Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.38
      1 /*	$NetBSD: localtime.c,v 1.38 2006/03/22 00:14:18 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	7.78";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.38 2006/03/22 00:14:18 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     19 ** POSIX-style TZ environment variable handling from Guy Harris
     20 ** (guy (at) auspex.com).
     21 */
     22 
     23 /*LINTLIBRARY*/
     24 
     25 #include "namespace.h"
     26 #include "private.h"
     27 #include "tzfile.h"
     28 #include "fcntl.h"
     29 #include "reentrant.h"
     30 
     31 #ifdef __weak_alias
     32 __weak_alias(ctime_r,_ctime_r)
     33 __weak_alias(daylight,_daylight)
     34 __weak_alias(gmtime_r,_gmtime_r)
     35 __weak_alias(localtime_r,_localtime_r)
     36 __weak_alias(offtime,_offtime)
     37 __weak_alias(posix2time,_posix2time)
     38 __weak_alias(time2posix,_time2posix)
     39 __weak_alias(timegm,_timegm)
     40 __weak_alias(timelocal,_timelocal)
     41 __weak_alias(timeoff,_timeoff)
     42 __weak_alias(tzname,_tzname)
     43 __weak_alias(tzset,_tzset)
     44 __weak_alias(tzsetwall,_tzsetwall)
     45 #endif
     46 
     47 /*
     48 ** SunOS 4.1.1 headers lack O_BINARY.
     49 */
     50 
     51 #ifdef O_BINARY
     52 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     53 #endif /* defined O_BINARY */
     54 #ifndef O_BINARY
     55 #define OPEN_MODE	O_RDONLY
     56 #endif /* !defined O_BINARY */
     57 
     58 #ifndef WILDABBR
     59 /*
     60 ** Someone might make incorrect use of a time zone abbreviation:
     61 **	1.	They might reference tzname[0] before calling tzset (explicitly
     62 **		or implicitly).
     63 **	2.	They might reference tzname[1] before calling tzset (explicitly
     64 **		or implicitly).
     65 **	3.	They might reference tzname[1] after setting to a time zone
     66 **		in which Daylight Saving Time is never observed.
     67 **	4.	They might reference tzname[0] after setting to a time zone
     68 **		in which Standard Time is never observed.
     69 **	5.	They might reference tm.TM_ZONE after calling offtime.
     70 ** What's best to do in the above cases is open to debate;
     71 ** for now, we just set things up so that in any of the five cases
     72 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     73 ** string "tzname[0] used before set", and similarly for the other cases.
     74 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     75 ** manual page of what this "time zone abbreviation" means (doing this so
     76 ** that tzname[0] has the "normal" length of three characters).
     77 */
     78 #define WILDABBR	"   "
     79 #endif /* !defined WILDABBR */
     80 
     81 static const char	wildabbr[] = "WILDABBR";
     82 
     83 static const char	gmt[] = "GMT";
     84 
     85 /*
     86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     87 ** We default to US rules as of 1999-08-17.
     88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     89 ** implementation dependent; for historical reasons, US rules are a
     90 ** common default.
     91 */
     92 #ifndef TZDEFRULESTRING
     93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     94 #endif /* !defined TZDEFDST */
     95 
     96 struct ttinfo {				/* time type information */
     97 	long		tt_gmtoff;	/* UTC offset in seconds */
     98 	int		tt_isdst;	/* used to set tm_isdst */
     99 	int		tt_abbrind;	/* abbreviation list index */
    100 	int		tt_ttisstd;	/* TRUE if transition is std time */
    101 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    102 };
    103 
    104 struct lsinfo {				/* leap second information */
    105 	time_t		ls_trans;	/* transition time */
    106 	long		ls_corr;	/* correction to apply */
    107 };
    108 
    109 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    110 
    111 #ifdef TZNAME_MAX
    112 #define MY_TZNAME_MAX	TZNAME_MAX
    113 #endif /* defined TZNAME_MAX */
    114 #ifndef TZNAME_MAX
    115 #define MY_TZNAME_MAX	255
    116 #endif /* !defined TZNAME_MAX */
    117 
    118 struct state {
    119 	int		leapcnt;
    120 	int		timecnt;
    121 	int		typecnt;
    122 	int		charcnt;
    123 	time_t		ats[TZ_MAX_TIMES];
    124 	unsigned char	types[TZ_MAX_TIMES];
    125 	struct ttinfo	ttis[TZ_MAX_TYPES];
    126 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    127 				(2 * (MY_TZNAME_MAX + 1)))];
    128 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    129 };
    130 
    131 struct rule {
    132 	int		r_type;		/* type of rule--see below */
    133 	int		r_day;		/* day number of rule */
    134 	int		r_week;		/* week number of rule */
    135 	int		r_mon;		/* month number of rule */
    136 	long		r_time;		/* transition time of rule */
    137 };
    138 
    139 #define JULIAN_DAY		0	/* Jn - Julian day */
    140 #define DAY_OF_YEAR		1	/* n - day of year */
    141 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    142 
    143 /*
    144 ** Prototypes for static functions.
    145 */
    146 
    147 static long		detzcode P((const char * codep));
    148 static const char *	getzname P((const char * strp));
    149 static const char *	getnum P((const char * strp, int * nump, int min,
    150 				int max));
    151 static const char *	getsecs P((const char * strp, long * secsp));
    152 static const char *	getoffset P((const char * strp, long * offsetp));
    153 static const char *	getrule P((const char * strp, struct rule * rulep));
    154 static void		gmtload P((struct state * sp));
    155 static void		gmtsub P((const time_t * timep, long offset,
    156 				struct tm * tmp));
    157 static void		localsub P((const time_t * timep, long offset,
    158 				struct tm * tmp));
    159 static int		increment_overflow P((int * number, int delta));
    160 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    161 				int base));
    162 static void		settzname P((void));
    163 static time_t		time1 P((struct tm * tmp,
    164 				void(*funcp) P((const time_t *,
    165 				long, struct tm *)),
    166 				long offset));
    167 static time_t		time2 P((struct tm *tmp,
    168 				void(*funcp) P((const time_t *,
    169 				long, struct tm*)),
    170 				long offset, int * okayp));
    171 static time_t		time2sub P((struct tm *tmp,
    172 				void(*funcp) P((const time_t *,
    173 				long, struct tm*)),
    174 				long offset, int * okayp, int do_norm_secs));
    175 static void		timesub P((const time_t * timep, long offset,
    176 				const struct state * sp, struct tm * tmp));
    177 static int		tmcomp P((const struct tm * atmp,
    178 				const struct tm * btmp));
    179 static time_t		transtime P((time_t janfirst, int year,
    180 				const struct rule * rulep, long offset));
    181 static int		tzload P((const char * name, struct state * sp));
    182 static int		tzparse P((const char * name, struct state * sp,
    183 				int lastditch));
    184 static void		tzset_unlocked P((void));
    185 static void		tzsetwall_unlocked P((void));
    186 #ifdef STD_INSPIRED
    187 static long		leapcorr P((time_t * timep));
    188 #endif
    189 
    190 #ifdef ALL_STATE
    191 static struct state *	lclptr;
    192 static struct state *	gmtptr;
    193 #endif /* defined ALL_STATE */
    194 
    195 #ifndef ALL_STATE
    196 static struct state	lclmem;
    197 static struct state	gmtmem;
    198 #define lclptr		(&lclmem)
    199 #define gmtptr		(&gmtmem)
    200 #endif /* State Farm */
    201 
    202 #ifndef TZ_STRLEN_MAX
    203 #define TZ_STRLEN_MAX 255
    204 #endif /* !defined TZ_STRLEN_MAX */
    205 
    206 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    207 static int		lcl_is_set;
    208 static int		gmt_is_set;
    209 
    210 __aconst char *		tzname[2] = {
    211 	(__aconst char *)__UNCONST(wildabbr),
    212 	(__aconst char *)__UNCONST(wildabbr)
    213 };
    214 
    215 #ifdef _REENTRANT
    216 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    217 #endif
    218 
    219 /*
    220 ** Section 4.12.3 of X3.159-1989 requires that
    221 **	Except for the strftime function, these functions [asctime,
    222 **	ctime, gmtime, localtime] return values in one of two static
    223 **	objects: a broken-down time structure and an array of char.
