localtime.c revision 1.3.2.3 1 /* $NetBSD: localtime.c,v 1.3.2.3 1995/05/02 19:36:51 jtc Exp $ */
2
3 #ifndef lint
4 #ifndef NOID
5 static char elsieid[] = "@(#)localtime.c 7.43";
6 #endif /* !defined NOID */
7 #endif /* !defined lint */
8
9 /*
10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
11 ** POSIX-style TZ environment variable handling from Guy Harris
12 ** (guy (at) auspex.com).
13 */
14
15 /*LINTLIBRARY*/
16
17 #include "namespace.h"
18 #include "private.h"
19 #include "tzfile.h"
20 #include "fcntl.h"
21
22 /*
23 ** SunOS 4.1.1 headers lack O_BINARY.
24 */
25
26 #ifdef O_BINARY
27 #define OPEN_MODE (O_RDONLY | O_BINARY)
28 #endif /* defined O_BINARY */
29 #ifndef O_BINARY
30 #define OPEN_MODE O_RDONLY
31 #endif /* !defined O_BINARY */
32
33 #ifndef WILDABBR
34 /*
35 ** Someone might make incorrect use of a time zone abbreviation:
36 ** 1. They might reference tzname[0] before calling tzset (explicitly
37 ** or implicitly).
38 ** 2. They might reference tzname[1] before calling tzset (explicitly
39 ** or implicitly).
40 ** 3. They might reference tzname[1] after setting to a time zone
41 ** in which Daylight Saving Time is never observed.
42 ** 4. They might reference tzname[0] after setting to a time zone
43 ** in which Standard Time is never observed.
44 ** 5. They might reference tm.TM_ZONE after calling offtime.
45 ** What's best to do in the above cases is open to debate;
46 ** for now, we just set things up so that in any of the five cases
47 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
48 ** string "tzname[0] used before set", and similarly for the other cases.
49 ** And another: initialize tzname[0] to "ERA", with an explanation in the
50 ** manual page of what this "time zone abbreviation" means (doing this so
51 ** that tzname[0] has the "normal" length of three characters).
52 */
53 #define WILDABBR " "
54 #endif /* !defined WILDABBR */
55
56 static char wildabbr[] = "WILDABBR";
57
58 static const char gmt[] = "GMT";
59
60 struct ttinfo { /* time type information */
61 long tt_gmtoff; /* GMT offset in seconds */
62 int tt_isdst; /* used to set tm_isdst */
63 int tt_abbrind; /* abbreviation list index */
64 int tt_ttisstd; /* TRUE if transition is std time */
65 int tt_ttisgmt; /* TRUE if transition is GMT */
66 };
67
68 struct lsinfo { /* leap second information */
69 time_t ls_trans; /* transition time */
70 long ls_corr; /* correction to apply */
71 };
72
73 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
74
75 #ifdef TZNAME_MAX
76 #define MY_TZNAME_MAX TZNAME_MAX
77 #endif /* defined TZNAME_MAX */
78 #ifndef TZNAME_MAX
79 #define MY_TZNAME_MAX 255
80 #endif /* !defined TZNAME_MAX */
81
82 struct state {
83 int leapcnt;
84 int timecnt;
85 int typecnt;
86 int charcnt;
87 time_t ats[TZ_MAX_TIMES];
88 unsigned char types[TZ_MAX_TIMES];
89 struct ttinfo ttis[TZ_MAX_TYPES];
90 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
91 (2 * (MY_TZNAME_MAX + 1)))];
92 struct lsinfo lsis[TZ_MAX_LEAPS];
93 };
94
95 struct rule {
96 int r_type; /* type of rule--see below */
97 int r_day; /* day number of rule */
98 int r_week; /* week number of rule */
99 int r_mon; /* month number of rule */
100 long r_time; /* transition time of rule */
101 };
102
103 #define JULIAN_DAY 0 /* Jn - Julian day */
104 #define DAY_OF_YEAR 1 /* n - day of year */
105 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
106
107 /*
108 ** Prototypes for static functions.
109 */
110
111 static long detzcode P((const char * codep));
112 static const char * getzname P((const char * strp));
113 static const char * getnum P((const char * strp, int * nump, int min,
114 int max));
115 static const char * getsecs P((const char * strp, long * secsp));
116 static const char * getoffset P((const char * strp, long * offsetp));
117 static const char * getrule P((const char * strp, struct rule * rulep));
118 static void gmtload P((struct state * sp));
119 static void gmtsub P((const time_t * timep, long offset,
120 struct tm * tmp));
121 static void localsub P((const time_t * timep, long offset,
122 struct tm * tmp));
123 static int increment_overflow P((int * number, int delta));
124 static int normalize_overflow P((int * tensptr, int * unitsptr,
125 int base));
126 static void settzname P((void));
127 static time_t time1 P((struct tm * tmp,
128 void(*funcp) P((const time_t *,
129 long, struct tm *)),
130 long offset));
131 static time_t time2 P((struct tm *tmp,
132 void(*funcp) P((const time_t *,
133 long, struct tm*)),
134 long offset, int * okayp));
135 static void timesub P((const time_t * timep, long offset,
136 const struct state * sp, struct tm * tmp));
137 static int tmcomp P((const struct tm * atmp,
138 const struct tm * btmp));
139 static time_t transtime P((time_t janfirst, int year,
140 const struct rule * rulep, long offset));
141 static int tzload P((const char * name, struct state * sp));
142 static int tzparse P((const char * name, struct state * sp,
143 int lastditch));
144
145 #ifdef ALL_STATE
146 static struct state * lclptr;
147 static struct state * gmtptr;
148 #endif /* defined ALL_STATE */
149
150 #ifndef ALL_STATE
151 static struct state lclmem;
152 static struct state gmtmem;
153 #define lclptr (&lclmem)
154 #define gmtptr (&gmtmem)
155 #endif /* State Farm */
156
157 #ifndef TZ_STRLEN_MAX
158 #define TZ_STRLEN_MAX 255
159 #endif /* !defined TZ_STRLEN_MAX */
160
161 static char lcl_TZname[TZ_STRLEN_MAX + 1];
162 static int lcl_is_set;
163 static int gmt_is_set;
164
165 char * tzname[2] = {
166 wildabbr,
167 wildabbr
168 };
169 #pragma weak tzname=_tzname
170
171 /*
172 ** Section 4.12.3 of X3.159-1989 requires that
173 ** Except for the strftime function, these functions [asctime,
174 ** ctime, gmtime, localtime] return values in one of two static
175 ** objects: a broken-down time structure and an array of char.
