localtime.c revision 1.30 1 /* $NetBSD: localtime.c,v 1.30 2002/04/16 19:20:51 groo Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 7.75";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.30 2002/04/16 19:20:51 groo Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 ** POSIX-style TZ environment variable handling from Guy Harris
20 ** (guy (at) auspex.com).
21 */
22
23 /*LINTLIBRARY*/
24
25 #include "namespace.h"
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #ifdef __weak_alias
32 __weak_alias(ctime_r,_ctime_r)
33 __weak_alias(daylight,_daylight)
34 __weak_alias(gmtime_r,_gmtime_r)
35 __weak_alias(localtime_r,_localtime_r)
36 __weak_alias(offtime,_offtime)
37 __weak_alias(posix2time,_posix2time)
38 __weak_alias(time2posix,_time2posix)
39 __weak_alias(timegm,_timegm)
40 __weak_alias(timelocal,_timelocal)
41 __weak_alias(timeoff,_timeoff)
42 __weak_alias(tzname,_tzname)
43 __weak_alias(tzset,_tzset)
44 __weak_alias(tzsetwall,_tzsetwall)
45 #endif
46
47 /*
48 ** SunOS 4.1.1 headers lack O_BINARY.
49 */
50
51 #ifdef O_BINARY
52 #define OPEN_MODE (O_RDONLY | O_BINARY)
53 #endif /* defined O_BINARY */
54 #ifndef O_BINARY
55 #define OPEN_MODE O_RDONLY
56 #endif /* !defined O_BINARY */
57
58 #ifndef WILDABBR
59 /*
60 ** Someone might make incorrect use of a time zone abbreviation:
61 ** 1. They might reference tzname[0] before calling tzset (explicitly
62 ** or implicitly).
63 ** 2. They might reference tzname[1] before calling tzset (explicitly
64 ** or implicitly).
65 ** 3. They might reference tzname[1] after setting to a time zone
66 ** in which Daylight Saving Time is never observed.
67 ** 4. They might reference tzname[0] after setting to a time zone
68 ** in which Standard Time is never observed.
69 ** 5. They might reference tm.TM_ZONE after calling offtime.
70 ** What's best to do in the above cases is open to debate;
71 ** for now, we just set things up so that in any of the five cases
72 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
73 ** string "tzname[0] used before set", and similarly for the other cases.
74 ** And another: initialize tzname[0] to "ERA", with an explanation in the
75 ** manual page of what this "time zone abbreviation" means (doing this so
76 ** that tzname[0] has the "normal" length of three characters).
77 */
78 #define WILDABBR " "
79 #endif /* !defined WILDABBR */
80
81 static const char wildabbr[] = "WILDABBR";
82
83 static const char gmt[] = "GMT";
84
85 /*
86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 ** We default to US rules as of 1999-08-17.
88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 ** implementation dependent; for historical reasons, US rules are a
90 ** common default.
91 */
92 #ifndef TZDEFRULESTRING
93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 #endif /* !defined TZDEFDST */
95
96 struct ttinfo { /* time type information */
97 long tt_gmtoff; /* UTC offset in seconds */
98 int tt_isdst; /* used to set tm_isdst */
99 int tt_abbrind; /* abbreviation list index */
100 int tt_ttisstd; /* TRUE if transition is std time */
101 int tt_ttisgmt; /* TRUE if transition is UTC */
102 };
103
104 struct lsinfo { /* leap second information */
105 time_t ls_trans; /* transition time */
106 long ls_corr; /* correction to apply */
107 };
108
109 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
110
111 #ifdef TZNAME_MAX
112 #define MY_TZNAME_MAX TZNAME_MAX
113 #endif /* defined TZNAME_MAX */
114 #ifndef TZNAME_MAX
115 #define MY_TZNAME_MAX 255
116 #endif /* !defined TZNAME_MAX */
117
118 struct state {
119 int leapcnt;
120 int timecnt;
121 int typecnt;
122 int charcnt;
123 time_t ats[TZ_MAX_TIMES];
124 unsigned char types[TZ_MAX_TIMES];
125 struct ttinfo ttis[TZ_MAX_TYPES];
126 char chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
127 (2 * (MY_TZNAME_MAX + 1)))];
128 struct lsinfo lsis[TZ_MAX_LEAPS];
129 };
130
131 struct rule {
132 int r_type; /* type of rule--see below */
133 int r_day; /* day number of rule */
134 int r_week; /* week number of rule */
135 int r_mon; /* month number of rule */
136 long r_time; /* transition time of rule */
137 };
138
139 #define JULIAN_DAY 0 /* Jn - Julian day */
140 #define DAY_OF_YEAR 1 /* n - day of year */
141 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
142
143 /*
144 ** Prototypes for static functions.
145 */
146
147 static long detzcode P((const char * codep));
148 static const char * getzname P((const char * strp));
149 static const char * getnum P((const char * strp, int * nump, int min,
150 int max));
151 static const char * getsecs P((const char * strp, long * secsp));
152 static const char * getoffset P((const char * strp, long * offsetp));
153 static const char * getrule P((const char * strp, struct rule * rulep));
154 static void gmtload P((struct state * sp));
155 static void gmtsub P((const time_t * timep, long offset,
156 struct tm * tmp));
157 static void localsub P((const time_t * timep, long offset,
158 struct tm * tmp));
159 static int increment_overflow P((int * number, int delta));
160 static int normalize_overflow P((int * tensptr, int * unitsptr,
161 int base));
162 static void settzname P((void));
163 static time_t time1 P((struct tm * tmp,
164 void(*funcp) P((const time_t *,
165 long, struct tm *)),
166 long offset));
167 static time_t time2 P((struct tm *tmp,
168 void(*funcp) P((const time_t *,
169 long, struct tm*)),
170 long offset, int * okayp));
171 static time_t time2sub P((struct tm *tmp,
172 void(*funcp) P((const time_t *,
173 long, struct tm*)),
174 long offset, int * okayp, int do_norm_secs));
175 static void timesub P((const time_t * timep, long offset,
176 const struct state * sp, struct tm * tmp));
177 static int tmcomp P((const struct tm * atmp,
178 const struct tm * btmp));
179 static time_t transtime P((time_t janfirst, int year,
180 const struct rule * rulep, long offset));
181 static int tzload P((const char * name, struct state * sp));
182 static int tzparse P((const char * name, struct state * sp,
183 int lastditch));
184 static void tzset_unlocked P((void));
185 static void tzsetwall_unlocked P((void));
186 #ifdef STD_INSPIRED
187 static long leapcorr P((time_t * timep));
188 #endif
189
190 #ifdef ALL_STATE
191 static struct state * lclptr;
192 static struct state * gmtptr;
193 #endif /* defined ALL_STATE */
194
195 #ifndef ALL_STATE
196 static struct state lclmem;
197 static struct state gmtmem;
198 #define lclptr (&lclmem)
199 #define gmtptr (&gmtmem)
200 #endif /* State Farm */
201
202 #ifndef TZ_STRLEN_MAX
203 #define TZ_STRLEN_MAX 255
204 #endif /* !defined TZ_STRLEN_MAX */
205
206 static char lcl_TZname[TZ_STRLEN_MAX + 1];
207 static int lcl_is_set;
208 static int gmt_is_set;
209
210 __aconst char * tzname[2] = {
211 /* LINTED const castaway */
212 (__aconst char *)wildabbr,
213 /* LINTED const castaway */
214 (__aconst char *)wildabbr
215 };
216
217 #ifdef _REENT
218 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
219 #endif
220
221 /*
222 ** Section 4.12.3 of X3.159-1989 requires that
223 ** Except for the strftime function, these functions [asctime,
224 ** ctime, gmtime, localtime] return values in one of two static
225 ** objects: a broken-down time structure and an array of char.
