localtime.c revision 1.3.2.2 1 /* $NetBSD: localtime.c,v 1.3.2.2 1995/03/25 02:18:45 jtc Exp $ */
2
3 #ifndef lint
4 #ifndef NOID
5 static char elsieid[] = "@(#)localtime.c 7.43";
6 #endif /* !defined NOID */
7 #endif /* !defined lint */
8
9 /*
10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
11 ** POSIX-style TZ environment variable handling from Guy Harris
12 ** (guy (at) auspex.com).
13 */
14
15 /*LINTLIBRARY*/
16
17 #include "private.h"
18 #include "tzfile.h"
19 #include "fcntl.h"
20
21 /*
22 ** SunOS 4.1.1 headers lack O_BINARY.
23 */
24
25 #ifdef O_BINARY
26 #define OPEN_MODE (O_RDONLY | O_BINARY)
27 #endif /* defined O_BINARY */
28 #ifndef O_BINARY
29 #define OPEN_MODE O_RDONLY
30 #endif /* !defined O_BINARY */
31
32 #ifndef WILDABBR
33 /*
34 ** Someone might make incorrect use of a time zone abbreviation:
35 ** 1. They might reference tzname[0] before calling tzset (explicitly
36 ** or implicitly).
37 ** 2. They might reference tzname[1] before calling tzset (explicitly
38 ** or implicitly).
39 ** 3. They might reference tzname[1] after setting to a time zone
40 ** in which Daylight Saving Time is never observed.
41 ** 4. They might reference tzname[0] after setting to a time zone
42 ** in which Standard Time is never observed.
43 ** 5. They might reference tm.TM_ZONE after calling offtime.
44 ** What's best to do in the above cases is open to debate;
45 ** for now, we just set things up so that in any of the five cases
46 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
47 ** string "tzname[0] used before set", and similarly for the other cases.
48 ** And another: initialize tzname[0] to "ERA", with an explanation in the
49 ** manual page of what this "time zone abbreviation" means (doing this so
50 ** that tzname[0] has the "normal" length of three characters).
51 */
52 #define WILDABBR " "
53 #endif /* !defined WILDABBR */
54
55 static char wildabbr[] = "WILDABBR";
56
57 static const char gmt[] = "GMT";
58
59 struct ttinfo { /* time type information */
60 long tt_gmtoff; /* GMT offset in seconds */
61 int tt_isdst; /* used to set tm_isdst */
62 int tt_abbrind; /* abbreviation list index */
63 int tt_ttisstd; /* TRUE if transition is std time */
64 int tt_ttisgmt; /* TRUE if transition is GMT */
65 };
66
67 struct lsinfo { /* leap second information */
68 time_t ls_trans; /* transition time */
69 long ls_corr; /* correction to apply */
70 };
71
72 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
73
74 #ifdef TZNAME_MAX
75 #define MY_TZNAME_MAX TZNAME_MAX
76 #endif /* defined TZNAME_MAX */
77 #ifndef TZNAME_MAX
78 #define MY_TZNAME_MAX 255
79 #endif /* !defined TZNAME_MAX */
80
81 struct state {
82 int leapcnt;
83 int timecnt;
84 int typecnt;
85 int charcnt;
86 time_t ats[TZ_MAX_TIMES];
87 unsigned char types[TZ_MAX_TIMES];
88 struct ttinfo ttis[TZ_MAX_TYPES];
89 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
90 (2 * (MY_TZNAME_MAX + 1)))];
91 struct lsinfo lsis[TZ_MAX_LEAPS];
92 };
93
94 struct rule {
95 int r_type; /* type of rule--see below */
96 int r_day; /* day number of rule */
97 int r_week; /* week number of rule */
98 int r_mon; /* month number of rule */
99 long r_time; /* transition time of rule */
100 };
101
102 #define JULIAN_DAY 0 /* Jn - Julian day */
103 #define DAY_OF_YEAR 1 /* n - day of year */
104 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
105
106 /*
107 ** Prototypes for static functions.
108 */
109
110 static long detzcode P((const char * codep));
111 static const char * getzname P((const char * strp));
112 static const char * getnum P((const char * strp, int * nump, int min,
113 int max));
114 static const char * getsecs P((const char * strp, long * secsp));
115 static const char * getoffset P((const char * strp, long * offsetp));
116 static const char * getrule P((const char * strp, struct rule * rulep));
117 static void gmtload P((struct state * sp));
118 static void gmtsub P((const time_t * timep, long offset,
119 struct tm * tmp));
120 static void localsub P((const time_t * timep, long offset,
121 struct tm * tmp));
122 static int increment_overflow P((int * number, int delta));
123 static int normalize_overflow P((int * tensptr, int * unitsptr,
124 int base));
125 static void settzname P((void));
126 static time_t time1 P((struct tm * tmp,
127 void(*funcp) P((const time_t *,
128 long, struct tm *)),
129 long offset));
130 static time_t time2 P((struct tm *tmp,
131 void(*funcp) P((const time_t *,
132 long, struct tm*)),
133 long offset, int * okayp));
134 static void timesub P((const time_t * timep, long offset,
135 const struct state * sp, struct tm * tmp));
136 static int tmcomp P((const struct tm * atmp,
137 const struct tm * btmp));
138 static time_t transtime P((time_t janfirst, int year,
139 const struct rule * rulep, long offset));
140 static int tzload P((const char * name, struct state * sp));
141 static int tzparse P((const char * name, struct state * sp,
142 int lastditch));
143
144 #ifdef ALL_STATE
145 static struct state * lclptr;
146 static struct state * gmtptr;
147 #endif /* defined ALL_STATE */
148
149 #ifndef ALL_STATE
150 static struct state lclmem;
151 static struct state gmtmem;
152 #define lclptr (&lclmem)
153 #define gmtptr (&gmtmem)
154 #endif /* State Farm */
155
156 #ifndef TZ_STRLEN_MAX
157 #define TZ_STRLEN_MAX 255
158 #endif /* !defined TZ_STRLEN_MAX */
159
160 static char lcl_TZname[TZ_STRLEN_MAX + 1];
161 static int lcl_is_set;
162 static int gmt_is_set;
163
164 char * tzname[2] = {
165 wildabbr,
166 wildabbr
167 };
168 __weak_reference(_tzname,tzname);
169
170 /*
171 ** Section 4.12.3 of X3.159-1989 requires that
172 ** Except for the strftime function, these functions [asctime,
173 ** ctime, gmtime, localtime] return values in one of two static
174 ** objects: a broken-down time structure and an array of char.