    224 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    225 */
    226 
    227 static struct tm	tm;
    228 
    229 #ifdef USG_COMPAT
    230 long int		timezone = 0;
    231 int			daylight = 0;
    232 #endif /* defined USG_COMPAT */
    233 
    234 #ifdef ALTZONE
    235 time_t			altzone = 0;
    236 #endif /* defined ALTZONE */
    237 
    238 static long
    239 detzcode(codep)
    240 const char * const	codep;
    241 {
    242 	register long	result;
    243 
    244 	/*
    245         ** The first character must be sign extended on systems with >32bit
    246         ** longs.  This was solved differently in the master tzcode sources
    247         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    248 	** that this implementation is superior.
    249         */
    250 
    251 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    252 
    253 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    254 	       | (codep[1] & 0xff) << 16 \
    255 	       | (codep[2] & 0xff) << 8
    256 	       | (codep[3] & 0xff);
    257 	return result;
    258 }
    259 
    260 static void
    261 settzname P((void))
    262 {
    263 	register struct state * const	sp = lclptr;
    264 	register int			i;
    265 
    266 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    267 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    268 #ifdef USG_COMPAT
    269 	daylight = 0;
    270 	timezone = 0;
    271 #endif /* defined USG_COMPAT */
    272 #ifdef ALTZONE
    273 	altzone = 0;
    274 #endif /* defined ALTZONE */
    275 #ifdef ALL_STATE
    276 	if (sp == NULL) {
    277 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    278 		return;
    279 	}
    280 #endif /* defined ALL_STATE */
    281 	for (i = 0; i < sp->typecnt; ++i) {
    282 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    283 
    284 		tzname[ttisp->tt_isdst] =
    285 			&sp->chars[ttisp->tt_abbrind];
    286 #ifdef USG_COMPAT
    287 		if (ttisp->tt_isdst)
    288 			daylight = 1;
    289 		if (i == 0 || !ttisp->tt_isdst)
    290 			timezone = -(ttisp->tt_gmtoff);
    291 #endif /* defined USG_COMPAT */
    292 #ifdef ALTZONE
    293 		if (i == 0 || ttisp->tt_isdst)
    294 			altzone = -(ttisp->tt_gmtoff);
    295 #endif /* defined ALTZONE */
    296 	}
    297 	/*
    298 	** And to get the latest zone names into tzname. . .
    299 	*/
    300 	for (i = 0; i < sp->timecnt; ++i) {
    301 		register const struct ttinfo * const	ttisp =
    302 							&sp->ttis[
    303 								sp->types[i]];
    304 
    305 		tzname[ttisp->tt_isdst] =
    306 			&sp->chars[ttisp->tt_abbrind];
    307 	}
    308 }
    309 
    310 static int
    311 tzload(name, sp)
    312 register const char *		name;
    313 register struct state * const	sp;
    314 {
    315 	register const char *	p;
    316 	register int		i;
    317 	register int		fid;
    318 
    319 	if (name == NULL && (name = TZDEFAULT) == NULL)
    320 		return -1;
    321 
    322 	{
    323 		register int	doaccess;
    324 		/*
    325 		** Section 4.9.1 of the C standard says that
    326 		** "FILENAME_MAX expands to an integral constant expression
    327 		** that is the size needed for an array of char large enough
    328 		** to hold the longest file name string that the implementation
    329 		** guarantees can be opened."
    330 		*/
    331 		char		fullname[FILENAME_MAX + 1];
    332 
    333 		if (name[0] == ':')
    334 			++name;
    335 		doaccess = name[0] == '/';
    336 		if (!doaccess) {
    337 			if ((p = TZDIR) == NULL)
    338 				return -1;
    339 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    340 				return -1;
    341 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    342 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    343 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    344 			/*
    345 			** Set doaccess if '.' (as in "../") shows up in name.
    346 			*/
    347 			if (strchr(name, '.') != NULL)
    348 				doaccess = TRUE;
    349 			name = fullname;
    350 		}
    351 		if (doaccess && access(name, R_OK) != 0)
    352 			return -1;
    353 		/*
    354 		 * XXX potential security problem here if user of a set-id
    355 		 * program has set TZ (which is passed in as name) here,
    356 		 * and uses a race condition trick to defeat the access(2)
    357 		 * above.
    358 		 */
    359 		if ((fid = open(name, OPEN_MODE)) == -1)
    360 			return -1;
    361 	}
    362 	{
    363 		struct tzhead *	tzhp;
    364 		union {
    365 			struct tzhead	tzhead;
    366 			char		buf[sizeof *sp + sizeof *tzhp];
    367 		} u;
    368 		int		ttisstdcnt;
    369 		int		ttisgmtcnt;
    370 
    371 		i = read(fid, u.buf, sizeof u.buf);
    372 		if (close(fid) != 0)
    373 			return -1;
    374 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    375 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    376 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    377 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    378 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    379 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    380 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    381 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    382 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    383 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    384 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    385 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    386 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    387 				return -1;
    388 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
    389 			sp->timecnt +			/* types */
    390 			sp->typecnt * (4 + 2) +		/* ttinfos */
    391 			sp->charcnt +			/* chars */
    392 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    393 			ttisstdcnt +			/* ttisstds */
    394 			ttisgmtcnt)			/* ttisgmts */
    395 				return -1;
    396 		for (i = 0; i < sp->timecnt; ++i) {
    397 			sp->ats[i] = detzcode(p);
    398 			p += 4;
    399 		}
    400 		for (i = 0; i < sp->timecnt; ++i) {
    401 			sp->types[i] = (unsigned char) *p++;
    402 			if (sp->types[i] >= sp->typecnt)
    403 				return -1;
    404 		}
    405 		for (i = 0; i < sp->typecnt; ++i) {
    406 			register struct ttinfo *	ttisp;
    407 
    408 			ttisp = &sp->ttis[i];
    409 			ttisp->tt_gmtoff = detzcode(p);
    410 			p += 4;
    411 			ttisp->tt_isdst = (unsigned char) *p++;
    412 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    413 				return -1;
    414 			ttisp->tt_abbrind = (unsigned char) *p++;
    415 			if (ttisp->tt_abbrind < 0 ||
    416 				ttisp->tt_abbrind > sp->charcnt)
    417 					return -1;
    418 		}
    419 		for (i = 0; i < sp->charcnt; ++i)
    420 			sp->chars[i] = *p++;
    421 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    422 		for (i = 0; i < sp->leapcnt; ++i) {
    423 			register struct lsinfo *	lsisp;
    424 
    425 			lsisp = &sp->lsis[i];
    426 			lsisp->ls_trans = detzcode(p);
    427 			p += 4;
    428 			lsisp->ls_corr = detzcode(p);
    429 			p += 4;
    430 		}
    431 		for (i = 0; i < sp->typecnt; ++i) {
    432 			register struct ttinfo *	ttisp;
    433 
    434 			ttisp = &sp->ttis[i];
    435 			if (ttisstdcnt == 0)
    436 				ttisp->tt_ttisstd = FALSE;
    437 			else {
    438 				ttisp->tt_ttisstd = *p++;
    439 				if (ttisp->tt_ttisstd != TRUE &&
    440 					ttisp->tt_ttisstd != FALSE)
    441 						return -1;
    442 			}
    443 		}
    444 		for (i = 0; i < sp->typecnt; ++i) {
    445 			register struct ttinfo *	ttisp;
    446 
    447 			ttisp = &sp->ttis[i];
    448 			if (ttisgmtcnt == 0)
    449 				ttisp->tt_ttisgmt = FALSE;
    450 			else {
    451 				ttisp->tt_ttisgmt = *p++;
    452 				if (ttisp->tt_ttisgmt != TRUE &&
    453 					ttisp->tt_ttisgmt != FALSE)
    454 						return -1;
    455 			}
    456 		}
    457 	}
    458 	return 0;
    459 }
    460 
    461 static const int	mon_lengths[2][MONSPERYEAR] = {
    462 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    463 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    464 };
    465 
    466 static const int	year_lengths[2] = {
    467 	DAYSPERNYEAR, DAYSPERLYEAR
    468 };
    469 
    470 /*
    471 ** Given a pointer into a time zone string, scan until a character that is not
    472 ** a valid character in a zone name is found.  Return a pointer to that
    473 ** character.
