localtime.c revision 1.37 1 /* $NetBSD: localtime.c,v 1.37 2005/07/16 19:48:09 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 7.78";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.37 2005/07/16 19:48:09 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 ** POSIX-style TZ environment variable handling from Guy Harris
20 ** (guy (at) auspex.com).
21 */
22
23 /*LINTLIBRARY*/
24
25 #include "namespace.h"
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #ifdef __weak_alias
32 __weak_alias(ctime_r,_ctime_r)
33 __weak_alias(daylight,_daylight)
34 __weak_alias(gmtime_r,_gmtime_r)
35 __weak_alias(localtime_r,_localtime_r)
36 __weak_alias(offtime,_offtime)
37 __weak_alias(posix2time,_posix2time)
38 __weak_alias(time2posix,_time2posix)
39 __weak_alias(timegm,_timegm)
40 __weak_alias(timelocal,_timelocal)
41 __weak_alias(timeoff,_timeoff)
42 __weak_alias(tzname,_tzname)
43 __weak_alias(tzset,_tzset)
44 __weak_alias(tzsetwall,_tzsetwall)
45 #endif
46
47 /*
48 ** SunOS 4.1.1 headers lack O_BINARY.
49 */
50
51 #ifdef O_BINARY
52 #define OPEN_MODE (O_RDONLY | O_BINARY)
53 #endif /* defined O_BINARY */
54 #ifndef O_BINARY
55 #define OPEN_MODE O_RDONLY
56 #endif /* !defined O_BINARY */
57
58 #ifndef WILDABBR
59 /*
60 ** Someone might make incorrect use of a time zone abbreviation:
61 ** 1. They might reference tzname[0] before calling tzset (explicitly
62 ** or implicitly).
63 ** 2. They might reference tzname[1] before calling tzset (explicitly
64 ** or implicitly).
65 ** 3. They might reference tzname[1] after setting to a time zone
66 ** in which Daylight Saving Time is never observed.
67 ** 4. They might reference tzname[0] after setting to a time zone
68 ** in which Standard Time is never observed.
69 ** 5. They might reference tm.TM_ZONE after calling offtime.
70 ** What's best to do in the above cases is open to debate;
71 ** for now, we just set things up so that in any of the five cases
72 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
73 ** string "tzname[0] used before set", and similarly for the other cases.
74 ** And another: initialize tzname[0] to "ERA", with an explanation in the
75 ** manual page of what this "time zone abbreviation" means (doing this so
76 ** that tzname[0] has the "normal" length of three characters).
77 */
78 #define WILDABBR " "
79 #endif /* !defined WILDABBR */
80
81 static const char wildabbr[] = "WILDABBR";
82
83 static const char gmt[] = "GMT";
84
85 /*
86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 ** We default to US rules as of 1999-08-17.
88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 ** implementation dependent; for historical reasons, US rules are a
90 ** common default.
91 */
92 #ifndef TZDEFRULESTRING
93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 #endif /* !defined TZDEFDST */
95
96 struct ttinfo { /* time type information */
97 long tt_gmtoff; /* UTC offset in seconds */
98 int tt_isdst; /* used to set tm_isdst */
99 int tt_abbrind; /* abbreviation list index */
100 int tt_ttisstd; /* TRUE if transition is std time */
101 int tt_ttisgmt; /* TRUE if transition is UTC */
102 };
103
104 struct lsinfo { /* leap second information */
105 time_t ls_trans; /* transition time */
106 long ls_corr; /* correction to apply */
107 };
108
109 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
110
111 #ifdef TZNAME_MAX
112 #define MY_TZNAME_MAX TZNAME_MAX
113 #endif /* defined TZNAME_MAX */
114 #ifndef TZNAME_MAX
115 #define MY_TZNAME_MAX 255
116 #endif /* !defined TZNAME_MAX */
117
118 struct state {
119 int leapcnt;
120 int timecnt;
121 int typecnt;
122 int charcnt;
123 time_t ats[TZ_MAX_TIMES];
124 unsigned char types[TZ_MAX_TIMES];
125 struct ttinfo ttis[TZ_MAX_TYPES];
126 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
127 (2 * (MY_TZNAME_MAX + 1)))];
128 struct lsinfo lsis[TZ_MAX_LEAPS];
129 };
130
131 struct rule {
132 int r_type; /* type of rule--see below */
133 int r_day; /* day number of rule */
134 int r_week; /* week number of rule */
135 int r_mon; /* month number of rule */
136 long r_time; /* transition time of rule */
137 };
138
139 #define JULIAN_DAY 0 /* Jn - Julian day */
140 #define DAY_OF_YEAR 1 /* n - day of year */
141 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
142
143 /*
144 ** Prototypes for static functions.
145 */
146
147 static long detzcode P((const char * codep));
148 static const char * getzname P((const char * strp));
149 static const char * getnum P((const char * strp, int * nump, int min,
150 int max));
151 static const char * getsecs P((const char * strp, long * secsp));
152 static const char * getoffset P((const char * strp, long * offsetp));
153 static const char * getrule P((const char * strp, struct rule * rulep));
154 static void gmtload P((struct state * sp));
155 static void gmtsub P((const time_t * timep, long offset,
156 struct tm * tmp));
157 static void localsub P((const time_t * timep, long offset,
158 struct tm * tmp));
159 static int increment_overflow P((int * number, int delta));
160 static int normalize_overflow P((int * tensptr, int * unitsptr,
161 int base));
162 static void settzname P((void));
163 static time_t time1 P((struct tm * tmp,
164 void(*funcp) P((const time_t *,
165 long, struct tm *)),
166 long offset));
167 static time_t time2 P((struct tm *tmp,
168 void(*funcp) P((const time_t *,
169 long, struct tm*)),
170 long offset, int * okayp));
171 static time_t time2sub P((struct tm *tmp,
172 void(*funcp) P((const time_t *,
173 long, struct tm*)),
174 long offset, int * okayp, int do_norm_secs));
175 static void timesub P((const time_t * timep, long offset,
176 const struct state * sp, struct tm * tmp));
177 static int tmcomp P((const struct tm * atmp,
178 const struct tm * btmp));
179 static time_t transtime P((time_t janfirst, int year,
180 const struct rule * rulep, long offset));
181 static int tzload P((const char * name, struct state * sp));
182 static int tzparse P((const char * name, struct state * sp,
183 int lastditch));
184 static void tzset_unlocked P((void));
185 static void tzsetwall_unlocked P((void));
186 #ifdef STD_INSPIRED
187 static long leapcorr P((time_t * timep));
188 #endif
189
190 #ifdef ALL_STATE
191 static struct state * lclptr;
192 static struct state * gmtptr;
193 #endif /* defined ALL_STATE */
194
195 #ifndef ALL_STATE
196 static struct state lclmem;
197 static struct state gmtmem;
198 #define lclptr (&lclmem)
199 #define gmtptr (&gmtmem)
200 #endif /* State Farm */
201
202 #ifndef TZ_STRLEN_MAX
203 #define TZ_STRLEN_MAX 255
204 #endif /* !defined TZ_STRLEN_MAX */
205
206 static char lcl_TZname[TZ_STRLEN_MAX + 1];
207 static int lcl_is_set;
208 static int gmt_is_set;
209
210 __aconst char * tzname[2] = {
211 (__aconst char *)__UNCONST(wildabbr),
212 (__aconst char *)__UNCONST(wildabbr)
213 };
214
215 #ifdef _REENTRANT
216 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
217 #endif
218
219 /*
220 ** Section 4.12.3 of X3.159-1989 requires that
221 ** Except for the strftime function, these functions [asctime,
222 ** ctime, gmtime, localtime] return values in one of two static
223 ** objects: a broken-down time structure and an array of char.