175 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
176 */
177
178 static struct tm tm;
179
180 #ifdef USG_COMPAT
181 time_t timezone = 0;
182 int daylight = 0;
183 __weak_reference(_timezone,timezone);
184 __weak_reference(_daylight,daylight);
185 #endif /* defined USG_COMPAT */
186
187 #ifdef ALTZONE
188 time_t altzone = 0;
189 __weak_reference(_altzone,altzone);
190 #endif /* defined ALTZONE */
191
192 static long
193 detzcode(codep)
194 const char * const codep;
195 {
196 register long result;
197
198 result = (codep[0] << 24) \
199 | (codep[1] & 0xff) << 16 \
200 | (codep[2] & 0xff) << 8
201 | (codep[3] & 0xff);
202 return result;
203 }
204
205 static void
206 settzname P((void))
207 {
208 register struct state * const sp = lclptr;
209 register int i;
210
211 tzname[0] = wildabbr;
212 tzname[1] = wildabbr;
213 #ifdef USG_COMPAT
214 daylight = 0;
215 timezone = 0;
216 #endif /* defined USG_COMPAT */
217 #ifdef ALTZONE
218 altzone = 0;
219 #endif /* defined ALTZONE */
220 #ifdef ALL_STATE
221 if (sp == NULL) {
222 tzname[0] = tzname[1] = gmt;
223 return;
224 }
225 #endif /* defined ALL_STATE */
226 for (i = 0; i < sp->typecnt; ++i) {
227 register const struct ttinfo * const ttisp = &sp->ttis[i];
228
229 tzname[ttisp->tt_isdst] =
230 &sp->chars[ttisp->tt_abbrind];
231 #ifdef USG_COMPAT
232 if (ttisp->tt_isdst)
233 daylight = 1;
234 if (i == 0 || !ttisp->tt_isdst)
235 timezone = -(ttisp->tt_gmtoff);
236 #endif /* defined USG_COMPAT */
237 #ifdef ALTZONE
238 if (i == 0 || ttisp->tt_isdst)
239 altzone = -(ttisp->tt_gmtoff);
240 #endif /* defined ALTZONE */
241 }
242 /*
243 ** And to get the latest zone names into tzname. . .
244 */
245 for (i = 0; i < sp->timecnt; ++i) {
246 register const struct ttinfo * const ttisp =
247 &sp->ttis[
248 sp->types[i]];
249
250 tzname[ttisp->tt_isdst] =
251 &sp->chars[ttisp->tt_abbrind];
252 }
253 }
254
255 static int
256 tzload(name, sp)
257 register const char * name;
258 register struct state * const sp;
259 {
260 register const char * p;
261 register int i;
262 register int fid;
263
264 if (name == NULL && (name = TZDEFAULT) == NULL)
265 return -1;
266 {
267 register int doaccess;
268 /*
269 ** Section 4.9.1 of the C standard says that
270 ** "FILENAME_MAX expands to an integral constant expression
271 ** that is the sie needed for an array of char large enough
272 ** to hold the longest file name string that the implementation
273 ** guarantees can be opened."
274 */
275 char fullname[FILENAME_MAX + 1];
276
277 if (name[0] == ':')
278 ++name;
279 doaccess = name[0] == '/';
280 if (!doaccess) {
281 if ((p = TZDIR) == NULL)
282 return -1;
283 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
284 return -1;
285 (void) strcpy(fullname, p);
286 (void) strcat(fullname, "/");
287 (void) strcat(fullname, name);
288 /*
289 ** Set doaccess if '.' (as in "../") shows up in name.
290 */
291 if (strchr(name, '.') != NULL)
292 doaccess = TRUE;
293 name = fullname;
294 }
295 if (doaccess && access(name, R_OK) != 0)
296 return -1;
297 if ((fid = open(name, OPEN_MODE)) == -1)
298 return -1;
299 }
300 {
301 struct tzhead * tzhp;
302 char buf[sizeof *sp + sizeof *tzhp];
303 int ttisstdcnt;
304 int ttisgmtcnt;
305
306 i = read(fid, buf, sizeof buf);
307 if (close(fid) != 0)
308 return -1;
309 p = buf;
310 p += sizeof tzhp->tzh_reserved;
311 ttisstdcnt = (int) detzcode(p);
312 p += 4;
313 ttisgmtcnt = (int) detzcode(p);
314 p += 4;
315 sp->leapcnt = (int) detzcode(p);
316 p += 4;
317 sp->timecnt = (int) detzcode(p);
318 p += 4;
319 sp->typecnt = (int) detzcode(p);
320 p += 4;
321 sp->charcnt = (int) detzcode(p);
322 p += 4;
323 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
324 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
325 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
326 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
327 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
328 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
329 return -1;
330 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
331 sp->timecnt + /* types */
332 sp->typecnt * (4 + 2) + /* ttinfos */
333 sp->charcnt + /* chars */
334 sp->leapcnt * (4 + 4) + /* lsinfos */
335 ttisstdcnt + /* ttisstds */
336 ttisgmtcnt) /* ttisgmts */
337 return -1;
338 for (i = 0; i < sp->timecnt; ++i) {
339 sp->ats[i] = detzcode(p);
340 p += 4;
341 }
342 for (i = 0; i < sp->timecnt; ++i) {
343 sp->types[i] = (unsigned char) *p++;
344 if (sp->types[i] >= sp->typecnt)
345 return -1;
346 }
347 for (i = 0; i < sp->typecnt; ++i) {
348 register struct ttinfo * ttisp;
349
350 ttisp = &sp->ttis[i];
351 ttisp->tt_gmtoff = detzcode(p);
352 p += 4;
353 ttisp->tt_isdst = (unsigned char) *p++;
354 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
355 return -1;
356 ttisp->tt_abbrind = (unsigned char) *p++;
357 if (ttisp->tt_abbrind < 0 ||
358 ttisp->tt_abbrind > sp->charcnt)
359 return -1;
360 }
361 for (i = 0; i < sp->charcnt; ++i)
362 sp->chars[i] = *p++;
363 sp->chars[i] = '\0'; /* ensure '\0' at end */
364 for (i = 0; i < sp->leapcnt; ++i) {
365 register struct lsinfo * lsisp;
366
367 lsisp = &sp->lsis[i];
368 lsisp->ls_trans = detzcode(p);
369 p += 4;
370 lsisp->ls_corr = detzcode(p);
371 p += 4;
372 }
373 for (i = 0; i < sp->typecnt; ++i) {
374 register struct ttinfo * ttisp;
375
376 ttisp = &sp->ttis[i];
377 if (ttisstdcnt == 0)
378 ttisp->tt_ttisstd = FALSE;
379 else {
380 ttisp->tt_ttisstd = *p++;
381 if (ttisp->tt_ttisstd != TRUE &&
382 ttisp->tt_ttisstd != FALSE)
383 return -1;
384 }
385 }
386 for (i = 0; i < sp->typecnt; ++i) {
387 register struct ttinfo * ttisp;
388
389 ttisp = &sp->ttis[i];
390 if (ttisgmtcnt == 0)
391 ttisp->tt_ttisgmt = FALSE;
392 else {
393 ttisp->tt_ttisgmt = *p++;
394 if (ttisp->tt_ttisgmt != TRUE &&
395 ttisp->tt_ttisgmt != FALSE)
396 return -1;
397 }
398 }
399 }
400 return 0;
401 }
402
403 static const int mon_lengths[2][MONSPERYEAR] = {
404 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
405 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
406 };
407
408 static const int year_lengths[2] = {
409 DAYSPERNYEAR, DAYSPERLYEAR
410 };
411
412 /*
413 ** Given a pointer into a time zone string, scan until a character that is not
414 ** a valid character in a zone name is found. Return a pointer to that
415 ** character.