    474 */
    475 
    476 static const char *
    477 getzname(strp)
    478 register const char *	strp;
    479 {
    480 	register char	c;
    481 
    482 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    483 		c != '+')
    484 			++strp;
    485 	return strp;
    486 }
    487 
    488 /*
    489 ** Given a pointer into a time zone string, extract a number from that string.
    490 ** Check that the number is within a specified range; if it is not, return
    491 ** NULL.
    492 ** Otherwise, return a pointer to the first character not part of the number.
    493 */
    494 
    495 static const char *
    496 getnum(strp, nump, min, max)
    497 register const char *	strp;
    498 int * const		nump;
    499 const int		min;
    500 const int		max;
    501 {
    502 	register char	c;
    503 	register int	num;
    504 
    505 	if (strp == NULL || !is_digit(c = *strp))
    506 		return NULL;
    507 	num = 0;
    508 	do {
    509 		num = num * 10 + (c - '0');
    510 		if (num > max)
    511 			return NULL;	/* illegal value */
    512 		c = *++strp;
    513 	} while (is_digit(c));
    514 	if (num < min)
    515 		return NULL;		/* illegal value */
    516 	*nump = num;
    517 	return strp;
    518 }
    519 
    520 /*
    521 ** Given a pointer into a time zone string, extract a number of seconds,
    522 ** in hh[:mm[:ss]] form, from the string.
    523 ** If any error occurs, return NULL.
    524 ** Otherwise, return a pointer to the first character not part of the number
    525 ** of seconds.
    526 */
    527 
    528 static const char *
    529 getsecs(strp, secsp)
    530 register const char *	strp;
    531 long * const		secsp;
    532 {
    533 	int	num;
    534 
    535 	/*
    536 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    537 	** "M10.4.6/26", which does not conform to Posix,
    538 	** but which specifies the equivalent of
    539 	** ``02:00 on the first Sunday on or after 23 Oct''.
    540 	*/
    541 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    542 	if (strp == NULL)
    543 		return NULL;
    544 	*secsp = num * (long) SECSPERHOUR;
    545 	if (*strp == ':') {
    546 		++strp;
    547 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    548 		if (strp == NULL)
    549 			return NULL;
    550 		*secsp += num * SECSPERMIN;
    551 		if (*strp == ':') {
    552 			++strp;
    553 			/* `SECSPERMIN' allows for leap seconds.  */
    554 			strp = getnum(strp, &num, 0, SECSPERMIN);
    555 			if (strp == NULL)
    556 				return NULL;
    557 			*secsp += num;
    558 		}
    559 	}
    560 	return strp;
    561 }
    562 
    563 /*
    564 ** Given a pointer into a time zone string, extract an offset, in
    565 ** [+-]hh[:mm[:ss]] form, from the string.
    566 ** If any error occurs, return NULL.
    567 ** Otherwise, return a pointer to the first character not part of the time.
    568 */
    569 
    570 static const char *
    571 getoffset(strp, offsetp)
    572 register const char *	strp;
    573 long * const		offsetp;
    574 {
    575 	register int	neg = 0;
    576 
    577 	if (*strp == '-') {
    578 		neg = 1;
    579 		++strp;
    580 	} else if (*strp == '+')
    581 		++strp;
    582 	strp = getsecs(strp, offsetp);
    583 	if (strp == NULL)
    584 		return NULL;		/* illegal time */
    585 	if (neg)
    586 		*offsetp = -*offsetp;
    587 	return strp;
    588 }
    589 
    590 /*
    591 ** Given a pointer into a time zone string, extract a rule in the form
    592 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    593 ** If a valid rule is not found, return NULL.
    594 ** Otherwise, return a pointer to the first character not part of the rule.
    595 */
    596 
    597 static const char *
    598 getrule(strp, rulep)
    599 const char *			strp;
    600 register struct rule * const	rulep;
    601 {
    602 	if (*strp == 'J') {
    603 		/*
    604 		** Julian day.
    605 		*/
    606 		rulep->r_type = JULIAN_DAY;
    607 		++strp;
    608 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    609 	} else if (*strp == 'M') {
    610 		/*
    611 		** Month, week, day.
    612 		*/
    613 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    614 		++strp;
    615 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    616 		if (strp == NULL)
    617 			return NULL;
    618 		if (*strp++ != '.')
    619 			return NULL;
    620 		strp = getnum(strp, &rulep->r_week, 1, 5);
    621 		if (strp == NULL)
    622 			return NULL;
    623 		if (*strp++ != '.')
    624 			return NULL;
    625 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    626 	} else if (is_digit(*strp)) {
    627 		/*
    628 		** Day of year.
    629 		*/
    630 		rulep->r_type = DAY_OF_YEAR;
    631 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    632 	} else	return NULL;		/* invalid format */
    633 	if (strp == NULL)
    634 		return NULL;
    635 	if (*strp == '/') {
    636 		/*
    637 		** Time specified.
    638 		*/
    639 		++strp;
    640 		strp = getsecs(strp, &rulep->r_time);
    641 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    642 	return strp;
    643 }
    644 
    645 /*
    646 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    647 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    648 ** calculate the Epoch-relative time that rule takes effect.
    649 */
    650 
    651 static time_t
    652 transtime(janfirst, year, rulep, offset)
    653 const time_t				janfirst;
    654 const int				year;
    655 register const struct rule * const	rulep;
    656 const long				offset;
    657 {
    658 	register int	leapyear;
    659 	register time_t	value;
    660 	register int	i;
    661 	int		d, m1, yy0, yy1, yy2, dow;
    662 
    663 	INITIALIZE(value);
    664 	leapyear = isleap(year);
    665 	switch (rulep->r_type) {
    666 
    667 	case JULIAN_DAY:
    668 		/*
    669 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    670 		** years.
    671 		** In non-leap years, or if the day number is 59 or less, just
    672 		** add SECSPERDAY times the day number-1 to the time of
    673 		** January 1, midnight, to get the day.
    674 		*/
    675 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    676 		if (leapyear && rulep->r_day >= 60)
    677 			value += SECSPERDAY;
    678 		break;
    679 
    680 	case DAY_OF_YEAR:
    681 		/*
    682 		** n - day of year.
