localtime.c revision 1.4 1 /* $NetBSD: localtime.c,v 1.4 1995/03/16 19:14:16 jtc Exp $ */
2
3 #ifndef lint
4 #ifndef NOID
5 static char elsieid[] = "@(#)localtime.c 7.43";
6 #endif /* !defined NOID */
7 #endif /* !defined lint */
8
9 /*
10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
11 ** POSIX-style TZ environment variable handling from Guy Harris
12 ** (guy (at) auspex.com).
13 */
14
15 /*LINTLIBRARY*/
16
17 #include "private.h"
18 #include "tzfile.h"
19 #include "fcntl.h"
20
21 /*
22 ** SunOS 4.1.1 headers lack O_BINARY.
23 */
24
25 #ifdef O_BINARY
26 #define OPEN_MODE (O_RDONLY | O_BINARY)
27 #endif /* defined O_BINARY */
28 #ifndef O_BINARY
29 #define OPEN_MODE O_RDONLY
30 #endif /* !defined O_BINARY */
31
32 #ifndef WILDABBR
33 /*
34 ** Someone might make incorrect use of a time zone abbreviation:
35 ** 1. They might reference tzname[0] before calling tzset (explicitly
36 ** or implicitly).
37 ** 2. They might reference tzname[1] before calling tzset (explicitly
38 ** or implicitly).
39 ** 3. They might reference tzname[1] after setting to a time zone
40 ** in which Daylight Saving Time is never observed.
41 ** 4. They might reference tzname[0] after setting to a time zone
42 ** in which Standard Time is never observed.
43 ** 5. They might reference tm.TM_ZONE after calling offtime.
44 ** What's best to do in the above cases is open to debate;
45 ** for now, we just set things up so that in any of the five cases
46 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
47 ** string "tzname[0] used before set", and similarly for the other cases.
48 ** And another: initialize tzname[0] to "ERA", with an explanation in the
49 ** manual page of what this "time zone abbreviation" means (doing this so
50 ** that tzname[0] has the "normal" length of three characters).
51 */
52 #define WILDABBR " "
53 #endif /* !defined WILDABBR */
54
55 static char wildabbr[] = "WILDABBR";
56
57 static const char gmt[] = "GMT";
58
59 struct ttinfo { /* time type information */
60 long tt_gmtoff; /* GMT offset in seconds */
61 int tt_isdst; /* used to set tm_isdst */
62 int tt_abbrind; /* abbreviation list index */
63 int tt_ttisstd; /* TRUE if transition is std time */
64 int tt_ttisgmt; /* TRUE if transition is GMT */
65 };
66
67 struct lsinfo { /* leap second information */
68 time_t ls_trans; /* transition time */
69 long ls_corr; /* correction to apply */
70 };
71
72 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
73
74 #ifdef TZNAME_MAX
75 #define MY_TZNAME_MAX TZNAME_MAX
76 #endif /* defined TZNAME_MAX */
77 #ifndef TZNAME_MAX
78 #define MY_TZNAME_MAX 255
79 #endif /* !defined TZNAME_MAX */
80
81 struct state {
82 int leapcnt;
83 int timecnt;
84 int typecnt;
85 int charcnt;
86 time_t ats[TZ_MAX_TIMES];
87 unsigned char types[TZ_MAX_TIMES];
88 struct ttinfo ttis[TZ_MAX_TYPES];
89 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
90 (2 * (MY_TZNAME_MAX + 1)))];
91 struct lsinfo lsis[TZ_MAX_LEAPS];
92 };
93
94 struct rule {
95 int r_type; /* type of rule--see below */
96 int r_day; /* day number of rule */
97 int r_week; /* week number of rule */
98 int r_mon; /* month number of rule */
99 long r_time; /* transition time of rule */
100 };
101
102 #define JULIAN_DAY 0 /* Jn - Julian day */
103 #define DAY_OF_YEAR 1 /* n - day of year */
104 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
105
106 /*
107 ** Prototypes for static functions.