416 */
417
418 static const char *
419 getzname(strp)
420 register const char * strp;
421 {
422 register char c;
423
424 while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
425 c != '+')
426 ++strp;
427 return strp;
428 }
429
430 /*
431 ** Given a pointer into a time zone string, extract a number from that string.
432 ** Check that the number is within a specified range; if it is not, return
433 ** NULL.
434 ** Otherwise, return a pointer to the first character not part of the number.
435 */
436
437 static const char *
438 getnum(strp, nump, min, max)
439 register const char * strp;
440 int * const nump;
441 const int min;
442 const int max;
443 {
444 register char c;
445 register int num;
446
447 if (strp == NULL || !isdigit(*strp))
448 return NULL;
449 num = 0;
450 while ((c = *strp) != '\0' && isdigit(c)) {
451 num = num * 10 + (c - '0');
452 if (num > max)
453 return NULL; /* illegal value */
454 ++strp;
455 }
456 if (num < min)
457 return NULL; /* illegal value */
458 *nump = num;
459 return strp;
460 }
461
462 /*
463 ** Given a pointer into a time zone string, extract a number of seconds,
464 ** in hh[:mm[:ss]] form, from the string.
465 ** If any error occurs, return NULL.
466 ** Otherwise, return a pointer to the first character not part of the number
467 ** of seconds.
468 */
469
470 static const char *
471 getsecs(strp, secsp)
472 register const char * strp;
473 long * const secsp;
474 {
475 int num;
476
477 /*
478 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
479 ** "M10.4.6/26", which does not conform to Posix,
480 ** but which specifies the equivalent of
481 ** ``02:00 on the first Sunday on or after 23 Oct''.
482 */
483 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
484 if (strp == NULL)
485 return NULL;
486 *secsp = num * (long) SECSPERHOUR;
487 if (*strp == ':') {
488 ++strp;
489 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
490 if (strp == NULL)
491 return NULL;
492 *secsp += num * SECSPERMIN;
493 if (*strp == ':') {
494 ++strp;
495 /* `SECSPERMIN' allows for leap seconds. */
496 strp = getnum(strp, &num, 0, SECSPERMIN);
497 if (strp == NULL)
498 return NULL;
499 *secsp += num;
500 }
501 }
502 return strp;
503 }
504
505 /*
506 ** Given a pointer into a time zone string, extract an offset, in
507 ** [+-]hh[:mm[:ss]] form, from the string.
508 ** If any error occurs, return NULL.
509 ** Otherwise, return a pointer to the first character not part of the time.
510 */
511
512 static const char *
513 getoffset(strp, offsetp)
514 register const char * strp;
515 long * const offsetp;
516 {
517 register int neg;
518
519 if (*strp == '-') {
520 neg = 1;
521 ++strp;
522 } else if (isdigit(*strp) || *strp++ == '+')
523 neg = 0;
524 else return NULL; /* illegal offset */
525 strp = getsecs(strp, offsetp);
526 if (strp == NULL)
527 return NULL; /* illegal time */
528 if (neg)
529 *offsetp = -*offsetp;
530 return strp;
531 }
532
533 /*
534 ** Given a pointer into a time zone string, extract a rule in the form
535 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
536 ** If a valid rule is not found, return NULL.
537 ** Otherwise, return a pointer to the first character not part of the rule.
538 */
539
540 static const char *
541 getrule(strp, rulep)
542 const char * strp;
543 register struct rule * const rulep;
544 {
545 if (*strp == 'J') {
546 /*
547 ** Julian day.
548 */
549 rulep->r_type = JULIAN_DAY;
550 ++strp;
551 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
552 } else if (*strp == 'M') {
553 /*
554 ** Month, week, day.
555 */
556 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
557 ++strp;
558 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
559 if (strp == NULL)
560 return NULL;
561 if (*strp++ != '.')
562 return NULL;
563 strp = getnum(strp, &rulep->r_week, 1, 5);
564 if (strp == NULL)
565 return NULL;
566 if (*strp++ != '.')
567 return NULL;
568 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
569 } else if (isdigit(*strp)) {
570 /*
571 ** Day of year.
572 */
573 rulep->r_type = DAY_OF_YEAR;
574 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
575 } else return NULL; /* invalid format */
576 if (strp == NULL)
577 return NULL;
578 if (*strp == '/') {
579 /*
580 ** Time specified.
581 */
582 ++strp;
583 strp = getsecs(strp, &rulep->r_time);
584 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
585 return strp;
586 }
587
588 /*
589 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
590 ** year, a rule, and the offset from GMT at the time that rule takes effect,
591 ** calculate the Epoch-relative time that rule takes effect.