224 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
225 */
226
227 static struct tm tm;
228
229 #ifdef USG_COMPAT
230 long int timezone = 0;
231 int daylight = 0;
232 #endif /* defined USG_COMPAT */
233
234 #ifdef ALTZONE
235 time_t altzone = 0;
236 #endif /* defined ALTZONE */
237
238 static long
239 detzcode(codep)
240 const char * const codep;
241 {
242 register long result;
243
244 /*
245 ** The first character must be sign extended on systems with >32bit
246 ** longs. This was solved differently in the master tzcode sources
247 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
248 ** that this implementation is superior.
249 */
250
251 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
252
253 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
254 | (codep[1] & 0xff) << 16 \
255 | (codep[2] & 0xff) << 8
256 | (codep[3] & 0xff);
257 return result;
258 }
259
260 static void
261 settzname P((void))
262 {
263 register struct state * const sp = lclptr;
264 register int i;
265
266 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
267 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
268 #ifdef USG_COMPAT
269 daylight = 0;
270 timezone = 0;
271 #endif /* defined USG_COMPAT */
272 #ifdef ALTZONE
273 altzone = 0;
274 #endif /* defined ALTZONE */
275 #ifdef ALL_STATE
276 if (sp == NULL) {
277 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
278 return;
279 }
280 #endif /* defined ALL_STATE */
281 for (i = 0; i < sp->typecnt; ++i) {
282 register const struct ttinfo * const ttisp = &sp->ttis[i];
283
284 tzname[ttisp->tt_isdst] =
285 &sp->chars[ttisp->tt_abbrind];
286 #ifdef USG_COMPAT
287 if (ttisp->tt_isdst)
288 daylight = 1;
289 if (i == 0 || !ttisp->tt_isdst)
290 timezone = -(ttisp->tt_gmtoff);
291 #endif /* defined USG_COMPAT */
292 #ifdef ALTZONE
293 if (i == 0 || ttisp->tt_isdst)
294 altzone = -(ttisp->tt_gmtoff);
295 #endif /* defined ALTZONE */
296 }
297 /*
298 ** And to get the latest zone names into tzname. . .
299 */
300 for (i = 0; i < sp->timecnt; ++i) {
301 register const struct ttinfo * const ttisp =
302 &sp->ttis[
303 sp->types[i]];
304
305 tzname[ttisp->tt_isdst] =
306 &sp->chars[ttisp->tt_abbrind];
307 }
308 }
309
310 static int
311 tzload(name, sp)
312 register const char * name;
313 register struct state * const sp;
314 {
315 register const char * p;
316 register int i;
317 register int fid;
318
319 if (name == NULL && (name = TZDEFAULT) == NULL)
320 return -1;
321
322 {
323 register int doaccess;
324 /*
325 ** Section 4.9.1 of the C standard says that
326 ** "FILENAME_MAX expands to an integral constant expression
327 ** that is the size needed for an array of char large enough
328 ** to hold the longest file name string that the implementation
329 ** guarantees can be opened."
330 */
331 char fullname[FILENAME_MAX + 1];
332
333 if (name[0] == ':')
334 ++name;
335 doaccess = name[0] == '/';
336 if (!doaccess) {
337 if ((p = TZDIR) == NULL)
338 return -1;
339 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
340 return -1;
341 (void) strcpy(fullname, p); /* XXX strcpy is safe */
342 (void) strcat(fullname, "/"); /* XXX strcat is safe */
343 (void) strcat(fullname, name); /* XXX strcat is safe */
344 /*
345 ** Set doaccess if '.' (as in "../") shows up in name.
346 */
347 if (strchr(name, '.') != NULL)
348 doaccess = TRUE;
349 name = fullname;
350 }
351 if (doaccess && access(name, R_OK) != 0)
352 return -1;
353 /*
354 * XXX potential security problem here if user of a set-id
355 * program has set TZ (which is passed in as name) here,
356 * and uses a race condition trick to defeat the access(2)
357 * above.
358 */
359 if ((fid = open(name, OPEN_MODE)) == -1)
360 return -1;
361 }
362 {
363 struct tzhead * tzhp;
364 union {
365 struct tzhead tzhead;
366 char buf[sizeof *sp + sizeof *tzhp];
367 } u;
368 int ttisstdcnt;
369 int ttisgmtcnt;
370
371 i = read(fid, u.buf, sizeof u.buf);
372 if (close(fid) != 0)
373 return -1;
374 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
375 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
376 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
377 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
378 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
379 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
380 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
381 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
382 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
383 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
384 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
385 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
386 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
387 return -1;
388 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
389 sp->timecnt + /* types */
390 sp->typecnt * (4 + 2) + /* ttinfos */
391 sp->charcnt + /* chars */
392 sp->leapcnt * (4 + 4) + /* lsinfos */
393 ttisstdcnt + /* ttisstds */
394 ttisgmtcnt) /* ttisgmts */
395 return -1;
396 for (i = 0; i < sp->timecnt; ++i) {
397 sp->ats[i] = detzcode(p);
398 p += 4;
399 }
400 for (i = 0; i < sp->timecnt; ++i) {
401 sp->types[i] = (unsigned char) *p++;
402 if (sp->types[i] >= sp->typecnt)
403 return -1;
404 }
405 for (i = 0; i < sp->typecnt; ++i) {
406 register struct ttinfo * ttisp;
407
408 ttisp = &sp->ttis[i];
409 ttisp->tt_gmtoff = detzcode(p);
410 p += 4;
411 ttisp->tt_isdst = (unsigned char) *p++;
412 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
413 return -1;
414 ttisp->tt_abbrind = (unsigned char) *p++;
415 if (ttisp->tt_abbrind < 0 ||
416 ttisp->tt_abbrind > sp->charcnt)
417 return -1;
418 }
419 for (i = 0; i < sp->charcnt; ++i)
420 sp->chars[i] = *p++;
421 sp->chars[i] = '\0'; /* ensure '\0' at end */
422 for (i = 0; i < sp->leapcnt; ++i) {
423 register struct lsinfo * lsisp;
424
425 lsisp = &sp->lsis[i];
426 lsisp->ls_trans = detzcode(p);
427 p += 4;
428 lsisp->ls_corr = detzcode(p);
429 p += 4;
430 }
431 for (i = 0; i < sp->typecnt; ++i) {
432 register struct ttinfo * ttisp;
433
434 ttisp = &sp->ttis[i];
435 if (ttisstdcnt == 0)
436 ttisp->tt_ttisstd = FALSE;
437 else {
438 ttisp->tt_ttisstd = *p++;
439 if (ttisp->tt_ttisstd != TRUE &&
440 ttisp->tt_ttisstd != FALSE)
441 return -1;
442 }
443 }
444 for (i = 0; i < sp->typecnt; ++i) {
445 register struct ttinfo * ttisp;
446
447 ttisp = &sp->ttis[i];
448 if (ttisgmtcnt == 0)
449 ttisp->tt_ttisgmt = FALSE;
450 else {
451 ttisp->tt_ttisgmt = *p++;
452 if (ttisp->tt_ttisgmt != TRUE &&
453 ttisp->tt_ttisgmt != FALSE)
454 return -1;
455 }
456 }
457 }
458 return 0;
459 }
460
461 static const int mon_lengths[2][MONSPERYEAR] = {
462 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
463 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
464 };
465
466 static const int year_lengths[2] = {
467 DAYSPERNYEAR, DAYSPERLYEAR
468 };
469
470 /*
471 ** Given a pointer into a time zone string, scan until a character that is not
472 ** a valid character in a zone name is found. Return a pointer to that
473 ** character.