176 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
177 */
178
179 static struct tm tm;
180
181 #ifdef USG_COMPAT
182 time_t timezone = 0;
183 int daylight = 0;
184 #pragma weak timezone=_timezone
185 #pragma weak daylight=_daylight
186 #endif /* defined USG_COMPAT */
187
188 #ifdef ALTZONE
189 time_t altzone = 0;
190 #pragma weak altzone=_altzone
191 #endif /* defined ALTZONE */
192
193 static long
194 detzcode(codep)
195 const char * const codep;
196 {
197 register long result;
198
199 result = (codep[0] << 24) \
200 | (codep[1] & 0xff) << 16 \
201 | (codep[2] & 0xff) << 8
202 | (codep[3] & 0xff);
203 return result;
204 }
205
206 static void
207 settzname P((void))
208 {
209 register struct state * const sp = lclptr;
210 register int i;
211
212 tzname[0] = wildabbr;
213 tzname[1] = wildabbr;
214 #ifdef USG_COMPAT
215 daylight = 0;
216 timezone = 0;
217 #endif /* defined USG_COMPAT */
218 #ifdef ALTZONE
219 altzone = 0;
220 #endif /* defined ALTZONE */
221 #ifdef ALL_STATE
222 if (sp == NULL) {
223 tzname[0] = tzname[1] = gmt;
224 return;
225 }
226 #endif /* defined ALL_STATE */
227 for (i = 0; i < sp->typecnt; ++i) {
228 register const struct ttinfo * const ttisp = &sp->ttis[i];
229
230 tzname[ttisp->tt_isdst] =
231 &sp->chars[ttisp->tt_abbrind];
232 #ifdef USG_COMPAT
233 if (ttisp->tt_isdst)
234 daylight = 1;
235 if (i == 0 || !ttisp->tt_isdst)
236 timezone = -(ttisp->tt_gmtoff);
237 #endif /* defined USG_COMPAT */
238 #ifdef ALTZONE
239 if (i == 0 || ttisp->tt_isdst)
240 altzone = -(ttisp->tt_gmtoff);
241 #endif /* defined ALTZONE */
242 }
243 /*
244 ** And to get the latest zone names into tzname. . .
245 */
246 for (i = 0; i < sp->timecnt; ++i) {
247 register const struct ttinfo * const ttisp =
248 &sp->ttis[
249 sp->types[i]];
250
251 tzname[ttisp->tt_isdst] =
252 &sp->chars[ttisp->tt_abbrind];
253 }
254 }
255
256 static int
257 tzload(name, sp)
258 register const char * name;
259 register struct state * const sp;
260 {
261 register const char * p;
262 register int i;
263 register int fid;
264
265 if (name == NULL && (name = TZDEFAULT) == NULL)
266 return -1;
267 {
268 register int doaccess;
269 /*
270 ** Section 4.9.1 of the C standard says that
271 ** "FILENAME_MAX expands to an integral constant expression
272 ** that is the sie needed for an array of char large enough
273 ** to hold the longest file name string that the implementation
274 ** guarantees can be opened."
275 */
276 char fullname[FILENAME_MAX + 1];
277
278 if (name[0] == ':')
279 ++name;
280 doaccess = name[0] == '/';
281 if (!doaccess) {
282 if ((p = TZDIR) == NULL)
283 return -1;
284 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
285 return -1;
286 (void) strcpy(fullname, p);
287 (void) strcat(fullname, "/");
288 (void) strcat(fullname, name);
289 /*
290 ** Set doaccess if '.' (as in "../") shows up in name.
291 */
292 if (strchr(name, '.') != NULL)
293 doaccess = TRUE;
294 name = fullname;
295 }
296 if (doaccess && access(name, R_OK) != 0)
297 return -1;
298 if ((fid = open(name, OPEN_MODE)) == -1)
299 return -1;
300 }
301 {
302 struct tzhead * tzhp;
303 char buf[sizeof *sp + sizeof *tzhp];
304 int ttisstdcnt;
305 int ttisgmtcnt;
306
307 i = read(fid, buf, sizeof buf);
308 if (close(fid) != 0)
309 return -1;
310 p = buf;
311 p += sizeof tzhp->tzh_reserved;
312 ttisstdcnt = (int) detzcode(p);
313 p += 4;
314 ttisgmtcnt = (int) detzcode(p);
315 p += 4;
316 sp->leapcnt = (int) detzcode(p);
317 p += 4;
318 sp->timecnt = (int) detzcode(p);
319 p += 4;
320 sp->typecnt = (int) detzcode(p);
321 p += 4;
322 sp->charcnt = (int) detzcode(p);
323 p += 4;
324 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
325 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
326 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
327 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
328 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
329 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
330 return -1;
331 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
332 sp->timecnt + /* types */
333 sp->typecnt * (4 + 2) + /* ttinfos */
334 sp->charcnt + /* chars */
335 sp->leapcnt * (4 + 4) + /* lsinfos */
336 ttisstdcnt + /* ttisstds */
337 ttisgmtcnt) /* ttisgmts */
338 return -1;
339 for (i = 0; i < sp->timecnt; ++i) {
340 sp->ats[i] = detzcode(p);
341 p += 4;
342 }
343 for (i = 0; i < sp->timecnt; ++i) {
344 sp->types[i] = (unsigned char) *p++;
345 if (sp->types[i] >= sp->typecnt)
346 return -1;
347 }
348 for (i = 0; i < sp->typecnt; ++i) {
349 register struct ttinfo * ttisp;
350
351 ttisp = &sp->ttis[i];
352 ttisp->tt_gmtoff = detzcode(p);
353 p += 4;
354 ttisp->tt_isdst = (unsigned char) *p++;
355 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
356 return -1;
357 ttisp->tt_abbrind = (unsigned char) *p++;
358 if (ttisp->tt_abbrind < 0 ||
359 ttisp->tt_abbrind > sp->charcnt)
360 return -1;
361 }
362 for (i = 0; i < sp->charcnt; ++i)
363 sp->chars[i] = *p++;
364 sp->chars[i] = '\0'; /* ensure '\0' at end */
365 for (i = 0; i < sp->leapcnt; ++i) {
366 register struct lsinfo * lsisp;
367
368 lsisp = &sp->lsis[i];
369 lsisp->ls_trans = detzcode(p);
370 p += 4;
371 lsisp->ls_corr = detzcode(p);
372 p += 4;
373 }
374 for (i = 0; i < sp->typecnt; ++i) {
375 register struct ttinfo * ttisp;
376
377 ttisp = &sp->ttis[i];
378 if (ttisstdcnt == 0)
379 ttisp->tt_ttisstd = FALSE;
380 else {
381 ttisp->tt_ttisstd = *p++;
382 if (ttisp->tt_ttisstd != TRUE &&
383 ttisp->tt_ttisstd != FALSE)
384 return -1;
385 }
386 }
387 for (i = 0; i < sp->typecnt; ++i) {
388 register struct ttinfo * ttisp;
389
390 ttisp = &sp->ttis[i];
391 if (ttisgmtcnt == 0)
392 ttisp->tt_ttisgmt = FALSE;
393 else {
394 ttisp->tt_ttisgmt = *p++;
395 if (ttisp->tt_ttisgmt != TRUE &&
396 ttisp->tt_ttisgmt != FALSE)
397 return -1;
398 }
399 }
400 }
401 return 0;
402 }
403
404 static const int mon_lengths[2][MONSPERYEAR] = {
405 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
406 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
407 };
408
409 static const int year_lengths[2] = {
410 DAYSPERNYEAR, DAYSPERLYEAR
411 };
412
413 /*
414 ** Given a pointer into a time zone string, scan until a character that is not
415 ** a valid character in a zone name is found. Return a pointer to that
416 ** character.