108 */
109
110 static long detzcode P((const char * codep));
111 static const char * getzname P((const char * strp));
112 static const char * getnum P((const char * strp, int * nump, int min,
113 int max));
114 static const char * getsecs P((const char * strp, long * secsp));
115 static const char * getoffset P((const char * strp, long * offsetp));
116 static const char * getrule P((const char * strp, struct rule * rulep));
117 static void gmtload P((struct state * sp));
118 static void gmtsub P((const time_t * timep, long offset,
119 struct tm * tmp));
120 static void localsub P((const time_t * timep, long offset,
121 struct tm * tmp));
122 static int increment_overflow P((int * number, int delta));
123 static int normalize_overflow P((int * tensptr, int * unitsptr,
124 int base));
125 static void settzname P((void));
126 static time_t time1 P((struct tm * tmp,
127 void(*funcp) P((const time_t *,
128 long, struct tm *)),
129 long offset));
130 static time_t time2 P((struct tm *tmp,
131 void(*funcp) P((const time_t *,
132 long, struct tm*)),
133 long offset, int * okayp));
134 static void timesub P((const time_t * timep, long offset,
135 const struct state * sp, struct tm * tmp));
136 static int tmcomp P((const struct tm * atmp,
137 const struct tm * btmp));
138 static time_t transtime P((time_t janfirst, int year,
139 const struct rule * rulep, long offset));
140 static int tzload P((const char * name, struct state * sp));
141 static int tzparse P((const char * name, struct state * sp,
142 int lastditch));
143
144 #ifdef ALL_STATE
145 static struct state * lclptr;
146 static struct state * gmtptr;
147 #endif /* defined ALL_STATE */
148
149 #ifndef ALL_STATE
150 static struct state lclmem;
151 static struct state gmtmem;
152 #define lclptr (&lclmem)
153 #define gmtptr (&gmtmem)
154 #endif /* State Farm */
155
156 #ifndef TZ_STRLEN_MAX
157 #define TZ_STRLEN_MAX 255
158 #endif /* !defined TZ_STRLEN_MAX */
159
160 static char lcl_TZname[TZ_STRLEN_MAX + 1];
161 static int lcl_is_set;
162 static int gmt_is_set;
163
164 char * tzname[2] = {
165 wildabbr,
166 wildabbr
167 };
168
169 /*
170 ** Section 4.12.3 of X3.159-1989 requires that
171 ** Except for the strftime function, these functions [asctime,
172 ** ctime, gmtime, localtime] return values in one of two static
173 ** objects: a broken-down time structure and an array of char.
174 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
175 */
176
177 static struct tm tm;
178
179 #ifdef USG_COMPAT
180 time_t timezone = 0;
181 int daylight = 0;
182 #endif /* defined USG_COMPAT */
183
184 #ifdef ALTZONE
185 time_t altzone = 0;
186 #endif /* defined ALTZONE */
187
188 static long
189 detzcode(codep)
190 const char * const codep;
191 {
192 register long result;
193
194 /*
195 ** The first character must be sign extended on systems with >32bit
196 ** longs. This was solved differently in the master tzcode sources
197 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
198 ** that this implementation is superior.
199 */
200
201 #ifdef __STDC__
202 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
203 #else
204 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
205 #endif
206
207 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
208 | (codep[1] & 0xff) << 16 \
209 | (codep[2] & 0xff) << 8
210 | (codep[3] & 0xff);
211 return result;
212 }
213
214 static void
215 settzname P((void))
216 {
217 register struct state * const sp = lclptr;
218 register int i;
219
220 tzname[0] = wildabbr;
221 tzname[1] = wildabbr;
222 #ifdef USG_COMPAT
223 daylight = 0;
224 timezone = 0;
225 #endif /* defined USG_COMPAT */
226 #ifdef ALTZONE
227 altzone = 0;
228 #endif /* defined ALTZONE */
229 #ifdef ALL_STATE
230 if (sp == NULL) {
231 tzname[0] = tzname[1] = gmt;
232 return;
233 }
234 #endif /* defined ALL_STATE */
235 for (i = 0; i < sp->typecnt; ++i) {
236 register const struct ttinfo * const ttisp = &sp->ttis[i];
237
238 tzname[ttisp->tt_isdst] =
239 &sp->chars[ttisp->tt_abbrind];
240 #ifdef USG_COMPAT
241 if (ttisp->tt_isdst)
242 daylight = 1;
243 if (i == 0 || !ttisp->tt_isdst)
244 timezone = -(ttisp->tt_gmtoff);
245 #endif /* defined USG_COMPAT */
246 #ifdef ALTZONE
247 if (i == 0 || ttisp->tt_isdst)
248 altzone = -(ttisp->tt_gmtoff);
249 #endif /* defined ALTZONE */
250 }
251 /*
252 ** And to get the latest zone names into tzname. . .