226 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
227 */
228
229 static struct tm tm;
230
231 #ifdef USG_COMPAT
232 long int timezone = 0;
233 int daylight = 0;
234 #endif /* defined USG_COMPAT */
235
236 #ifdef ALTZONE
237 time_t altzone = 0;
238 #endif /* defined ALTZONE */
239
240 static long
241 detzcode(codep)
242 const char * const codep;
243 {
244 register long result;
245
246 /*
247 ** The first character must be sign extended on systems with >32bit
248 ** longs. This was solved differently in the master tzcode sources
249 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
250 ** that this implementation is superior.
251 */
252
253 #ifdef __STDC__
254 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
255 #else
256 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
257 #endif
258
259 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
260 | (codep[1] & 0xff) << 16 \
261 | (codep[2] & 0xff) << 8
262 | (codep[3] & 0xff);
263 return result;
264 }
265
266 static void
267 settzname P((void))
268 {
269 register struct state * const sp = lclptr;
270 register int i;
271
272 /* LINTED const castaway */
273 tzname[0] = (__aconst char *)wildabbr;
274 /* LINTED const castaway */
275 tzname[1] = (__aconst char *)wildabbr;
276 #ifdef USG_COMPAT
277 daylight = 0;
278 timezone = 0;
279 #endif /* defined USG_COMPAT */
280 #ifdef ALTZONE
281 altzone = 0;
282 #endif /* defined ALTZONE */
283 #ifdef ALL_STATE
284 if (sp == NULL) {
285 tzname[0] = tzname[1] = (__aconst char *)gmt;
286 return;
287 }
288 #endif /* defined ALL_STATE */
289 for (i = 0; i < sp->typecnt; ++i) {
290 register const struct ttinfo * const ttisp = &sp->ttis[i];
291
292 tzname[ttisp->tt_isdst] =
293 &sp->chars[ttisp->tt_abbrind];
294 #ifdef USG_COMPAT
295 if (ttisp->tt_isdst)
296 daylight = 1;
297 if (i == 0 || !ttisp->tt_isdst)
298 timezone = -(ttisp->tt_gmtoff);
299 #endif /* defined USG_COMPAT */
300 #ifdef ALTZONE
301 if (i == 0 || ttisp->tt_isdst)
302 altzone = -(ttisp->tt_gmtoff);
303 #endif /* defined ALTZONE */
304 }
305 /*
306 ** And to get the latest zone names into tzname. . .
307 */
308 for (i = 0; i < sp->timecnt; ++i) {
309 register const struct ttinfo * const ttisp =
310 &sp->ttis[
311 sp->types[i]];
312
313 tzname[ttisp->tt_isdst] =
314 &sp->chars[ttisp->tt_abbrind];
315 }
316 }
317
318 static int
319 tzload(name, sp)
320 register const char * name;
321 register struct state * const sp;
322 {
323 register const char * p;
324 register int i;
325 register int fid;
326
327 if (name == NULL && (name = TZDEFAULT) == NULL)
328 return -1;
329
330 {
331 register int doaccess;
332 /*
333 ** Section 4.9.1 of the C standard says that
334 ** "FILENAME_MAX expands to an integral constant expression
335 ** that is the size needed for an array of char large enough
336 ** to hold the longest file name string that the implementation
337 ** guarantees can be opened."
338 */
339 char fullname[FILENAME_MAX + 1];
340
341 if (name[0] == ':')
342 ++name;
343 doaccess = name[0] == '/';
344 if (!doaccess) {
345 if ((p = TZDIR) == NULL)
346 return -1;
347 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
348 return -1;
349 (void) strcpy(fullname, p); /* XXX strcpy is safe */
350 (void) strcat(fullname, "/"); /* XXX strcat is safe */
351 (void) strcat(fullname, name); /* XXX strcat is safe */
352 /*
353 ** Set doaccess if '.' (as in "../") shows up in name.
354 */
355 if (strchr(name, '.') != NULL)
356 doaccess = TRUE;
357 name = fullname;
358 }
359 if (doaccess && access(name, R_OK) != 0)
360 return -1;
361 /*
362 * XXX potential security problem here if user of a set-id
363 * program has set TZ (which is passed in as name) here,
364 * and uses a race condition trick to defeat the access(2)
365 * above.