417 */
418
419 static const char *
420 getzname(strp)
421 register const char * strp;
422 {
423 register char c;
424
425 while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
426 c != '+')
427 ++strp;
428 return strp;
429 }
430
431 /*
432 ** Given a pointer into a time zone string, extract a number from that string.
433 ** Check that the number is within a specified range; if it is not, return
434 ** NULL.
435 ** Otherwise, return a pointer to the first character not part of the number.
436 */
437
438 static const char *
439 getnum(strp, nump, min, max)
440 register const char * strp;
441 int * const nump;
442 const int min;
443 const int max;
444 {
445 register char c;
446 register int num;
447
448 if (strp == NULL || !isdigit(*strp))
449 return NULL;
450 num = 0;
451 while ((c = *strp) != '\0' && isdigit(c)) {
452 num = num * 10 + (c - '0');
453 if (num > max)
454 return NULL; /* illegal value */
455 ++strp;
456 }
457 if (num < min)
458 return NULL; /* illegal value */
459 *nump = num;
460 return strp;
461 }
462
463 /*
464 ** Given a pointer into a time zone string, extract a number of seconds,
465 ** in hh[:mm[:ss]] form, from the string.
466 ** If any error occurs, return NULL.
467 ** Otherwise, return a pointer to the first character not part of the number
468 ** of seconds.
469 */
470
471 static const char *
472 getsecs(strp, secsp)
473 register const char * strp;
474 long * const secsp;
475 {
476 int num;
477
478 /*
479 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
480 ** "M10.4.6/26", which does not conform to Posix,
481 ** but which specifies the equivalent of
482 ** ``02:00 on the first Sunday on or after 23 Oct''.
483 */
484 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
485 if (strp == NULL)
486 return NULL;
487 *secsp = num * (long) SECSPERHOUR;
488 if (*strp == ':') {
489 ++strp;
490 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
491 if (strp == NULL)
492 return NULL;
493 *secsp += num * SECSPERMIN;
494 if (*strp == ':') {
495 ++strp;
496 /* `SECSPERMIN' allows for leap seconds. */
497 strp = getnum(strp, &num, 0, SECSPERMIN);
498 if (strp == NULL)
499 return NULL;
500 *secsp += num;
501 }
502 }
503 return strp;
504 }
505
506 /*
507 ** Given a pointer into a time zone string, extract an offset, in
508 ** [+-]hh[:mm[:ss]] form, from the string.
509 ** If any error occurs, return NULL.
510 ** Otherwise, return a pointer to the first character not part of the time.
511 */
512
513 static const char *
514 getoffset(strp, offsetp)
515 register const char * strp;
516 long * const offsetp;
517 {
518 register int neg;
519
520 if (*strp == '-') {
521 neg = 1;
522 ++strp;
523 } else if (isdigit(*strp) || *strp++ == '+')
524 neg = 0;
525 else return NULL; /* illegal offset */
526 strp = getsecs(strp, offsetp);
527 if (strp == NULL)
528 return NULL; /* illegal time */
529 if (neg)
530 *offsetp = -*offsetp;
531 return strp;
532 }
533
534 /*
535 ** Given a pointer into a time zone string, extract a rule in the form
536 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
537 ** If a valid rule is not found, return NULL.
538 ** Otherwise, return a pointer to the first character not part of the rule.
539 */
540
541 static const char *
542 getrule(strp, rulep)
543 const char * strp;
544 register struct rule * const rulep;
545 {
546 if (*strp == 'J') {
547 /*
548 ** Julian day.
549 */
550 rulep->r_type = JULIAN_DAY;
551 ++strp;
552 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
553 } else if (*strp == 'M') {
554 /*
555 ** Month, week, day.
556 */
557 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
558 ++strp;
559 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
560 if (strp == NULL)
561 return NULL;
562 if (*strp++ != '.')
563 return NULL;
564 strp = getnum(strp, &rulep->r_week, 1, 5);
565 if (strp == NULL)
566 return NULL;
567 if (*strp++ != '.')
568 return NULL;
569 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
570 } else if (isdigit(*strp)) {
571 /*
572 ** Day of year.
573 */
574 rulep->r_type = DAY_OF_YEAR;
575 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
576 } else return NULL; /* invalid format */
577 if (strp == NULL)
578 return NULL;
579 if (*strp == '/') {
580 /*
581 ** Time specified.
582 */
583 ++strp;
584 strp = getsecs(strp, &rulep->r_time);
585 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
586 return strp;
587 }
588
589 /*
590 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
591 ** year, a rule, and the offset from GMT at the time that rule takes effect,
592 ** calculate the Epoch-relative time that rule takes effect.