592 */
593
594 static time_t
595 transtime(janfirst, year, rulep, offset)
596 const time_t janfirst;
597 const int year;
598 register const struct rule * const rulep;
599 const long offset;
600 {
601 register int leapyear;
602 register time_t value;
603 register int i;
604 int d, m1, yy0, yy1, yy2, dow;
605
606 INITIALIZE(value);
607 leapyear = isleap(year);
608 switch (rulep->r_type) {
609
610 case JULIAN_DAY:
611 /*
612 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
613 ** years.
614 ** In non-leap years, or if the day number is 59 or less, just
615 ** add SECSPERDAY times the day number-1 to the time of
616 ** January 1, midnight, to get the day.
617 */
618 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
619 if (leapyear && rulep->r_day >= 60)
620 value += SECSPERDAY;
621 break;
622
623 case DAY_OF_YEAR:
624 /*
625 ** n - day of year.
626 ** Just add SECSPERDAY times the day number to the time of
627 ** January 1, midnight, to get the day.
628 */
629 value = janfirst + rulep->r_day * SECSPERDAY;
630 break;
631
632 case MONTH_NTH_DAY_OF_WEEK:
633 /*
634 ** Mm.n.d - nth "dth day" of month m.
635 */
636 value = janfirst;
637 for (i = 0; i < rulep->r_mon - 1; ++i)
638 value += mon_lengths[leapyear][i] * SECSPERDAY;
639
640 /*
641 ** Use Zeller's Congruence to get day-of-week of first day of
642 ** month.
643 */
644 m1 = (rulep->r_mon + 9) % 12 + 1;
645 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
646 yy1 = yy0 / 100;
647 yy2 = yy0 % 100;
648 dow = ((26 * m1 - 2) / 10 +
649 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
650 if (dow < 0)
651 dow += DAYSPERWEEK;
652
653 /*
654 ** "dow" is the day-of-week of the first day of the month. Get
655 ** the day-of-month (zero-origin) of the first "dow" day of the
656 ** month.
657 */
658 d = rulep->r_day - dow;
659 if (d < 0)
660 d += DAYSPERWEEK;
661 for (i = 1; i < rulep->r_week; ++i) {
662 if (d + DAYSPERWEEK >=
663 mon_lengths[leapyear][rulep->r_mon - 1])
664 break;
665 d += DAYSPERWEEK;
666 }
667
668 /*
669 ** "d" is the day-of-month (zero-origin) of the day we want.
670 */
671 value += d * SECSPERDAY;
672 break;
673 }
674
675 /*
676 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
677 ** question. To get the Epoch-relative time of the specified local
678 ** time on that day, add the transition time and the current offset
679 ** from GMT.
680 */
681 return value + rulep->r_time + offset;
682 }
683
684 /*
685 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
686 ** appropriate.
687 */
688
689 static int
690 tzparse(name, sp, lastditch)
691 const char * name;
692 register struct state * const sp;
693 const int lastditch;
694 {
695 const char * stdname;
696 const char * dstname;
697 size_t stdlen;
698 size_t dstlen;
699 long stdoffset;
700 long dstoffset;
701 register time_t * atp;
702 register unsigned char * typep;
703 register char * cp;
704 register int load_result;
705
706 INITIALIZE(dstname);
707 stdname = name;
708 if (lastditch) {
709 stdlen = strlen(name); /* length of standard zone name */
710 name += stdlen;
711 if (stdlen >= sizeof sp->chars)
712 stdlen = (sizeof sp->chars) - 1;
713 } else {
714 name = getzname(name);
715 stdlen = name - stdname;
716 if (stdlen < 3)
717 return -1;
718 }
719 if (*name == '\0')
720 return -1; /* was "stdoffset = 0;" */
721 else {
722 name = getoffset(name, &stdoffset);
723 if (name == NULL)
724 return -1;
725 }
726 load_result = tzload(TZDEFRULES, sp);
727 if (load_result != 0)
728 sp->leapcnt = 0; /* so, we're off a little */
729 if (*name != '\0') {
730 dstname = name;
731 name = getzname(name);
732 dstlen = name - dstname; /* length of DST zone name */
733 if (dstlen < 3)
734 return -1;
735 if (*name != '\0' && *name != ',' && *name != ';') {
736 name = getoffset(name, &dstoffset);
737 if (name == NULL)
738 return -1;
739 } else dstoffset = stdoffset - SECSPERHOUR;
740 if (*name == ',' || *name == ';') {
741 struct rule start;
742 struct rule end;
743 register int year;
744 register time_t janfirst;
745 time_t starttime;
746 time_t endtime;
747
748 ++name;
749 if ((name = getrule(name, &start)) == NULL)
750 return -1;
751 if (*name++ != ',')
752 return -1;
753 if ((name = getrule(name, &end)) == NULL)
754 return -1;
755 if (*name != '\0')
756 return -1;
757 sp->typecnt = 2; /* standard time and DST */
758 /*
759 ** Two transitions per year, from EPOCH_YEAR to 2037.
760 */
761 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
762 if (sp->timecnt > TZ_MAX_TIMES)
763 return -1;
764 sp->ttis[0].tt_gmtoff = -dstoffset;
765 sp->ttis[0].tt_isdst = 1;
766 sp->ttis[0].tt_abbrind = stdlen + 1;
767 sp->ttis[1].tt_gmtoff = -stdoffset;
768 sp->ttis[1].tt_isdst = 0;
769 sp->ttis[1].tt_abbrind = 0;
770 atp = sp->ats;
771 typep = sp->types;
772 janfirst = 0;
773 for (year = EPOCH_YEAR; year <= 2037; ++year) {
774 starttime = transtime(janfirst, year, &start,
775 stdoffset);
776 endtime = transtime(janfirst, year, &end,
777 dstoffset);
778 if (starttime > endtime) {
779 *atp++ = endtime;
780 *typep++ = 1; /* DST ends */
781 *atp++ = starttime;
782 *typep++ = 0; /* DST begins */
783 } else {
784 *atp++ = starttime;
785 *typep++ = 0; /* DST begins */
786 *atp++ = endtime;
787 *typep++ = 1; /* DST ends */
788 }
789 janfirst += year_lengths[isleap(year)] *
790 SECSPERDAY;
791 }
792 } else {
793 register long theirstdoffset;
794 register long theirdstoffset;
795 register long theiroffset;
796 register int isdst;
797 register int i;
798 register int j;
799
800 if (*name != '\0')
801 return -1;
802 if (load_result != 0)
803 return -1;
804 /*
805 ** Initial values of theirstdoffset and theirdstoffset.