253 */
254 for (i = 0; i < sp->timecnt; ++i) {
255 register const struct ttinfo * const ttisp =
256 &sp->ttis[
257 sp->types[i]];
258
259 tzname[ttisp->tt_isdst] =
260 &sp->chars[ttisp->tt_abbrind];
261 }
262 }
263
264 static int
265 tzload(name, sp)
266 register const char * name;
267 register struct state * const sp;
268 {
269 register const char * p;
270 register int i;
271 register int fid;
272
273 if (name == NULL && (name = TZDEFAULT) == NULL)
274 return -1;
275 {
276 register int doaccess;
277 /*
278 ** Section 4.9.1 of the C standard says that
279 ** "FILENAME_MAX expands to an integral constant expression
280 ** that is the sie needed for an array of char large enough
281 ** to hold the longest file name string that the implementation
282 ** guarantees can be opened."
283 */
284 char fullname[FILENAME_MAX + 1];
285
286 if (name[0] == ':')
287 ++name;
288 doaccess = name[0] == '/';
289 if (!doaccess) {
290 if ((p = TZDIR) == NULL)
291 return -1;
292 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
293 return -1;
294 (void) strcpy(fullname, p);
295 (void) strcat(fullname, "/");
296 (void) strcat(fullname, name);
297 /*
298 ** Set doaccess if '.' (as in "../") shows up in name.
299 */
300 if (strchr(name, '.') != NULL)
301 doaccess = TRUE;
302 name = fullname;
303 }
304 if (doaccess && access(name, R_OK) != 0)
305 return -1;
306 if ((fid = open(name, OPEN_MODE)) == -1)
307 return -1;
308 }
309 {
310 struct tzhead * tzhp;
311 char buf[sizeof *sp + sizeof *tzhp];
312 int ttisstdcnt;
313 int ttisgmtcnt;
314
315 i = read(fid, buf, sizeof buf);
316 if (close(fid) != 0)
317 return -1;
318 p = buf;
319 p += sizeof tzhp->tzh_reserved;
320 ttisstdcnt = (int) detzcode(p);
321 p += 4;
322 ttisgmtcnt = (int) detzcode(p);
323 p += 4;
324 sp->leapcnt = (int) detzcode(p);
325 p += 4;
326 sp->timecnt = (int) detzcode(p);
327 p += 4;
328 sp->typecnt = (int) detzcode(p);
329 p += 4;
330 sp->charcnt = (int) detzcode(p);
331 p += 4;
332 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
333 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
334 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
335 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
336 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
337 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
338 return -1;
339 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
340 sp->timecnt + /* types */
341 sp->typecnt * (4 + 2) + /* ttinfos */
342 sp->charcnt + /* chars */
343 sp->leapcnt * (4 + 4) + /* lsinfos */
344 ttisstdcnt + /* ttisstds */
345 ttisgmtcnt) /* ttisgmts */
346 return -1;
347 for (i = 0; i < sp->timecnt; ++i) {
348 sp->ats[i] = detzcode(p);
349 p += 4;
350 }
351 for (i = 0; i < sp->timecnt; ++i) {
352 sp->types[i] = (unsigned char) *p++;
353 if (sp->types[i] >= sp->typecnt)
354 return -1;
355 }
356 for (i = 0; i < sp->typecnt; ++i) {
357 register struct ttinfo * ttisp;
358
359 ttisp = &sp->ttis[i];
360 ttisp->tt_gmtoff = detzcode(p);
361 p += 4;
362 ttisp->tt_isdst = (unsigned char) *p++;
363 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
364 return -1;
365 ttisp->tt_abbrind = (unsigned char) *p++;
366 if (ttisp->tt_abbrind < 0 ||
367 ttisp->tt_abbrind > sp->charcnt)
368 return -1;
369 }
370 for (i = 0; i < sp->charcnt; ++i)
371 sp->chars[i] = *p++;
372 sp->chars[i] = '\0'; /* ensure '\0' at end */
373 for (i = 0; i < sp->leapcnt; ++i) {
374 register struct lsinfo * lsisp;
375
376 lsisp = &sp->lsis[i];
377 lsisp->ls_trans = detzcode(p);
378 p += 4;
379 lsisp->ls_corr = detzcode(p);
