localtime.c revision 1.34 1 /* $NetBSD: localtime.c,v 1.34 2003/10/29 20:43:27 kleink Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 7.76";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.34 2003/10/29 20:43:27 kleink Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 ** POSIX-style TZ environment variable handling from Guy Harris
20 ** (guy (at) auspex.com).
21 */
22
23 /*LINTLIBRARY*/
24
25 #include "namespace.h"
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #ifdef __weak_alias
32 __weak_alias(ctime_r,_ctime_r)
33 __weak_alias(daylight,_daylight)
34 __weak_alias(gmtime_r,_gmtime_r)
35 __weak_alias(localtime_r,_localtime_r)
36 __weak_alias(offtime,_offtime)
37 __weak_alias(posix2time,_posix2time)
38 __weak_alias(time2posix,_time2posix)
39 __weak_alias(timegm,_timegm)
40 __weak_alias(timelocal,_timelocal)
41 __weak_alias(timeoff,_timeoff)
42 __weak_alias(tzname,_tzname)
43 __weak_alias(tzset,_tzset)
44 __weak_alias(tzsetwall,_tzsetwall)
45 #endif
46
47 /*
48 ** SunOS 4.1.1 headers lack O_BINARY.
49 */
50
51 #ifdef O_BINARY
52 #define OPEN_MODE (O_RDONLY | O_BINARY)
53 #endif /* defined O_BINARY */
54 #ifndef O_BINARY
55 #define OPEN_MODE O_RDONLY
56 #endif /* !defined O_BINARY */
57
58 #ifndef WILDABBR
59 /*
60 ** Someone might make incorrect use of a time zone abbreviation:
61 ** 1. They might reference tzname[0] before calling tzset (explicitly
62 ** or implicitly).
63 ** 2. They might reference tzname[1] before calling tzset (explicitly
64 ** or implicitly).
65 ** 3. They might reference tzname[1] after setting to a time zone
66 ** in which Daylight Saving Time is never observed.
67 ** 4. They might reference tzname[0] after setting to a time zone
68 ** in which Standard Time is never observed.
69 ** 5. They might reference tm.TM_ZONE after calling offtime.
70 ** What's best to do in the above cases is open to debate;
71 ** for now, we just set things up so that in any of the five cases
72 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
73 ** string "tzname[0] used before set", and similarly for the other cases.
74 ** And another: initialize tzname[0] to "ERA", with an explanation in the
75 ** manual page of what this "time zone abbreviation" means (doing this so
76 ** that tzname[0] has the "normal" length of three characters).
77 */
78 #define WILDABBR " "
79 #endif /* !defined WILDABBR */
80
81 static const char wildabbr[] = "WILDABBR";
82
83 static const char gmt[] = "GMT";
84
85 /*
86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 ** We default to US rules as of 1999-08-17.
88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 ** implementation dependent; for historical reasons, US rules are a
90 ** common default.
91 */
92 #ifndef TZDEFRULESTRING
93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 #endif /* !defined TZDEFDST */
95
96 struct ttinfo { /* time type information */
97 long tt_gmtoff; /* UTC offset in seconds */
98 int tt_isdst; /* used to set tm_isdst */
99 int tt_abbrind; /* abbreviation list index */
100 int tt_ttisstd; /* TRUE if transition is std time */
101 int tt_ttisgmt; /* TRUE if transition is UTC */
102 };
103
104 struct lsinfo { /* leap second information */
105 time_t ls_trans; /* transition time */
106 long ls_corr; /* correction to apply */
107 };
108
109 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
110
111 #ifdef TZNAME_MAX
112 #define MY_TZNAME_MAX TZNAME_MAX
113 #endif /* defined TZNAME_MAX */
114 #ifndef TZNAME_MAX
115 #define MY_TZNAME_MAX 255
116 #endif /* !defined TZNAME_MAX */
117
118 struct state {
119 int leapcnt;
120 int timecnt;
121 int typecnt;
122 int charcnt;
123 time_t ats[TZ_MAX_TIMES];
124 unsigned char types[TZ_MAX_TIMES];
125 struct ttinfo ttis[TZ_MAX_TYPES];
126 char chars[/* LINTED constant */BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
127 (2 * (MY_TZNAME_MAX + 1)))];
128 struct lsinfo lsis[TZ_MAX_LEAPS];
129 };
130
131 struct rule {
132 int r_type; /* type of rule--see below */
133 int r_day; /* day number of rule */
134 int r_week; /* week number of rule */
135 int r_mon; /* month number of rule */
136 long r_time; /* transition time of rule */
137 };
138
139 #define JULIAN_DAY 0 /* Jn - Julian day */
140 #define DAY_OF_YEAR 1 /* n - day of year */
141 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
142
143 /*
144 ** Prototypes for static functions.
145 */
146
147 static long detzcode P((const char * codep));
148 static const char * getzname P((const char * strp));
149 static const char * getnum P((const char * strp, int * nump, int min,
150 int max));
151 static const char * getsecs P((const char * strp, long * secsp));
152 static const char * getoffset P((const char * strp, long * offsetp));
153 static const char * getrule P((const char * strp, struct rule * rulep));
154 static void gmtload P((struct state * sp));
155 static void gmtsub P((const time_t * timep, long offset,
156 struct tm * tmp));
157 static void localsub P((const time_t * timep, long offset,
158 struct tm * tmp));
159 static int increment_overflow P((int * number, int delta));
160 static int normalize_overflow P((int * tensptr, int * unitsptr,
161 int base));
162 static void settzname P((void));
163 static time_t time1 P((struct tm * tmp,
164 void(*funcp) P((const time_t *,
165 long, struct tm *)),
166 long offset));
167 static time_t time2 P((struct tm *tmp,
168 void(*funcp) P((const time_t *,
169 long, struct tm*)),
170 long offset, int * okayp));
171 static time_t time2sub P((struct tm *tmp,
172 void(*funcp) P((const time_t *,
173 long, struct tm*)),
174 long offset, int * okayp, int do_norm_secs));
175 static void timesub P((const time_t * timep, long offset,
176 const struct state * sp, struct tm * tmp));
177 static int tmcomp P((const struct tm * atmp,
178 const struct tm * btmp));
179 static time_t transtime P((time_t janfirst, int year,
180 const struct rule * rulep, long offset));
181 static int tzload P((const char * name, struct state * sp));
182 static int tzparse P((const char * name, struct state * sp,
183 int lastditch));
184 static void tzset_unlocked P((void));
185 static void tzsetwall_unlocked P((void));
186 #ifdef STD_INSPIRED
187 static long leapcorr P((time_t * timep));
188 #endif
189
190 #ifdef ALL_STATE
191 static struct state * lclptr;
192 static struct state * gmtptr;
193 #endif /* defined ALL_STATE */
194
195 #ifndef ALL_STATE
196 static struct state lclmem;
197 static struct state gmtmem;
198 #define lclptr (&lclmem)
199 #define gmtptr (&gmtmem)
200 #endif /* State Farm */
201
202 #ifndef TZ_STRLEN_MAX
203 #define TZ_STRLEN_MAX 255
204 #endif /* !defined TZ_STRLEN_MAX */
205
206 static char lcl_TZname[TZ_STRLEN_MAX + 1];
207 static int lcl_is_set;
208 static int gmt_is_set;
209
210 __aconst char * tzname[2] = {
211 /* LINTED const castaway */
212 (__aconst char *)wildabbr,
213 /* LINTED const castaway */
214 (__aconst char *)wildabbr
215 };
216
217 #ifdef _REENTRANT
218 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
219 #endif
220
221 /*
222 ** Section 4.12.3 of X3.159-1989 requires that
223 ** Except for the strftime function, these functions [asctime,
224 ** ctime, gmtime, localtime] return values in one of two static
225 ** objects: a broken-down time structure and an array of char.