474 */
475
476 static const char *
477 getzname(strp)
478 register const char * strp;
479 {
480 register char c;
481
482 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
483 c != '+')
484 ++strp;
485 return strp;
486 }
487
488 /*
489 ** Given a pointer into a time zone string, extract a number from that string.
490 ** Check that the number is within a specified range; if it is not, return
491 ** NULL.
492 ** Otherwise, return a pointer to the first character not part of the number.
493 */
494
495 static const char *
496 getnum(strp, nump, min, max)
497 register const char * strp;
498 int * const nump;
499 const int min;
500 const int max;
501 {
502 register char c;
503 register int num;
504
505 if (strp == NULL || !is_digit(c = *strp))
506 return NULL;
507 num = 0;
508 do {
509 num = num * 10 + (c - '0');
510 if (num > max)
511 return NULL; /* illegal value */
512 c = *++strp;
513 } while (is_digit(c));
514 if (num < min)
515 return NULL; /* illegal value */
516 *nump = num;
517 return strp;
518 }
519
520 /*
521 ** Given a pointer into a time zone string, extract a number of seconds,
522 ** in hh[:mm[:ss]] form, from the string.
523 ** If any error occurs, return NULL.
524 ** Otherwise, return a pointer to the first character not part of the number
525 ** of seconds.
526 */
527
528 static const char *
529 getsecs(strp, secsp)
530 register const char * strp;
531 long * const secsp;
532 {
533 int num;
534
535 /*
536 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
537 ** "M10.4.6/26", which does not conform to Posix,
538 ** but which specifies the equivalent of
539 ** ``02:00 on the first Sunday on or after 23 Oct''.
540 */
541 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
542 if (strp == NULL)
543 return NULL;
544 *secsp = num * (long) SECSPERHOUR;
545 if (*strp == ':') {
546 ++strp;
547 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
548 if (strp == NULL)
549 return NULL;
550 *secsp += num * SECSPERMIN;
551 if (*strp == ':') {
552 ++strp;
553 /* `SECSPERMIN' allows for leap seconds. */
554 strp = getnum(strp, &num, 0, SECSPERMIN);
555 if (strp == NULL)
556 return NULL;
557 *secsp += num;
558 }
559 }
560 return strp;
561 }
562
563 /*
564 ** Given a pointer into a time zone string, extract an offset, in
565 ** [+-]hh[:mm[:ss]] form, from the string.
566 ** If any error occurs, return NULL.
567 ** Otherwise, return a pointer to the first character not part of the time.
568 */
569
570 static const char *
571 getoffset(strp, offsetp)
572 register const char * strp;
573 long * const offsetp;
574 {
575 register int neg = 0;
576
577 if (*strp == '-') {
578 neg = 1;
579 ++strp;
580 } else if (*strp == '+')
581 ++strp;
582 strp = getsecs(strp, offsetp);
583 if (strp == NULL)
584 return NULL; /* illegal time */
585 if (neg)
586 *offsetp = -*offsetp;
587 return strp;
588 }
589
590 /*
591 ** Given a pointer into a time zone string, extract a rule in the form
592 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
593 ** If a valid rule is not found, return NULL.
594 ** Otherwise, return a pointer to the first character not part of the rule.
595 */
596
597 static const char *
598 getrule(strp, rulep)
599 const char * strp;
600 register struct rule * const rulep;
601 {
602 if (*strp == 'J') {
603 /*
604 ** Julian day.
605 */
606 rulep->r_type = JULIAN_DAY;
607 ++strp;
608 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
609 } else if (*strp == 'M') {
610 /*
611 ** Month, week, day.
612 */
613 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
614 ++strp;
615 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
616 if (strp == NULL)
617 return NULL;
618 if (*strp++ != '.')
619 return NULL;
620 strp = getnum(strp, &rulep->r_week, 1, 5);
621 if (strp == NULL)
622 return NULL;
623 if (*strp++ != '.')
624 return NULL;
625 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
626 } else if (is_digit(*strp)) {
627 /*
628 ** Day of year.
629 */
630 rulep->r_type = DAY_OF_YEAR;
631 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
632 } else return NULL; /* invalid format */
633 if (strp == NULL)
634 return NULL;
635 if (*strp == '/') {
636 /*
637 ** Time specified.
638 */
639 ++strp;
640 strp = getsecs(strp, &rulep->r_time);
641 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
642 return strp;
643 }
644
645 /*
646 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
647 ** year, a rule, and the offset from UTC at the time that rule takes effect,
648 ** calculate the Epoch-relative time that rule takes effect.
649 */
650
651 static time_t
652 transtime(janfirst, year, rulep, offset)
653 const time_t janfirst;
654 const int year;
655 register const struct rule * const rulep;
656 const long offset;
657 {
658 register int leapyear;
659 register time_t value;
660 register int i;
661 int d, m1, yy0, yy1, yy2, dow;
662
663 INITIALIZE(value);
664 leapyear = isleap(year);
665 switch (rulep->r_type) {
666
667 case JULIAN_DAY:
668 /*
669 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
670 ** years.
671 ** In non-leap years, or if the day number is 59 or less, just
672 ** add SECSPERDAY times the day number-1 to the time of
673 ** January 1, midnight, to get the day.
674 */
675 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
676 if (leapyear && rulep->r_day >= 60)
677 value += SECSPERDAY;
678 break;
679
680 case DAY_OF_YEAR:
681 /*
682 ** n - day of year.