380 p += 4;
381 }
382 for (i = 0; i < sp->typecnt; ++i) {
383 register struct ttinfo * ttisp;
384
385 ttisp = &sp->ttis[i];
386 if (ttisstdcnt == 0)
387 ttisp->tt_ttisstd = FALSE;
388 else {
389 ttisp->tt_ttisstd = *p++;
390 if (ttisp->tt_ttisstd != TRUE &&
391 ttisp->tt_ttisstd != FALSE)
392 return -1;
393 }
394 }
395 for (i = 0; i < sp->typecnt; ++i) {
396 register struct ttinfo * ttisp;
397
398 ttisp = &sp->ttis[i];
399 if (ttisgmtcnt == 0)
400 ttisp->tt_ttisgmt = FALSE;
401 else {
402 ttisp->tt_ttisgmt = *p++;
403 if (ttisp->tt_ttisgmt != TRUE &&
404 ttisp->tt_ttisgmt != FALSE)
405 return -1;
406 }
407 }
408 }
409 return 0;
410 }
411
412 static const int mon_lengths[2][MONSPERYEAR] = {
413 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
414 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
415 };
416
417 static const int year_lengths[2] = {
418 DAYSPERNYEAR, DAYSPERLYEAR
419 };
420
421 /*
422 ** Given a pointer into a time zone string, scan until a character that is not
423 ** a valid character in a zone name is found. Return a pointer to that
424 ** character.
425 */
426
427 static const char *
428 getzname(strp)
429 register const char * strp;
430 {
431 register char c;
432
433 while ((c = *strp) != '\0' && !isdigit(c) && c != ',' && c != '-' &&
434 c != '+')
435 ++strp;
436 return strp;
437 }
438
439 /*
440 ** Given a pointer into a time zone string, extract a number from that string.
441 ** Check that the number is within a specified range; if it is not, return
442 ** NULL.
443 ** Otherwise, return a pointer to the first character not part of the number.
444 */
445
446 static const char *
447 getnum(strp, nump, min, max)
448 register const char * strp;
449 int * const nump;
450 const int min;
451 const int max;
452 {
453 register char c;
454 register int num;
455
456 if (strp == NULL || !isdigit(*strp))
457 return NULL;
458 num = 0;
459 while ((c = *strp) != '\0' && isdigit(c)) {
460 num = num * 10 + (c - '0');
461 if (num > max)
462 return NULL; /* illegal value */
463 ++strp;
464 }
465 if (num < min)
466 return NULL; /* illegal value */
467 *nump = num;
468 return strp;
469 }
470
471 /*
472 ** Given a pointer into a time zone string, extract a number of seconds,
473 ** in hh[:mm[:ss]] form, from the string.
474 ** If any error occurs, return NULL.
475 ** Otherwise, return a pointer to the first character not part of the number
476 ** of seconds.
477 */
478
479 static const char *
480 getsecs(strp, secsp)
481 register const char * strp;
482 long * const secsp;
483 {
484 int num;
485
486 /*
487 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
488 ** "M10.4.6/26", which does not conform to Posix,
489 ** but which specifies the equivalent of
490 ** ``02:00 on the first Sunday on or after 23 Oct''.
491 */
492 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
493 if (strp == NULL)
494 return NULL;
495 *secsp = num * (long) SECSPERHOUR;
496 if (*strp == ':') {
497 ++strp;
498 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
499 if (strp == NULL)
500 return NULL;
501 *secsp += num * SECSPERMIN;
502 if (*strp == ':') {
503 ++strp;
504 /* `SECSPERMIN' allows for leap seconds. */
505 strp = getnum(strp, &num, 0, SECSPERMIN);
506 if (strp == NULL)
507 return NULL;
508 *secsp += num;
509 }
510 }
511 return strp;
512 }
513
514 /*
515 ** Given a pointer into a time zone string, extract an offset, in
516 ** [+-]hh[:mm[:ss]] form, from the string.
517 ** If any error occurs, return NULL.
518 ** Otherwise, return a pointer to the first character not part of the time.