226 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
227 */
228
229 static struct tm tm;
230
231 #ifdef USG_COMPAT
232 long int timezone = 0;
233 int daylight = 0;
234 #endif /* defined USG_COMPAT */
235
236 #ifdef ALTZONE
237 time_t altzone = 0;
238 #endif /* defined ALTZONE */
239
240 static long
241 detzcode(codep)
242 const char * const codep;
243 {
244 register long result;
245
246 /*
247 ** The first character must be sign extended on systems with >32bit
248 ** longs. This was solved differently in the master tzcode sources
249 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
250 ** that this implementation is superior.
251 */
252
253 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
254
255 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
256 | (codep[1] & 0xff) << 16 \
257 | (codep[2] & 0xff) << 8
258 | (codep[3] & 0xff);
259 return result;
260 }
261
262 static void
263 settzname P((void))
264 {
265 register struct state * const sp = lclptr;
266 register int i;
267
268 /* LINTED const castaway */
269 tzname[0] = (__aconst char *)wildabbr;
270 /* LINTED const castaway */
271 tzname[1] = (__aconst char *)wildabbr;
272 #ifdef USG_COMPAT
273 daylight = 0;
274 timezone = 0;
275 #endif /* defined USG_COMPAT */
276 #ifdef ALTZONE
277 altzone = 0;
278 #endif /* defined ALTZONE */
279 #ifdef ALL_STATE
280 if (sp == NULL) {
281 tzname[0] = tzname[1] = (__aconst char *)gmt;
282 return;
283 }
284 #endif /* defined ALL_STATE */
285 for (i = 0; i < sp->typecnt; ++i) {
286 register const struct ttinfo * const ttisp = &sp->ttis[i];
287
288 tzname[ttisp->tt_isdst] =
289 &sp->chars[ttisp->tt_abbrind];
290 #ifdef USG_COMPAT
291 if (ttisp->tt_isdst)
292 daylight = 1;
293 if (i == 0 || !ttisp->tt_isdst)
294 timezone = -(ttisp->tt_gmtoff);
295 #endif /* defined USG_COMPAT */
296 #ifdef ALTZONE
297 if (i == 0 || ttisp->tt_isdst)
298 altzone = -(ttisp->tt_gmtoff);
299 #endif /* defined ALTZONE */
300 }
301 /*
302 ** And to get the latest zone names into tzname. . .
303 */
304 for (i = 0; i < sp->timecnt; ++i) {
305 register const struct ttinfo * const ttisp =
306 &sp->ttis[
307 sp->types[i]];
308
309 tzname[ttisp->tt_isdst] =
310 &sp->chars[ttisp->tt_abbrind];
311 }
312 }
313
314 static int
315 tzload(name, sp)
316 register const char * name;
317 register struct state * const sp;
318 {
319 register const char * p;
320 register int i;
321 register int fid;
322
323 if (name == NULL && (name = TZDEFAULT) == NULL)
324 return -1;
325
326 {
327 register int doaccess;
328 /*
329 ** Section 4.9.1 of the C standard says that
330 ** "FILENAME_MAX expands to an integral constant expression
331 ** that is the size needed for an array of char large enough
332 ** to hold the longest file name string that the implementation
333 ** guarantees can be opened."
334 */
335 char fullname[FILENAME_MAX + 1];
336
337 if (name[0] == ':')
338 ++name;
339 doaccess = name[0] == '/';
340 if (!doaccess) {
341 if ((p = TZDIR) == NULL)
342 return -1;
343 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
344 return -1;
345 (void) strcpy(fullname, p); /* XXX strcpy is safe */
346 (void) strcat(fullname, "/"); /* XXX strcat is safe */
347 (void) strcat(fullname, name); /* XXX strcat is safe */
348 /*
349 ** Set doaccess if '.' (as in "../") shows up in name.
350 */
351 if (strchr(name, '.') != NULL)
352 doaccess = TRUE;
353 name = fullname;
354 }
355 if (doaccess && access(name, R_OK) != 0)
356 return -1;
357 /*
358 * XXX potential security problem here if user of a set-id
359 * program has set TZ (which is passed in as name) here,
360 * and uses a race condition trick to defeat the access(2)
361 * above.