683 ** Just add SECSPERDAY times the day number to the time of
684 ** January 1, midnight, to get the day.
685 */
686 value = janfirst + rulep->r_day * SECSPERDAY;
687 break;
688
689 case MONTH_NTH_DAY_OF_WEEK:
690 /*
691 ** Mm.n.d - nth "dth day" of month m.
692 */
693 value = janfirst;
694 for (i = 0; i < rulep->r_mon - 1; ++i)
695 value += mon_lengths[leapyear][i] * SECSPERDAY;
696
697 /*
698 ** Use Zeller's Congruence to get day-of-week of first day of
699 ** month.
700 */
701 m1 = (rulep->r_mon + 9) % 12 + 1;
702 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
703 yy1 = yy0 / 100;
704 yy2 = yy0 % 100;
705 dow = ((26 * m1 - 2) / 10 +
706 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
707 if (dow < 0)
708 dow += DAYSPERWEEK;
709
710 /*
711 ** "dow" is the day-of-week of the first day of the month. Get
712 ** the day-of-month (zero-origin) of the first "dow" day of the
713 ** month.
714 */
715 d = rulep->r_day - dow;
716 if (d < 0)
717 d += DAYSPERWEEK;
718 for (i = 1; i < rulep->r_week; ++i) {
719 if (d + DAYSPERWEEK >=
720 mon_lengths[leapyear][rulep->r_mon - 1])
721 break;
722 d += DAYSPERWEEK;
723 }
724
725 /*
726 ** "d" is the day-of-month (zero-origin) of the day we want.
727 */
728 value += d * SECSPERDAY;
729 break;
730 }
731
732 /*
733 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
734 ** question. To get the Epoch-relative time of the specified local
735 ** time on that day, add the transition time and the current offset
736 ** from UTC.
737 */
738 return value + rulep->r_time + offset;
739 }
740
741 /*
742 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
743 ** appropriate.
744 */
745
746 static int
747 tzparse(name, sp, lastditch)
748 const char * name;
749 register struct state * const sp;
750 const int lastditch;
751 {
752 const char * stdname;
753 const char * dstname;
754 size_t stdlen;
755 size_t dstlen;
756 long stdoffset;
757 long dstoffset;
758 register time_t * atp;
759 register unsigned char * typep;
760 register char * cp;
761 register int load_result;
762
763 INITIALIZE(dstname);
764 stdname = name;
765 if (lastditch) {
766 stdlen = strlen(name); /* length of standard zone name */
767 name += stdlen;
768 if (stdlen >= sizeof sp->chars)
769 stdlen = (sizeof sp->chars) - 1;
770 stdoffset = 0;
771 } else {
772 name = getzname(name);
773 stdlen = name - stdname;
774 if (stdlen < 3)
775 return -1;
776 if (*name == '\0')
777 return -1;
778 name = getoffset(name, &stdoffset);
779 if (name == NULL)
780 return -1;
781 }
782 load_result = tzload(TZDEFRULES, sp);
783 if (load_result != 0)
784 sp->leapcnt = 0; /* so, we're off a little */
785 if (*name != '\0') {
786 dstname = name;
787 name = getzname(name);
788 dstlen = name - dstname; /* length of DST zone name */
789 if (dstlen < 3)
790 return -1;
791 if (*name != '\0' && *name != ',' && *name != ';') {
792 name = getoffset(name, &dstoffset);
793 if (name == NULL)
794 return -1;
795 } else dstoffset = stdoffset - SECSPERHOUR;
796 if (*name == '\0' && load_result != 0)
797 name = TZDEFRULESTRING;
798 if (*name == ',' || *name == ';') {
799 struct rule start;
800 struct rule end;
801 register int year;
802 register time_t janfirst;
803 time_t starttime;
804 time_t endtime;
805
806 ++name;
807 if ((name = getrule(name, &start)) == NULL)
808 return -1;
809 if (*name++ != ',')
810 return -1;
811 if ((name = getrule(name, &end)) == NULL)
812 return -1;
813 if (*name != '\0')
814 return -1;
815 sp->typecnt = 2; /* standard time and DST */
816 /*
817 ** Two transitions per year, from EPOCH_YEAR to 2037.
818 */
819 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
820 if (sp->timecnt > TZ_MAX_TIMES)
821 return -1;
822 sp->ttis[0].tt_gmtoff = -dstoffset;
823 sp->ttis[0].tt_isdst = 1;
824 sp->ttis[0].tt_abbrind = stdlen + 1;
825 sp->ttis[1].tt_gmtoff = -stdoffset;
826 sp->ttis[1].tt_isdst = 0;
827 sp->ttis[1].tt_abbrind = 0;
828 atp = sp->ats;
829 typep = sp->types;
830 janfirst = 0;
831 for (year = EPOCH_YEAR; year <= 2037; ++year) {
832 starttime = transtime(janfirst, year, &start,
833 stdoffset);
834 endtime = transtime(janfirst, year, &end,
835 dstoffset);
836 if (starttime > endtime) {
837 *atp++ = endtime;
838 *typep++ = 1; /* DST ends */
839 *atp++ = starttime;
840 *typep++ = 0; /* DST begins */
841 } else {
842 *atp++ = starttime;
843 *typep++ = 0; /* DST begins */
844 *atp++ = endtime;
845 *typep++ = 1; /* DST ends */
846 }
847 janfirst += year_lengths[isleap(year)] *
848 SECSPERDAY;
849 }
850 } else {
851 register long theirstdoffset;
852 register long theirdstoffset;
853 register long theiroffset;
854 register int isdst;
855 register int i;
856 register int j;
857
858 if (*name != '\0')
859 return -1;
860 /*
861 ** Initial values of theirstdoffset and theirdstoffset.
862 */
863 theirstdoffset = 0;
864 for (i = 0; i < sp->timecnt; ++i) {
865 j = sp->types[i];
866 if (!sp->ttis[j].tt_isdst) {
867 theirstdoffset =
868 -sp->ttis[j].tt_gmtoff;
869 break;
870 }
871 }
872 theirdstoffset = 0;
873 for (i = 0; i < sp->timecnt; ++i) {
874 j = sp->types[i];
875 if (sp->ttis[j].tt_isdst) {
876 theirdstoffset =
877 -sp->ttis[j].tt_gmtoff;
878 break;
879 }
880 }
881 /*
882 ** Initially we're assumed to be in standard time.
883 */
884 isdst = FALSE;
885 theiroffset = theirstdoffset;
886 /*
887 ** Now juggle transition times and types
888 ** tracking offsets as you do.
889 */
890 for (i = 0; i < sp->timecnt; ++i) {
891 j = sp->types[i];
892 sp->types[i] = sp->ttis[j].tt_isdst;
893 if (sp->ttis[j].tt_ttisgmt) {
894 /* No adjustment to transition time */
895 } else {
896 /*
897 ** If summer time is in effect, and the
898 ** transition time was not specified as
899 ** standard time, add the summer time
900 ** offset to the transition time;
901 ** otherwise, add the standard time
902 ** offset to the transition time.