806 */
807 theirstdoffset = 0;
808 for (i = 0; i < sp->timecnt; ++i) {
809 j = sp->types[i];
810 if (!sp->ttis[j].tt_isdst) {
811 theirstdoffset = -sp->ttis[j].tt_gmtoff;
812 break;
813 }
814 }
815 theirdstoffset = 0;
816 for (i = 0; i < sp->timecnt; ++i) {
817 j = sp->types[i];
818 if (sp->ttis[j].tt_isdst) {
819 theirdstoffset = -sp->ttis[j].tt_gmtoff;
820 break;
821 }
822 }
823 /*
824 ** Initially we're assumed to be in standard time.
825 */
826 isdst = FALSE;
827 theiroffset = theirstdoffset;
828 /*
829 ** Now juggle transition times and types
830 ** tracking offsets as you do.
831 */
832 for (i = 0; i < sp->timecnt; ++i) {
833 j = sp->types[i];
834 sp->types[i] = sp->ttis[j].tt_isdst;
835 if (sp->ttis[j].tt_ttisgmt) {
836 /* No adjustment to transition time */
837 } else {
838 /*
839 ** If summer time is in effect, and the
840 ** transition time was not specified as
841 ** standard time, add the summer time
842 ** offset to the transition time;
843 ** otherwise, add the standard time
844 ** offset to the transition time.
845 */
846 /*
847 ** Transitions from DST to DDST
848 ** will effectively disappear since
849 ** POSIX provides for only one DST
850 ** offset.
851 */
852 if (isdst && !sp->ttis[j].tt_ttisstd) {
853 sp->ats[i] += dstoffset -
854 theirdstoffset;
855 } else {
856 sp->ats[i] += stdoffset -
857 theirstdoffset;
858 }
859 }
860 theiroffset = -sp->ttis[j].tt_gmtoff;
861 if (sp->ttis[j].tt_isdst)
862 theirdstoffset = theiroffset;
863 else theirstdoffset = theiroffset;
864 }
865 /*
866 ** Finally, fill in ttis.
867 ** ttisstd and ttisgmt need not be handled.
868 */
869 sp->ttis[0].tt_gmtoff = -stdoffset;
870 sp->ttis[0].tt_isdst = FALSE;
871 sp->ttis[0].tt_abbrind = 0;
872 sp->ttis[1].tt_gmtoff = -dstoffset;
873 sp->ttis[1].tt_isdst = TRUE;
874 sp->ttis[1].tt_abbrind = stdlen + 1;
875 }
876 } else {
877 dstlen = 0;
878 sp->typecnt = 1; /* only standard time */
879 sp->timecnt = 0;
880 sp->ttis[0].tt_gmtoff = -stdoffset;
881 sp->ttis[0].tt_isdst = 0;
882 sp->ttis[0].tt_abbrind = 0;
883 }
884 sp->charcnt = stdlen + 1;
885 if (dstlen != 0)
886 sp->charcnt += dstlen + 1;
887 if (sp->charcnt > sizeof sp->chars)
888 return -1;
889 cp = sp->chars;
890 (void) strncpy(cp, stdname, stdlen);
891 cp += stdlen;
892 *cp++ = '\0';
893 if (dstlen != 0) {
894 (void) strncpy(cp, dstname, dstlen);
895 *(cp + dstlen) = '\0';
896 }
897 return 0;
898 }
899
900 static void
901 gmtload(sp)
902 struct state * const sp;
903 {
904 if (tzload(gmt, sp) != 0)
905 (void) tzparse(gmt, sp, TRUE);
906 }
907
908 #ifndef STD_INSPIRED
909 /*
910 ** A non-static declaration of tzsetwall in a system header file
911 ** may cause a warning about this upcoming static declaration...
912 */
913 static
914 #endif /* !defined STD_INSPIRED */
915 void
916 tzsetwall P((void))
917 {
918 if (lcl_is_set < 0)
919 return;
920 lcl_is_set = -1;
921
922 #ifdef ALL_STATE
923 if (lclptr == NULL) {
924 lclptr = (struct state *) malloc(sizeof *lclptr);
925 if (lclptr == NULL) {
926 settzname(); /* all we can do */
927 return;
928 }
929 }
930 #endif /* defined ALL_STATE */
931 if (tzload((char *) NULL, lclptr) != 0)
932 gmtload(lclptr);
933 settzname();
934 }
935 __weak_reference(_tzsetwall,tzsetwall);
936
937 void
938 tzset P((void))
939 {
940 register const char * name;
941
942 name = getenv("TZ");
943 if (name == NULL) {
944 tzsetwall();
945 return;
946 }
947
948 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
949 return;
950 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
951 if (lcl_is_set)
952 (void) strcpy(lcl_TZname, name);
953
954 #ifdef ALL_STATE
955 if (lclptr == NULL) {
956 lclptr = (struct state *) malloc(sizeof *lclptr);
957 if (lclptr == NULL) {
958 settzname(); /* all we can do */
959 return;
960 }
961 }
962 #endif /* defined ALL_STATE */
963 if (*name == '\0') {
964 /*
965 ** User wants it fast rather than right.
966 */
967 lclptr->leapcnt = 0; /* so, we're off a little */
968 lclptr->timecnt = 0;
969 lclptr->ttis[0].tt_gmtoff = 0;
970 lclptr->ttis[0].tt_abbrind = 0;
971 (void) strcpy(lclptr->chars, gmt);
972 } else if (tzload(name, lclptr) != 0)
973 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
974 (void) gmtload(lclptr);
975 settzname();
976 }
977
978 /*
979 ** The easy way to behave "as if no library function calls" localtime
980 ** is to not call it--so we drop its guts into "localsub", which can be
981 ** freely called. (And no, the PANS doesn't require the above behavior--
982 ** but it *is* desirable.)
983 **
984 ** The unused offset argument is for the benefit of mktime variants.