    683 		** Just add SECSPERDAY times the day number to the time of
    684 		** January 1, midnight, to get the day.
    685 		*/
    686 		value = janfirst + rulep->r_day * SECSPERDAY;
    687 		break;
    688 
    689 	case MONTH_NTH_DAY_OF_WEEK:
    690 		/*
    691 		** Mm.n.d - nth "dth day" of month m.
    692 		*/
    693 		value = janfirst;
    694 		for (i = 0; i < rulep->r_mon - 1; ++i)
    695 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    696 
    697 		/*
    698 		** Use Zeller's Congruence to get day-of-week of first day of
    699 		** month.
    700 		*/
    701 		m1 = (rulep->r_mon + 9) % 12 + 1;
    702 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    703 		yy1 = yy0 / 100;
    704 		yy2 = yy0 % 100;
    705 		dow = ((26 * m1 - 2) / 10 +
    706 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    707 		if (dow < 0)
    708 			dow += DAYSPERWEEK;
    709 
    710 		/*
    711 		** "dow" is the day-of-week of the first day of the month.  Get
    712 		** the day-of-month (zero-origin) of the first "dow" day of the
    713 		** month.
    714 		*/
    715 		d = rulep->r_day - dow;
    716 		if (d < 0)
    717 			d += DAYSPERWEEK;
    718 		for (i = 1; i < rulep->r_week; ++i) {
    719 			if (d + DAYSPERWEEK >=
    720 				mon_lengths[leapyear][rulep->r_mon - 1])
    721 					break;
    722 			d += DAYSPERWEEK;
    723 		}
    724 
    725 		/*
    726 		** "d" is the day-of-month (zero-origin) of the day we want.
    727 		*/
    728 		value += d * SECSPERDAY;
    729 		break;
    730 	}
    731 
    732 	/*
    733 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    734 	** question.  To get the Epoch-relative time of the specified local
    735 	** time on that day, add the transition time and the current offset
    736 	** from UTC.
    737 	*/
    738 	return value + rulep->r_time + offset;
    739 }
    740 
    741 /*
    742 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    743 ** appropriate.
    744 */
    745 
    746 static int
    747 tzparse(name, sp, lastditch)
    748 const char *			name;
    749 register struct state * const	sp;
    750 const int			lastditch;
    751 {
    752 	const char *			stdname;
    753 	const char *			dstname;
    754 	size_t				stdlen;
    755 	size_t				dstlen;
    756 	long				stdoffset;
    757 	long				dstoffset;
    758 	register time_t *		atp;
    759 	register unsigned char *	typep;
    760 	register char *			cp;
    761 	register int			load_result;
    762 
    763 	INITIALIZE(dstname);
    764 	stdname = name;
    765 	if (lastditch) {
    766 		stdlen = strlen(name);	/* length of standard zone name */
    767 		name += stdlen;
    768 		if (stdlen >= sizeof sp->chars)
    769 			stdlen = (sizeof sp->chars) - 1;
    770 		stdoffset = 0;
    771 	} else {
    772 		name = getzname(name);
    773 		stdlen = name - stdname;
    774 		if (stdlen < 3)
    775 			return -1;
    776 		if (*name == '\0')
    777 			return -1;
    778 		name = getoffset(name, &stdoffset);
    779 		if (name == NULL)
    780 			return -1;
    781 	}
    782 	load_result = tzload(TZDEFRULES, sp);
    783 	if (load_result != 0)
    784 		sp->leapcnt = 0;		/* so, we're off a little */
    785 	if (*name != '\0') {
    786 		dstname = name;
    787 		name = getzname(name);
    788 		dstlen = name - dstname;	/* length of DST zone name */
    789 		if (dstlen < 3)
    790 			return -1;
    791 		if (*name != '\0' && *name != ',' && *name != ';') {
    792 			name = getoffset(name, &dstoffset);
    793 			if (name == NULL)
    794 				return -1;
    795 		} else	dstoffset = stdoffset - SECSPERHOUR;
    796 		if (*name == '\0' && load_result != 0)
    797 			name = TZDEFRULESTRING;
    798 		if (*name == ',' || *name == ';') {
    799 			struct rule	start;
    800 			struct rule	end;
    801 			register int	year;
    802 			register time_t	janfirst;
    803 			time_t		starttime;
    804 			time_t		endtime;
    805 
    806 			++name;
    807 			if ((name = getrule(name, &start)) == NULL)
    808 				return -1;
    809 			if (*name++ != ',')
    810 				return -1;
    811 			if ((name = getrule(name, &end)) == NULL)
    812 				return -1;
    813 			if (*name != '\0')
    814 				return -1;
    815 			sp->typecnt = 2;	/* standard time and DST */
    816 			/*
    817 			** Two transitions per year, from EPOCH_YEAR to 2037.
    818 			*/
    819 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    820 			if (sp->timecnt > TZ_MAX_TIMES)
    821 				return -1;
    822 			sp->ttis[0].tt_gmtoff = -dstoffset;
    823 			sp->ttis[0].tt_isdst = 1;
    824 			sp->ttis[0].tt_abbrind = stdlen + 1;
    825 			sp->ttis[1].tt_gmtoff = -stdoffset;
    826 			sp->ttis[1].tt_isdst = 0;
    827 			sp->ttis[1].tt_abbrind = 0;
    828 			atp = sp->ats;
    829 			typep = sp->types;
    830 			janfirst = 0;
    831 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    832 				starttime = transtime(janfirst, year, &start,
    833 					stdoffset);
    834 				endtime = transtime(janfirst, year, &end,
    835 					dstoffset);
    836 				if (starttime > endtime) {
    837 					*atp++ = endtime;
    838 					*typep++ = 1;	/* DST ends */
    839 					*atp++ = starttime;
    840 					*typep++ = 0;	/* DST begins */
    841 				} else {
    842 					*atp++ = starttime;
    843 					*typep++ = 0;	/* DST begins */
    844 					*atp++ = endtime;
    845 					*typep++ = 1;	/* DST ends */
    846 				}
    847 				janfirst += year_lengths[isleap(year)] *
    848 					SECSPERDAY;
    849 			}
    850 		} else {
    851 			register long	theirstdoffset;
    852 			register long	theirdstoffset;
    853 			register long	theiroffset;
    854 			register int	i;
    855 			register int	j;
    856 
    857 			if (*name != '\0')
    858 				return -1;
    859 			/*
    860 			** Initial values of theirstdoffset and theirdstoffset.
    861 			*/
    862 			theirstdoffset = 0;
    863 			for (i = 0; i < sp->timecnt; ++i) {
    864 				j = sp->types[i];
    865 				if (!sp->ttis[j].tt_isdst) {
    866 					theirstdoffset =
    867 						-sp->ttis[j].tt_gmtoff;
    868 					break;
    869 				}
    870 			}
    871 			theirdstoffset = 0;
    872 			for (i = 0; i < sp->timecnt; ++i) {
    873 				j = sp->types[i];
    874 				if (sp->ttis[j].tt_isdst) {
    875 					theirdstoffset =
    876 						-sp->ttis[j].tt_gmtoff;
    877 					break;
    878 				}
    879 			}
    880 			/*
    881 			** Initially we're assumed to be in standard time.
    882 			*/
    883 			theiroffset = theirstdoffset;
    884 			/*
    885 			** Now juggle transition times and types
    886 			** tracking offsets as you do.