903 */
904 /*
905 ** Transitions from DST to DDST
906 ** will effectively disappear since
907 ** POSIX provides for only one DST
908 ** offset.
909 */
910 if (isdst && !sp->ttis[j].tt_ttisstd) {
911 sp->ats[i] += dstoffset -
912 theirdstoffset;
913 } else {
914 sp->ats[i] += stdoffset -
915 theirstdoffset;
916 }
917 }
918 theiroffset = -sp->ttis[j].tt_gmtoff;
919 if (sp->ttis[j].tt_isdst)
920 theirdstoffset = theiroffset;
921 else theirstdoffset = theiroffset;
922 }
923 /*
924 ** Finally, fill in ttis.
925 ** ttisstd and ttisgmt need not be handled.
926 */
927 sp->ttis[0].tt_gmtoff = -stdoffset;
928 sp->ttis[0].tt_isdst = FALSE;
929 sp->ttis[0].tt_abbrind = 0;
930 sp->ttis[1].tt_gmtoff = -dstoffset;
931 sp->ttis[1].tt_isdst = TRUE;
932 sp->ttis[1].tt_abbrind = stdlen + 1;
933 sp->typecnt = 2;
934 }
935 } else {
936 dstlen = 0;
937 sp->typecnt = 1; /* only standard time */
938 sp->timecnt = 0;
939 sp->ttis[0].tt_gmtoff = -stdoffset;
940 sp->ttis[0].tt_isdst = 0;
941 sp->ttis[0].tt_abbrind = 0;
942 }
943 sp->charcnt = stdlen + 1;
944 if (dstlen != 0)
945 sp->charcnt += dstlen + 1;
946 if ((size_t) sp->charcnt > sizeof sp->chars)
947 return -1;
948 cp = sp->chars;
949 (void) strncpy(cp, stdname, stdlen);
950 cp += stdlen;
951 *cp++ = '\0';
952 if (dstlen != 0) {
953 (void) strncpy(cp, dstname, dstlen);
954 *(cp + dstlen) = '\0';
955 }
956 return 0;
957 }
958
959 static void
960 gmtload(sp)
961 struct state * const sp;
962 {
963 if (tzload(gmt, sp) != 0)
964 (void) tzparse(gmt, sp, TRUE);
965 }
966
967 static void
968 tzsetwall_unlocked P((void))
969 {
970 if (lcl_is_set < 0)
971 return;
972 lcl_is_set = -1;
973
974 #ifdef ALL_STATE
975 if (lclptr == NULL) {
976 lclptr = (struct state *) malloc(sizeof *lclptr);
977 if (lclptr == NULL) {
978 settzname(); /* all we can do */
979 return;
980 }
981 }
982 #endif /* defined ALL_STATE */
983 if (tzload((char *) NULL, lclptr) != 0)
984 gmtload(lclptr);
985 settzname();
986 }
987
988 #ifndef STD_INSPIRED
989 /*
990 ** A non-static declaration of tzsetwall in a system header file
991 ** may cause a warning about this upcoming static declaration...
992 */
993 static
994 #endif /* !defined STD_INSPIRED */
995 void
996 tzsetwall P((void))
997 {
998 rwlock_wrlock(&lcl_lock);
999 tzsetwall_unlocked();
1000 rwlock_unlock(&lcl_lock);
1001 }
1002
1003 static void
1004 tzset_unlocked P((void))
1005 {
1006 register const char * name;
1007
1008 name = getenv("TZ");
1009 if (name == NULL) {
1010 tzsetwall_unlocked();
1011 return;
1012 }
1013
1014 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1015 return;
1016 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1017 if (lcl_is_set)
1018 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1019
1020 #ifdef ALL_STATE
1021 if (lclptr == NULL) {
1022 lclptr = (struct state *) malloc(sizeof *lclptr);
1023 if (lclptr == NULL) {
1024 settzname(); /* all we can do */
1025 return;
1026 }
1027 }
1028 #endif /* defined ALL_STATE */
1029 if (*name == '\0') {
1030 /*
1031 ** User wants it fast rather than right.
1032 */
1033 lclptr->leapcnt = 0; /* so, we're off a little */
1034 lclptr->timecnt = 0;
1035 lclptr->typecnt = 0;
1036 lclptr->ttis[0].tt_isdst = 0;
1037 lclptr->ttis[0].tt_gmtoff = 0;
1038 lclptr->ttis[0].tt_abbrind = 0;
1039 (void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1040 } else if (tzload(name, lclptr) != 0)
1041 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1042 (void) gmtload(lclptr);
1043 settzname();
1044 }
1045
1046 void
1047 tzset P((void))
1048 {
1049 rwlock_wrlock(&lcl_lock);
1050 tzset_unlocked();
1051 rwlock_unlock(&lcl_lock);
1052 }
1053
1054 /*
1055 ** The easy way to behave "as if no library function calls" localtime
1056 ** is to not call it--so we drop its guts into "localsub", which can be
1057 ** freely called. (And no, the PANS doesn't require the above behavior--
1058 ** but it *is* desirable.)
1059 **
1060 ** The unused offset argument is for the benefit of mktime variants.
1061 */
1062
1063 /*ARGSUSED*/
1064 static void
1065 localsub(timep, offset, tmp)
1066 const time_t * const timep;
1067 const long offset;
1068 struct tm * const tmp;
1069 {
1070 register struct state * sp;
1071 register const struct ttinfo * ttisp;
1072 register int i;
1073 const time_t t = *timep;
1074
1075 sp = lclptr;
1076 #ifdef ALL_STATE
1077 if (sp == NULL) {
1078 gmtsub(timep, offset, tmp);
1079 return;
1080 }
1081 #endif /* defined ALL_STATE */
1082 if (sp->timecnt == 0 || t < sp->ats[0]) {
1083 i = 0;
1084 while (sp->ttis[i].tt_isdst)
1085 if (++i >= sp->typecnt) {
1086 i = 0;
1087 break;
1088 }
1089 } else {
1090 for (i = 1; i < sp->timecnt; ++i)
1091 if (t < sp->ats[i])
1092 break;
1093 i = sp->types[i - 1];
1094 }
1095 ttisp = &sp->ttis[i];
1096 /*
1097 ** To get (wrong) behavior that's compatible with System V Release 2.0
1098 ** you'd replace the statement below with
1099 ** t += ttisp->tt_gmtoff;
1100 ** timesub(&t, 0L, sp, tmp);
1101 */
1102 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1103 tmp->tm_isdst = ttisp->tt_isdst;
1104 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1105 #ifdef TM_ZONE
1106 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1107 #endif /* defined TM_ZONE */
1108 }
1109
1110 struct tm *
1111 localtime(timep)
1112 const time_t * const timep;
1113 {
1114 rwlock_wrlock(&lcl_lock);
1115 tzset_unlocked();
1116 localsub(timep, 0L, &tm);
1117 rwlock_unlock(&lcl_lock);
1118 return &tm;
1119 }
1120
1121 /*
1122 ** Re-entrant version of localtime.