985 */
986
987 /*ARGSUSED*/
988 static void
989 localsub(timep, offset, tmp)
990 const time_t * const timep;
991 const long offset;
992 struct tm * const tmp;
993 {
994 register struct state * sp;
995 register const struct ttinfo * ttisp;
996 register int i;
997 const time_t t = *timep;
998
999 sp = lclptr;
1000 #ifdef ALL_STATE
1001 if (sp == NULL) {
1002 gmtsub(timep, offset, tmp);
1003 return;
1004 }
1005 #endif /* defined ALL_STATE */
1006 if (sp->timecnt == 0 || t < sp->ats[0]) {
1007 i = 0;
1008 while (sp->ttis[i].tt_isdst)
1009 if (++i >= sp->typecnt) {
1010 i = 0;
1011 break;
1012 }
1013 } else {
1014 for (i = 1; i < sp->timecnt; ++i)
1015 if (t < sp->ats[i])
1016 break;
1017 i = sp->types[i - 1];
1018 }
1019 ttisp = &sp->ttis[i];
1020 /*
1021 ** To get (wrong) behavior that's compatible with System V Release 2.0
1022 ** you'd replace the statement below with
1023 ** t += ttisp->tt_gmtoff;
1024 ** timesub(&t, 0L, sp, tmp);
1025 */
1026 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1027 tmp->tm_isdst = ttisp->tt_isdst;
1028 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1029 #ifdef TM_ZONE
1030 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1031 #endif /* defined TM_ZONE */
1032 }
1033
1034 struct tm *
1035 localtime(timep)
1036 const time_t * const timep;
1037 {
1038 tzset();
1039 localsub(timep, 0L, &tm);
1040 return &tm;
1041 }
1042
1043 /*
1044 ** gmtsub is to gmtime as localsub is to localtime.
1045 */
1046
1047 static void
1048 gmtsub(timep, offset, tmp)
1049 const time_t * const timep;
1050 const long offset;
1051 struct tm * const tmp;
1052 {
1053 if (!gmt_is_set) {
1054 gmt_is_set = TRUE;
1055 #ifdef ALL_STATE
1056 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1057 if (gmtptr != NULL)
1058 #endif /* defined ALL_STATE */
1059 gmtload(gmtptr);
1060 }
1061 timesub(timep, offset, gmtptr, tmp);
1062 #ifdef TM_ZONE
1063 /*
1064 ** Could get fancy here and deliver something such as
1065 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1066 ** but this is no time for a treasure hunt.
1067 */
1068 if (offset != 0)
1069 tmp->TM_ZONE = wildabbr;
1070 else {
1071 #ifdef ALL_STATE
1072 if (gmtptr == NULL)
1073 tmp->TM_ZONE = gmt;
1074 else tmp->TM_ZONE = gmtptr->chars;
1075 #endif /* defined ALL_STATE */
1076 #ifndef ALL_STATE
1077 tmp->TM_ZONE = gmtptr->chars;
1078 #endif /* State Farm */
1079 }
1080 #endif /* defined TM_ZONE */
1081 }
1082
1083 struct tm *
1084 gmtime(timep)
1085 const time_t * const timep;
1086 {
1087 gmtsub(timep, 0L, &tm);
1088 return &tm;
1089 }
1090
1091 #ifdef STD_INSPIRED
1092
1093 struct tm *
1094 offtime(timep, offset)
1095 const time_t * const timep;
1096 const long offset;
1097 {
1098 gmtsub(timep, offset, &tm);
1099 return &tm;
1100 }
1101 __weak_reference(_offtime,offtime);
1102
1103 #endif /* defined STD_INSPIRED */
1104
1105 static void
1106 timesub(timep, offset, sp, tmp)
1107 const time_t * const timep;
1108 const long offset;
1109 register const struct state * const sp;
1110 register struct tm * const tmp;
1111 {
1112 register const struct lsinfo * lp;
1113 register long days;
1114 register long rem;
1115 register int y;
1116 register int yleap;
1117 register const int * ip;
1118 register long corr;
1119 register int hit;
1120 register int i;
1121
1122 corr = 0;
1123 hit = 0;
1124 #ifdef ALL_STATE
1125 i = (sp == NULL) ? 0 : sp->leapcnt;
1126 #endif /* defined ALL_STATE */
1127 #ifndef ALL_STATE
1128 i = sp->leapcnt;
1129 #endif /* State Farm */
1130 while (--i >= 0) {
1131 lp = &sp->lsis[i];
1132 if (*timep >= lp->ls_trans) {
1133 if (*timep == lp->ls_trans) {
1134 hit = ((i == 0 && lp->ls_corr > 0) ||
1135 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1136 if (hit)
1137 while (i > 0 &&
1138 sp->lsis[i].ls_trans ==
1139 sp->lsis[i - 1].ls_trans + 1 &&
1140 sp->lsis[i].ls_corr ==
1141 sp->lsis[i - 1].ls_corr + 1) {
1142 ++hit;
1143 --i;
1144 }
1145 }
1146 corr = lp->ls_corr;
1147 break;
1148 }
1149 }
1150 days = *timep / SECSPERDAY;
1151 rem = *timep % SECSPERDAY;
1152 #ifdef mc68k
1153 if (*timep == 0x80000000) {
1154 /*
1155 ** A 3B1 muffs the division on the most negative number.
1156 */
1157 days = -24855;
1158 rem = -11648;
1159 }
1160 #endif /* defined mc68k */
1161 rem += (offset - corr);
1162 while (rem < 0) {
1163 rem += SECSPERDAY;
1164 --days;
1165 }
1166 while (rem >= SECSPERDAY) {
1167 rem -= SECSPERDAY;
1168 ++days;
1169 }
1170 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1171 rem = rem % SECSPERHOUR;
1172 tmp->tm_min = (int) (rem / SECSPERMIN);
1173 tmp->tm_sec = (int) (rem % SECSPERMIN);
1174 if (hit)
1175 /*
1176 ** A positive leap second requires a special
1177 ** representation. This uses "... ??:59:60" et seq.