593 */
594
595 static time_t
596 transtime(janfirst, year, rulep, offset)
597 const time_t janfirst;
598 const int year;
599 register const struct rule * const rulep;
600 const long offset;
601 {
602 register int leapyear;
603 register time_t value;
604 register int i;
605 int d, m1, yy0, yy1, yy2, dow;
606
607 INITIALIZE(value);
608 leapyear = isleap(year);
609 switch (rulep->r_type) {
610
611 case JULIAN_DAY:
612 /*
613 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
614 ** years.
615 ** In non-leap years, or if the day number is 59 or less, just
616 ** add SECSPERDAY times the day number-1 to the time of
617 ** January 1, midnight, to get the day.
618 */
619 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
620 if (leapyear && rulep->r_day >= 60)
621 value += SECSPERDAY;
622 break;
623
624 case DAY_OF_YEAR:
625 /*
626 ** n - day of year.
627 ** Just add SECSPERDAY times the day number to the time of
628 ** January 1, midnight, to get the day.
629 */
630 value = janfirst + rulep->r_day * SECSPERDAY;
631 break;
632
633 case MONTH_NTH_DAY_OF_WEEK:
634 /*
635 ** Mm.n.d - nth "dth day" of month m.
636 */
637 value = janfirst;
638 for (i = 0; i < rulep->r_mon - 1; ++i)
639 value += mon_lengths[leapyear][i] * SECSPERDAY;
640
641 /*
642 ** Use Zeller's Congruence to get day-of-week of first day of
643 ** month.
644 */
645 m1 = (rulep->r_mon + 9) % 12 + 1;
646 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
647 yy1 = yy0 / 100;
648 yy2 = yy0 % 100;
649 dow = ((26 * m1 - 2) / 10 +
650 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
651 if (dow < 0)
652 dow += DAYSPERWEEK;
653
654 /*
655 ** "dow" is the day-of-week of the first day of the month. Get
656 ** the day-of-month (zero-origin) of the first "dow" day of the
657 ** month.
658 */
659 d = rulep->r_day - dow;
660 if (d < 0)
661 d += DAYSPERWEEK;
662 for (i = 1; i < rulep->r_week; ++i) {
663 if (d + DAYSPERWEEK >=
664 mon_lengths[leapyear][rulep->r_mon - 1])
665 break;
666 d += DAYSPERWEEK;
667 }
668
669 /*
670 ** "d" is the day-of-month (zero-origin) of the day we want.
671 */
672 value += d * SECSPERDAY;
673 break;
674 }
675
676 /*
677 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
678 ** question. To get the Epoch-relative time of the specified local
679 ** time on that day, add the transition time and the current offset
680 ** from GMT.
681 */
682 return value + rulep->r_time + offset;
683 }
684
685 /*
686 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
687 ** appropriate.
688 */
689
690 static int
691 tzparse(name, sp, lastditch)
692 const char * name;
693 register struct state * const sp;
694 const int lastditch;
695 {
696 const char * stdname;
697 const char * dstname;
698 size_t stdlen;
699 size_t dstlen;
700 long stdoffset;
701 long dstoffset;
702 register time_t * atp;
703 register unsigned char * typep;
704 register char * cp;
705 register int load_result;
706
707 INITIALIZE(dstname);
708 stdname = name;
709 if (lastditch) {
710 stdlen = strlen(name); /* length of standard zone name */
711 name += stdlen;
712 if (stdlen >= sizeof sp->chars)
713 stdlen = (sizeof sp->chars) - 1;
714 } else {
715 name = getzname(name);
716 stdlen = name - stdname;
717 if (stdlen < 3)
718 return -1;
719 }
720 if (*name == '\0')
721 return -1; /* was "stdoffset = 0;" */
722 else {
723 name = getoffset(name, &stdoffset);
724 if (name == NULL)
725 return -1;
726 }
727 load_result = tzload(TZDEFRULES, sp);
728 if (load_result != 0)
729 sp->leapcnt = 0; /* so, we're off a little */
730 if (*name != '\0') {
731 dstname = name;
732 name = getzname(name);
733 dstlen = name - dstname; /* length of DST zone name */
734 if (dstlen < 3)
735 return -1;
736 if (*name != '\0' && *name != ',' && *name != ';') {
737 name = getoffset(name, &dstoffset);
738 if (name == NULL)
739 return -1;
740 } else dstoffset = stdoffset - SECSPERHOUR;
741 if (*name == ',' || *name == ';') {
742 struct rule start;
743 struct rule end;
744 register int year;
745 register time_t janfirst;
746 time_t starttime;
747 time_t endtime;
748
749 ++name;
750 if ((name = getrule(name, &start)) == NULL)
751 return -1;
752 if (*name++ != ',')
753 return -1;
754 if ((name = getrule(name, &end)) == NULL)
755 return -1;
756 if (*name != '\0')
757 return -1;
758 sp->typecnt = 2; /* standard time and DST */
759 /*
760 ** Two transitions per year, from EPOCH_YEAR to 2037.
761 */
762 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
763 if (sp->timecnt > TZ_MAX_TIMES)
764 return -1;
765 sp->ttis[0].tt_gmtoff = -dstoffset;
766 sp->ttis[0].tt_isdst = 1;
767 sp->ttis[0].tt_abbrind = stdlen + 1;
768 sp->ttis[1].tt_gmtoff = -stdoffset;
769 sp->ttis[1].tt_isdst = 0;
770 sp->ttis[1].tt_abbrind = 0;
771 atp = sp->ats;
772 typep = sp->types;
773 janfirst = 0;
774 for (year = EPOCH_YEAR; year <= 2037; ++year) {
775 starttime = transtime(janfirst, year, &start,
776 stdoffset);
777 endtime = transtime(janfirst, year, &end,
778 dstoffset);
779 if (starttime > endtime) {
780 *atp++ = endtime;
781 *typep++ = 1; /* DST ends */
782 *atp++ = starttime;
783 *typep++ = 0; /* DST begins */
784 } else {
785 *atp++ = starttime;
786 *typep++ = 0; /* DST begins */
787 *atp++ = endtime;
788 *typep++ = 1; /* DST ends */
789 }
790 janfirst += year_lengths[isleap(year)] *
791 SECSPERDAY;
792 }
793 } else {
794 register long theirstdoffset;
795 register long theirdstoffset;
796 register long theiroffset;
797 register int isdst;
798 register int i;
799 register int j;
800
801 if (*name != '\0')
802 return -1;
803 if (load_result != 0)
804 return -1;
805 /*
806 ** Initial values of theirstdoffset and theirdstoffset.