519 */
520
521 static const char *
522 getoffset(strp, offsetp)
523 register const char * strp;
524 long * const offsetp;
525 {
526 register int neg;
527
528 if (*strp == '-') {
529 neg = 1;
530 ++strp;
531 } else if (isdigit(*strp) || *strp++ == '+')
532 neg = 0;
533 else return NULL; /* illegal offset */
534 strp = getsecs(strp, offsetp);
535 if (strp == NULL)
536 return NULL; /* illegal time */
537 if (neg)
538 *offsetp = -*offsetp;
539 return strp;
540 }
541
542 /*
543 ** Given a pointer into a time zone string, extract a rule in the form
544 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
545 ** If a valid rule is not found, return NULL.
546 ** Otherwise, return a pointer to the first character not part of the rule.
547 */
548
549 static const char *
550 getrule(strp, rulep)
551 const char * strp;
552 register struct rule * const rulep;
553 {
554 if (*strp == 'J') {
555 /*
556 ** Julian day.
557 */
558 rulep->r_type = JULIAN_DAY;
559 ++strp;
560 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
561 } else if (*strp == 'M') {
562 /*
563 ** Month, week, day.
564 */
565 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
566 ++strp;
567 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
568 if (strp == NULL)
569 return NULL;
570 if (*strp++ != '.')
571 return NULL;
572 strp = getnum(strp, &rulep->r_week, 1, 5);
573 if (strp == NULL)
574 return NULL;
575 if (*strp++ != '.')
576 return NULL;
577 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
578 } else if (isdigit(*strp)) {
579 /*
580 ** Day of year.
581 */
582 rulep->r_type = DAY_OF_YEAR;
583 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
584 } else return NULL; /* invalid format */
585 if (strp == NULL)
586 return NULL;
587 if (*strp == '/') {
588 /*
589 ** Time specified.
590 */
591 ++strp;
592 strp = getsecs(strp, &rulep->r_time);
593 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
594 return strp;
595 }
596
597 /*
598 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
599 ** year, a rule, and the offset from GMT at the time that rule takes effect,
600 ** calculate the Epoch-relative time that rule takes effect.
601 */
602
603 static time_t
604 transtime(janfirst, year, rulep, offset)
605 const time_t janfirst;
606 const int year;
607 register const struct rule * const rulep;
608 const long offset;
609 {
610 register int leapyear;
611 register time_t value;
612 register int i;
613 int d, m1, yy0, yy1, yy2, dow;
614
615 INITIALIZE(value);
616 leapyear = isleap(year);
617 switch (rulep->r_type) {
618
619 case JULIAN_DAY:
620 /*
621 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
622 ** years.
623 ** In non-leap years, or if the day number is 59 or less, just
624 ** add SECSPERDAY times the day number-1 to the time of
625 ** January 1, midnight, to get the day.
626 */
627 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
628 if (leapyear && rulep->r_day >= 60)
629 value += SECSPERDAY;
630 break;
631
632 case DAY_OF_YEAR:
633 /*
634 ** n - day of year.
635 ** Just add SECSPERDAY times the day number to the time of
636 ** January 1, midnight, to get the day.
637 */
638 value = janfirst + rulep->r_day * SECSPERDAY;
639 break;
640
641 case MONTH_NTH_DAY_OF_WEEK:
642 /*
643 ** Mm.n.d - nth "dth day" of month m.
644 */
645 value = janfirst;
646 for (i = 0; i < rulep->r_mon - 1; ++i)
647 value += mon_lengths[leapyear][i] * SECSPERDAY;
648
649 /*
650 ** Use Zeller's Congruence to get day-of-week of first day of
651 ** month.
652 */
653 m1 = (rulep->r_mon + 9) % 12 + 1;
654 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
655 yy1 = yy0 / 100;
656 yy2 = yy0 % 100;
657 dow = ((26 * m1 - 2) / 10 +
658 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
659 if (dow < 0)
660 dow += DAYSPERWEEK;
661
662 /*
663 ** "dow" is the day-of-week of the first day of the month. Get
664 ** the day-of-month (zero-origin) of the first "dow" day of the
665 ** month.