    887 			*/
    888 			for (i = 0; i < sp->timecnt; ++i) {
    889 				j = sp->types[i];
    890 				sp->types[i] = sp->ttis[j].tt_isdst;
    891 				if (sp->ttis[j].tt_ttisgmt) {
    892 					/* No adjustment to transition time */
    893 				} else {
    894 					/*
    895 					** If summer time is in effect, and the
    896 					** transition time was not specified as
    897 					** standard time, add the summer time
    898 					** offset to the transition time;
    899 					** otherwise, add the standard time
    900 					** offset to the transition time.
    901 					*/
    902 					/*
    903 					** Transitions from DST to DDST
    904 					** will effectively disappear since
    905 					** POSIX provides for only one DST
    906 					** offset.
    907 					*/
    908 					sp->ats[i] += stdoffset -
    909 					    theirstdoffset;
    910 				}
    911 				theiroffset = -sp->ttis[j].tt_gmtoff;
    912 				if (sp->ttis[j].tt_isdst)
    913 					theirdstoffset = theiroffset;
    914 				else	theirstdoffset = theiroffset;
    915 			}
    916 			/*
    917 			** Finally, fill in ttis.
    918 			** ttisstd and ttisgmt need not be handled.
    919 			*/
    920 			sp->ttis[0].tt_gmtoff = -stdoffset;
    921 			sp->ttis[0].tt_isdst = FALSE;
    922 			sp->ttis[0].tt_abbrind = 0;
    923 			sp->ttis[1].tt_gmtoff = -dstoffset;
    924 			sp->ttis[1].tt_isdst = TRUE;
    925 			sp->ttis[1].tt_abbrind = stdlen + 1;
    926 			sp->typecnt = 2;
    927 		}
    928 	} else {
    929 		dstlen = 0;
    930 		sp->typecnt = 1;		/* only standard time */
    931 		sp->timecnt = 0;
    932 		sp->ttis[0].tt_gmtoff = -stdoffset;
    933 		sp->ttis[0].tt_isdst = 0;
    934 		sp->ttis[0].tt_abbrind = 0;
    935 	}
    936 	sp->charcnt = stdlen + 1;
    937 	if (dstlen != 0)
    938 		sp->charcnt += dstlen + 1;
    939 	if ((size_t) sp->charcnt > sizeof sp->chars)
    940 		return -1;
    941 	cp = sp->chars;
    942 	(void) strncpy(cp, stdname, stdlen);
    943 	cp += stdlen;
    944 	*cp++ = '\0';
    945 	if (dstlen != 0) {
    946 		(void) strncpy(cp, dstname, dstlen);
    947 		*(cp + dstlen) = '\0';
    948 	}
    949 	return 0;
    950 }
    951 
    952 static void
    953 gmtload(sp)
    954 struct state * const	sp;
    955 {
    956 	if (tzload(gmt, sp) != 0)
    957 		(void) tzparse(gmt, sp, TRUE);
    958 }
    959 
    960 static void
    961 tzsetwall_unlocked P((void))
    962 {
    963 	if (lcl_is_set < 0)
    964 		return;
    965 	lcl_is_set = -1;
    966 
    967 #ifdef ALL_STATE
    968 	if (lclptr == NULL) {
    969 		lclptr = (struct state *) malloc(sizeof *lclptr);
    970 		if (lclptr == NULL) {
    971 			settzname();	/* all we can do */
    972 			return;
    973 		}
    974 	}
    975 #endif /* defined ALL_STATE */
    976 	if (tzload((char *) NULL, lclptr) != 0)
    977 		gmtload(lclptr);
    978 	settzname();
    979 }
    980 
    981 #ifndef STD_INSPIRED
    982 /*
    983 ** A non-static declaration of tzsetwall in a system header file
    984 ** may cause a warning about this upcoming static declaration...
    985 */
    986 static
    987 #endif /* !defined STD_INSPIRED */
    988 void
    989 tzsetwall P((void))
    990 {
    991 	rwlock_wrlock(&lcl_lock);
    992 	tzsetwall_unlocked();
    993 	rwlock_unlock(&lcl_lock);
    994 }
    995 
    996 static void
    997 tzset_unlocked P((void))
    998 {
    999 	register const char *	name;
   1000 
   1001 	name = getenv("TZ");
   1002 	if (name == NULL) {
   1003 		tzsetwall_unlocked();
   1004 		return;
   1005 	}
   1006 
   1007 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1008 		return;
   1009 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1010 	if (lcl_is_set)
   1011 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1012 
   1013 #ifdef ALL_STATE
   1014 	if (lclptr == NULL) {
   1015 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1016 		if (lclptr == NULL) {
   1017 			settzname();	/* all we can do */
   1018 			return;
   1019 		}
   1020 	}
   1021 #endif /* defined ALL_STATE */
   1022 	if (*name == '\0') {
   1023 		/*
   1024 		** User wants it fast rather than right.
   1025 		*/
   1026 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1027 		lclptr->timecnt = 0;
   1028 		lclptr->typecnt = 0;
   1029 		lclptr->ttis[0].tt_isdst = 0;
   1030 		lclptr->ttis[0].tt_gmtoff = 0;
   1031 		lclptr->ttis[0].tt_abbrind = 0;
   1032 		(void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1033 	} else if (tzload(name, lclptr) != 0)
   1034 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1035 			(void) gmtload(lclptr);
   1036 	settzname();
   1037 }
   1038 
   1039 void
   1040 tzset P((void))
   1041 {
   1042 	rwlock_wrlock(&lcl_lock);
   1043 	tzset_unlocked();
   1044 	rwlock_unlock(&lcl_lock);
   1045 }
   1046 
   1047 /*
   1048 ** The easy way to behave "as if no library function calls" localtime
   1049 ** is to not call it--so we drop its guts into "localsub", which can be
   1050 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1051 ** but it *is* desirable.)
   1052 **
   1053 ** The unused offset argument is for the benefit of mktime variants.
   1054 */
   1055 
   1056 /*ARGSUSED*/
   1057 static void
   1058 localsub(timep, offset, tmp)
   1059 const time_t * const	timep;
   1060 const long		offset;
   1061 struct tm * const	tmp;
   1062 {
   1063 	register struct state *		sp;
   1064 	register const struct ttinfo *	ttisp;
   1065 	register int			i;
   1066 	const time_t			t = *timep;
   1067 
   1068 	sp = lclptr;
   1069 #ifdef ALL_STATE
   1070 	if (sp == NULL) {
   1071 		gmtsub(timep, offset, tmp);
   1072 		return;
   1073 	}
   1074 #endif /* defined ALL_STATE */
   1075 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1076 		i = 0;
   1077 		while (sp->ttis[i].tt_isdst)
   1078 			if (++i >= sp->typecnt) {
   1079 				i = 0;
   1080 				break;
   1081 			}
   1082 	} else {
   1083 		for (i = 1; i < sp->timecnt; ++i)
   1084 			if (t < sp->ats[i])
   1085 				break;
   1086 		i = sp->types[i - 1];
   1087 	}
   1088 	ttisp = &sp->ttis[i];
   1089 	/*
   1090 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1091 	** you'd replace the statement below with
   1092 	**	t += ttisp->tt_gmtoff;
   1093 	**	timesub(&t, 0L, sp, tmp);
   1094 	*/
   1095 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1096 	tmp->tm_isdst = ttisp->tt_isdst;
   1097 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1098 #ifdef TM_ZONE
   1099 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1100 #endif /* defined TM_ZONE */
   1101 }
   1102 
   1103 struct tm *
   1104 localtime(timep)
   1105 const time_t * const	timep;
   1106 {
   1107 	rwlock_wrlock(&lcl_lock);
   1108 	tzset_unlocked();
   1109 	localsub(timep, 0L, &tm);
   1110 	rwlock_unlock(&lcl_lock);
   1111 	return &tm;
   1112 }
   1113 
   1114 /*
   1115 ** Re-entrant version of localtime.