366 */
367 if ((fid = open(name, OPEN_MODE)) == -1)
368 return -1;
369 }
370 {
371 struct tzhead * tzhp;
372 union {
373 struct tzhead tzhead;
374 char buf[sizeof *sp + sizeof *tzhp];
375 } u;
376 int ttisstdcnt;
377 int ttisgmtcnt;
378
379 i = read(fid, u.buf, sizeof u.buf);
380 if (close(fid) != 0)
381 return -1;
382 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
383 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
384 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
385 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
386 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
387 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
388 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
389 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
390 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
391 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
392 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
393 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
394 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
395 return -1;
396 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
397 sp->timecnt + /* types */
398 sp->typecnt * (4 + 2) + /* ttinfos */
399 sp->charcnt + /* chars */
400 sp->leapcnt * (4 + 4) + /* lsinfos */
401 ttisstdcnt + /* ttisstds */
402 ttisgmtcnt) /* ttisgmts */
403 return -1;
404 for (i = 0; i < sp->timecnt; ++i) {
405 sp->ats[i] = detzcode(p);
406 p += 4;
407 }
408 for (i = 0; i < sp->timecnt; ++i) {
409 sp->types[i] = (unsigned char) *p++;
410 if (sp->types[i] >= sp->typecnt)
411 return -1;
412 }
413 for (i = 0; i < sp->typecnt; ++i) {
414 register struct ttinfo * ttisp;
415
416 ttisp = &sp->ttis[i];
417 ttisp->tt_gmtoff = detzcode(p);
418 p += 4;
419 ttisp->tt_isdst = (unsigned char) *p++;
420 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
421 return -1;
422 ttisp->tt_abbrind = (unsigned char) *p++;
423 if (ttisp->tt_abbrind < 0 ||
424 ttisp->tt_abbrind > sp->charcnt)
425 return -1;
426 }
427 for (i = 0; i < sp->charcnt; ++i)
428 sp->chars[i] = *p++;
429 sp->chars[i] = '\0'; /* ensure '\0' at end */
430 for (i = 0; i < sp->leapcnt; ++i) {
431 register struct lsinfo * lsisp;
432
433 lsisp = &sp->lsis[i];
434 lsisp->ls_trans = detzcode(p);
435 p += 4;
436 lsisp->ls_corr = detzcode(p);
437 p += 4;
438 }
439 for (i = 0; i < sp->typecnt; ++i) {
440 register struct ttinfo * ttisp;
441
442 ttisp = &sp->ttis[i];
443 if (ttisstdcnt == 0)
444 ttisp->tt_ttisstd = FALSE;
445 else {
446 ttisp->tt_ttisstd = *p++;
447 if (ttisp->tt_ttisstd != TRUE &&
448 ttisp->tt_ttisstd != FALSE)
449 return -1;
450 }
451 }
452 for (i = 0; i < sp->typecnt; ++i) {
453 register struct ttinfo * ttisp;
454
455 ttisp = &sp->ttis[i];
456 if (ttisgmtcnt == 0)
457 ttisp->tt_ttisgmt = FALSE;
458 else {
459 ttisp->tt_ttisgmt = *p++;
460 if (ttisp->tt_ttisgmt != TRUE &&
461 ttisp->tt_ttisgmt != FALSE)
462 return -1;
463 }
464 }
465 }
466 return 0;
467 }
468
469 static const int mon_lengths[2][MONSPERYEAR] = {
470 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
471 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
472 };
473
474 static const int year_lengths[2] = {
475 DAYSPERNYEAR, DAYSPERLYEAR
476 };
477
478 /*
479 ** Given a pointer into a time zone string, scan until a character that is not
480 ** a valid character in a zone name is found. Return a pointer to that
481 ** character.
482 */
483
484 static const char *
485 getzname(strp)
486 register const char * strp;
487 {
488 register char c;
489
490 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
491 c != '+')
492 ++strp;
493 return strp;
494 }
495
496 /*
497 ** Given a pointer into a time zone string, extract a number from that string.
498 ** Check that the number is within a specified range; if it is not, return
499 ** NULL.
500 ** Otherwise, return a pointer to the first character not part of the number.
501 */
502
503 static const char *
504 getnum(strp, nump, min, max)
505 register const char * strp;
506 int * const nump;
507 const int min;
508 const int max;
509 {
510 register char c;
511 register int num;
512
513 if (strp == NULL || !is_digit(c = *strp))
514 return NULL;
515 num = 0;
516 do {
517 num = num * 10 + (c - '0');
518 if (num > max)
519 return NULL; /* illegal value */
520 c = *++strp;
521 } while (is_digit(c));
522 if (num < min)
523 return NULL; /* illegal value */
524 *nump = num;
525 return strp;
526 }
527
528 /*
529 ** Given a pointer into a time zone string, extract a number of seconds,
530 ** in hh[:mm[:ss]] form, from the string.
531 ** If any error occurs, return NULL.
532 ** Otherwise, return a pointer to the first character not part of the number
533 ** of seconds.
534 */
535
536 static const char *
537 getsecs(strp, secsp)
538 register const char * strp;
539 long * const secsp;
540 {
541 int num;
542
543 /*
544 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
545 ** "M10.4.6/26", which does not conform to Posix,
546 ** but which specifies the equivalent of
547 ** ``02:00 on the first Sunday on or after 23 Oct''.
548 */
549 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
550 if (strp == NULL)
551 return NULL;
552 *secsp = num * (long) SECSPERHOUR;
553 if (*strp == ':') {
554 ++strp;
555 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
556 if (strp == NULL)
557 return NULL;
558 *secsp += num * SECSPERMIN;
559 if (*strp == ':') {
560 ++strp;
561 /* `SECSPERMIN' allows for leap seconds. */
562 strp = getnum(strp, &num, 0, SECSPERMIN);
563 if (strp == NULL)
564 return NULL;
565 *secsp += num;
566 }
567 }
568 return strp;
569 }
570
571 /*
572 ** Given a pointer into a time zone string, extract an offset, in
573 ** [+-]hh[:mm[:ss]] form, from the string.
574 ** If any error occurs, return NULL.
575 ** Otherwise, return a pointer to the first character not part of the time.
576 */
577
578 static const char *
579 getoffset(strp, offsetp)
580 register const char * strp;
581 long * const offsetp;
582 {
583 register int neg = 0;
584
585 if (*strp == '-') {
586 neg = 1;
587 ++strp;
588 } else if (*strp == '+')
589 ++strp;
590 strp = getsecs(strp, offsetp);
591 if (strp == NULL)
592 return NULL; /* illegal time */
593 if (neg)
594 *offsetp = -*offsetp;
595 return strp;
596 }
597
598 /*
599 ** Given a pointer into a time zone string, extract a rule in the form
600 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
601 ** If a valid rule is not found, return NULL.
602 ** Otherwise, return a pointer to the first character not part of the rule.
603 */
604
605 static const char *
606 getrule(strp, rulep)
607 const char * strp;
608 register struct rule * const rulep;
609 {
610 if (*strp == 'J') {
611 /*
612 ** Julian day.
613 */
614 rulep->r_type = JULIAN_DAY;
615 ++strp;
616 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
617 } else if (*strp == 'M') {
618 /*
619 ** Month, week, day.
620 */
621 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
622 ++strp;
623 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
624 if (strp == NULL)
625 return NULL;
626 if (*strp++ != '.')
627 return NULL;
628 strp = getnum(strp, &rulep->r_week, 1, 5);
629 if (strp == NULL)
630 return NULL;
631 if (*strp++ != '.')
632 return NULL;
633 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
634 } else if (is_digit(*strp)) {
635 /*
636 ** Day of year.
637 */
638 rulep->r_type = DAY_OF_YEAR;
639 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
640 } else return NULL; /* invalid format */
641 if (strp == NULL)
642 return NULL;
643 if (*strp == '/') {
644 /*
645 ** Time specified.
646 */
647 ++strp;
648 strp = getsecs(strp, &rulep->r_time);
649 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
650 return strp;
651 }
652
653 /*
654 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
655 ** year, a rule, and the offset from UTC at the time that rule takes effect,
656 ** calculate the Epoch-relative time that rule takes effect.
657 */
658
659 static time_t
660 transtime(janfirst, year, rulep, offset)
661 const time_t janfirst;
662 const int year;
663 register const struct rule * const rulep;
664 const long offset;
665 {
666 register int leapyear;
667 register time_t value;
668 register int i;
669 int d, m1, yy0, yy1, yy2, dow;
670
671 INITIALIZE(value);
672 leapyear = isleap(year);
673 switch (rulep->r_type) {
674
675 case JULIAN_DAY:
676 /*
677 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
678 ** years.