666 */
667 d = rulep->r_day - dow;
668 if (d < 0)
669 d += DAYSPERWEEK;
670 for (i = 1; i < rulep->r_week; ++i) {
671 if (d + DAYSPERWEEK >=
672 mon_lengths[leapyear][rulep->r_mon - 1])
673 break;
674 d += DAYSPERWEEK;
675 }
676
677 /*
678 ** "d" is the day-of-month (zero-origin) of the day we want.
679 */
680 value += d * SECSPERDAY;
681 break;
682 }
683
684 /*
685 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
686 ** question. To get the Epoch-relative time of the specified local
687 ** time on that day, add the transition time and the current offset
688 ** from GMT.
689 */
690 return value + rulep->r_time + offset;
691 }
692
693 /*
694 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
695 ** appropriate.
696 */
697
698 static int
699 tzparse(name, sp, lastditch)
700 const char * name;
701 register struct state * const sp;
702 const int lastditch;
703 {
704 const char * stdname;
705 const char * dstname;
706 size_t stdlen;
707 size_t dstlen;
708 long stdoffset;
709 long dstoffset;
710 register time_t * atp;
711 register unsigned char * typep;
712 register char * cp;
713 register int load_result;
714
715 INITIALIZE(dstname);
716 stdname = name;
717 if (lastditch) {
718 stdlen = strlen(name); /* length of standard zone name */
719 name += stdlen;
720 if (stdlen >= sizeof sp->chars)
721 stdlen = (sizeof sp->chars) - 1;
722 } else {
723 name = getzname(name);
724 stdlen = name - stdname;
725 if (stdlen < 3)
726 return -1;
727 }
728 if (*name == '\0')
729 return -1; /* was "stdoffset = 0;" */
730 else {
731 name = getoffset(name, &stdoffset);
732 if (name == NULL)
733 return -1;
734 }
735 load_result = tzload(TZDEFRULES, sp);
736 if (load_result != 0)
737 sp->leapcnt = 0; /* so, we're off a little */
738 if (*name != '\0') {
739 dstname = name;
740 name = getzname(name);
741 dstlen = name - dstname; /* length of DST zone name */
742 if (dstlen < 3)
743 return -1;
744 if (*name != '\0' && *name != ',' && *name != ';') {
745 name = getoffset(name, &dstoffset);
746 if (name == NULL)
747 return -1;
748 } else dstoffset = stdoffset - SECSPERHOUR;
749 if (*name == ',' || *name == ';') {
750 struct rule start;
751 struct rule end;
752 register int year;
753 register time_t janfirst;
754 time_t starttime;
755 time_t endtime;
756
757 ++name;
758 if ((name = getrule(name, &start)) == NULL)
759 return -1;
760 if (*name++ != ',')
761 return -1;
762 if ((name = getrule(name, &end)) == NULL)
763 return -1;
764 if (*name != '\0')
765 return -1;
766 sp->typecnt = 2; /* standard time and DST */
767 /*
768 ** Two transitions per year, from EPOCH_YEAR to 2037.
769 */
770 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
771 if (sp->timecnt > TZ_MAX_TIMES)
772 return -1;
773 sp->ttis[0].tt_gmtoff = -dstoffset;
774 sp->ttis[0].tt_isdst = 1;
775 sp->ttis[0].tt_abbrind = stdlen + 1;
776 sp->ttis[1].tt_gmtoff = -stdoffset;
777 sp->ttis[1].tt_isdst = 0;
778 sp->ttis[1].tt_abbrind = 0;
779 atp = sp->ats;
780 typep = sp->types;
781 janfirst = 0;
782 for (year = EPOCH_YEAR; year <= 2037; ++year) {
783 starttime = transtime(janfirst, year, &start,
784 stdoffset);
785 endtime = transtime(janfirst, year, &end,
786 dstoffset);
787 if (starttime > endtime) {
788 *atp++ = endtime;
789 *typep++ = 1; /* DST ends */
790 *atp++ = starttime;
791 *typep++ = 0; /* DST begins */
792 } else {
793 *atp++ = starttime;
794 *typep++ = 0; /* DST begins */
795 *atp++ = endtime;
796 *typep++ = 1; /* DST ends */
797 }
798 janfirst += year_lengths[isleap(year)] *
799 SECSPERDAY;
800 }
801 } else {
802 register long theirstdoffset;
803 register long theirdstoffset;
804 register long theiroffset;
805 register int isdst;
806 register int i;
807 register int j;
808
809 if (*name != '\0')
810 return -1;
811 if (load_result != 0)
812 return -1;
813 /*
814 ** Initial values of theirstdoffset and theirdstoffset.