   1116 */
   1117 
   1118 struct tm *
   1119 localtime_r(timep, tmp)
   1120 const time_t * const	timep;
   1121 struct tm *		tmp;
   1122 {
   1123 	rwlock_rdlock(&lcl_lock);
   1124 	tzset_unlocked();
   1125 	localsub(timep, 0L, tmp);
   1126 	rwlock_unlock(&lcl_lock);
   1127 	return tmp;
   1128 }
   1129 
   1130 /*
   1131 ** gmtsub is to gmtime as localsub is to localtime.
   1132 */
   1133 
   1134 static void
   1135 gmtsub(timep, offset, tmp)
   1136 const time_t * const	timep;
   1137 const long		offset;
   1138 struct tm * const	tmp;
   1139 {
   1140 #ifdef _REENTRANT
   1141 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1142 #endif
   1143 
   1144 	mutex_lock(&gmt_mutex);
   1145 	if (!gmt_is_set) {
   1146 		gmt_is_set = TRUE;
   1147 #ifdef ALL_STATE
   1148 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1149 		if (gmtptr != NULL)
   1150 #endif /* defined ALL_STATE */
   1151 			gmtload(gmtptr);
   1152 	}
   1153 	mutex_unlock(&gmt_mutex);
   1154 	timesub(timep, offset, gmtptr, tmp);
   1155 #ifdef TM_ZONE
   1156 	/*
   1157 	** Could get fancy here and deliver something such as
   1158 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1159 	** but this is no time for a treasure hunt.
   1160 	*/
   1161 	if (offset != 0)
   1162 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1163 	else {
   1164 #ifdef ALL_STATE
   1165 		if (gmtptr == NULL)
   1166 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1167 		else	tmp->TM_ZONE = gmtptr->chars;
   1168 #endif /* defined ALL_STATE */
   1169 #ifndef ALL_STATE
   1170 		tmp->TM_ZONE = gmtptr->chars;
   1171 #endif /* State Farm */
   1172 	}
   1173 #endif /* defined TM_ZONE */
   1174 }
   1175 
   1176 struct tm *
   1177 gmtime(timep)
   1178 const time_t * const	timep;
   1179 {
   1180 	gmtsub(timep, 0L, &tm);
   1181 	return &tm;
   1182 }
   1183 
   1184 /*
   1185 ** Re-entrant version of gmtime.
   1186 */
   1187 
   1188 struct tm *
   1189 gmtime_r(timep, tmp)
   1190 const time_t * const	timep;
   1191 struct tm *		tmp;
   1192 {
   1193 	gmtsub(timep, 0L, tmp);
   1194 	return tmp;
   1195 }
   1196 
   1197 #ifdef STD_INSPIRED
   1198 
   1199 struct tm *
   1200 offtime(timep, offset)
   1201 const time_t * const	timep;
   1202 const long		offset;
   1203 {
   1204 	gmtsub(timep, offset, &tm);
   1205 	return &tm;
   1206 }
   1207 
   1208 #endif /* defined STD_INSPIRED */
   1209 
   1210 static void
   1211 timesub(timep, offset, sp, tmp)
   1212 const time_t * const			timep;
   1213 const long				offset;
   1214 register const struct state * const	sp;
   1215 register struct tm * const		tmp;
   1216 {
   1217 	register const struct lsinfo *	lp;
   1218 	register long			days;
   1219 	register long			rem;
   1220 	register int			y;
   1221 	register int			yleap;
   1222 	register const int *		ip;
   1223 	register long			corr;
   1224 	register int			hit;
   1225 	register int			i;
   1226 
   1227 	corr = 0;
   1228 	hit = 0;
   1229 #ifdef ALL_STATE
   1230 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1231 #endif /* defined ALL_STATE */
   1232 #ifndef ALL_STATE
   1233 	i = sp->leapcnt;
   1234 #endif /* State Farm */
   1235 	while (--i >= 0) {
   1236 		lp = &sp->lsis[i];
   1237 		if (*timep >= lp->ls_trans) {
   1238 			if (*timep == lp->ls_trans) {
   1239 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1240 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1241 				if (hit)
   1242 					while (i > 0 &&
   1243 						sp->lsis[i].ls_trans ==
   1244 						sp->lsis[i - 1].ls_trans + 1 &&
   1245 						sp->lsis[i].ls_corr ==
   1246 						sp->lsis[i - 1].ls_corr + 1) {
   1247 							++hit;
   1248 							--i;
   1249 					}
   1250 			}
   1251 			corr = lp->ls_corr;
   1252 			break;
   1253 		}
   1254 	}
   1255 	days = *timep / SECSPERDAY;
   1256 	rem = *timep % SECSPERDAY;
   1257 #ifdef mc68k
   1258 	if (*timep == 0x80000000) {
   1259 		/*
   1260 		** A 3B1 muffs the division on the most negative number.
   1261 		*/
   1262 		days = -24855;
   1263 		rem = -11648;
   1264 	}
   1265 #endif /* defined mc68k */
   1266 	rem += (offset - corr);
   1267 	while (rem < 0) {
   1268 		rem += SECSPERDAY;
   1269 		--days;
   1270 	}
   1271 	while (rem >= SECSPERDAY) {
   1272 		rem -= SECSPERDAY;
   1273 		++days;
   1274 	}
   1275 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1276 	rem = rem % SECSPERHOUR;
   1277 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1278 	/*
   1279 	** A positive leap second requires a special
   1280 	** representation.  This uses "... ??:59:60" et seq.
   1281 	*/
   1282 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1283 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1284 	if (tmp->tm_wday < 0)
   1285 		tmp->tm_wday += DAYSPERWEEK;
   1286 	y = EPOCH_YEAR;
   1287 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1288 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1289 		register int	newy;
   1290 
   1291 		newy = (int)(y + days / DAYSPERNYEAR);
   1292 		if (days < 0)
   1293 			--newy;
   1294 		days -= (newy - y) * DAYSPERNYEAR +
   1295 			LEAPS_THRU_END_OF(newy - 1) -
   1296 			LEAPS_THRU_END_OF(y - 1);
   1297 		y = newy;
   1298 	}
   1299 	tmp->tm_year = y - TM_YEAR_BASE;
   1300 	tmp->tm_yday = (int) days;
   1301 	ip = mon_lengths[yleap];
   1302 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1303 		days = days - (long) ip[tmp->tm_mon];
   1304 	tmp->tm_mday = (int) (days + 1);
   1305 	tmp->tm_isdst = 0;
   1306 #ifdef TM_GMTOFF
   1307 	tmp->TM_GMTOFF = offset;
   1308 #endif /* defined TM_GMTOFF */
   1309 }
   1310 
   1311 char *
   1312 ctime(timep)
   1313 const time_t * const	timep;
   1314 {
   1315 /*
   1316 ** Section 4.12.3.2 of X3.159-1989 requires that
   1317 **	The ctime function converts the calendar time pointed to by timer
   1318 **	to local time in the form of a string.  It is equivalent to
   1319 **		asctime(localtime(timer))
   1320 */
   1321 	return asctime(localtime(timep));
   1322 }
   1323 
   1324 char *
   1325 ctime_r(timep, buf)
   1326 const time_t * const	timep;
   1327 char *			buf;
   1328 {
   1329 	struct tm	tmp;
   1330 
   1331 	return asctime_r(localtime_r(timep, &tmp), buf);
   1332 }
   1333 
   1334 /*
   1335 ** Adapted from code provided by Robert Elz, who writes:
   1336 **	The "best" way to do mktime I think is based on an idea of Bob
   1337 **	Kridle's (so its said...) from a long time ago.