362 */
363 if ((fid = open(name, OPEN_MODE)) == -1)
364 return -1;
365 }
366 {
367 struct tzhead * tzhp;
368 union {
369 struct tzhead tzhead;
370 char buf[sizeof *sp + sizeof *tzhp];
371 } u;
372 int ttisstdcnt;
373 int ttisgmtcnt;
374
375 i = read(fid, u.buf, sizeof u.buf);
376 if (close(fid) != 0)
377 return -1;
378 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
379 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
380 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
381 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
382 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
383 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
384 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
385 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
386 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
387 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
388 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
389 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
390 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
391 return -1;
392 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
393 sp->timecnt + /* types */
394 sp->typecnt * (4 + 2) + /* ttinfos */
395 sp->charcnt + /* chars */
396 sp->leapcnt * (4 + 4) + /* lsinfos */
397 ttisstdcnt + /* ttisstds */
398 ttisgmtcnt) /* ttisgmts */
399 return -1;
400 for (i = 0; i < sp->timecnt; ++i) {
401 sp->ats[i] = detzcode(p);
402 p += 4;
403 }
404 for (i = 0; i < sp->timecnt; ++i) {
405 sp->types[i] = (unsigned char) *p++;
406 if (sp->types[i] >= sp->typecnt)
407 return -1;
408 }
409 for (i = 0; i < sp->typecnt; ++i) {
410 register struct ttinfo * ttisp;
411
412 ttisp = &sp->ttis[i];
413 ttisp->tt_gmtoff = detzcode(p);
414 p += 4;
415 ttisp->tt_isdst = (unsigned char) *p++;
416 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
417 return -1;
418 ttisp->tt_abbrind = (unsigned char) *p++;
419 if (ttisp->tt_abbrind < 0 ||
420 ttisp->tt_abbrind > sp->charcnt)
421 return -1;
422 }
423 for (i = 0; i < sp->charcnt; ++i)
424 sp->chars[i] = *p++;
425 sp->chars[i] = '\0'; /* ensure '\0' at end */
426 for (i = 0; i < sp->leapcnt; ++i) {
427 register struct lsinfo * lsisp;
428
429 lsisp = &sp->lsis[i];
430 lsisp->ls_trans = detzcode(p);
431 p += 4;
432 lsisp->ls_corr = detzcode(p);
433 p += 4;
434 }
435 for (i = 0; i < sp->typecnt; ++i) {
436 register struct ttinfo * ttisp;
437
438 ttisp = &sp->ttis[i];
439 if (ttisstdcnt == 0)
440 ttisp->tt_ttisstd = FALSE;
441 else {
442 ttisp->tt_ttisstd = *p++;
443 if (ttisp->tt_ttisstd != TRUE &&
444 ttisp->tt_ttisstd != FALSE)
445 return -1;
446 }
447 }
448 for (i = 0; i < sp->typecnt; ++i) {
449 register struct ttinfo * ttisp;
450
451 ttisp = &sp->ttis[i];
452 if (ttisgmtcnt == 0)
453 ttisp->tt_ttisgmt = FALSE;
454 else {
455 ttisp->tt_ttisgmt = *p++;
456 if (ttisp->tt_ttisgmt != TRUE &&
457 ttisp->tt_ttisgmt != FALSE)
458 return -1;
459 }
460 }
461 }
462 return 0;
463 }
464
465 static const int mon_lengths[2][MONSPERYEAR] = {
466 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
467 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
468 };
469
470 static const int year_lengths[2] = {
471 DAYSPERNYEAR, DAYSPERLYEAR
472 };
473
474 /*
475 ** Given a pointer into a time zone string, scan until a character that is not
476 ** a valid character in a zone name is found. Return a pointer to that
477 ** character.
478 */
479
480 static const char *
481 getzname(strp)
482 register const char * strp;
483 {
484 register char c;
485
486 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
487 c != '+')
488 ++strp;
489 return strp;
490 }
491
492 /*
493 ** Given a pointer into a time zone string, extract a number from that string.
494 ** Check that the number is within a specified range; if it is not, return
495 ** NULL.
496 ** Otherwise, return a pointer to the first character not part of the number.
497 */
498
499 static const char *
500 getnum(strp, nump, min, max)
501 register const char * strp;
502 int * const nump;
503 const int min;
504 const int max;
505 {
506 register char c;
507 register int num;
508
509 if (strp == NULL || !is_digit(c = *strp))
510 return NULL;
511 num = 0;
512 do {
513 num = num * 10 + (c - '0');
514 if (num > max)
515 return NULL; /* illegal value */
516 c = *++strp;
517 } while (is_digit(c));
518 if (num < min)
519 return NULL; /* illegal value */
520 *nump = num;
521 return strp;
522 }
523
524 /*
525 ** Given a pointer into a time zone string, extract a number of seconds,
526 ** in hh[:mm[:ss]] form, from the string.
527 ** If any error occurs, return NULL.
528 ** Otherwise, return a pointer to the first character not part of the number
529 ** of seconds.
530 */
531
532 static const char *
533 getsecs(strp, secsp)
534 register const char * strp;
535 long * const secsp;
536 {
537 int num;
538
539 /*
540 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
541 ** "M10.4.6/26", which does not conform to Posix,
542 ** but which specifies the equivalent of
543 ** ``02:00 on the first Sunday on or after 23 Oct''.
544 */
545 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
546 if (strp == NULL)
547 return NULL;
548 *secsp = num * (long) SECSPERHOUR;
549 if (*strp == ':') {
550 ++strp;
551 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
552 if (strp == NULL)
553 return NULL;
554 *secsp += num * SECSPERMIN;
555 if (*strp == ':') {
556 ++strp;
557 /* `SECSPERMIN' allows for leap seconds. */
558 strp = getnum(strp, &num, 0, SECSPERMIN);
559 if (strp == NULL)
560 return NULL;
561 *secsp += num;
562 }
563 }
564 return strp;
565 }
566
567 /*
568 ** Given a pointer into a time zone string, extract an offset, in
569 ** [+-]hh[:mm[:ss]] form, from the string.
570 ** If any error occurs, return NULL.
571 ** Otherwise, return a pointer to the first character not part of the time.
572 */
573
574 static const char *
575 getoffset(strp, offsetp)
576 register const char * strp;
577 long * const offsetp;
578 {
579 register int neg = 0;
580
581 if (*strp == '-') {
582 neg = 1;
583 ++strp;
584 } else if (*strp == '+')
585 ++strp;
586 strp = getsecs(strp, offsetp);
587 if (strp == NULL)
588 return NULL; /* illegal time */
589 if (neg)
590 *offsetp = -*offsetp;
591 return strp;
592 }
593
594 /*
595 ** Given a pointer into a time zone string, extract a rule in the form
596 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
597 ** If a valid rule is not found, return NULL.
598 ** Otherwise, return a pointer to the first character not part of the rule.
599 */
600
601 static const char *
602 getrule(strp, rulep)
603 const char * strp;
604 register struct rule * const rulep;
605 {
606 if (*strp == 'J') {
607 /*
608 ** Julian day.
609 */
610 rulep->r_type = JULIAN_DAY;
611 ++strp;
612 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
613 } else if (*strp == 'M') {
614 /*
615 ** Month, week, day.
616 */
617 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
618 ++strp;
619 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
620 if (strp == NULL)
621 return NULL;
622 if (*strp++ != '.')
623 return NULL;
624 strp = getnum(strp, &rulep->r_week, 1, 5);
625 if (strp == NULL)
626 return NULL;
627 if (*strp++ != '.')
628 return NULL;
629 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
630 } else if (is_digit(*strp)) {
631 /*
632 ** Day of year.
633 */
634 rulep->r_type = DAY_OF_YEAR;
635 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
636 } else return NULL; /* invalid format */
637 if (strp == NULL)
638 return NULL;
639 if (*strp == '/') {
640 /*
641 ** Time specified.
642 */
643 ++strp;
644 strp = getsecs(strp, &rulep->r_time);
645 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
646 return strp;
647 }
648
649 /*
650 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
651 ** year, a rule, and the offset from UTC at the time that rule takes effect,
652 ** calculate the Epoch-relative time that rule takes effect.
653 */
654
655 static time_t
656 transtime(janfirst, year, rulep, offset)
657 const time_t janfirst;
658 const int year;
659 register const struct rule * const rulep;
660 const long offset;
661 {
662 register int leapyear;
663 register time_t value;
664 register int i;
665 int d, m1, yy0, yy1, yy2, dow;
666
667 INITIALIZE(value);
668 leapyear = isleap(year);
669 switch (rulep->r_type) {
670
671 case JULIAN_DAY:
672 /*
673 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
674 ** years.