679 ** In non-leap years, or if the day number is 59 or less, just
680 ** add SECSPERDAY times the day number-1 to the time of
681 ** January 1, midnight, to get the day.
682 */
683 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
684 if (leapyear && rulep->r_day >= 60)
685 value += SECSPERDAY;
686 break;
687
688 case DAY_OF_YEAR:
689 /*
690 ** n - day of year.
691 ** Just add SECSPERDAY times the day number to the time of
692 ** January 1, midnight, to get the day.
693 */
694 value = janfirst + rulep->r_day * SECSPERDAY;
695 break;
696
697 case MONTH_NTH_DAY_OF_WEEK:
698 /*
699 ** Mm.n.d - nth "dth day" of month m.
700 */
701 value = janfirst;
702 for (i = 0; i < rulep->r_mon - 1; ++i)
703 value += mon_lengths[leapyear][i] * SECSPERDAY;
704
705 /*
706 ** Use Zeller's Congruence to get day-of-week of first day of
707 ** month.
708 */
709 m1 = (rulep->r_mon + 9) % 12 + 1;
710 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
711 yy1 = yy0 / 100;
712 yy2 = yy0 % 100;
713 dow = ((26 * m1 - 2) / 10 +
714 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
715 if (dow < 0)
716 dow += DAYSPERWEEK;
717
718 /*
719 ** "dow" is the day-of-week of the first day of the month. Get
720 ** the day-of-month (zero-origin) of the first "dow" day of the
721 ** month.
722 */
723 d = rulep->r_day - dow;
724 if (d < 0)
725 d += DAYSPERWEEK;
726 for (i = 1; i < rulep->r_week; ++i) {
727 if (d + DAYSPERWEEK >=
728 mon_lengths[leapyear][rulep->r_mon - 1])
729 break;
730 d += DAYSPERWEEK;
731 }
732
733 /*
734 ** "d" is the day-of-month (zero-origin) of the day we want.
735 */
736 value += d * SECSPERDAY;
737 break;
738 }
739
740 /*
741 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
742 ** question. To get the Epoch-relative time of the specified local
743 ** time on that day, add the transition time and the current offset
744 ** from UTC.
745 */
746 return value + rulep->r_time + offset;
747 }
748
749 /*
750 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
751 ** appropriate.
752 */
753
754 static int
755 tzparse(name, sp, lastditch)
756 const char * name;
757 register struct state * const sp;
758 const int lastditch;
759 {
760 const char * stdname;
761 const char * dstname;
762 size_t stdlen;
763 size_t dstlen;
764 long stdoffset;
765 long dstoffset;
766 register time_t * atp;
767 register unsigned char * typep;
768 register char * cp;
769 register int load_result;
770
771 INITIALIZE(dstname);
772 stdname = name;
773 if (lastditch) {
774 stdlen = strlen(name); /* length of standard zone name */
775 name += stdlen;
776 if (stdlen >= sizeof sp->chars)
777 stdlen = (sizeof sp->chars) - 1;
778 stdoffset = 0;
779 } else {
780 name = getzname(name);
781 stdlen = name - stdname;
782 if (stdlen < 3)
783 return -1;
784 if (*name == '\0')
785 return -1;
786 name = getoffset(name, &stdoffset);
787 if (name == NULL)
788 return -1;
789 }
790 load_result = tzload(TZDEFRULES, sp);
791 if (load_result != 0)
792 sp->leapcnt = 0; /* so, we're off a little */
793 if (*name != '\0') {
794 dstname = name;
795 name = getzname(name);
796 dstlen = name - dstname; /* length of DST zone name */
797 if (dstlen < 3)
798 return -1;
799 if (*name != '\0' && *name != ',' && *name != ';') {
800 name = getoffset(name, &dstoffset);
801 if (name == NULL)
802 return -1;
803 } else dstoffset = stdoffset - SECSPERHOUR;
804 if (*name == '\0' && load_result != 0)
805 name = TZDEFRULESTRING;
806 if (*name == ',' || *name == ';') {
807 struct rule start;
808 struct rule end;
809 register int year;
810 register time_t janfirst;
811 time_t starttime;
812 time_t endtime;
813
814 ++name;
815 if ((name = getrule(name, &start)) == NULL)
816 return -1;
817 if (*name++ != ',')
818 return -1;
819 if ((name = getrule(name, &end)) == NULL)
820 return -1;
821 if (*name != '\0')
822 return -1;
823 sp->typecnt = 2; /* standard time and DST */
824 /*
825 ** Two transitions per year, from EPOCH_YEAR to 2037.
826 */
827 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
828 if (sp->timecnt > TZ_MAX_TIMES)
829 return -1;
830 sp->ttis[0].tt_gmtoff = -dstoffset;
831 sp->ttis[0].tt_isdst = 1;
832 sp->ttis[0].tt_abbrind = stdlen + 1;
833 sp->ttis[1].tt_gmtoff = -stdoffset;
834 sp->ttis[1].tt_isdst = 0;
835 sp->ttis[1].tt_abbrind = 0;
836 atp = sp->ats;
837 typep = sp->types;
838 janfirst = 0;
839 for (year = EPOCH_YEAR; year <= 2037; ++year) {
840 starttime = transtime(janfirst, year, &start,
841 stdoffset);
842 endtime = transtime(janfirst, year, &end,
843 dstoffset);
844 if (starttime > endtime) {
845 *atp++ = endtime;
846 *typep++ = 1; /* DST ends */
847 *atp++ = starttime;
848 *typep++ = 0; /* DST begins */
849 } else {
850 *atp++ = starttime;
851 *typep++ = 0; /* DST begins */
852 *atp++ = endtime;
853 *typep++ = 1; /* DST ends */
854 }
855 janfirst += year_lengths[isleap(year)] *
856 SECSPERDAY;
857 }
858 } else {
859 register long theirstdoffset;
860 register long theirdstoffset;
861 register long theiroffset;
862 register int isdst;
863 register int i;
864 register int j;
865
866 if (*name != '\0')
867 return -1;
868 /*
869 ** Initial values of theirstdoffset and theirdstoffset.
870 */
871 theirstdoffset = 0;
872 for (i = 0; i < sp->timecnt; ++i) {
873 j = sp->types[i];
874 if (!sp->ttis[j].tt_isdst) {
875 theirstdoffset =
876 -sp->ttis[j].tt_gmtoff;
877 break;
878 }
879 }
880 theirdstoffset = 0;
881 for (i = 0; i < sp->timecnt; ++i) {
882 j = sp->types[i];
883 if (sp->ttis[j].tt_isdst) {
884 theirdstoffset =
885 -sp->ttis[j].tt_gmtoff;
886 break;
887 }
888 }
889 /*
890 ** Initially we're assumed to be in standard time.