807 */
808 theirstdoffset = 0;
809 for (i = 0; i < sp->timecnt; ++i) {
810 j = sp->types[i];
811 if (!sp->ttis[j].tt_isdst) {
812 theirstdoffset = -sp->ttis[j].tt_gmtoff;
813 break;
814 }
815 }
816 theirdstoffset = 0;
817 for (i = 0; i < sp->timecnt; ++i) {
818 j = sp->types[i];
819 if (sp->ttis[j].tt_isdst) {
820 theirdstoffset = -sp->ttis[j].tt_gmtoff;
821 break;
822 }
823 }
824 /*
825 ** Initially we're assumed to be in standard time.
826 */
827 isdst = FALSE;
828 theiroffset = theirstdoffset;
829 /*
830 ** Now juggle transition times and types
831 ** tracking offsets as you do.
832 */
833 for (i = 0; i < sp->timecnt; ++i) {
834 j = sp->types[i];
835 sp->types[i] = sp->ttis[j].tt_isdst;
836 if (sp->ttis[j].tt_ttisgmt) {
837 /* No adjustment to transition time */
838 } else {
839 /*
840 ** If summer time is in effect, and the
841 ** transition time was not specified as
842 ** standard time, add the summer time
843 ** offset to the transition time;
844 ** otherwise, add the standard time
845 ** offset to the transition time.
846 */
847 /*
848 ** Transitions from DST to DDST
849 ** will effectively disappear since
850 ** POSIX provides for only one DST
851 ** offset.
852 */
853 if (isdst && !sp->ttis[j].tt_ttisstd) {
854 sp->ats[i] += dstoffset -
855 theirdstoffset;
856 } else {
857 sp->ats[i] += stdoffset -
858 theirstdoffset;
859 }
860 }
861 theiroffset = -sp->ttis[j].tt_gmtoff;
862 if (sp->ttis[j].tt_isdst)
863 theirdstoffset = theiroffset;
864 else theirstdoffset = theiroffset;
865 }
866 /*
867 ** Finally, fill in ttis.
868 ** ttisstd and ttisgmt need not be handled.
869 */
870 sp->ttis[0].tt_gmtoff = -stdoffset;
871 sp->ttis[0].tt_isdst = FALSE;
872 sp->ttis[0].tt_abbrind = 0;
873 sp->ttis[1].tt_gmtoff = -dstoffset;
874 sp->ttis[1].tt_isdst = TRUE;
875 sp->ttis[1].tt_abbrind = stdlen + 1;
876 }
877 } else {
878 dstlen = 0;
879 sp->typecnt = 1; /* only standard time */
880 sp->timecnt = 0;
881 sp->ttis[0].tt_gmtoff = -stdoffset;
882 sp->ttis[0].tt_isdst = 0;
883 sp->ttis[0].tt_abbrind = 0;
884 }
885 sp->charcnt = stdlen + 1;
886 if (dstlen != 0)
887 sp->charcnt += dstlen + 1;
888 if (sp->charcnt > sizeof sp->chars)
889 return -1;
890 cp = sp->chars;
891 (void) strncpy(cp, stdname, stdlen);
892 cp += stdlen;
893 *cp++ = '\0';
894 if (dstlen != 0) {
895 (void) strncpy(cp, dstname, dstlen);
896 *(cp + dstlen) = '\0';
897 }
898 return 0;
899 }
900
901 static void
902 gmtload(sp)
903 struct state * const sp;
904 {
905 if (tzload(gmt, sp) != 0)
906 (void) tzparse(gmt, sp, TRUE);
907 }
908
909 #ifndef STD_INSPIRED
910 /*
911 ** A non-static declaration of tzsetwall in a system header file
912 ** may cause a warning about this upcoming static declaration...
913 */
914 static
915 #endif /* !defined STD_INSPIRED */
916 void
917 tzsetwall P((void))
918 {
919 if (lcl_is_set < 0)
920 return;
921 lcl_is_set = -1;
922
923 #ifdef ALL_STATE
924 if (lclptr == NULL) {
925 lclptr = (struct state *) malloc(sizeof *lclptr);
926 if (lclptr == NULL) {
927 settzname(); /* all we can do */
928 return;
929 }
930 }
931 #endif /* defined ALL_STATE */
932 if (tzload((char *) NULL, lclptr) != 0)
933 gmtload(lclptr);
934 settzname();
935 }
936 #pragma weak tzsetwall=_tzsetwall
937
938 void
939 tzset P((void))
940 {
941 register const char * name;
942
943 name = getenv("TZ");
944 if (name == NULL) {
945 tzsetwall();
946 return;
947 }
948
949 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
950 return;
951 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
952 if (lcl_is_set)
953 (void) strcpy(lcl_TZname, name);
954
955 #ifdef ALL_STATE
956 if (lclptr == NULL) {
957 lclptr = (struct state *) malloc(sizeof *lclptr);
958 if (lclptr == NULL) {
959 settzname(); /* all we can do */
960 return;
961 }
962 }
963 #endif /* defined ALL_STATE */
964 if (*name == '\0') {
965 /*
966 ** User wants it fast rather than right.
967 */
968 lclptr->leapcnt = 0; /* so, we're off a little */
969 lclptr->timecnt = 0;
970 lclptr->ttis[0].tt_gmtoff = 0;
971 lclptr->ttis[0].tt_abbrind = 0;
972 (void) strcpy(lclptr->chars, gmt);
973 } else if (tzload(name, lclptr) != 0)
974 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
975 (void) gmtload(lclptr);
976 settzname();
977 }
978
979 /*
980 ** The easy way to behave "as if no library function calls" localtime
981 ** is to not call it--so we drop its guts into "localsub", which can be
982 ** freely called. (And no, the PANS doesn't require the above behavior--
983 ** but it *is* desirable.)
984 **
985 ** The unused offset argument is for the benefit of mktime variants.
