break;
1142 }
1143 }
1144 days = *timep / SECSPERDAY;
1145 rem = *timep % SECSPERDAY;
1146 #ifdef mc68k
1147 if (*timep == 0x80000000) {
1148 /*
1149 ** A 3B1 muffs the division on the most negative number.
1150 */
1151 days = -24855;
1152 rem = -11648;
1153 }
1154 #endif /* defined mc68k */
1155 rem += (offset - corr);
1156 while (rem < 0) {
1157 rem += SECSPERDAY;
1158 --days;
1159 }
1160 while (rem >= SECSPERDAY) {
1161 rem -= SECSPERDAY;
1162 ++days;
1163 }
1164 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1165 rem = rem % SECSPERHOUR;
1166 tmp->tm_min = (int) (rem / SECSPERMIN);
1167 tmp->tm_sec = (int) (rem % SECSPERMIN);
1168 if (hit)
1169 /*
1170 ** A positive leap second requires a special
1171 ** representation. This uses "... ??:59:60" et seq.
1172 */
1173 tmp->tm_sec += hit;
1174 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1175 if (tmp->tm_wday < 0)
1176 tmp->tm_wday += DAYSPERWEEK;
1177 y = EPOCH_YEAR;
1178 if (days >= 0)
1179 for ( ; ; ) {
1180 yleap = isleap(y);
1181 if (days < (long) year_lengths[yleap])
1182 break;
1183 ++y;
1184 days = days - (long) year_lengths[yleap];
1185 }
1186 else do {
1187 --y;
1188 yleap = isleap(y);
1189 days = days + (long) year_lengths[yleap];
1190 } while (days < 0);
1191 tmp->tm_year = y - TM_YEAR_BASE;
1192 tmp->tm_yday = (int) days;
1193 ip = mon_lengths[yleap];
1194 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1195 days = days - (long) ip[tmp->tm_mon];
1196 tmp->tm_mday = (int) (days + 1);
1197 tmp->tm_isdst = 0;
1198 #ifdef TM_GMTOFF
1199 tmp->TM_GMTOFF = offset;
1200 #endif /* defined TM_GMTOFF */
1201 }
1202
1203 char *
1204 ctime(timep)
1205 const time_t * const timep;
1206 {
1207 /*
1208 ** Section 4.12.3.2 of X3.159-1989 requires that
1209 ** The ctime funciton converts the calendar time pointed to by timer
1210 ** to local time in the form of a string. It is equivalent to
1211 ** asctime(localtime(timer))
1212 */
1213 return asctime(localtime(timep));
1214 }
1215
1216 /*
1217 ** Adapted from code provided by Robert Elz, who writes:
1218 ** The "best" way to do mktime I think is based on an idea of Bob
1219 ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
1220 ** It does a binary search of the time_t space. Since time_t's are
1221 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1222 ** would still be very reasonable).
1223 */
1224
1225 #ifndef WRONG
1226 #define WRONG (-1)
1227 #endif /* !defined WRONG */
1228
1229 /*
1230 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1231 */
1232
1233 static int
1234 increment_overflow(number, delta)
1235 int * number;
1236 int delta;
1237 {
1238 int number0;
1239
1240 number0 = *number;
1241 *number += delta;
1242 return (*number < number0) != (delta < 0);
1243 }
1244
1245 static int
1246 normalize_overflow(tensptr, unitsptr, base)
1247 int * const tensptr;
1248 int * const unitsptr;
1249 const int base;
1250 {
1251 register int tensdelta;
1252
1253 tensdelta = (*unitsptr >= 0) ?
1254 (*unitsptr / base) :
1255 (-1 - (-1 - *unitsptr) / base);
1256 *unitsptr -= tensdelta * base;
1257 return increment_overflow(tensptr, tensdelta);
1258 }
1259
1260 static int
1261 tmcomp(atmp, btmp)
1262 register const struct tm * const atmp;
1263 register const struct tm * const btmp;
1264 {
1265 register int result;
1266
1267 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1268 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1269 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1270 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1271 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1272 result = atmp->tm_sec - btmp->tm_sec;
1273 return result;
1274 }
1275
1276 static time_t
1277 time2(tmp, funcp, offset, okayp)
1278 struct tm * const tmp;
1279 void (* const funcp) P((const time_t*, long, struct tm*));
1280 const long offset;
1281 int * const okayp;
1282 {
1283 register const struct state * sp;
1284 register int dir;
1285 register int bits;
1286 register int i, j ;
1287 register int saved_seconds;
1288 time_t newt;
1289 time_t t;
1290 struct tm yourtm, mytm;
1291
1292 *okayp = FALSE;
1293 yourtm = *tmp;
1294 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1295 return WRONG;
1296 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1297 return WRONG;
1298 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1299 return WRONG;
1300 /*
1301 ** Turn yourtm.tm_year into an actual year number for now.