891 */
892 isdst = FALSE;
893 theiroffset = theirstdoffset;
894 /*
895 ** Now juggle transition times and types
896 ** tracking offsets as you do.
897 */
898 for (i = 0; i < sp->timecnt; ++i) {
899 j = sp->types[i];
900 sp->types[i] = sp->ttis[j].tt_isdst;
901 if (sp->ttis[j].tt_ttisgmt) {
902 /* No adjustment to transition time */
903 } else {
904 /*
905 ** If summer time is in effect, and the
906 ** transition time was not specified as
907 ** standard time, add the summer time
908 ** offset to the transition time;
909 ** otherwise, add the standard time
910 ** offset to the transition time.
911 */
912 /*
913 ** Transitions from DST to DDST
914 ** will effectively disappear since
915 ** POSIX provides for only one DST
916 ** offset.
917 */
918 if (isdst && !sp->ttis[j].tt_ttisstd) {
919 sp->ats[i] += dstoffset -
920 theirdstoffset;
921 } else {
922 sp->ats[i] += stdoffset -
923 theirstdoffset;
924 }
925 }
926 theiroffset = -sp->ttis[j].tt_gmtoff;
927 if (sp->ttis[j].tt_isdst)
928 theirdstoffset = theiroffset;
929 else theirstdoffset = theiroffset;
930 }
931 /*
932 ** Finally, fill in ttis.
933 ** ttisstd and ttisgmt need not be handled.
934 */
935 sp->ttis[0].tt_gmtoff = -stdoffset;
936 sp->ttis[0].tt_isdst = FALSE;
937 sp->ttis[0].tt_abbrind = 0;
938 sp->ttis[1].tt_gmtoff = -dstoffset;
939 sp->ttis[1].tt_isdst = TRUE;
940 sp->ttis[1].tt_abbrind = stdlen + 1;
941 sp->typecnt = 2;
942 }
943 } else {
944 dstlen = 0;
945 sp->typecnt = 1; /* only standard time */
946 sp->timecnt = 0;
947 sp->ttis[0].tt_gmtoff = -stdoffset;
948 sp->ttis[0].tt_isdst = 0;
949 sp->ttis[0].tt_abbrind = 0;
950 }
951 sp->charcnt = stdlen + 1;
952 if (dstlen != 0)
953 sp->charcnt += dstlen + 1;
954 if ((size_t) sp->charcnt > sizeof sp->chars)
955 return -1;
956 cp = sp->chars;
957 (void) strncpy(cp, stdname, stdlen);
958 cp += stdlen;
959 *cp++ = '\0';
960 if (dstlen != 0) {
961 (void) strncpy(cp, dstname, dstlen);
962 *(cp + dstlen) = '\0';
963 }
964 return 0;
965 }
966
967 static void
968 gmtload(sp)
969 struct state * const sp;
970 {
971 if (tzload(gmt, sp) != 0)
972 (void) tzparse(gmt, sp, TRUE);
973 }
974
975 static void
976 tzsetwall_unlocked P((void))
977 {
978 if (lcl_is_set < 0)
979 return;
980 lcl_is_set = -1;
981
982 #ifdef ALL_STATE
983 if (lclptr == NULL) {
984 lclptr = (struct state *) malloc(sizeof *lclptr);
985 if (lclptr == NULL) {
986 settzname(); /* all we can do */
987 return;
988 }
989 }
990 #endif /* defined ALL_STATE */
991 if (tzload((char *) NULL, lclptr) != 0)
992 gmtload(lclptr);
993 settzname();
994 }
995
996 #ifndef STD_INSPIRED
997 /*
998 ** A non-static declaration of tzsetwall in a system header file
999 ** may cause a warning about this upcoming static declaration...
1000 */
1001 static
1002 #endif /* !defined STD_INSPIRED */
1003 void
1004 tzsetwall P((void))
1005 {
1006 rwlock_wrlock(&lcl_lock);
1007 tzsetwall_unlocked();
1008 rwlock_unlock(&lcl_lock);
1009 }
1010
1011 static void
1012 tzset_unlocked P((void))
1013 {
1014 register const char * name;
1015
1016 name = getenv("TZ");
1017 if (name == NULL) {
1018 tzsetwall_unlocked();
1019 return;
1020 }
1021
1022 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1023 return;
1024 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1025 if (lcl_is_set)
1026 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1027
1028 #ifdef ALL_STATE
1029 if (lclptr == NULL) {
1030 lclptr = (struct state *) malloc(sizeof *lclptr);
1031 if (lclptr == NULL) {
1032 settzname(); /* all we can do */
1033 return;
1034 }
1035 }
1036 #endif /* defined ALL_STATE */
1037 if (*name == '\0') {
1038 /*
1039 ** User wants it fast rather than right.
1040 */
1041 lclptr->leapcnt = 0; /* so, we're off a little */
1042 lclptr->timecnt = 0;
1043 lclptr->typecnt = 0;
1044 lclptr->ttis[0].tt_isdst = 0;
1045 lclptr->ttis[0].tt_gmtoff = 0;
1046 lclptr->ttis[0].tt_abbrind = 0;
1047 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1048 } else if (tzload(name, lclptr) != 0)
1049 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1050 (void) gmtload(lclptr);
1051 settzname();
1052 }
1053
1054 void
1055 tzset P((void))
1056 {
1057 rwlock_wrlock(&lcl_lock);
1058 tzset_unlocked();
1059 rwlock_unlock(&lcl_lock);
1060 }
1061
1062 /*
1063 ** The easy way to behave "as if no library function calls" localtime
1064 ** is to not call it--so we drop its guts into "localsub", which can be
1065 ** freely called. (And no, the PANS doesn't require the above behavior--
1066 ** but it *is* desirable.)
1067 **
1068 ** The unused offset argument is for the benefit of mktime variants.