986 */
987
988 /*ARGSUSED*/
989 static void
990 localsub(timep, offset, tmp)
991 const time_t * const timep;
992 const long offset;
993 struct tm * const tmp;
994 {
995 register struct state * sp;
996 register const struct ttinfo * ttisp;
997 register int i;
998 const time_t t = *timep;
999
1000 sp = lclptr;
1001 #ifdef ALL_STATE
1002 if (sp == NULL) {
1003 gmtsub(timep, offset, tmp);
1004 return;
1005 }
1006 #endif /* defined ALL_STATE */
1007 if (sp->timecnt == 0 || t < sp->ats[0]) {
1008 i = 0;
1009 while (sp->ttis[i].tt_isdst)
1010 if (++i >= sp->typecnt) {
1011 i = 0;
1012 break;
1013 }
1014 } else {
1015 for (i = 1; i < sp->timecnt; ++i)
1016 if (t < sp->ats[i])
1017 break;
1018 i = sp->types[i - 1];
1019 }
1020 ttisp = &sp->ttis[i];
1021 /*
1022 ** To get (wrong) behavior that's compatible with System V Release 2.0
1023 ** you'd replace the statement below with
1024 ** t += ttisp->tt_gmtoff;
1025 ** timesub(&t, 0L, sp, tmp);
1026 */
1027 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1028 tmp->tm_isdst = ttisp->tt_isdst;
1029 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1030 #ifdef TM_ZONE
1031 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1032 #endif /* defined TM_ZONE */
1033 }
1034
1035 struct tm *
1036 localtime(timep)
1037 const time_t * const timep;
1038 {
1039 tzset();
1040 localsub(timep, 0L, &tm);
1041 return &tm;
1042 }
1043
1044 /*
1045 ** gmtsub is to gmtime as localsub is to localtime.
1046 */
1047
1048 static void
1049 gmtsub(timep, offset, tmp)
1050 const time_t * const timep;
1051 const long offset;
1052 struct tm * const tmp;
1053 {
1054 if (!gmt_is_set) {
1055 gmt_is_set = TRUE;
1056 #ifdef ALL_STATE
1057 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1058 if (gmtptr != NULL)
1059 #endif /* defined ALL_STATE */
1060 gmtload(gmtptr);
1061 }
1062 timesub(timep, offset, gmtptr, tmp);
1063 #ifdef TM_ZONE
1064 /*
1065 ** Could get fancy here and deliver something such as
1066 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1067 ** but this is no time for a treasure hunt.
1068 */
1069 if (offset != 0)
1070 tmp->TM_ZONE = wildabbr;
1071 else {
1072 #ifdef ALL_STATE
1073 if (gmtptr == NULL)
1074 tmp->TM_ZONE = gmt;
1075 else tmp->TM_ZONE = gmtptr->chars;
1076 #endif /* defined ALL_STATE */
1077 #ifndef ALL_STATE
1078 tmp->TM_ZONE = gmtptr->chars;
1079 #endif /* State Farm */
1080 }
1081 #endif /* defined TM_ZONE */
1082 }
1083
1084 struct tm *
1085 gmtime(timep)
1086 const time_t * const timep;
1087 {
1088 gmtsub(timep, 0L, &tm);
1089 return &tm;
1090 }
1091
1092 #ifdef STD_INSPIRED
1093
1094 struct tm *
1095 offtime(timep, offset)
1096 const time_t * const timep;
1097 const long offset;
1098 {
1099 gmtsub(timep, offset, &tm);
1100 return &tm;
1101 }
1102 #pragma weak offtime=_offtime
1103
1104 #endif /* defined STD_INSPIRED */
1105
1106 static void
1107 timesub(timep, offset, sp, tmp)
1108 const time_t * const timep;
1109 const long offset;
1110 register const struct state * const sp;
1111 register struct tm * const tmp;
1112 {
1113 register const struct lsinfo * lp;
1114 register long days;
1115 register long rem;
1116 register int y;
1117 register int yleap;
1118 register const int * ip;
1119 register long corr;
1120 register int hit;
1121 register int i;
1122
1123 corr = 0;
1124 hit = 0;
1125 #ifdef ALL_STATE
1126 i = (sp == NULL) ? 0 : sp->leapcnt;
1127 #endif /* defined ALL_STATE */
1128 #ifndef ALL_STATE
1129 i = sp->leapcnt;
1130 #endif /* State Farm */
1131 while (--i >= 0) {
1132 lp = &sp->lsis[i];
1133 if (*timep >= lp->ls_trans) {
1134 if (*timep == lp->ls_trans) {
1135 hit = ((i == 0 && lp->ls_corr > 0) ||
1136 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1137 if (hit)
1138 while (i > 0 &&
1139 sp->lsis[i].ls_trans ==
1140 sp->lsis[i - 1].ls_trans + 1 &&
1141 sp->lsis[i].ls_corr ==
1142 sp->lsis[i - 1].ls_corr + 1) {
1143 ++hit;
1144 --i;
1145 }
1146 }
1147 corr = lp->ls_corr;
1148 break;
1149 }
1150 }
1151 days = *timep / SECSPERDAY;
1152 rem = *timep % SECSPERDAY;
1153 #ifdef mc68k
1154 if (*timep == 0x80000000) {
1155 /*
1156 ** A 3B1 muffs the division on the most negative number.
1157 */
1158 days = -24855;
1159 rem = -11648;
1160 }
1161 #endif /* defined mc68k */
1162 rem += (offset - corr);
1163 while (rem < 0) {
1164 rem += SECSPERDAY;
1165 --days;
1166 }
1167 while (rem >= SECSPERDAY) {
1168 rem -= SECSPERDAY;
1169 ++days;
1170 }
1171 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1172 rem = rem % SECSPERHOUR;
1173 tmp->tm_min = (int) (rem / SECSPERMIN);
1174 tmp->tm_sec = (int) (rem % SECSPERMIN);
1175 if (hit)
1176 /*
1177 ** A positive leap second requires a special
1178 ** representation. This uses "... ??:59:60" et seq.