1123 */
1124
1125 struct tm *
1126 localtime_r(timep, tmp)
1127 const time_t * const timep;
1128 struct tm * tmp;
1129 {
1130 rwlock_rdlock(&lcl_lock);
1131 tzset_unlocked();
1132 localsub(timep, 0L, tmp);
1133 rwlock_unlock(&lcl_lock);
1134 return tmp;
1135 }
1136
1137 /*
1138 ** gmtsub is to gmtime as localsub is to localtime.
1139 */
1140
1141 static void
1142 gmtsub(timep, offset, tmp)
1143 const time_t * const timep;
1144 const long offset;
1145 struct tm * const tmp;
1146 {
1147 #ifdef _REENTRANT
1148 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1149 #endif
1150
1151 mutex_lock(&gmt_mutex);
1152 if (!gmt_is_set) {
1153 gmt_is_set = TRUE;
1154 #ifdef ALL_STATE
1155 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1156 if (gmtptr != NULL)
1157 #endif /* defined ALL_STATE */
1158 gmtload(gmtptr);
1159 }
1160 mutex_unlock(&gmt_mutex);
1161 timesub(timep, offset, gmtptr, tmp);
1162 #ifdef TM_ZONE
1163 /*
1164 ** Could get fancy here and deliver something such as
1165 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1166 ** but this is no time for a treasure hunt.
1167 */
1168 if (offset != 0)
1169 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1170 else {
1171 #ifdef ALL_STATE
1172 if (gmtptr == NULL)
1173 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1174 else tmp->TM_ZONE = gmtptr->chars;
1175 #endif /* defined ALL_STATE */
1176 #ifndef ALL_STATE
1177 tmp->TM_ZONE = gmtptr->chars;
1178 #endif /* State Farm */
1179 }
1180 #endif /* defined TM_ZONE */
1181 }
1182
1183 struct tm *
1184 gmtime(timep)
1185 const time_t * const timep;
1186 {
1187 gmtsub(timep, 0L, &tm);
1188 return &tm;
1189 }
1190
1191 /*
1192 ** Re-entrant version of gmtime.
1193 */
1194
1195 struct tm *
1196 gmtime_r(timep, tmp)
1197 const time_t * const timep;
1198 struct tm * tmp;
1199 {
1200 gmtsub(timep, 0L, tmp);
1201 return tmp;
1202 }
1203
1204 #ifdef STD_INSPIRED
1205
1206 struct tm *
1207 offtime(timep, offset)
1208 const time_t * const timep;
1209 const long offset;
1210 {
1211 gmtsub(timep, offset, &tm);
1212 return &tm;
1213 }
1214
1215 #endif /* defined STD_INSPIRED */
1216
1217 static void
1218 timesub(timep, offset, sp, tmp)
1219 const time_t * const timep;
1220 const long offset;
1221 register const struct state * const sp;
1222 register struct tm * const tmp;
1223 {
1224 register const struct lsinfo * lp;
1225 register long days;
1226 register long rem;
1227 register int y;
1228 register int yleap;
1229 register const int * ip;
1230 register long corr;
1231 register int hit;
1232 register int i;
1233
1234 corr = 0;
1235 hit = 0;
1236 #ifdef ALL_STATE
1237 i = (sp == NULL) ? 0 : sp->leapcnt;
1238 #endif /* defined ALL_STATE */
1239 #ifndef ALL_STATE
1240 i = sp->leapcnt;
1241 #endif /* State Farm */
1242 while (--i >= 0) {
1243 lp = &sp->lsis[i];
1244 if (*timep >= lp->ls_trans) {
1245 if (*timep == lp->ls_trans) {
1246 hit = ((i == 0 && lp->ls_corr > 0) ||
1247 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1248 if (hit)
1249 while (i > 0 &&
1250 sp->lsis[i].ls_trans ==
1251 sp->lsis[i - 1].ls_trans + 1 &&
1252 sp->lsis[i].ls_corr ==
1253 sp->lsis[i - 1].ls_corr + 1) {
1254 ++hit;
1255 --i;
1256 }
1257 }
1258 corr = lp->ls_corr;
1259 break;
1260 }
1261 }
1262 days = *timep / SECSPERDAY;
1263 rem = *timep % SECSPERDAY;
1264 #ifdef mc68k
1265 if (*timep == 0x80000000) {
1266 /*
1267 ** A 3B1 muffs the division on the most negative number.
1268 */
1269 days = -24855;
1270 rem = -11648;
1271 }
1272 #endif /* defined mc68k */
1273 rem += (offset - corr);
1274 while (rem < 0) {
1275 rem += SECSPERDAY;
1276 --days;
1277 }
1278 while (rem >= SECSPERDAY) {
1279 rem -= SECSPERDAY;
1280 ++days;
1281 }
1282 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1283 rem = rem % SECSPERHOUR;
1284 tmp->tm_min = (int) (rem / SECSPERMIN);
1285 /*
1286 ** A positive leap second requires a special
1287 ** representation. This uses "... ??:59:60" et seq.
1288 */
1289 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1290 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1291 if (tmp->tm_wday < 0)
1292 tmp->tm_wday += DAYSPERWEEK;
1293 y = EPOCH_YEAR;
1294 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1295 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1296 register int newy;
1297
1298 newy = (int)(y + days / DAYSPERNYEAR);
1299 if (days < 0)
1300 --newy;
1301 days -= (newy - y) * DAYSPERNYEAR +
1302 LEAPS_THRU_END_OF(newy - 1) -
1303 LEAPS_THRU_END_OF(y - 1);
1304 y = newy;
1305 }
1306 tmp->tm_year = y - TM_YEAR_BASE;
1307 tmp->tm_yday = (int) days;
1308 ip = mon_lengths[yleap];
1309 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1310 days = days - (long) ip[tmp->tm_mon];
1311 tmp->tm_mday = (int) (days + 1);
1312 tmp->tm_isdst = 0;
1313 #ifdef TM_GMTOFF
1314 tmp->TM_GMTOFF = offset;
1315 #endif /* defined TM_GMTOFF */
1316 }
1317
1318 char *
1319 ctime(timep)
1320 const time_t * const timep;
1321 {
1322 /*
1323 ** Section 4.12.3.2 of X3.159-1989 requires that
1324 ** The ctime function converts the calendar time pointed to by timer
1325 ** to local time in the form of a string. It is equivalent to
1326 ** asctime(localtime(timer))
1327 */
1328 return asctime(localtime(timep));
1329 }
1330
1331 char *
1332 ctime_r(timep, buf)
1333 const time_t * const timep;
1334 char * buf;
1335 {
1336 struct tm tmp;
1337
1338 return asctime_r(localtime_r(timep, &tmp), buf);
1339 }
1340
1341 /*
1342 ** Adapted from code provided by Robert Elz, who writes:
1343 ** The "best" way to do mktime I think is based on an idea of Bob
1344 ** Kridle's (so its said...) from a long time ago.