675 ** In non-leap years, or if the day number is 59 or less, just
676 ** add SECSPERDAY times the day number-1 to the time of
677 ** January 1, midnight, to get the day.
678 */
679 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
680 if (leapyear && rulep->r_day >= 60)
681 value += SECSPERDAY;
682 break;
683
684 case DAY_OF_YEAR:
685 /*
686 ** n - day of year.
687 ** Just add SECSPERDAY times the day number to the time of
688 ** January 1, midnight, to get the day.
689 */
690 value = janfirst + rulep->r_day * SECSPERDAY;
691 break;
692
693 case MONTH_NTH_DAY_OF_WEEK:
694 /*
695 ** Mm.n.d - nth "dth day" of month m.
696 */
697 value = janfirst;
698 for (i = 0; i < rulep->r_mon - 1; ++i)
699 value += mon_lengths[leapyear][i] * SECSPERDAY;
700
701 /*
702 ** Use Zeller's Congruence to get day-of-week of first day of
703 ** month.
704 */
705 m1 = (rulep->r_mon + 9) % 12 + 1;
706 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
707 yy1 = yy0 / 100;
708 yy2 = yy0 % 100;
709 dow = ((26 * m1 - 2) / 10 +
710 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
711 if (dow < 0)
712 dow += DAYSPERWEEK;
713
714 /*
715 ** "dow" is the day-of-week of the first day of the month. Get
716 ** the day-of-month (zero-origin) of the first "dow" day of the
717 ** month.
718 */
719 d = rulep->r_day - dow;
720 if (d < 0)
721 d += DAYSPERWEEK;
722 for (i = 1; i < rulep->r_week; ++i) {
723 if (d + DAYSPERWEEK >=
724 mon_lengths[leapyear][rulep->r_mon - 1])
725 break;
726 d += DAYSPERWEEK;
727 }
728
729 /*
730 ** "d" is the day-of-month (zero-origin) of the day we want.
731 */
732 value += d * SECSPERDAY;
733 break;
734 }
735
736 /*
737 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
738 ** question. To get the Epoch-relative time of the specified local
739 ** time on that day, add the transition time and the current offset
740 ** from UTC.
741 */
742 return value + rulep->r_time + offset;
743 }
744
745 /*
746 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
747 ** appropriate.
748 */
749
750 static int
751 tzparse(name, sp, lastditch)
752 const char * name;
753 register struct state * const sp;
754 const int lastditch;
755 {
756 const char * stdname;
757 const char * dstname;
758 size_t stdlen;
759 size_t dstlen;
760 long stdoffset;
761 long dstoffset;
762 register time_t * atp;
763 register unsigned char * typep;
764 register char * cp;
765 register int load_result;
766
767 INITIALIZE(dstname);
768 stdname = name;
769 if (lastditch) {
770 stdlen = strlen(name); /* length of standard zone name */
771 name += stdlen;
772 if (stdlen >= sizeof sp->chars)
773 stdlen = (sizeof sp->chars) - 1;
774 stdoffset = 0;
775 } else {
776 name = getzname(name);
777 stdlen = name - stdname;
778 if (stdlen < 3)
779 return -1;
780 if (*name == '\0')
781 return -1;
782 name = getoffset(name, &stdoffset);
783 if (name == NULL)
784 return -1;
785 }
786 load_result = tzload(TZDEFRULES, sp);
787 if (load_result != 0)
788 sp->leapcnt = 0; /* so, we're off a little */
789 if (*name != '\0') {
790 dstname = name;
791 name = getzname(name);
792 dstlen = name - dstname; /* length of DST zone name */
793 if (dstlen < 3)
794 return -1;
795 if (*name != '\0' && *name != ',' && *name != ';') {
796 name = getoffset(name, &dstoffset);
797 if (name == NULL)
798 return -1;
799 } else dstoffset = stdoffset - SECSPERHOUR;
800 if (*name == '\0' && load_result != 0)
801 name = TZDEFRULESTRING;
802 if (*name == ',' || *name == ';') {
803 struct rule start;
804 struct rule end;
805 register int year;
806 register time_t janfirst;
807 time_t starttime;
808 time_t endtime;
809
810 ++name;
811 if ((name = getrule(name, &start)) == NULL)
812 return -1;
813 if (*name++ != ',')
814 return -1;
815 if ((name = getrule(name, &end)) == NULL)
816 return -1;
817 if (*name != '\0')
818 return -1;
819 sp->typecnt = 2; /* standard time and DST */
820 /*
821 ** Two transitions per year, from EPOCH_YEAR to 2037.
822 */
823 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
824 if (sp->timecnt > TZ_MAX_TIMES)
825 return -1;
826 sp->ttis[0].tt_gmtoff = -dstoffset;
827 sp->ttis[0].tt_isdst = 1;
828 sp->ttis[0].tt_abbrind = stdlen + 1;
829 sp->ttis[1].tt_gmtoff = -stdoffset;
830 sp->ttis[1].tt_isdst = 0;
831 sp->ttis[1].tt_abbrind = 0;
832 atp = sp->ats;
833 typep = sp->types;
834 janfirst = 0;
835 for (year = EPOCH_YEAR; year <= 2037; ++year) {
836 starttime = transtime(janfirst, year, &start,
837 stdoffset);
838 endtime = transtime(janfirst, year, &end,
839 dstoffset);
840 if (starttime > endtime) {
841 *atp++ = endtime;
842 *typep++ = 1; /* DST ends */
843 *atp++ = starttime;
844 *typep++ = 0; /* DST begins */
845 } else {
846 *atp++ = starttime;
847 *typep++ = 0; /* DST begins */
848 *atp++ = endtime;
849 *typep++ = 1; /* DST ends */
850 }
851 janfirst += year_lengths[isleap(year)] *
852 SECSPERDAY;
853 }
854 } else {
855 register long theirstdoffset;
856 register long theirdstoffset;
857 register long theiroffset;
858 register int isdst;
859 register int i;
860 register int j;
861
862 if (*name != '\0')
863 return -1;
864 /*
865 ** Initial values of theirstdoffset and theirdstoffset.
866 */
867 theirstdoffset = 0;
868 for (i = 0; i < sp->timecnt; ++i) {
869 j = sp->types[i];
870 if (!sp->ttis[j].tt_isdst) {
871 theirstdoffset =
872 -sp->ttis[j].tt_gmtoff;
873 break;
874 }
875 }
876 theirdstoffset = 0;
877 for (i = 0; i < sp->timecnt; ++i) {
878 j = sp->types[i];
879 if (sp->ttis[j].tt_isdst) {
880 theirdstoffset =
881 -sp->ttis[j].tt_gmtoff;
882 break;
883 }
884 }
885 /*
886 ** Initially we're assumed to be in standard time.