1302 ** It is converted back to an offset from TM_YEAR_BASE later.
1303 */
1304 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1305 return WRONG;
1306 while (yourtm.tm_mday <= 0) {
1307 if (increment_overflow(&yourtm.tm_year, -1))
1308 return WRONG;
1309 yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
1310 }
1311 while (yourtm.tm_mday > DAYSPERLYEAR) {
1312 yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
1313 if (increment_overflow(&yourtm.tm_year, 1))
1314 return WRONG;
1315 }
1316 for ( ; ; ) {
1317 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1318 if (yourtm.tm_mday <= i)
1319 break;
1320 yourtm.tm_mday -= i;
1321 if (++yourtm.tm_mon >= MONSPERYEAR) {
1322 yourtm.tm_mon = 0;
1323 if (increment_overflow(&yourtm.tm_year, 1))
1324 return WRONG;
1325 }
1326 }
1327 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1328 return WRONG;
1329 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1330 /*
1331 ** We can't set tm_sec to 0, because that might push the
1332 ** time below the minimum representable time.
1333 ** Set tm_sec to 59 instead.
1334 ** This assumes that the minimum representable time is
1335 ** not in the same minute that a leap second was deleted from,
1336 ** which is a safer assumption than using 58 would be.
1337 */
1338 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1339 return WRONG;
1340 saved_seconds = yourtm.tm_sec;
1341 yourtm.tm_sec = SECSPERMIN - 1;
1342 } else {
1343 saved_seconds = yourtm.tm_sec;
1344 yourtm.tm_sec = 0;
1345 }
1346 /*
1347 ** Calculate the number of magnitude bits in a time_t
1348 ** (this works regardless of whether time_t is
1349 ** signed or unsigned, though lint complains if unsigned).
1350 */
1351 for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
1352 continue;
1353 /*
1354 ** If time_t is signed, then 0 is the median value,
1355 ** if time_t is unsigned, then 1 << bits is median.
1356 */
1357 t = (t < 0) ? 0 : ((time_t) 1 << bits);
1358 for ( ; ; ) {
1359 (*funcp)(&t, offset, &mytm);
1360 dir = tmcomp(&mytm, &yourtm);
1361 if (dir != 0) {
1362 if (bits-- < 0)
1363 return WRONG;
1364 if (bits < 0)
1365 --t;
1366 else if (dir > 0)
1367 t -= (time_t) 1 << bits;
1368 else t += (time_t) 1 << bits;
1369 continue;
1370 }
1371 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1372 break;
1373 /*
1374 ** Right time, wrong type.
1375 ** Hunt for right time, right type.
1376 ** It's okay to guess wrong since the guess
1377 ** gets checked.
1378 */
1379 /*
1380 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1381 */
1382 sp = (const struct state *)
1383 (((void *) funcp == (void *) localsub) ?
1384 lclptr : gmtptr);
1385 #ifdef ALL_STATE
1386 if (sp == NULL)
1387 return WRONG;
1388 #endif /* defined ALL_STATE */
1389 for (i = 0; i < sp->typecnt; ++i) {
1390 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1391 continue;
1392 for (j = 0; j < sp->typecnt; ++j) {
1393 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1394 continue;
1395 newt = t + sp->ttis[j].tt_gmtoff -
1396 sp->ttis[i].tt_gmtoff;
1397 (*funcp)(&newt, offset, &mytm);
1398 if (tmcomp(&mytm, &yourtm) != 0)
1399 continue;
1400 if (mytm.tm_isdst != yourtm.tm_isdst)
1401 continue;
1402 /*
1403 ** We have a match.
1404 */
1405 t = newt;
1406 goto label;
1407 }
1408 }
1409 return WRONG;
1410 }
1411 label:
1412 newt = t + saved_seconds;
1413 if ((newt < t) != (saved_seconds < 0))
1414 return WRONG;
1415 t = newt;
1416 (*funcp)(&t, offset, tmp);
1417 *okayp = TRUE;
1418 return t;
1419 }
1420
1421 static time_t
1422 time1(tmp, funcp, offset)
1423 struct tm * const tmp;
1424 void (* const funcp) P((const time_t*, long, struct tm*));
1425 const long offset;
1426 {
1427 register time_t t;
1428 register const struct state * sp;
1429 register int samei, otheri;
1430 int okay;
1431
1432 if (tmp->tm_isdst > 1)
1433 tmp->tm_isdst = 1;
1434 t = time2(tmp, funcp, offset, &okay);
1435 #ifdef PCTS
1436 /*
1437 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1438 */
1439 if (okay)
1440 return t;
1441 if (tmp->tm_isdst < 0)
1442 tmp->tm_isdst = 0; /* reset to std and try again */
1443 #endif /* defined PCTS */
1444 #ifndef PCTS
1445 if (okay || tmp->tm_isdst < 0)
1446 return t;
1447 #endif /* !defined PCTS */
1448 /*
1449 ** We're supposed to assume that somebody took a time of one type
1450 ** and did some math on it that yielded a "struct tm" that's bad.