   1338 **	[kridle (at) xinet.com as of 1996-01-16.]
   1339 **	It does a binary search of the time_t space.  Since time_t's are
   1340 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1341 **	would still be very reasonable).
   1342 */
   1343 
   1344 #ifndef WRONG
   1345 #define WRONG	(-1)
   1346 #endif /* !defined WRONG */
   1347 
   1348 /*
   1349 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1350 */
   1351 
   1352 static int
   1353 increment_overflow(number, delta)
   1354 int *	number;
   1355 int	delta;
   1356 {
   1357 	int	number0;
   1358 
   1359 	number0 = *number;
   1360 	*number += delta;
   1361 	return (*number < number0) != (delta < 0);
   1362 }
   1363 
   1364 static int
   1365 normalize_overflow(tensptr, unitsptr, base)
   1366 int * const	tensptr;
   1367 int * const	unitsptr;
   1368 const int	base;
   1369 {
   1370 	register int	tensdelta;
   1371 
   1372 	tensdelta = (*unitsptr >= 0) ?
   1373 		(*unitsptr / base) :
   1374 		(-1 - (-1 - *unitsptr) / base);
   1375 	*unitsptr -= tensdelta * base;
   1376 	return increment_overflow(tensptr, tensdelta);
   1377 }
   1378 
   1379 static int
   1380 tmcomp(atmp, btmp)
   1381 register const struct tm * const atmp;
   1382 register const struct tm * const btmp;
   1383 {
   1384 	register int	result;
   1385 
   1386 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1387 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1388 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1389 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1390 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1391 			result = atmp->tm_sec - btmp->tm_sec;
   1392 	return result;
   1393 }
   1394 
   1395 static time_t
   1396 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1397 struct tm * const	tmp;
   1398 void (* const		funcp) P((const time_t*, long, struct tm*));
   1399 const long		offset;
   1400 int * const		okayp;
   1401 const int		do_norm_secs;
   1402 {
   1403 	register const struct state *	sp;
   1404 	register int			dir;
   1405 	register int			bits;
   1406 	register int			i, j ;
   1407 	register int			saved_seconds;
   1408 	time_t				newt;
   1409 	time_t				t;
   1410 	struct tm			yourtm, mytm;
   1411 
   1412 	*okayp = FALSE;
   1413 	yourtm = *tmp;
   1414 	if (do_norm_secs) {
   1415 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1416 			SECSPERMIN))
   1417 				return WRONG;
   1418 	}
   1419 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1420 		return WRONG;
   1421 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1422 		return WRONG;
   1423 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1424 		return WRONG;
   1425 	/*
   1426 	** Turn yourtm.tm_year into an actual year number for now.
   1427 	** It is converted back to an offset from TM_YEAR_BASE later.
   1428 	*/
   1429 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1430 		return WRONG;
   1431 	while (yourtm.tm_mday <= 0) {
   1432 		if (increment_overflow(&yourtm.tm_year, -1))
   1433 			return WRONG;
   1434 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1435 		yourtm.tm_mday += year_lengths[isleap(i)];
   1436 	}
   1437 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1438 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1439 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1440 		if (increment_overflow(&yourtm.tm_year, 1))
   1441 			return WRONG;
   1442 	}
   1443 	for ( ; ; ) {
   1444 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1445 		if (yourtm.tm_mday <= i)
   1446 			break;
   1447 		yourtm.tm_mday -= i;
   1448 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1449 			yourtm.tm_mon = 0;
   1450 			if (increment_overflow(&yourtm.tm_year, 1))
   1451 				return WRONG;
   1452 		}
   1453 	}
   1454 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1455 		return WRONG;
   1456 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1457 		saved_seconds = 0;
   1458 	else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1459 		/*
   1460 		** We can't set tm_sec to 0, because that might push the
   1461 		** time below the minimum representable time.
   1462 		** Set tm_sec to 59 instead.
   1463 		** This assumes that the minimum representable time is
   1464 		** not in the same minute that a leap second was deleted from,
   1465 		** which is a safer assumption than using 58 would be.
   1466 		*/
   1467 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1468 			return WRONG;
   1469 		saved_seconds = yourtm.tm_sec;
   1470 		yourtm.tm_sec = SECSPERMIN - 1;
   1471 	} else {
   1472 		saved_seconds = yourtm.tm_sec;
   1473 		yourtm.tm_sec = 0;
   1474 	}
   1475 	/*
   1476 	** Divide the search space in half
   1477 	** (this works whether time_t is signed or unsigned).
   1478 	*/
   1479 	bits = TYPE_BIT(time_t) - 1;
   1480 	/*
   1481 	** If time_t is signed, then 0 is just above the median,
   1482 	** assuming two's complement arithmetic.
   1483 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1484 	*/
   1485 	/*CONSTCOND*/
   1486 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1487 	for ( ; ; ) {
   1488 		(*funcp)(&t, offset, &mytm);
   1489 		dir = tmcomp(&mytm, &yourtm);
   1490 		if (dir != 0) {
   1491 			if (bits-- < 0)
   1492 				return WRONG;
   1493 			if (bits < 0)
   1494 				--t; /* may be needed if new t is minimal */
   1495 			else if (dir > 0)
   1496 				t -= ((time_t) 1) << bits;
   1497 			else	t += ((time_t) 1) << bits;
   1498 			continue;
   1499 		}
   1500 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1501 			break;
   1502 		/*
   1503 		** Right time, wrong type.
   1504 		** Hunt for right time, right type.
   1505 		** It's okay to guess wrong since the guess
   1506 		** gets checked.
   1507 		*/
   1508 		/*
   1509 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1510 		*/
   1511 		sp = (const struct state *)
   1512 			(((void *) funcp == (void *) localsub) ?
   1513 			lclptr : gmtptr);
   1514 #ifdef ALL_STATE
   1515 		if (sp == NULL)
   1516 			return WRONG;
   1517 #endif /* defined ALL_STATE */
   1518 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1519 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1520 				continue;
   1521 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1522 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1523 					continue;
   1524 				newt = t + sp->ttis[j].tt_gmtoff -
   1525 					sp->ttis[i].tt_gmtoff;
   1526 				(*funcp)(&newt, offset, &mytm);
   1527 				if (tmcomp(&mytm, &yourtm) != 0)
   1528 					continue;
   1529 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1530 					continue;
   1531 				/*
   1532 				** We have a match.
   1533 				*/
   1534 				t = newt;
   1535 				goto label;
   1536 			}
   1537 		}
   1538 		return WRONG;
   1539 	}
   1540 label:
   1541 	newt = t + saved_seconds;
   1542 	if ((newt < t) != (saved_seconds < 0))
   1543 		return WRONG;
   1544 	t = newt;
   1545 	(*funcp)(&t, offset, tmp);
   1546 	*okayp = TRUE;
   1547 	return t;
   1548 }
   1549 
   1550 static time_t
   1551 time2(tmp, funcp, offset, okayp)
   1552 struct tm * const	tmp;
   1553 void (* const		funcp) P((const time_t*, long, struct tm*));
   1554 const long		offset;
   1555 int * const		okayp;
   1556 {
   1557 	time_t	t;
   1558 
   1559 	/*
   1560 	** First try without normalization of seconds
   1561 	** (in case tm_sec contains a value associated with a leap second).