887 */
888 isdst = FALSE;
889 theiroffset = theirstdoffset;
890 /*
891 ** Now juggle transition times and types
892 ** tracking offsets as you do.
893 */
894 for (i = 0; i < sp->timecnt; ++i) {
895 j = sp->types[i];
896 sp->types[i] = sp->ttis[j].tt_isdst;
897 if (sp->ttis[j].tt_ttisgmt) {
898 /* No adjustment to transition time */
899 } else {
900 /*
901 ** If summer time is in effect, and the
902 ** transition time was not specified as
903 ** standard time, add the summer time
904 ** offset to the transition time;
905 ** otherwise, add the standard time
906 ** offset to the transition time.
907 */
908 /*
909 ** Transitions from DST to DDST
910 ** will effectively disappear since
911 ** POSIX provides for only one DST
912 ** offset.
913 */
914 if (isdst && !sp->ttis[j].tt_ttisstd) {
915 sp->ats[i] += dstoffset -
916 theirdstoffset;
917 } else {
918 sp->ats[i] += stdoffset -
919 theirstdoffset;
920 }
921 }
922 theiroffset = -sp->ttis[j].tt_gmtoff;
923 if (sp->ttis[j].tt_isdst)
924 theirdstoffset = theiroffset;
925 else theirstdoffset = theiroffset;
926 }
927 /*
928 ** Finally, fill in ttis.
929 ** ttisstd and ttisgmt need not be handled.
930 */
931 sp->ttis[0].tt_gmtoff = -stdoffset;
932 sp->ttis[0].tt_isdst = FALSE;
933 sp->ttis[0].tt_abbrind = 0;
934 sp->ttis[1].tt_gmtoff = -dstoffset;
935 sp->ttis[1].tt_isdst = TRUE;
936 sp->ttis[1].tt_abbrind = stdlen + 1;
937 sp->typecnt = 2;
938 }
939 } else {
940 dstlen = 0;
941 sp->typecnt = 1; /* only standard time */
942 sp->timecnt = 0;
943 sp->ttis[0].tt_gmtoff = -stdoffset;
944 sp->ttis[0].tt_isdst = 0;
945 sp->ttis[0].tt_abbrind = 0;
946 }
947 sp->charcnt = stdlen + 1;
948 if (dstlen != 0)
949 sp->charcnt += dstlen + 1;
950 if ((size_t) sp->charcnt > sizeof sp->chars)
951 return -1;
952 cp = sp->chars;
953 (void) strncpy(cp, stdname, stdlen);
954 cp += stdlen;
955 *cp++ = '\0';
956 if (dstlen != 0) {
957 (void) strncpy(cp, dstname, dstlen);
958 *(cp + dstlen) = '\0';
959 }
960 return 0;
961 }
962
963 static void
964 gmtload(sp)
965 struct state * const sp;
966 {
967 if (tzload(gmt, sp) != 0)
968 (void) tzparse(gmt, sp, TRUE);
969 }
970
971 static void
972 tzsetwall_unlocked P((void))
973 {
974 if (lcl_is_set < 0)
975 return;
976 lcl_is_set = -1;
977
978 #ifdef ALL_STATE
979 if (lclptr == NULL) {
980 lclptr = (struct state *) malloc(sizeof *lclptr);
981 if (lclptr == NULL) {
982 settzname(); /* all we can do */
983 return;
984 }
985 }
986 #endif /* defined ALL_STATE */
987 if (tzload((char *) NULL, lclptr) != 0)
988 gmtload(lclptr);
989 settzname();
990 }
991
992 #ifndef STD_INSPIRED
993 /*
994 ** A non-static declaration of tzsetwall in a system header file
995 ** may cause a warning about this upcoming static declaration...
996 */
997 static
998 #endif /* !defined STD_INSPIRED */
999 void
1000 tzsetwall P((void))
1001 {
1002 rwlock_wrlock(&lcl_lock);
1003 tzsetwall_unlocked();
1004 rwlock_unlock(&lcl_lock);
1005 }
1006
1007 static void
1008 tzset_unlocked P((void))
1009 {
1010 register const char * name;
1011
1012 name = getenv("TZ");
1013 if (name == NULL) {
1014 tzsetwall_unlocked();
1015 return;
1016 }
1017
1018 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1019 return;
1020 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1021 if (lcl_is_set)
1022 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1023
1024 #ifdef ALL_STATE
1025 if (lclptr == NULL) {
1026 lclptr = (struct state *) malloc(sizeof *lclptr);
1027 if (lclptr == NULL) {
1028 settzname(); /* all we can do */
1029 return;
1030 }
1031 }
1032 #endif /* defined ALL_STATE */
1033 if (*name == '\0') {
1034 /*
1035 ** User wants it fast rather than right.
1036 */
1037 lclptr->leapcnt = 0; /* so, we're off a little */
1038 lclptr->timecnt = 0;
1039 lclptr->typecnt = 0;
1040 lclptr->ttis[0].tt_isdst = 0;
1041 lclptr->ttis[0].tt_gmtoff = 0;
1042 lclptr->ttis[0].tt_abbrind = 0;
1043 (void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1044 } else if (tzload(name, lclptr) != 0)
1045 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1046 (void) gmtload(lclptr);
1047 settzname();
1048 }
1049
1050 void
1051 tzset P((void))
1052 {
1053 rwlock_wrlock(&lcl_lock);
1054 tzset_unlocked();
1055 rwlock_unlock(&lcl_lock);
1056 }
1057
1058 /*
1059 ** The easy way to behave "as if no library function calls" localtime
1060 ** is to not call it--so we drop its guts into "localsub", which can be
1061 ** freely called. (And no, the PANS doesn't require the above behavior--
1062 ** but it *is* desirable.)
1063 **
1064 ** The unused offset argument is for the benefit of mktime variants.