1069 */
1070
1071 /*ARGSUSED*/
1072 static void
1073 localsub(timep, offset, tmp)
1074 const time_t * const timep;
1075 const long offset;
1076 struct tm * const tmp;
1077 {
1078 register struct state * sp;
1079 register const struct ttinfo * ttisp;
1080 register int i;
1081 const time_t t = *timep;
1082
1083 sp = lclptr;
1084 #ifdef ALL_STATE
1085 if (sp == NULL) {
1086 gmtsub(timep, offset, tmp);
1087 return;
1088 }
1089 #endif /* defined ALL_STATE */
1090 if (sp->timecnt == 0 || t < sp->ats[0]) {
1091 i = 0;
1092 while (sp->ttis[i].tt_isdst)
1093 if (++i >= sp->typecnt) {
1094 i = 0;
1095 break;
1096 }
1097 } else {
1098 for (i = 1; i < sp->timecnt; ++i)
1099 if (t < sp->ats[i])
1100 break;
1101 i = sp->types[i - 1];
1102 }
1103 ttisp = &sp->ttis[i];
1104 /*
1105 ** To get (wrong) behavior that's compatible with System V Release 2.0
1106 ** you'd replace the statement below with
1107 ** t += ttisp->tt_gmtoff;
1108 ** timesub(&t, 0L, sp, tmp);
1109 */
1110 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1111 tmp->tm_isdst = ttisp->tt_isdst;
1112 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1113 #ifdef TM_ZONE
1114 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1115 #endif /* defined TM_ZONE */
1116 }
1117
1118 struct tm *
1119 localtime(timep)
1120 const time_t * const timep;
1121 {
1122 rwlock_wrlock(&lcl_lock);
1123 tzset_unlocked();
1124 localsub(timep, 0L, &tm);
1125 rwlock_unlock(&lcl_lock);
1126 return &tm;
1127 }
1128
1129 /*
1130 * Re-entrant version of localtime
1131 */
1132 struct tm *
1133 localtime_r(timep, tmp)
1134 const time_t * const timep;
1135 struct tm * tmp;
1136 {
1137 rwlock_rdlock(&lcl_lock);
1138 localsub(timep, 0L, tmp);
1139 rwlock_unlock(&lcl_lock);
1140 return tmp;
1141 }
1142
1143 /*
1144 ** gmtsub is to gmtime as localsub is to localtime.
1145 */
1146
1147 static void
1148 gmtsub(timep, offset, tmp)
1149 const time_t * const timep;
1150 const long offset;
1151 struct tm * const tmp;
1152 {
1153 #ifdef _REENT
1154 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1155 #endif
1156
1157 mutex_lock(&gmt_mutex);
1158 if (!gmt_is_set) {
1159 gmt_is_set = TRUE;
1160 #ifdef ALL_STATE
1161 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1162 if (gmtptr != NULL)
1163 #endif /* defined ALL_STATE */
1164 gmtload(gmtptr);
1165 }
1166 mutex_unlock(&gmt_mutex);
1167 timesub(timep, offset, gmtptr, tmp);
1168 #ifdef TM_ZONE
1169 /*
1170 ** Could get fancy here and deliver something such as
1171 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1172 ** but this is no time for a treasure hunt.
1173 */
1174 if (offset != 0)
1175 /* LINTED const castaway */
1176 tmp->TM_ZONE = (__aconst char *)wildabbr;
1177 else {
1178 #ifdef ALL_STATE
1179 if (gmtptr == NULL)
1180 tmp->TM_ZONE = (__aconst char *)gmt;
1181 else tmp->TM_ZONE = gmtptr->chars;
1182 #endif /* defined ALL_STATE */
1183 #ifndef ALL_STATE
1184 tmp->TM_ZONE = gmtptr->chars;
1185 #endif /* State Farm */
1186 }
1187 #endif /* defined TM_ZONE */
1188 }
1189
1190 struct tm *
1191 gmtime(timep)
1192 const time_t * const timep;
1193 {
1194 gmtsub(timep, 0L, &tm);
1195 return &tm;
1196 }
1197
1198 /*
1199 * Re-entrant version of gmtime
1200 */
1201 struct tm *
1202 gmtime_r(timep, tmp)
1203 const time_t * const timep;
1204 struct tm * tmp;
1205 {
1206 gmtsub(timep, 0L, tmp);
1207 return tmp;
1208 }
1209
1210 #ifdef STD_INSPIRED
1211
1212 struct tm *
1213 offtime(timep, offset)
1214 const time_t * const timep;
1215 const long offset;
1216 {
1217 gmtsub(timep, offset, &tm);
1218 return &tm;
1219 }
1220
1221 #endif /* defined STD_INSPIRED */
1222
1223 static void
1224 timesub(timep, offset, sp, tmp)
1225 const time_t * const timep;
1226 const long offset;
1227 register const struct state * const sp;
1228 register struct tm * const tmp;
1229 {
1230 register const struct lsinfo * lp;
1231 register long days;
1232 register long rem;
1233 register int y;
1234 register int yleap;
1235 register const int * ip;
1236 register long corr;
1237 register int hit;
1238 register int i;
1239
1240 corr = 0;
1241 hit = 0;
1242 #ifdef ALL_STATE
1243 i = (sp == NULL) ? 0 : sp->leapcnt;
1244 #endif /* defined ALL_STATE */
1245 #ifndef ALL_STATE
1246 i = sp->leapcnt;
1247 #endif /* State Farm */
1248 while (--i >= 0) {
1249 lp = &sp->lsis[i];
1250 if (*timep >= lp->ls_trans) {
1251 if (*timep == lp->ls_trans) {
1252 hit = ((i == 0 && lp->ls_corr > 0) ||
1253 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1254 if (hit)
1255 while (i > 0 &&
1256 sp->lsis[i].ls_trans ==
1257 sp->lsis[i - 1].ls_trans + 1 &&
1258 sp->lsis[i].ls_corr ==
1259 sp->lsis[i - 1].ls_corr + 1) {
1260 ++hit;
1261 --i;
1262 }
1263 }
1264 corr = lp->ls_corr;
1265 break;
1266 }
1267 }
1268 days = *timep / SECSPERDAY;
1269 rem = *timep % SECSPERDAY;
1270 #ifdef mc68k
1271 if (*timep == 0x80000000) {
1272 /*
1273 ** A 3B1 muffs the division on the most negative number.
1274 */
1275 days = -24855;
1276 rem = -11648;
1277 }
1278 #endif /* defined mc68k */
1279 rem += (offset - corr);
1280 while (rem < 0) {
1281 rem += SECSPERDAY;
1282 --days;
1283 }
1284 while (rem >= SECSPERDAY) {
1285 rem -= SECSPERDAY;
1286 ++days;
1287 }
1288 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1289 rem = rem % SECSPERHOUR;
1290 tmp->tm_min = (int) (rem / SECSPERMIN);
1291 /*
1292 ** A positive leap second requires a special
1293 ** representation. This uses "... ??:59:60" et seq.