1345 ** [kridle (at) xinet.com as of 1996-01-16.]
1346 ** It does a binary search of the time_t space. Since time_t's are
1347 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1348 ** would still be very reasonable).
1349 */
1350
1351 #ifndef WRONG
1352 #define WRONG (-1)
1353 #endif /* !defined WRONG */
1354
1355 /*
1356 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1357 */
1358
1359 static int
1360 increment_overflow(number, delta)
1361 int * number;
1362 int delta;
1363 {
1364 int number0;
1365
1366 number0 = *number;
1367 *number += delta;
1368 return (*number < number0) != (delta < 0);
1369 }
1370
1371 static int
1372 normalize_overflow(tensptr, unitsptr, base)
1373 int * const tensptr;
1374 int * const unitsptr;
1375 const int base;
1376 {
1377 register int tensdelta;
1378
1379 tensdelta = (*unitsptr >= 0) ?
1380 (*unitsptr / base) :
1381 (-1 - (-1 - *unitsptr) / base);
1382 *unitsptr -= tensdelta * base;
1383 return increment_overflow(tensptr, tensdelta);
1384 }
1385
1386 static int
1387 tmcomp(atmp, btmp)
1388 register const struct tm * const atmp;
1389 register const struct tm * const btmp;
1390 {
1391 register int result;
1392
1393 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1394 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1395 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1396 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1397 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1398 result = atmp->tm_sec - btmp->tm_sec;
1399 return result;
1400 }
1401
1402 static time_t
1403 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1404 struct tm * const tmp;
1405 void (* const funcp) P((const time_t*, long, struct tm*));
1406 const long offset;
1407 int * const okayp;
1408 const int do_norm_secs;
1409 {
1410 register const struct state * sp;
1411 register int dir;
1412 register int bits;
1413 register int i, j ;
1414 register int saved_seconds;
1415 time_t newt;
1416 time_t t;
1417 struct tm yourtm, mytm;
1418
1419 *okayp = FALSE;
1420 yourtm = *tmp;
1421 if (do_norm_secs) {
1422 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1423 SECSPERMIN))
1424 return WRONG;
1425 }
1426 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1427 return WRONG;
1428 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1429 return WRONG;
1430 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1431 return WRONG;
1432 /*
1433 ** Turn yourtm.tm_year into an actual year number for now.
1434 ** It is converted back to an offset from TM_YEAR_BASE later.
1435 */
1436 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1437 return WRONG;
1438 while (yourtm.tm_mday <= 0) {
1439 if (increment_overflow(&yourtm.tm_year, -1))
1440 return WRONG;
1441 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1442 yourtm.tm_mday += year_lengths[isleap(i)];
1443 }
1444 while (yourtm.tm_mday > DAYSPERLYEAR) {
1445 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1446 yourtm.tm_mday -= year_lengths[isleap(i)];
1447 if (increment_overflow(&yourtm.tm_year, 1))
1448 return WRONG;
1449 }
1450 for ( ; ; ) {
1451 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1452 if (yourtm.tm_mday <= i)
1453 break;
1454 yourtm.tm_mday -= i;
1455 if (++yourtm.tm_mon >= MONSPERYEAR) {
1456 yourtm.tm_mon = 0;
1457 if (increment_overflow(&yourtm.tm_year, 1))
1458 return WRONG;
1459 }
1460 }
1461 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1462 return WRONG;
1463 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1464 saved_seconds = 0;
1465 else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1466 /*
1467 ** We can't set tm_sec to 0, because that might push the
1468 ** time below the minimum representable time.
1469 ** Set tm_sec to 59 instead.
1470 ** This assumes that the minimum representable time is
1471 ** not in the same minute that a leap second was deleted from,
1472 ** which is a safer assumption than using 58 would be.
1473 */
1474 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1475 return WRONG;
1476 saved_seconds = yourtm.tm_sec;
1477 yourtm.tm_sec = SECSPERMIN - 1;
1478 } else {
1479 saved_seconds = yourtm.tm_sec;
1480 yourtm.tm_sec = 0;
1481 }
1482 /*
1483 ** Divide the search space in half
1484 ** (this works whether time_t is signed or unsigned).
1485 */
1486 bits = TYPE_BIT(time_t) - 1;
1487 /*
1488 ** If time_t is signed, then 0 is just above the median,
1489 ** assuming two's complement arithmetic.
1490 ** If time_t is unsigned, then (1 << bits) is just above the median.
1491 */
1492 /*CONSTCOND*/
1493 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1494 for ( ; ; ) {
1495 (*funcp)(&t, offset, &mytm);
1496 dir = tmcomp(&mytm, &yourtm);
1497 if (dir != 0) {
1498 if (bits-- < 0)
1499 return WRONG;
1500 if (bits < 0)
1501 --t; /* may be needed if new t is minimal */
1502 else if (dir > 0)
1503 t -= ((time_t) 1) << bits;
1504 else t += ((time_t) 1) << bits;
1505 continue;
1506 }
1507 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1508 break;
1509 /*
1510 ** Right time, wrong type.
1511 ** Hunt for right time, right type.
1512 ** It's okay to guess wrong since the guess
1513 ** gets checked.
1514 */
1515 /*
1516 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1517 */
1518 sp = (const struct state *)
1519 (((void *) funcp == (void *) localsub) ?
1520 lclptr : gmtptr);
1521 #ifdef ALL_STATE
1522 if (sp == NULL)
1523 return WRONG;
1524 #endif /* defined ALL_STATE */
1525 for (i = sp->typecnt - 1; i >= 0; --i) {
1526 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1527 continue;
1528 for (j = sp->typecnt - 1; j >= 0; --j) {
1529 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1530 continue;
1531 newt = t + sp->ttis[j].tt_gmtoff -
1532 sp->ttis[i].tt_gmtoff;
1533 (*funcp)(&newt, offset, &mytm);
1534 if (tmcomp(&mytm, &yourtm) != 0)
1535 continue;
1536 if (mytm.tm_isdst != yourtm.tm_isdst)
1537 continue;
1538 /*
1539 ** We have a match.
1540 */
1541 t = newt;
1542 goto label;
1543 }
1544 }
1545 return WRONG;
1546 }
1547 label:
1548 newt = t + saved_seconds;
1549 if ((newt < t) != (saved_seconds < 0))
1550 return WRONG;
1551 t = newt;
1552 (*funcp)(&t, offset, tmp);
1553 *okayp = TRUE;
1554 return t;
1555 }
1556
1557 static time_t
1558 time2(tmp, funcp, offset, okayp)
1559 struct tm * const tmp;
1560 void (* const funcp) P((const time_t*, long, struct tm*));
1561 const long offset;
1562 int * const okayp;
1563 {
1564 time_t t;
1565
1566 /*
1567 ** First try without normalization of seconds
1568 ** (in case tm_sec contains a value associated with a leap second).