1178 */
1179 tmp->tm_sec += hit;
1180 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1181 if (tmp->tm_wday < 0)
1182 tmp->tm_wday += DAYSPERWEEK;
1183 y = EPOCH_YEAR;
1184 if (days >= 0)
1185 for ( ; ; ) {
1186 yleap = isleap(y);
1187 if (days < (long) year_lengths[yleap])
1188 break;
1189 ++y;
1190 days = days - (long) year_lengths[yleap];
1191 }
1192 else do {
1193 --y;
1194 yleap = isleap(y);
1195 days = days + (long) year_lengths[yleap];
1196 } while (days < 0);
1197 tmp->tm_year = y - TM_YEAR_BASE;
1198 tmp->tm_yday = (int) days;
1199 ip = mon_lengths[yleap];
1200 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1201 days = days - (long) ip[tmp->tm_mon];
1202 tmp->tm_mday = (int) (days + 1);
1203 tmp->tm_isdst = 0;
1204 #ifdef TM_GMTOFF
1205 tmp->TM_GMTOFF = offset;
1206 #endif /* defined TM_GMTOFF */
1207 }
1208
1209 char *
1210 ctime(timep)
1211 const time_t * const timep;
1212 {
1213 /*
1214 ** Section 4.12.3.2 of X3.159-1989 requires that
1215 ** The ctime funciton converts the calendar time pointed to by timer
1216 ** to local time in the form of a string. It is equivalent to
1217 ** asctime(localtime(timer))
1218 */
1219 return asctime(localtime(timep));
1220 }
1221
1222 /*
1223 ** Adapted from code provided by Robert Elz, who writes:
1224 ** The "best" way to do mktime I think is based on an idea of Bob
1225 ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
1226 ** It does a binary search of the time_t space. Since time_t's are
1227 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1228 ** would still be very reasonable).
1229 */
1230
1231 #ifndef WRONG
1232 #define WRONG (-1)
1233 #endif /* !defined WRONG */
1234
1235 /*
1236 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1237 */
1238
1239 static int
1240 increment_overflow(number, delta)
1241 int * number;
1242 int delta;
1243 {
1244 int number0;
1245
1246 number0 = *number;
1247 *number += delta;
1248 return (*number < number0) != (delta < 0);
1249 }
1250
1251 static int
1252 normalize_overflow(tensptr, unitsptr, base)
1253 int * const tensptr;
1254 int * const unitsptr;
1255 const int base;
1256 {
1257 register int tensdelta;
1258
1259 tensdelta = (*unitsptr >= 0) ?
1260 (*unitsptr / base) :
1261 (-1 - (-1 - *unitsptr) / base);
1262 *unitsptr -= tensdelta * base;
1263 return increment_overflow(tensptr, tensdelta);
1264 }
1265
1266 static int
1267 tmcomp(atmp, btmp)
1268 register const struct tm * const atmp;
1269 register const struct tm * const btmp;
1270 {
1271 register int result;
1272
1273 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1274 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1275 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1276 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1277 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1278 result = atmp->tm_sec - btmp->tm_sec;
1279 return result;
1280 }
1281
1282 static time_t
1283 time2(tmp, funcp, offset, okayp)
1284 struct tm * const tmp;
1285 void (* const funcp) P((const time_t*, long, struct tm*));
1286 const long offset;
1287 int * const okayp;
1288 {
1289 register const struct state * sp;
1290 register int dir;
1291 register int bits;
1292 register int i, j ;
1293 register int saved_seconds;
1294 time_t newt;
1295 time_t t;
1296 struct tm yourtm, mytm;
1297
1298 *okayp = FALSE;
1299 yourtm = *tmp;
1300 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1301 return WRONG;
1302 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1303 return WRONG;
1304 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1305 return WRONG;
1306 /*
1307 ** Turn yourtm.tm_year into an actual year number for now.
1308 ** It is converted back to an offset from TM_YEAR_BASE later.
1309 */
1310 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1311 return WRONG;
1312 while (yourtm.tm_mday <= 0) {
1313 if (increment_overflow(&yourtm.tm_year, -1))
1314 return WRONG;
1315 yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
1316 }
1317 while (yourtm.tm_mday > DAYSPERLYEAR) {
1318 yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
1319 if (increment_overflow(&yourtm.tm_year, 1))
1320 return WRONG;
1321 }
1322 for ( ; ; ) {
1323 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1324 if (yourtm.tm_mday <= i)
1325 break;
1326 yourtm.tm_mday -= i;
1327 if (++yourtm.tm_mon >= MONSPERYEAR) {
1328 yourtm.tm_mon = 0;
1329 if (increment_overflow(&yourtm.tm_year, 1))
1330 return WRONG;
1331 }
1332 }
1333 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1334 return WRONG;
1335 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1336 /*
1337 ** We can't set tm_sec to 0, because that might push the
1338 ** time below the minimum representable time.
1339 ** Set tm_sec to 59 instead.
1340 ** This assumes that the minimum representable time is
1341 ** not in the same minute that a leap second was deleted from,
1342 ** which is a safer assumption than using 58 would be.
1343 */
1344 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1345 return WRONG;
1346 saved_seconds = yourtm.tm_sec;
1347 yourtm.tm_sec = SECSPERMIN - 1;
1348 } else {
1349 saved_seconds = yourtm.tm_sec;
1350 yourtm.tm_sec = 0;
1351 }
1352 /*
1353 ** Calculate the number of magnitude bits in a time_t
1354 ** (this works regardless of whether time_t is
1355 ** signed or unsigned, though lint complains if unsigned).
1356 */
1357 for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
1358 continue;
1359 /*
1360 ** If time_t is signed, then 0 is the median value,
1361 ** if time_t is unsigned, then 1 << bits is median.
1362 */
1363 t = (t < 0) ? 0 : ((time_t) 1 << bits);
1364 for ( ; ; ) {
1365 (*funcp)(&t, offset, &mytm);
1366 dir = tmcomp(&mytm, &yourtm);
1367 if (dir != 0) {
1368 if (bits-- < 0)
1369 return WRONG;
1370 if (bits < 0)
1371 --t;
1372 else if (dir > 0)
1373 t -= (time_t) 1 << bits;
1374 else t += (time_t) 1 << bits;
1375 continue;
1376 }
1377 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1378 break;
1379 /*
1380 ** Right time, wrong type.
1381 ** Hunt for right time, right type.
1382 ** It's okay to guess wrong since the guess
1383 ** gets checked.
1384 */
1385 /*
1386 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1387 */
1388 sp = (const struct state *)
1389 (((void *) funcp == (void *) localsub) ?
1390 lclptr : gmtptr);
1391 #ifdef ALL_STATE
1392 if (sp == NULL)
1393 return WRONG;
1394 #endif /* defined ALL_STATE */
1395 for (i = 0; i < sp->typecnt; ++i) {
1396 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1397 continue;
1398 for (j = 0; j < sp->typecnt; ++j) {
1399 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1400 continue;
1401 newt = t + sp->ttis[j].tt_gmtoff -
1402 sp->ttis[i].tt_gmtoff;
1403 (*funcp)(&newt, offset, &mytm);
1404 if (tmcomp(&mytm, &yourtm) != 0)
1405 continue;
1406 if (mytm.tm_isdst != yourtm.tm_isdst)
1407 continue;
1408 /*
1409 ** We have a match.