1294 */
1295 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1296 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1297 if (tmp->tm_wday < 0)
1298 tmp->tm_wday += DAYSPERWEEK;
1299 y = EPOCH_YEAR;
1300 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1301 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1302 register int newy;
1303
1304 newy = (int)(y + days / DAYSPERNYEAR);
1305 if (days < 0)
1306 --newy;
1307 days -= (newy - y) * DAYSPERNYEAR +
1308 LEAPS_THRU_END_OF(newy - 1) -
1309 LEAPS_THRU_END_OF(y - 1);
1310 y = newy;
1311 }
1312 tmp->tm_year = y - TM_YEAR_BASE;
1313 tmp->tm_yday = (int) days;
1314 ip = mon_lengths[yleap];
1315 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1316 days = days - (long) ip[tmp->tm_mon];
1317 tmp->tm_mday = (int) (days + 1);
1318 tmp->tm_isdst = 0;
1319 #ifdef TM_GMTOFF
1320 tmp->TM_GMTOFF = offset;
1321 #endif /* defined TM_GMTOFF */
1322 }
1323
1324 char *
1325 ctime(timep)
1326 const time_t * const timep;
1327 {
1328 /*
1329 ** Section 4.12.3.2 of X3.159-1989 requires that
1330 ** The ctime function converts the calendar time pointed to by timer
1331 ** to local time in the form of a string. It is equivalent to
1332 ** asctime(localtime(timer))
1333 */
1334 return asctime(localtime(timep));
1335 }
1336
1337 char *
1338 ctime_r(timep, buf)
1339 const time_t * const timep;
1340 char * buf;
1341 {
1342 struct tm tmp;
1343
1344 return asctime_r(localtime_r(timep, &tmp), buf);
1345 }
1346
1347 /*
1348 ** Adapted from code provided by Robert Elz, who writes:
1349 ** The "best" way to do mktime I think is based on an idea of Bob
1350 ** Kridle's (so its said...) from a long time ago.
1351 ** [kridle (at) xinet.com as of 1996-01-16.]
1352 ** It does a binary search of the time_t space. Since time_t's are
1353 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1354 ** would still be very reasonable).
1355 */
1356
1357 #ifndef WRONG
1358 #define WRONG (-1)
1359 #endif /* !defined WRONG */
1360
1361 /*
1362 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1363 */
1364
1365 static int
1366 increment_overflow(number, delta)
1367 int * number;
1368 int delta;
1369 {
1370 int number0;
1371
1372 number0 = *number;
1373 *number += delta;
1374 return (*number < number0) != (delta < 0);
1375 }
1376
1377 static int
1378 normalize_overflow(tensptr, unitsptr, base)
1379 int * const tensptr;
1380 int * const unitsptr;
1381 const int base;
1382 {
1383 register int tensdelta;
1384
1385 tensdelta = (*unitsptr >= 0) ?
1386 (*unitsptr / base) :
1387 (-1 - (-1 - *unitsptr) / base);
1388 *unitsptr -= tensdelta * base;
1389 return increment_overflow(tensptr, tensdelta);
1390 }
1391
1392 static int
1393 tmcomp(atmp, btmp)
1394 register const struct tm * const atmp;
1395 register const struct tm * const btmp;
1396 {
1397 register int result;
1398
1399 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1400 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1401 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1402 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1403 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1404 result = atmp->tm_sec - btmp->tm_sec;
1405 return result;
1406 }
1407
1408 static time_t
1409 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1410 struct tm * const tmp;
1411 void (* const funcp) P((const time_t*, long, struct tm*));
1412 const long offset;
1413 int * const okayp;
1414 const int do_norm_secs;
1415 {
1416 register const struct state * sp;
1417 register int dir;
1418 register int bits;
1419 register int i, j ;
1420 register int saved_seconds;
1421 time_t newt;
1422 time_t t;
1423 struct tm yourtm, mytm;
1424
1425 *okayp = FALSE;
1426 yourtm = *tmp;
1427 if (do_norm_secs) {
1428 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1429 SECSPERMIN))
1430 return WRONG;
1431 }
1432 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1433 return WRONG;
1434 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1435 return WRONG;
1436 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1437 return WRONG;
1438 /*
1439 ** Turn yourtm.tm_year into an actual year number for now.
1440 ** It is converted back to an offset from TM_YEAR_BASE later.
1441 */
1442 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1443 return WRONG;
1444 while (yourtm.tm_mday <= 0) {
1445 if (increment_overflow(&yourtm.tm_year, -1))
1446 return WRONG;
1447 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1448 yourtm.tm_mday += year_lengths[isleap(i)];
1449 }
1450 while (yourtm.tm_mday > DAYSPERLYEAR) {
1451 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1452 yourtm.tm_mday -= year_lengths[isleap(i)];
1453 if (increment_overflow(&yourtm.tm_year, 1))
1454 return WRONG;
1455 }
1456 for ( ; ; ) {
1457 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1458 if (yourtm.tm_mday <= i)
1459 break;
1460 yourtm.tm_mday -= i;
1461 if (++yourtm.tm_mon >= MONSPERYEAR) {
1462 yourtm.tm_mon = 0;
1463 if (increment_overflow(&yourtm.tm_year, 1))
1464 return WRONG;
1465 }
1466 }
1467 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1468 return WRONG;
1469 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1470 saved_seconds = 0;
1471 else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1472 /*
1473 ** We can't set tm_sec to 0, because that might push the
1474 ** time below the minimum representable time.
1475 ** Set tm_sec to 59 instead.
1476 ** This assumes that the minimum representable time is
1477 ** not in the same minute that a leap second was deleted from,
1478 ** which is a safer assumption than using 58 would be.
1479 */
1480 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1481 return WRONG;
1482 saved_seconds = yourtm.tm_sec;
1483 yourtm.tm_sec = SECSPERMIN - 1;
1484 } else {
1485 saved_seconds = yourtm.tm_sec;
1486 yourtm.tm_sec = 0;
1487 }
1488 /*
1489 ** Divide the search space in half
1490 ** (this works whether time_t is signed or unsigned).
1491 */
1492 bits = TYPE_BIT(time_t) - 1;
1493 /*
1494 ** If time_t is signed, then 0 is just above the median,
1495 ** assuming two's complement arithmetic.
1496 ** If time_t is unsigned, then (1 << bits) is just above the median.
1497 */
1498 /* LINTED constant in conditional context */
1499 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1500 for ( ; ; ) {
1501 (*funcp)(&t, offset, &mytm);
1502 dir = tmcomp(&mytm, &yourtm);
1503 if (dir != 0) {
1504 if (bits-- < 0)
1505 return WRONG;
1506 if (bits < 0)
1507 --t; /* may be needed if new t is minimal */
1508 else if (dir > 0)
1509 t -= ((time_t) 1) << bits;
1510 else t += ((time_t) 1) << bits;
1511 continue;
1512 }
1513 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1514 break;
1515 /*
1516 ** Right time, wrong type.
1517 ** Hunt for right time, right type.
1518 ** It's okay to guess wrong since the guess
1519 ** gets checked.
1520 */
1521 /*
1522 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1523 */
1524 sp = (const struct state *)
1525 (((void *) funcp == (void *) localsub) ?
1526 lclptr : gmtptr);
1527 #ifdef ALL_STATE
1528 if (sp == NULL)
1529 return WRONG;
1530 #endif /* defined ALL_STATE */
1531 for (i = sp->typecnt - 1; i >= 0; --i) {
1532 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1533 continue;
1534 for (j = sp->typecnt - 1; j >= 0; --j) {
1535 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1536 continue;
1537 newt = t + sp->ttis[j].tt_gmtoff -
1538 sp->ttis[i].tt_gmtoff;
1539 (*funcp)(&newt, offset, &mytm);
1540 if (tmcomp(&mytm, &yourtm) != 0)
1541 continue;
1542 if (mytm.tm_isdst != yourtm.tm_isdst)
1543 continue;
1544 /*
1545 ** We have a match.