   1562 	** If that fails, try with normalization of seconds.
   1563 	*/
   1564 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1565 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1566 }
   1567 
   1568 static time_t
   1569 time1(tmp, funcp, offset)
   1570 struct tm * const	tmp;
   1571 void (* const		funcp) P((const time_t *, long, struct tm *));
   1572 const long		offset;
   1573 {
   1574 	register time_t			t;
   1575 	register const struct state *	sp;
   1576 	register int			samei, otheri;
   1577 	register int			sameind, otherind;
   1578 	register int			i;
   1579 	register int			nseen;
   1580 	int				seen[TZ_MAX_TYPES];
   1581 	int				types[TZ_MAX_TYPES];
   1582 	int				okay;
   1583 
   1584 	if (tmp->tm_isdst > 1)
   1585 		tmp->tm_isdst = 1;
   1586 	t = time2(tmp, funcp, offset, &okay);
   1587 #ifdef PCTS
   1588 	/*
   1589 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1590 	*/
   1591 	if (okay)
   1592 		return t;
   1593 	if (tmp->tm_isdst < 0)
   1594 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1595 #endif /* defined PCTS */
   1596 #ifndef PCTS
   1597 	if (okay || tmp->tm_isdst < 0)
   1598 		return t;
   1599 #endif /* !defined PCTS */
   1600 	/*
   1601 	** We're supposed to assume that somebody took a time of one type
   1602 	** and did some math on it that yielded a "struct tm" that's bad.
   1603 	** We try to divine the type they started from and adjust to the
   1604 	** type they need.
   1605 	*/
   1606 	/*
   1607 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1608 	*/
   1609 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1610 		lclptr : gmtptr);
   1611 #ifdef ALL_STATE
   1612 	if (sp == NULL)
   1613 		return WRONG;
   1614 #endif /* defined ALL_STATE */
   1615 	for (i = 0; i < sp->typecnt; ++i)
   1616 		seen[i] = FALSE;
   1617 	nseen = 0;
   1618 	for (i = sp->timecnt - 1; i >= 0; --i)
   1619 		if (!seen[sp->types[i]]) {
   1620 			seen[sp->types[i]] = TRUE;
   1621 			types[nseen++] = sp->types[i];
   1622 		}
   1623 	for (sameind = 0; sameind < nseen; ++sameind) {
   1624 		samei = types[sameind];
   1625 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1626 			continue;
   1627 		for (otherind = 0; otherind < nseen; ++otherind) {
   1628 			otheri = types[otherind];
   1629 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1630 				continue;
   1631 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   1632 					sp->ttis[samei].tt_gmtoff);
   1633 			tmp->tm_isdst = !tmp->tm_isdst;
   1634 			t = time2(tmp, funcp, offset, &okay);
   1635 			if (okay)
   1636 				return t;
   1637 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   1638 					sp->ttis[samei].tt_gmtoff);
   1639 			tmp->tm_isdst = !tmp->tm_isdst;
   1640 		}
   1641 	}
   1642 	return WRONG;
   1643 }
   1644 
   1645 time_t
   1646 mktime(tmp)
   1647 struct tm * const	tmp;
   1648 {
   1649 	time_t result;
   1650 
   1651 	rwlock_wrlock(&lcl_lock);
   1652 	tzset_unlocked();
   1653 	result = time1(tmp, localsub, 0L);
   1654 	rwlock_unlock(&lcl_lock);
   1655 	return (result);
   1656 }
   1657 
   1658 #ifdef STD_INSPIRED
   1659 
   1660 time_t
   1661 timelocal(tmp)
   1662 struct tm * const	tmp;
   1663 {
   1664 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1665 	return mktime(tmp);
   1666 }
   1667 
   1668 time_t
   1669 timegm(tmp)
   1670 struct tm * const	tmp;
   1671 {
   1672 	tmp->tm_isdst = 0;
   1673 	return time1(tmp, gmtsub, 0L);
   1674 }
   1675 
   1676 time_t
   1677 timeoff(tmp, offset)
   1678 struct tm * const	tmp;
   1679 const long		offset;
   1680 {
   1681 	tmp->tm_isdst = 0;
   1682 	return time1(tmp, gmtsub, offset);
   1683 }
   1684 
   1685 #endif /* defined STD_INSPIRED */
   1686 
   1687 #ifdef CMUCS
   1688 
   1689 /*
   1690 ** The following is supplied for compatibility with
   1691 ** previous versions of the CMUCS runtime library.
   1692 */
   1693 
   1694 long
   1695 gtime(tmp)
   1696 struct tm * const	tmp;
   1697 {
   1698 	const time_t	t = mktime(tmp);
   1699 
   1700 	if (t == WRONG)
   1701 		return -1;
   1702 	return t;
   1703 }
   1704 
   1705 #endif /* defined CMUCS */
   1706 
   1707 /*
   1708 ** XXX--is the below the right way to conditionalize??
   1709 */
   1710 
   1711 #ifdef STD_INSPIRED
   1712 
   1713 /*
   1714 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1715 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1716 ** is not the case if we are accounting for leap seconds.
   1717 ** So, we provide the following conversion routines for use
   1718 ** when exchanging timestamps with POSIX conforming systems.
   1719 */
   1720 
   1721 static long
   1722 leapcorr(timep)
   1723 time_t *	timep;
   1724 {
   1725 	register struct state *		sp;
   1726 	register struct lsinfo *	lp;
   1727 	register int			i;
   1728 
   1729 	sp = lclptr;
   1730 	i = sp->leapcnt;
   1731 	while (--i >= 0) {
   1732 		lp = &sp->lsis[i];
   1733 		if (*timep >= lp->ls_trans)
   1734 			return lp->ls_corr;
   1735 	}
   1736 	return 0;
   1737 }
   1738 
   1739 time_t
   1740 time2posix(t)
   1741 time_t	t;
   1742 {
   1743 	time_t result;
   1744 
   1745 	rwlock_wrlock(&lcl_lock);
   1746 	tzset_unlocked();
   1747 	result = t - leapcorr(&t);
   1748 	rwlock_unlock(&lcl_lock);
   1749 	return (result);
   1750 }
   1751 
   1752 time_t
   1753 posix2time(t)
   1754 time_t	t;
   1755 {
   1756 	time_t	x;
   1757 	time_t	y;
   1758 
   1759 	rwlock_wrlock(&lcl_lock);
   1760 	tzset_unlocked();
   1761 	/*
   1762 	** For a positive leap second hit, the result
   1763 	** is not unique.  For a negative leap second
   1764 	** hit, the corresponding time doesn't exist,
   1765 	** so we return an adjacent second.
   1766 	*/
   1767 	x = t + leapcorr(&t);
   1768 	y = x - leapcorr(&x);
   1769 	if (y < t) {
   1770 		do {
   1771 			x++;
   1772 			y = x - leapcorr(&x);
   1773 		} while (y < t);
   1774 		if (t != y) {
   1775 			rwlock_unlock(&lcl_lock);
   1776 			return x - 1;
   1777 		}
   1778 	} else if (y > t) {
   1779 		do {
   1780 			--x;
   1781 			y = x - leapcorr(&x);
   1782 		} while (y > t);
   1783 		if (t != y) {
   1784 			rwlock_unlock(&lcl_lock);
   1785 			return x + 1;
   1786 		}
   1787 	}
   1788 	rwlock_unlock(&lcl_lock);
   1789 	return x;
   1790 }
   1791 
   1792 #endif /* defined STD_INSPIRED */
   1793