1065 */
1066
1067 /*ARGSUSED*/
1068 static void
1069 localsub(timep, offset, tmp)
1070 const time_t * const timep;
1071 const long offset;
1072 struct tm * const tmp;
1073 {
1074 register struct state * sp;
1075 register const struct ttinfo * ttisp;
1076 register int i;
1077 const time_t t = *timep;
1078
1079 sp = lclptr;
1080 #ifdef ALL_STATE
1081 if (sp == NULL) {
1082 gmtsub(timep, offset, tmp);
1083 return;
1084 }
1085 #endif /* defined ALL_STATE */
1086 if (sp->timecnt == 0 || t < sp->ats[0]) {
1087 i = 0;
1088 while (sp->ttis[i].tt_isdst)
1089 if (++i >= sp->typecnt) {
1090 i = 0;
1091 break;
1092 }
1093 } else {
1094 for (i = 1; i < sp->timecnt; ++i)
1095 if (t < sp->ats[i])
1096 break;
1097 i = sp->types[i - 1];
1098 }
1099 ttisp = &sp->ttis[i];
1100 /*
1101 ** To get (wrong) behavior that's compatible with System V Release 2.0
1102 ** you'd replace the statement below with
1103 ** t += ttisp->tt_gmtoff;
1104 ** timesub(&t, 0L, sp, tmp);
1105 */
1106 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1107 tmp->tm_isdst = ttisp->tt_isdst;
1108 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1109 #ifdef TM_ZONE
1110 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1111 #endif /* defined TM_ZONE */
1112 }
1113
1114 struct tm *
1115 localtime(timep)
1116 const time_t * const timep;
1117 {
1118 rwlock_wrlock(&lcl_lock);
1119 tzset_unlocked();
1120 localsub(timep, 0L, &tm);
1121 rwlock_unlock(&lcl_lock);
1122 return &tm;
1123 }
1124
1125 /*
1126 * Re-entrant version of localtime
1127 */
1128 struct tm *
1129 localtime_r(timep, tmp)
1130 const time_t * const timep;
1131 struct tm * tmp;
1132 {
1133 rwlock_rdlock(&lcl_lock);
1134 localsub(timep, 0L, tmp);
1135 rwlock_unlock(&lcl_lock);
1136 return tmp;
1137 }
1138
1139 /*
1140 ** gmtsub is to gmtime as localsub is to localtime.
1141 */
1142
1143 static void
1144 gmtsub(timep, offset, tmp)
1145 const time_t * const timep;
1146 const long offset;
1147 struct tm * const tmp;
1148 {
1149 #ifdef _REENTRANT
1150 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1151 #endif
1152
1153 mutex_lock(&gmt_mutex);
1154 if (!gmt_is_set) {
1155 gmt_is_set = TRUE;
1156 #ifdef ALL_STATE
1157 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1158 if (gmtptr != NULL)
1159 #endif /* defined ALL_STATE */
1160 gmtload(gmtptr);
1161 }
1162 mutex_unlock(&gmt_mutex);
1163 timesub(timep, offset, gmtptr, tmp);
1164 #ifdef TM_ZONE
1165 /*
1166 ** Could get fancy here and deliver something such as
1167 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1168 ** but this is no time for a treasure hunt.
1169 */
1170 if (offset != 0)
1171 /* LINTED const castaway */
1172 tmp->TM_ZONE = (__aconst char *)wildabbr;
1173 else {
1174 #ifdef ALL_STATE
1175 if (gmtptr == NULL)
1176 tmp->TM_ZONE = (__aconst char *)gmt;
1177 else tmp->TM_ZONE = gmtptr->chars;
1178 #endif /* defined ALL_STATE */
1179 #ifndef ALL_STATE
1180 tmp->TM_ZONE = gmtptr->chars;
1181 #endif /* State Farm */
1182 }
1183 #endif /* defined TM_ZONE */
1184 }
1185
1186 struct tm *
1187 gmtime(timep)
1188 const time_t * const timep;
1189 {
1190 gmtsub(timep, 0L, &tm);
1191 return &tm;
1192 }
1193
1194 /*
1195 * Re-entrant version of gmtime
1196 */
1197 struct tm *
1198 gmtime_r(timep, tmp)
1199 const time_t * const timep;
1200 struct tm * tmp;
1201 {
1202 gmtsub(timep, 0L, tmp);
1203 return tmp;
1204 }
1205
1206 #ifdef STD_INSPIRED
1207
1208 struct tm *
1209 offtime(timep, offset)
1210 const time_t * const timep;
1211 const long offset;
1212 {
1213 gmtsub(timep, offset, &tm);
1214 return &tm;
1215 }
1216
1217 #endif /* defined STD_INSPIRED */
1218
1219 static void
1220 timesub(timep, offset, sp, tmp)
1221 const time_t * const timep;
1222 const long offset;
1223 register const struct state * const sp;
1224 register struct tm * const tmp;
1225 {
1226 register const struct lsinfo * lp;
1227 register long days;
1228 register long rem;
1229 register int y;
1230 register int yleap;
1231 register const int * ip;
1232 register long corr;
1233 register int hit;
1234 register int i;
1235
1236 corr = 0;
1237 hit = 0;
1238 #ifdef ALL_STATE
1239 i = (sp == NULL) ? 0 : sp->leapcnt;
1240 #endif /* defined ALL_STATE */
1241 #ifndef ALL_STATE
1242 i = sp->leapcnt;
1243 #endif /* State Farm */
1244 while (--i >= 0) {
1245 lp = &sp->lsis[i];
1246 if (*timep >= lp->ls_trans) {
1247 if (*timep == lp->ls_trans) {
1248 hit = ((i == 0 && lp->ls_corr > 0) ||
1249 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1250 if (hit)
1251 while (i > 0 &&
1252 sp->lsis[i].ls_trans ==
1253 sp->lsis[i - 1].ls_trans + 1 &&
1254 sp->lsis[i].ls_corr ==
1255 sp->lsis[i - 1].ls_corr + 1) {
1256 ++hit;
1257 --i;
1258 }
1259 }
1260 corr = lp->ls_corr;
1261 break;
1262 }
1263 }
1264 days = *timep / SECSPERDAY;
1265 rem = *timep % SECSPERDAY;
1266 #ifdef mc68k
1267 if (*timep == 0x80000000) {
1268 /*
1269 ** A 3B1 muffs the division on the most negative number.
1270 */
1271 days = -24855;
1272 rem = -11648;
1273 }
1274 #endif /* defined mc68k */
1275 rem += (offset - corr);
1276 while (rem < 0) {
1277 rem += SECSPERDAY;
1278 --days;
1279 }
1280 while (rem >= SECSPERDAY) {
1281 rem -= SECSPERDAY;
1282 ++days;
1283 }
1284 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1285 rem = rem % SECSPERHOUR;
1286 tmp->tm_min = (int) (rem / SECSPERMIN);
1287 /*
1288 ** A positive leap second requires a special
1289 ** representation. This uses "... ??:59:60" et seq.