1546 */
1547 t = newt;
1548 goto label;
1549 }
1550 }
1551 return WRONG;
1552 }
1553 label:
1554 newt = t + saved_seconds;
1555 if ((newt < t) != (saved_seconds < 0))
1556 return WRONG;
1557 t = newt;
1558 (*funcp)(&t, offset, tmp);
1559 *okayp = TRUE;
1560 return t;
1561 }
1562
1563 static time_t
1564 time2(tmp, funcp, offset, okayp)
1565 struct tm * const tmp;
1566 void (* const funcp) P((const time_t*, long, struct tm*));
1567 const long offset;
1568 int * const okayp;
1569 {
1570 time_t t;
1571
1572 /*
1573 ** First try without normalization of seconds
1574 ** (in case tm_sec contains a value associated with a leap second).
1575 ** If that fails, try with normalization of seconds.
1576 */
1577 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1578 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1579 }
1580
1581 static time_t
1582 time1(tmp, funcp, offset)
1583 struct tm * const tmp;
1584 void (* const funcp) P((const time_t *, long, struct tm *));
1585 const long offset;
1586 {
1587 register time_t t;
1588 register const struct state * sp;
1589 register int samei, otheri;
1590 int okay;
1591
1592 if (tmp->tm_isdst > 1)
1593 tmp->tm_isdst = 1;
1594 t = time2(tmp, funcp, offset, &okay);
1595 #ifdef PCTS
1596 /*
1597 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1598 */
1599 if (okay)
1600 return t;
1601 if (tmp->tm_isdst < 0)
1602 tmp->tm_isdst = 0; /* reset to std and try again */
1603 #endif /* defined PCTS */
1604 #ifndef PCTS
1605 if (okay || tmp->tm_isdst < 0)
1606 return t;
1607 #endif /* !defined PCTS */
1608 /*
1609 ** We're supposed to assume that somebody took a time of one type
1610 ** and did some math on it that yielded a "struct tm" that's bad.
1611 ** We try to divine the type they started from and adjust to the
1612 ** type they need.
1613 */
1614 /*
1615 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1616 */
1617 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1618 lclptr : gmtptr);
1619 #ifdef ALL_STATE
1620 if (sp == NULL)
1621 return WRONG;
1622 #endif /* defined ALL_STATE */
1623 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1624 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1625 continue;
1626 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1627 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1628 continue;
1629 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1630 sp->ttis[samei].tt_gmtoff);
1631 tmp->tm_isdst = !tmp->tm_isdst;
1632 t = time2(tmp, funcp, offset, &okay);
1633 if (okay)
1634 return t;
1635 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1636 sp->ttis[samei].tt_gmtoff);
1637 tmp->tm_isdst = !tmp->tm_isdst;
1638 }
1639 }
1640 return WRONG;
1641 }
1642
1643 time_t
1644 mktime(tmp)
1645 struct tm * const tmp;
1646 {
1647 time_t result;
1648
1649 rwlock_wrlock(&lcl_lock);
1650 tzset_unlocked();
1651 result = time1(tmp, localsub, 0L);
1652 rwlock_unlock(&lcl_lock);
1653 return (result);
1654 }
1655
1656 #ifdef STD_INSPIRED
1657
1658 time_t
1659 timelocal(tmp)
1660 struct tm * const tmp;
1661 {
1662 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1663 return mktime(tmp);
1664 }
1665
1666 time_t
1667 timegm(tmp)
1668 struct tm * const tmp;
1669 {
1670 tmp->tm_isdst = 0;
1671 return time1(tmp, gmtsub, 0L);
1672 }
1673
1674 time_t
1675 timeoff(tmp, offset)
1676 struct tm * const tmp;
1677 const long offset;
1678 {
1679 tmp->tm_isdst = 0;
1680 return time1(tmp, gmtsub, offset);
1681 }
1682
1683 #endif /* defined STD_INSPIRED */
1684
1685 #ifdef CMUCS
1686
1687 /*
1688 ** The following is supplied for compatibility with
1689 ** previous versions of the CMUCS runtime library.
1690 */
1691
1692 long
1693 gtime(tmp)
1694 struct tm * const tmp;
1695 {
1696 const time_t t = mktime(tmp);
1697
1698 if (t == WRONG)
1699 return -1;
1700 return t;
1701 }
1702
1703 #endif /* defined CMUCS */
1704
1705 /*
1706 ** XXX--is the below the right way to conditionalize??
1707 */
1708
1709 #ifdef STD_INSPIRED
1710
1711 /*
1712 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1713 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1714 ** is not the case if we are accounting for leap seconds.
1715 ** So, we provide the following conversion routines for use
1716 ** when exchanging timestamps with POSIX conforming systems.
1717 */
1718
1719 static long
1720 leapcorr(timep)
1721 time_t * timep;
1722 {
1723 register struct state * sp;
1724 register struct lsinfo * lp;
1725 register int i;
1726
1727 sp = lclptr;
1728 i = sp->leapcnt;
1729 while (--i >= 0) {
1730 lp = &sp->lsis[i];
1731 if (*timep >= lp->ls_trans)
1732 return lp->ls_corr;
1733 }
1734 return 0;
1735 }
1736
1737 time_t
1738 time2posix(t)
1739 time_t t;
1740 {
1741 time_t result;
1742
1743 rwlock_wrlock(&lcl_lock);
1744 tzset_unlocked();
1745 result = t - leapcorr(&t);
1746 rwlock_unlock(&lcl_lock);
1747 return (result);
1748 }
1749
1750 time_t
1751 posix2time(t)
1752 time_t t;
1753 {
1754 time_t x;
1755 time_t y;
1756
1757 rwlock_wrlock(&lcl_lock);
1758 tzset_unlocked();
1759 /*
1760 ** For a positive leap second hit, the result
1761 ** is not unique. For a negative leap second
1762 ** hit, the corresponding time doesn't exist,
1763 ** so we return an adjacent second.
1764 */
1765 x = t + leapcorr(&t);
1766 y = x - leapcorr(&x);
1767 if (y < t) {
1768 do {
1769 x++;
1770 y = x - leapcorr(&x);
1771 } while (y < t);
1772 if (t != y) {
1773 rwlock_unlock(&lcl_lock);
1774 return x - 1;
1775 }
1776 } else if (y > t) {
1777 do {
1778 --x;
1779 y = x - leapcorr(&x);
1780 } while (y > t);
1781 if (t != y) {
1782 rwlock_unlock(&lcl_lock);
1783 return x + 1;
1784 }
1785 }
1786 rwlock_unlock(&lcl_lock);
1787 return x;
1788 }
1789
1790 #endif /* defined STD_INSPIRED */
1791