1410 */
1411 t = newt;
1412 goto label;
1413 }
1414 }
1415 return WRONG;
1416 }
1417 label:
1418 newt = t + saved_seconds;
1419 if ((newt < t) != (saved_seconds < 0))
1420 return WRONG;
1421 t = newt;
1422 (*funcp)(&t, offset, tmp);
1423 *okayp = TRUE;
1424 return t;
1425 }
1426
1427 static time_t
1428 time1(tmp, funcp, offset)
1429 struct tm * const tmp;
1430 void (* const funcp) P((const time_t*, long, struct tm*));
1431 const long offset;
1432 {
1433 register time_t t;
1434 register const struct state * sp;
1435 register int samei, otheri;
1436 int okay;
1437
1438 if (tmp->tm_isdst > 1)
1439 tmp->tm_isdst = 1;
1440 t = time2(tmp, funcp, offset, &okay);
1441 #ifdef PCTS
1442 /*
1443 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1444 */
1445 if (okay)
1446 return t;
1447 if (tmp->tm_isdst < 0)
1448 tmp->tm_isdst = 0; /* reset to std and try again */
1449 #endif /* defined PCTS */
1450 #ifndef PCTS
1451 if (okay || tmp->tm_isdst < 0)
1452 return t;
1453 #endif /* !defined PCTS */
1454 /*
1455 ** We're supposed to assume that somebody took a time of one type
1456 ** and did some math on it that yielded a "struct tm" that's bad.
1457 ** We try to divine the type they started from and adjust to the
1458 ** type they need.
1459 */
1460 /*
1461 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1462 */
1463 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1464 lclptr : gmtptr);
1465 #ifdef ALL_STATE
1466 if (sp == NULL)
1467 return WRONG;
1468 #endif /* defined ALL_STATE */
1469 for (samei = 0; samei < sp->typecnt; ++samei) {
1470 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1471 continue;
1472 for (otheri = 0; otheri < sp->typecnt; ++otheri) {
1473 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1474 continue;
1475 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1476 sp->ttis[samei].tt_gmtoff;
1477 tmp->tm_isdst = !tmp->tm_isdst;
1478 t = time2(tmp, funcp, offset, &okay);
1479 if (okay)
1480 return t;
1481 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1482 sp->ttis[samei].tt_gmtoff;
1483 tmp->tm_isdst = !tmp->tm_isdst;
1484 }
1485 }
1486 return WRONG;
1487 }
1488
1489 time_t
1490 mktime(tmp)
1491 struct tm * const tmp;
1492 {
1493 tzset();
1494 return time1(tmp, localsub, 0L);
1495 }
1496
1497 #ifdef STD_INSPIRED
1498
1499 time_t
1500 timelocal(tmp)
1501 struct tm * const tmp;
1502 {
1503 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1504 return mktime(tmp);
1505 }
1506 __weak_reference(_timelocal,timelocal);
1507
1508 time_t
1509 timegm(tmp)
1510 struct tm * const tmp;
1511 {
1512 tmp->tm_isdst = 0;
1513 return time1(tmp, gmtsub, 0L);
1514 }
1515 __weak_reference(_timegm,timegm);
1516
1517 time_t
1518 timeoff(tmp, offset)
1519 struct tm * const tmp;
1520 const long offset;
1521 {
1522 tmp->tm_isdst = 0;
1523 return time1(tmp, gmtsub, offset);
1524 }
1525 __weak_reference(_timeoff,timeoff);
1526
1527 #endif /* defined STD_INSPIRED */
1528
1529 #ifdef CMUCS
1530
1531 /*
1532 ** The following is supplied for compatibility with
1533 ** previous versions of the CMUCS runtime library.
1534 */
1535
1536 long
1537 gtime(tmp)
1538 struct tm * const tmp;
1539 {
1540 const time_t t = mktime(tmp);
1541
1542 if (t == WRONG)
1543 return -1;
1544 return t;
1545 }
1546
1547 #endif /* defined CMUCS */
1548
1549 /*
1550 ** XXX--is the below the right way to conditionalize??
1551 */
1552
1553 #ifdef STD_INSPIRED
1554
1555 /*
1556 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1557 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1558 ** is not the case if we are accounting for leap seconds.
1559 ** So, we provide the following conversion routines for use
1560 ** when exchanging timestamps with POSIX conforming systems.
1561 */
1562
1563 static long
1564 leapcorr(timep)
1565 time_t * timep;
1566 {
1567 register struct state * sp;
1568 register struct lsinfo * lp;
1569 register int i;
1570
1571 sp = lclptr;
1572 i = sp->leapcnt;
1573 while (--i >= 0) {
1574 lp = &sp->lsis[i];
1575 if (*timep >= lp->ls_trans)
1576 return lp->ls_corr;
1577 }
1578 return 0;
1579 }
1580
1581 time_t
1582 time2posix(t)
1583 time_t t;
1584 {
1585 tzset();
1586 return t - leapcorr(&t);
1587 }
1588 __weak_reference(_time2posix,time2posix);
1589
1590 time_t
1591 posix2time(t)
1592 time_t t;
1593 {
1594 time_t x;
1595 time_t y;
1596
1597 tzset();
1598 /*
1599 ** For a positive leap second hit, the result
1600 ** is not unique. For a negative leap second
1601 ** hit, the corresponding time doesn't exist,
1602 ** so we return an adjacent second.
1603 */
1604 x = t + leapcorr(&t);
1605 y = x - leapcorr(&x);
1606 if (y < t) {
1607 do {
1608 x++;
1609 y = x - leapcorr(&x);
1610 } while (y < t);
1611 if (t != y)
1612 return x - 1;
1613 } else if (y > t) {
1614 do {
1615 --x;
1616 y = x - leapcorr(&x);
1617 } while (y > t);
1618 if (t != y)
1619 return x + 1;
1620 }
1621 return x;
1622 }
1623 __weak_reference(_posix2time,posix2time);
1624
1625 #endif /* defined STD_INSPIRED */
1626