1290 */
1291 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1292 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1293 if (tmp->tm_wday < 0)
1294 tmp->tm_wday += DAYSPERWEEK;
1295 y = EPOCH_YEAR;
1296 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1297 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1298 register int newy;
1299
1300 newy = (int)(y + days / DAYSPERNYEAR);
1301 if (days < 0)
1302 --newy;
1303 days -= (newy - y) * DAYSPERNYEAR +
1304 LEAPS_THRU_END_OF(newy - 1) -
1305 LEAPS_THRU_END_OF(y - 1);
1306 y = newy;
1307 }
1308 tmp->tm_year = y - TM_YEAR_BASE;
1309 tmp->tm_yday = (int) days;
1310 ip = mon_lengths[yleap];
1311 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1312 days = days - (long) ip[tmp->tm_mon];
1313 tmp->tm_mday = (int) (days + 1);
1314 tmp->tm_isdst = 0;
1315 #ifdef TM_GMTOFF
1316 tmp->TM_GMTOFF = offset;
1317 #endif /* defined TM_GMTOFF */
1318 }
1319
1320 char *
1321 ctime(timep)
1322 const time_t * const timep;
1323 {
1324 /*
1325 ** Section 4.12.3.2 of X3.159-1989 requires that
1326 ** The ctime function converts the calendar time pointed to by timer
1327 ** to local time in the form of a string. It is equivalent to
1328 ** asctime(localtime(timer))
1329 */
1330 return asctime(localtime(timep));
1331 }
1332
1333 char *
1334 ctime_r(timep, buf)
1335 const time_t * const timep;
1336 char * buf;
1337 {
1338 struct tm tmp;
1339
1340 return asctime_r(localtime_r(timep, &tmp), buf);
1341 }
1342
1343 /*
1344 ** Adapted from code provided by Robert Elz, who writes:
1345 ** The "best" way to do mktime I think is based on an idea of Bob
1346 ** Kridle's (so its said...) from a long time ago.
1347 ** [kridle (at) xinet.com as of 1996-01-16.]
1348 ** It does a binary search of the time_t space. Since time_t's are
1349 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1350 ** would still be very reasonable).
1351 */
1352
1353 #ifndef WRONG
1354 #define WRONG (-1)
1355 #endif /* !defined WRONG */
1356
1357 /*
1358 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1359 */
1360
1361 static int
1362 increment_overflow(number, delta)
1363 int * number;
1364 int delta;
1365 {
1366 int number0;
1367
1368 number0 = *number;
1369 *number += delta;
1370 return (*number < number0) != (delta < 0);
1371 }
1372
1373 static int
1374 normalize_overflow(tensptr, unitsptr, base)
1375 int * const tensptr;
1376 int * const unitsptr;
1377 const int base;
1378 {
1379 register int tensdelta;
1380
1381 tensdelta = (*unitsptr >= 0) ?
1382 (*unitsptr / base) :
1383 (-1 - (-1 - *unitsptr) / base);
1384 *unitsptr -= tensdelta * base;
1385 return increment_overflow(tensptr, tensdelta);
1386 }
1387
1388 static int
1389 tmcomp(atmp, btmp)
1390 register const struct tm * const atmp;
1391 register const struct tm * const btmp;
1392 {
1393 register int result;
1394
1395 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1396 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1397 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1398 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1399 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1400 result = atmp->tm_sec - btmp->tm_sec;
1401 return result;
1402 }
1403
1404 static time_t
1405 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1406 struct tm * const tmp;
1407 void (* const funcp) P((const time_t*, long, struct tm*));
1408 const long offset;
1409 int * const okayp;
1410 const int do_norm_secs;
1411 {
1412 register const struct state * sp;
1413 register int dir;
1414 register int bits;
1415 register int i, j ;
1416 register int saved_seconds;
1417 time_t newt;
1418 time_t t;
1419 struct tm yourtm, mytm;
1420
1421 *okayp = FALSE;
1422 yourtm = *tmp;
1423 if (do_norm_secs) {
1424 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1425 SECSPERMIN))
1426 return WRONG;
1427 }
1428 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1429 return WRONG;
1430 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1431 return WRONG;
1432 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1433 return WRONG;
1434 /*
1435 ** Turn yourtm.tm_year into an actual year number for now.
1436 ** It is converted back to an offset from TM_YEAR_BASE later.
1437 */
1438 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1439 return WRONG;
1440 while (yourtm.tm_mday <= 0) {
1441 if (increment_overflow(&yourtm.tm_year, -1))
1442 return WRONG;
1443 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1444 yourtm.tm_mday += year_lengths[isleap(i)];
1445 }
1446 while (yourtm.tm_mday > DAYSPERLYEAR) {
1447 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1448 yourtm.tm_mday -= year_lengths[isleap(i)];
1449 if (increment_overflow(&yourtm.tm_year, 1))
1450 return WRONG;
1451 }
1452 for ( ; ; ) {
1453 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1454 if (yourtm.tm_mday <= i)
1455 break;
1456 yourtm.tm_mday -= i;
1457 if (++yourtm.tm_mon >= MONSPERYEAR) {
1458 yourtm.tm_mon = 0;
1459 if (increment_overflow(&yourtm.tm_year, 1))
1460 return WRONG;
1461 }
1462 }
1463 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1464 return WRONG;
1465 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1466 saved_seconds = 0;
1467 else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1468 /*
1469 ** We can't set tm_sec to 0, because that might push the
1470 ** time below the minimum representable time.
1471 ** Set tm_sec to 59 instead.
1472 ** This assumes that the minimum representable time is
1473 ** not in the same minute that a leap second was deleted from,
1474 ** which is a safer assumption than using 58 would be.
1475 */
1476 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1477 return WRONG;
1478 saved_seconds = yourtm.tm_sec;
1479 yourtm.tm_sec = SECSPERMIN - 1;
1480 } else {
1481 saved_seconds = yourtm.tm_sec;
1482 yourtm.tm_sec = 0;
1483 }
1484 /*
1485 ** Divide the search space in half
1486 ** (this works whether time_t is signed or unsigned).
1487 */
1488 bits = TYPE_BIT(time_t) - 1;
1489 /*
1490 ** If time_t is signed, then 0 is just above the median,
1491 ** assuming two's complement arithmetic.
1492 ** If time_t is unsigned, then (1 << bits) is just above the median.
1493 */
1494 /* LINTED constant in conditional context */
1495 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1496 for ( ; ; ) {
1497 (*funcp)(&t, offset, &mytm);
1498 dir = tmcomp(&mytm, &yourtm);
1499 if (dir != 0) {
1500 if (bits-- < 0)
1501 return WRONG;
1502 if (bits < 0)
1503 --t; /* may be needed if new t is minimal */
1504 else if (dir > 0)
1505 t -= ((time_t) 1) << bits;
1506 else t += ((time_t) 1) << bits;
1507 continue;
1508 }
1509 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1510 break;
1511 /*
1512 ** Right time, wrong type.
1513 ** Hunt for right time, right type.
1514 ** It's okay to guess wrong since the guess
1515 ** gets checked.
1516 */
1517 /*
1518 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1519 */
1520 sp = (const struct state *)
1521 (((void *) funcp == (void *) localsub) ?
1522 lclptr : gmtptr);
1523 #ifdef ALL_STATE
1524 if (sp == NULL)
1525 return WRONG;
1526 #endif /* defined ALL_STATE */
1527 for (i = sp->typecnt - 1; i >= 0; --i) {
1528 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1529 continue;
1530 for (j = sp->typecnt - 1; j >= 0; --j) {
1531 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1532 continue;
1533 newt = t + sp->ttis[j].tt_gmtoff -
1534 sp->ttis[i].tt_gmtoff;
1535 (*funcp)(&newt, offset, &mytm);
1536 if (tmcomp(&mytm, &yourtm) != 0)
1537 continue;
1538 if (mytm.tm_isdst != yourtm.tm_isdst)
1539 continue;
1540 /*
1541 ** We have a match.