1451 ** We try to divine the type they started from and adjust to the
1452 ** type they need.
1453 */
1454 /*
1455 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1456 */
1457 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1458 lclptr : gmtptr);
1459 #ifdef ALL_STATE
1460 if (sp == NULL)
1461 return WRONG;
1462 #endif /* defined ALL_STATE */
1463 for (samei = 0; samei < sp->typecnt; ++samei) {
1464 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1465 continue;
1466 for (otheri = 0; otheri < sp->typecnt; ++otheri) {
1467 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1468 continue;
1469 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1470 sp->ttis[samei].tt_gmtoff;
1471 tmp->tm_isdst = !tmp->tm_isdst;
1472 t = time2(tmp, funcp, offset, &okay);
1473 if (okay)
1474 return t;
1475 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1476 sp->ttis[samei].tt_gmtoff;
1477 tmp->tm_isdst = !tmp->tm_isdst;
1478 }
1479 }
1480 return WRONG;
1481 }
1482
1483 time_t
1484 mktime(tmp)
1485 struct tm * const tmp;
1486 {
1487 tzset();
1488 return time1(tmp, localsub, 0L);
1489 }
1490
1491 #ifdef STD_INSPIRED
1492
1493 time_t
1494 timelocal(tmp)
1495 struct tm * const tmp;
1496 {
1497 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1498 return mktime(tmp);
1499 }
1500
1501 time_t
1502 timegm(tmp)
1503 struct tm * const tmp;
1504 {
1505 tmp->tm_isdst = 0;
1506 return time1(tmp, gmtsub, 0L);
1507 }
1508
1509 time_t
1510 timeoff(tmp, offset)
1511 struct tm * const tmp;
1512 const long offset;
1513 {
1514 tmp->tm_isdst = 0;
1515 return time1(tmp, gmtsub, offset);
1516 }
1517
1518 #endif /* defined STD_INSPIRED */
1519
1520 #ifdef CMUCS
1521
1522 /*
1523 ** The following is supplied for compatibility with
1524 ** previous versions of the CMUCS runtime library.
1525 */
1526
1527 long
1528 gtime(tmp)
1529 struct tm * const tmp;
1530 {
1531 const time_t t = mktime(tmp);
1532
1533 if (t == WRONG)
1534 return -1;
1535 return t;
1536 }
1537
1538 #endif /* defined CMUCS */
1539
1540 /*
1541 ** XXX--is the below the right way to conditionalize??
1542 */
1543
1544 #ifdef STD_INSPIRED
1545
1546 /*
1547 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1548 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1549 ** is not the case if we are accounting for leap seconds.
1550 ** So, we provide the following conversion routines for use
1551 ** when exchanging timestamps with POSIX conforming systems.
1552 */
1553
1554 static long
1555 leapcorr(timep)
1556 time_t * timep;
1557 {
1558 register struct state * sp;
1559 register struct lsinfo * lp;
1560 register int i;
1561
1562 sp = lclptr;
1563 i = sp->leapcnt;
1564 while (--i >= 0) {
1565 lp = &sp->lsis[i];
1566 if (*timep >= lp->ls_trans)
1567 return lp->ls_corr;
1568 }
1569 return 0;
1570 }
1571
1572 time_t
1573 time2posix(t)
1574 time_t t;
1575 {
1576 tzset();
1577 return t - leapcorr(&t);
1578 }
1579
1580 time_t
1581 posix2time(t)
1582 time_t t;
1583 {
1584 time_t x;
1585 time_t y;
1586
1587 tzset();
1588 /*
1589 ** For a positive leap second hit, the result
1590 ** is not unique. For a negative leap second
1591 ** hit, the corresponding time doesn't exist,
1592 ** so we return an adjacent second.
1593 */
1594 x = t + leapcorr(&t);
1595 y = x - leapcorr(&x);
1596 if (y < t) {
1597 do {
1598 x++;
1599 y = x - leapcorr(&x);
1600 } while (y < t);
1601 if (t != y)
1602 return x - 1;
1603 } else if (y > t) {
1604 do {
1605 --x;
1606 y = x - leapcorr(&x);
1607 } while (y > t);
1608 if (t != y)
1609 return x + 1;
1610 }
1611 return x;
1612 }
1613
1614 #endif /* defined STD_INSPIRED */
1615