1179 */
1180 tmp->tm_sec += hit;
1181 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1182 if (tmp->tm_wday < 0)
1183 tmp->tm_wday += DAYSPERWEEK;
1184 y = EPOCH_YEAR;
1185 if (days >= 0)
1186 for ( ; ; ) {
1187 yleap = isleap(y);
1188 if (days < (long) year_lengths[yleap])
1189 break;
1190 ++y;
1191 days = days - (long) year_lengths[yleap];
1192 }
1193 else do {
1194 --y;
1195 yleap = isleap(y);
1196 days = days + (long) year_lengths[yleap];
1197 } while (days < 0);
1198 tmp->tm_year = y - TM_YEAR_BASE;
1199 tmp->tm_yday = (int) days;
1200 ip = mon_lengths[yleap];
1201 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1202 days = days - (long) ip[tmp->tm_mon];
1203 tmp->tm_mday = (int) (days + 1);
1204 tmp->tm_isdst = 0;
1205 #ifdef TM_GMTOFF
1206 tmp->TM_GMTOFF = offset;
1207 #endif /* defined TM_GMTOFF */
1208 }
1209
1210 char *
1211 ctime(timep)
1212 const time_t * const timep;
1213 {
1214 /*
1215 ** Section 4.12.3.2 of X3.159-1989 requires that
1216 ** The ctime funciton converts the calendar time pointed to by timer
1217 ** to local time in the form of a string. It is equivalent to
1218 ** asctime(localtime(timer))
1219 */
1220 return asctime(localtime(timep));
1221 }
1222
1223 /*
1224 ** Adapted from code provided by Robert Elz, who writes:
1225 ** The "best" way to do mktime I think is based on an idea of Bob
1226 ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
1227 ** It does a binary search of the time_t space. Since time_t's are
1228 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1229 ** would still be very reasonable).
1230 */
1231
1232 #ifndef WRONG
1233 #define WRONG (-1)
1234 #endif /* !defined WRONG */
1235
1236 /*
1237 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1238 */
1239
1240 static int
1241 increment_overflow(number, delta)
1242 int * number;
1243 int delta;
1244 {
1245 int number0;
1246
1247 number0 = *number;
1248 *number += delta;
1249 return (*number < number0) != (delta < 0);
1250 }
1251
1252 static int
1253 normalize_overflow(tensptr, unitsptr, base)
1254 int * const tensptr;
1255 int * const unitsptr;
1256 const int base;
1257 {
1258 register int tensdelta;
1259
1260 tensdelta = (*unitsptr >= 0) ?
1261 (*unitsptr / base) :
1262 (-1 - (-1 - *unitsptr) / base);
1263 *unitsptr -= tensdelta * base;
1264 return increment_overflow(tensptr, tensdelta);
1265 }
1266
1267 static int
1268 tmcomp(atmp, btmp)
1269 register const struct tm * const atmp;
1270 register const struct tm * const btmp;
1271 {
1272 register int result;
1273
1274 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1275 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1276 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1277 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1278 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1279 result = atmp->tm_sec - btmp->tm_sec;
1280 return result;
1281 }
1282
1283 static time_t
1284 time2(tmp, funcp, offset, okayp)
1285 struct tm * const tmp;
1286 void (* const funcp) P((const time_t*, long, struct tm*));
1287 const long offset;
1288 int * const okayp;
1289 {
1290 register const struct state * sp;
1291 register int dir;
1292 register int bits;
1293 register int i, j ;
1294 register int saved_seconds;
1295 time_t newt;
1296 time_t t;
1297 struct tm yourtm, mytm;
1298
1299 *okayp = FALSE;
1300 yourtm = *tmp;
1301 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1302 return WRONG;
1303 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1304 return WRONG;
1305 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1306 return WRONG;
1307 /*
1308 ** Turn yourtm.tm_year into an actual year number for now.
1309 ** It is converted back to an offset from TM_YEAR_BASE later.
1310 */
1311 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1312 return WRONG;
1313 while (yourtm.tm_mday <= 0) {
1314 if (increment_overflow(&yourtm.tm_year, -1))
1315 return WRONG;
1316 yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
1317 }
1318 while (yourtm.tm_mday > DAYSPERLYEAR) {
1319 yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
1320 if (increment_overflow(&yourtm.tm_year, 1))
1321 return WRONG;
1322 }
1323 for ( ; ; ) {
1324 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1325 if (yourtm.tm_mday <= i)
1326 break;
1327 yourtm.tm_mday -= i;
1328 if (++yourtm.tm_mon >= MONSPERYEAR) {
1329 yourtm.tm_mon = 0;
1330 if (increment_overflow(&yourtm.tm_year, 1))
1331 return WRONG;
1332 }
1333 }
1334 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1335 return WRONG;
1336 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1337 /*
1338 ** We can't set tm_sec to 0, because that might push the
1339 ** time below the minimum representable time.
1340 ** Set tm_sec to 59 instead.
1341 ** This assumes that the minimum representable time is
1342 ** not in the same minute that a leap second was deleted from,
1343 ** which is a safer assumption than using 58 would be.
1344 */
1345 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1346 return WRONG;
1347 saved_seconds = yourtm.tm_sec;
1348 yourtm.tm_sec = SECSPERMIN - 1;
1349 } else {
1350 saved_seconds = yourtm.tm_sec;
1351 yourtm.tm_sec = 0;
1352 }
1353 /*
1354 ** Calculate the number of magnitude bits in a time_t
1355 ** (this works regardless of whether time_t is
1356 ** signed or unsigned, though lint complains if unsigned).
1357 */
1358 for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
1359 continue;
1360 /*
1361 ** If time_t is signed, then 0 is the median value,
1362 ** if time_t is unsigned, then 1 << bits is median.
1363 */
1364 t = (t < 0) ? 0 : ((time_t) 1 << bits);
1365 for ( ; ; ) {
1366 (*funcp)(&t, offset, &mytm);
1367 dir = tmcomp(&mytm, &yourtm);
1368 if (dir != 0) {
1369 if (bits-- < 0)
1370 return WRONG;
1371 if (bits < 0)
1372 --t;
1373 else if (dir > 0)
1374 t -= (time_t) 1 << bits;
1375 else t += (time_t) 1 << bits;
1376 continue;
1377 }
1378 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1379 break;
1380 /*
1381 ** Right time, wrong type.
1382 ** Hunt for right time, right type.
1383 ** It's okay to guess wrong since the guess
1384 ** gets checked.
1385 */
1386 /*
1387 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1388 */
1389 sp = (const struct state *)
1390 (((void *) funcp == (void *) localsub) ?