1542 */
1543 t = newt;
1544 goto label;
1545 }
1546 }
1547 return WRONG;
1548 }
1549 label:
1550 newt = t + saved_seconds;
1551 if ((newt < t) != (saved_seconds < 0))
1552 return WRONG;
1553 t = newt;
1554 (*funcp)(&t, offset, tmp);
1555 *okayp = TRUE;
1556 return t;
1557 }
1558
1559 static time_t
1560 time2(tmp, funcp, offset, okayp)
1561 struct tm * const tmp;
1562 void (* const funcp) P((const time_t*, long, struct tm*));
1563 const long offset;
1564 int * const okayp;
1565 {
1566 time_t t;
1567
1568 /*
1569 ** First try without normalization of seconds
1570 ** (in case tm_sec contains a value associated with a leap second).
1571 ** If that fails, try with normalization of seconds.
1572 */
1573 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1574 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1575 }
1576
1577 static time_t
1578 time1(tmp, funcp, offset)
1579 struct tm * const tmp;
1580 void (* const funcp) P((const time_t *, long, struct tm *));
1581 const long offset;
1582 {
1583 register time_t t;
1584 register const struct state * sp;
1585 register int samei, otheri;
1586 int okay;
1587
1588 if (tmp->tm_isdst > 1)
1589 tmp->tm_isdst = 1;
1590 t = time2(tmp, funcp, offset, &okay);
1591 #ifdef PCTS
1592 /*
1593 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1594 */
1595 if (okay)
1596 return t;
1597 if (tmp->tm_isdst < 0)
1598 tmp->tm_isdst = 0; /* reset to std and try again */
1599 #endif /* defined PCTS */
1600 #ifndef PCTS
1601 if (okay || tmp->tm_isdst < 0)
1602 return t;
1603 #endif /* !defined PCTS */
1604 /*
1605 ** We're supposed to assume that somebody took a time of one type
1606 ** and did some math on it that yielded a "struct tm" that's bad.
1607 ** We try to divine the type they started from and adjust to the
1608 ** type they need.
1609 */
1610 /*
1611 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1612 */
1613 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1614 lclptr : gmtptr);
1615 #ifdef ALL_STATE
1616 if (sp == NULL)
1617 return WRONG;
1618 #endif /* defined ALL_STATE */
1619 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1620 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1621 continue;
1622 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1623 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1624 continue;
1625 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1626 sp->ttis[samei].tt_gmtoff);
1627 tmp->tm_isdst = !tmp->tm_isdst;
1628 t = time2(tmp, funcp, offset, &okay);
1629 if (okay)
1630 return t;
1631 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1632 sp->ttis[samei].tt_gmtoff);
1633 tmp->tm_isdst = !tmp->tm_isdst;
1634 }
1635 }
1636 return WRONG;
1637 }
1638
1639 time_t
1640 mktime(tmp)
1641 struct tm * const tmp;
1642 {
1643 time_t result;
1644
1645 rwlock_wrlock(&lcl_lock);
1646 tzset_unlocked();
1647 result = time1(tmp, localsub, 0L);
1648 rwlock_unlock(&lcl_lock);
1649 return (result);
1650 }
1651
1652 #ifdef STD_INSPIRED
1653
1654 time_t
1655 timelocal(tmp)
1656 struct tm * const tmp;
1657 {
1658 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1659 return mktime(tmp);
1660 }
1661
1662 time_t
1663 timegm(tmp)
1664 struct tm * const tmp;
1665 {
1666 tmp->tm_isdst = 0;
1667 return time1(tmp, gmtsub, 0L);
1668 }
1669
1670 time_t
1671 timeoff(tmp, offset)
1672 struct tm * const tmp;
1673 const long offset;
1674 {
1675 tmp->tm_isdst = 0;
1676 return time1(tmp, gmtsub, offset);
1677 }
1678
1679 #endif /* defined STD_INSPIRED */
1680
1681 #ifdef CMUCS
1682
1683 /*
1684 ** The following is supplied for compatibility with
1685 ** previous versions of the CMUCS runtime library.
1686 */
1687
1688 long
1689 gtime(tmp)
1690 struct tm * const tmp;
1691 {
1692 const time_t t = mktime(tmp);
1693
1694 if (t == WRONG)
1695 return -1;
1696 return t;
1697 }
1698
1699 #endif /* defined CMUCS */
1700
1701 /*
1702 ** XXX--is the below the right way to conditionalize??
1703 */
1704
1705 #ifdef STD_INSPIRED
1706
1707 /*
1708 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1709 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1710 ** is not the case if we are accounting for leap seconds.
1711 ** So, we provide the following conversion routines for use
1712 ** when exchanging timestamps with POSIX conforming systems.
1713 */
1714
1715 static long
1716 leapcorr(timep)
1717 time_t * timep;
1718 {
1719 register struct state * sp;
1720 register struct lsinfo * lp;
1721 register int i;
1722
1723 sp = lclptr;
1724 i = sp->leapcnt;
1725 while (--i >= 0) {
1726 lp = &sp->lsis[i];
1727 if (*timep >= lp->ls_trans)
1728 return lp->ls_corr;
1729 }
1730 return 0;
1731 }
1732
1733 time_t
1734 time2posix(t)
1735 time_t t;
1736 {
1737 time_t result;
1738
1739 rwlock_wrlock(&lcl_lock);
1740 tzset_unlocked();
1741 result = t - leapcorr(&t);
1742 rwlock_unlock(&lcl_lock);
1743 return (result);
1744 }
1745
1746 time_t
1747 posix2time(t)
1748 time_t t;
1749 {
1750 time_t x;
1751 time_t y;
1752
1753 rwlock_wrlock(&lcl_lock);
1754 tzset_unlocked();
1755 /*
1756 ** For a positive leap second hit, the result
1757 ** is not unique. For a negative leap second
1758 ** hit, the corresponding time doesn't exist,
1759 ** so we return an adjacent second.
1760 */
1761 x = t + leapcorr(&t);
1762 y = x - leapcorr(&x);
1763 if (y < t) {
1764 do {
1765 x++;
1766 y = x - leapcorr(&x);
1767 } while (y < t);
1768 if (t != y) {
1769 rwlock_unlock(&lcl_lock);
1770 return x - 1;
1771 }
1772 } else if (y > t) {
1773 do {
1774 --x;
1775 y = x - leapcorr(&x);
1776 } while (y > t);
1777 if (t != y) {
1778 rwlock_unlock(&lcl_lock);
1779 return x + 1;
1780 }
1781 }
1782 rwlock_unlock(&lcl_lock);
1783 return x;
1784 }
1785
1786 #endif /* defined STD_INSPIRED */
1787