1569 ** If that fails, try with normalization of seconds.
1570 */
1571 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1572 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1573 }
1574
1575 static time_t
1576 time1(tmp, funcp, offset)
1577 struct tm * const tmp;
1578 void (* const funcp) P((const time_t *, long, struct tm *));
1579 const long offset;
1580 {
1581 register time_t t;
1582 register const struct state * sp;
1583 register int samei, otheri;
1584 register int sameind, otherind;
1585 register int i;
1586 register int nseen;
1587 int seen[TZ_MAX_TYPES];
1588 int types[TZ_MAX_TYPES];
1589 int okay;
1590
1591 if (tmp->tm_isdst > 1)
1592 tmp->tm_isdst = 1;
1593 t = time2(tmp, funcp, offset, &okay);
1594 #ifdef PCTS
1595 /*
1596 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1597 */
1598 if (okay)
1599 return t;
1600 if (tmp->tm_isdst < 0)
1601 tmp->tm_isdst = 0; /* reset to std and try again */
1602 #endif /* defined PCTS */
1603 #ifndef PCTS
1604 if (okay || tmp->tm_isdst < 0)
1605 return t;
1606 #endif /* !defined PCTS */
1607 /*
1608 ** We're supposed to assume that somebody took a time of one type
1609 ** and did some math on it that yielded a "struct tm" that's bad.
1610 ** We try to divine the type they started from and adjust to the
1611 ** type they need.
1612 */
1613 /*
1614 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1615 */
1616 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1617 lclptr : gmtptr);
1618 #ifdef ALL_STATE
1619 if (sp == NULL)
1620 return WRONG;
1621 #endif /* defined ALL_STATE */
1622 for (i = 0; i < sp->typecnt; ++i)
1623 seen[i] = FALSE;
1624 nseen = 0;
1625 for (i = sp->timecnt - 1; i >= 0; --i)
1626 if (!seen[sp->types[i]]) {
1627 seen[sp->types[i]] = TRUE;
1628 types[nseen++] = sp->types[i];
1629 }
1630 for (sameind = 0; sameind < nseen; ++sameind) {
1631 samei = types[sameind];
1632 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1633 continue;
1634 for (otherind = 0; otherind < nseen; ++otherind) {
1635 otheri = types[otherind];
1636 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1637 continue;
1638 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1639 sp->ttis[samei].tt_gmtoff);
1640 tmp->tm_isdst = !tmp->tm_isdst;
1641 t = time2(tmp, funcp, offset, &okay);
1642 if (okay)
1643 return t;
1644 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1645 sp->ttis[samei].tt_gmtoff);
1646 tmp->tm_isdst = !tmp->tm_isdst;
1647 }
1648 }
1649 return WRONG;
1650 }
1651
1652 time_t
1653 mktime(tmp)
1654 struct tm * const tmp;
1655 {
1656 time_t result;
1657
1658 rwlock_wrlock(&lcl_lock);
1659 tzset_unlocked();
1660 result = time1(tmp, localsub, 0L);
1661 rwlock_unlock(&lcl_lock);
1662 return (result);
1663 }
1664
1665 #ifdef STD_INSPIRED
1666
1667 time_t
1668 timelocal(tmp)
1669 struct tm * const tmp;
1670 {
1671 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1672 return mktime(tmp);
1673 }
1674
1675 time_t
1676 timegm(tmp)
1677 struct tm * const tmp;
1678 {
1679 tmp->tm_isdst = 0;
1680 return time1(tmp, gmtsub, 0L);
1681 }
1682
1683 time_t
1684 timeoff(tmp, offset)
1685 struct tm * const tmp;
1686 const long offset;
1687 {
1688 tmp->tm_isdst = 0;
1689 return time1(tmp, gmtsub, offset);
1690 }
1691
1692 #endif /* defined STD_INSPIRED */
1693
1694 #ifdef CMUCS
1695
1696 /*
1697 ** The following is supplied for compatibility with
1698 ** previous versions of the CMUCS runtime library.
1699 */
1700
1701 long
1702 gtime(tmp)
1703 struct tm * const tmp;
1704 {
1705 const time_t t = mktime(tmp);
1706
1707 if (t == WRONG)
1708 return -1;
1709 return t;
1710 }
1711
1712 #endif /* defined CMUCS */
1713
1714 /*
1715 ** XXX--is the below the right way to conditionalize??
1716 */
1717
1718 #ifdef STD_INSPIRED
1719
1720 /*
1721 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1722 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1723 ** is not the case if we are accounting for leap seconds.
1724 ** So, we provide the following conversion routines for use
1725 ** when exchanging timestamps with POSIX conforming systems.
1726 */
1727
1728 static long
1729 leapcorr(timep)
1730 time_t * timep;
1731 {
1732 register struct state * sp;
1733 register struct lsinfo * lp;
1734 register int i;
1735
1736 sp = lclptr;
1737 i = sp->leapcnt;
1738 while (--i >= 0) {
1739 lp = &sp->lsis[i];
1740 if (*timep >= lp->ls_trans)
1741 return lp->ls_corr;
1742 }
1743 return 0;
1744 }
1745
1746 time_t
1747 time2posix(t)
1748 time_t t;
1749 {
1750 time_t result;
1751
1752 rwlock_wrlock(&lcl_lock);
1753 tzset_unlocked();
1754 result = t - leapcorr(&t);
1755 rwlock_unlock(&lcl_lock);
1756 return (result);
1757 }
1758
1759 time_t
1760 posix2time(t)
1761 time_t t;
1762 {
1763 time_t x;
1764 time_t y;
1765
1766 rwlock_wrlock(&lcl_lock);
1767 tzset_unlocked();
1768 /*
1769 ** For a positive leap second hit, the result
1770 ** is not unique. For a negative leap second
1771 ** hit, the corresponding time doesn't exist,
1772 ** so we return an adjacent second.
1773 */
1774 x = t + leapcorr(&t);
1775 y = x - leapcorr(&x);
1776 if (y < t) {
1777 do {
1778 x++;
1779 y = x - leapcorr(&x);
1780 } while (y < t);
1781 if (t != y) {
1782 rwlock_unlock(&lcl_lock);
1783 return x - 1;
1784 }
1785 } else if (y > t) {
1786 do {
1787 --x;
1788 y = x - leapcorr(&x);
1789 } while (y > t);
1790 if (t != y) {
1791 rwlock_unlock(&lcl_lock);
1792 return x + 1;
1793 }
1794 }
1795 rwlock_unlock(&lcl_lock);
1796 return x;
1797 }
1798
1799 #endif /* defined STD_INSPIRED */
1800