1391 lclptr : gmtptr);
1392 #ifdef ALL_STATE
1393 if (sp == NULL)
1394 return WRONG;
1395 #endif /* defined ALL_STATE */
1396 for (i = 0; i < sp->typecnt; ++i) {
1397 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1398 continue;
1399 for (j = 0; j < sp->typecnt; ++j) {
1400 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1401 continue;
1402 newt = t + sp->ttis[j].tt_gmtoff -
1403 sp->ttis[i].tt_gmtoff;
1404 (*funcp)(&newt, offset, &mytm);
1405 if (tmcomp(&mytm, &yourtm) != 0)
1406 continue;
1407 if (mytm.tm_isdst != yourtm.tm_isdst)
1408 continue;
1409 /*
1410 ** We have a match.
1411 */
1412 t = newt;
1413 goto label;
1414 }
1415 }
1416 return WRONG;
1417 }
1418 label:
1419 newt = t + saved_seconds;
1420 if ((newt < t) != (saved_seconds < 0))
1421 return WRONG;
1422 t = newt;
1423 (*funcp)(&t, offset, tmp);
1424 *okayp = TRUE;
1425 return t;
1426 }
1427
1428 static time_t
1429 time1(tmp, funcp, offset)
1430 struct tm * const tmp;
1431 void (* const funcp) P((const time_t*, long, struct tm*));
1432 const long offset;
1433 {
1434 register time_t t;
1435 register const struct state * sp;
1436 register int samei, otheri;
1437 int okay;
1438
1439 if (tmp->tm_isdst > 1)
1440 tmp->tm_isdst = 1;
1441 t = time2(tmp, funcp, offset, &okay);
1442 #ifdef PCTS
1443 /*
1444 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1445 */
1446 if (okay)
1447 return t;
1448 if (tmp->tm_isdst < 0)
1449 tmp->tm_isdst = 0; /* reset to std and try again */
1450 #endif /* defined PCTS */
1451 #ifndef PCTS
1452 if (okay || tmp->tm_isdst < 0)
1453 return t;
1454 #endif /* !defined PCTS */
1455 /*
1456 ** We're supposed to assume that somebody took a time of one type
1457 ** and did some math on it that yielded a "struct tm" that's bad.
1458 ** We try to divine the type they started from and adjust to the
1459 ** type they need.
1460 */
1461 /*
1462 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1463 */
1464 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1465 lclptr : gmtptr);
1466 #ifdef ALL_STATE
1467 if (sp == NULL)
1468 return WRONG;
1469 #endif /* defined ALL_STATE */
1470 for (samei = 0; samei < sp->typecnt; ++samei) {
1471 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1472 continue;
1473 for (otheri = 0; otheri < sp->typecnt; ++otheri) {
1474 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1475 continue;
1476 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1477 sp->ttis[samei].tt_gmtoff;
1478 tmp->tm_isdst = !tmp->tm_isdst;
1479 t = time2(tmp, funcp, offset, &okay);
1480 if (okay)
1481 return t;
1482 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1483 sp->ttis[samei].tt_gmtoff;
1484 tmp->tm_isdst = !tmp->tm_isdst;
1485 }
1486 }
1487 return WRONG;
1488 }
1489
1490 time_t
1491 mktime(tmp)
1492 struct tm * const tmp;
1493 {
1494 tzset();
1495 return time1(tmp, localsub, 0L);
1496 }
1497
1498 #ifdef STD_INSPIRED
1499
1500 time_t
1501 timelocal(tmp)
1502 struct tm * const tmp;
1503 {
1504 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1505 return mktime(tmp);
1506 }
1507 #pragma weak timelocal=_timelocal
1508
1509 time_t
1510 timegm(tmp)
1511 struct tm * const tmp;
1512 {
1513 tmp->tm_isdst = 0;
1514 return time1(tmp, gmtsub, 0L);
1515 }
1516 #pragma weak timegm=_timegm
1517
1518 time_t
1519 timeoff(tmp, offset)
1520 struct tm * const tmp;
1521 const long offset;
1522 {
1523 tmp->tm_isdst = 0;
1524 return time1(tmp, gmtsub, offset);
1525 }
1526 #pragma weak timeoff=_timeoff
1527
1528 #endif /* defined STD_INSPIRED */
1529
1530 #ifdef CMUCS
1531
1532 /*
1533 ** The following is supplied for compatibility with
1534 ** previous versions of the CMUCS runtime library.
1535 */
1536
1537 long
1538 gtime(tmp)
1539 struct tm * const tmp;
1540 {
1541 const time_t t = mktime(tmp);
1542
1543 if (t == WRONG)
1544 return -1;
1545 return t;
1546 }
1547
1548 #endif /* defined CMUCS */
1549
1550 /*
1551 ** XXX--is the below the right way to conditionalize??
1552 */
1553
1554 #ifdef STD_INSPIRED
1555
1556 /*
1557 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1558 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1559 ** is not the case if we are accounting for leap seconds.
1560 ** So, we provide the following conversion routines for use
1561 ** when exchanging timestamps with POSIX conforming systems.
1562 */
1563
1564 static long
1565 leapcorr(timep)
1566 time_t * timep;
1567 {
1568 register struct state * sp;
1569 register struct lsinfo * lp;
1570 register int i;
1571
1572 sp = lclptr;
1573 i = sp->leapcnt;
1574 while (--i >= 0) {
1575 lp = &sp->lsis[i];
1576 if (*timep >= lp->ls_trans)
1577 return lp->ls_corr;
1578 }
1579 return 0;
1580 }
1581
1582 time_t
1583 time2posix(t)
1584 time_t t;
1585 {
1586 tzset();
1587 return t - leapcorr(&t);
1588 }
1589 #pragma weak time2posix=_time2posix
1590
1591 time_t
1592 posix2time(t)
1593 time_t t;
1594 {
1595 time_t x;
1596 time_t y;
1597
1598 tzset();
1599 /*
1600 ** For a positive leap second hit, the result
1601 ** is not unique. For a negative leap second
1602 ** hit, the corresponding time doesn't exist,
1603 ** so we return an adjacent second.
1604 */
1605 x = t + leapcorr(&t);
1606 y = x - leapcorr(&x);
1607 if (y < t) {
1608 do {
1609 x++;
1610 y = x - leapcorr(&x);
1611 } while (y < t);
1612 if (t != y)
1613 return x - 1;
1614 } else if (y > t) {
1615 do {
1616 --x;
1617 y = x - leapcorr(&x);
1618 } while (y > t);
1619 if (t != y)
1620 return x + 1;
1621 }
1622 return x;
1623 }
1624 #pragma weak posix2time=_posix2time
1625
1626 #endif /* defined STD_INSPIRED */
1627