815 */
816 theirstdoffset = 0;
817 for (i = 0; i < sp->timecnt; ++i) {
818 j = sp->types[i];
819 if (!sp->ttis[j].tt_isdst) {
820 theirstdoffset = -sp->ttis[j].tt_gmtoff;
821 break;
822 }
823 }
824 theirdstoffset = 0;
825 for (i = 0; i < sp->timecnt; ++i) {
826 j = sp->types[i];
827 if (sp->ttis[j].tt_isdst) {
828 theirdstoffset = -sp->ttis[j].tt_gmtoff;
829 break;
830 }
831 }
832 /*
833 ** Initially we're assumed to be in standard time.
834 */
835 isdst = FALSE;
836 theiroffset = theirstdoffset;
837 /*
838 ** Now juggle transition times and types
839 ** tracking offsets as you do.
840 */
841 for (i = 0; i < sp->timecnt; ++i) {
842 j = sp->types[i];
843 sp->types[i] = sp->ttis[j].tt_isdst;
844 if (sp->ttis[j].tt_ttisgmt) {
845 /* No adjustment to transition time */
846 } else {
847 /*
848 ** If summer time is in effect, and the
849 ** transition time was not specified as
850 ** standard time, add the summer time
851 ** offset to the transition time;
852 ** otherwise, add the standard time
853 ** offset to the transition time.
854 */
855 /*
856 ** Transitions from DST to DDST
857 ** will effectively disappear since
858 ** POSIX provides for only one DST
859 ** offset.
860 */
861 if (isdst && !sp->ttis[j].tt_ttisstd) {
862 sp->ats[i] += dstoffset -
863 theirdstoffset;
864 } else {
865 sp->ats[i] += stdoffset -
866 theirstdoffset;
867 }
868 }
869 theiroffset = -sp->ttis[j].tt_gmtoff;
870 if (sp->ttis[j].tt_isdst)
871 theirdstoffset = theiroffset;
872 else theirstdoffset = theiroffset;
873 }
874 /*
875 ** Finally, fill in ttis.
876 ** ttisstd and ttisgmt need not be handled.
877 */
878 sp->ttis[0].tt_gmtoff = -stdoffset;
879 sp->ttis[0].tt_isdst = FALSE;
880 sp->ttis[0].tt_abbrind = 0;
881 sp->ttis[1].tt_gmtoff = -dstoffset;
882 sp->ttis[1].tt_isdst = TRUE;
883 sp->ttis[1].tt_abbrind = stdlen + 1;
884 }
885 } else {
886 dstlen = 0;
887 sp->typecnt = 1; /* only standard time */
888 sp->timecnt = 0;
889 sp->ttis[0].tt_gmtoff = -stdoffset;
890 sp->ttis[0].tt_isdst = 0;
891 sp->ttis[0].tt_abbrind = 0;
892 }
893 sp->charcnt = stdlen + 1;
894 if (dstlen != 0)
895 sp->charcnt += dstlen + 1;
896 if (sp->charcnt > sizeof sp->chars)
897 return -1;
898 cp = sp->chars;
899 (void) strncpy(cp, stdname, stdlen);
900 cp += stdlen;
901 *cp++ = '\0';
902 if (dstlen != 0) {
903 (void) strncpy(cp, dstname, dstlen);
904 *(cp + dstlen) = '\0';
905 }
906 return 0;
907 }
908
909 static void
910 gmtload(sp)
911 struct state * const sp;
912 {
913 if (tzload(gmt, sp) != 0)
914 (void) tzparse(gmt, sp, TRUE);
915 }
916
917 #ifndef STD_INSPIRED
918 /*
919 ** A non-static declaration of tzsetwall in a system header file
920 ** may cause a warning about this upcoming static declaration...
921 */
922 static
923 #endif /* !defined STD_INSPIRED */
924 void
925 tzsetwall P((void))
926 {
927 if (lcl_is_set < 0)
928 return;
929 lcl_is_set = -1;
930
931 #ifdef ALL_STATE
932 if (lclptr == NULL) {
933 lclptr = (struct state *) malloc(sizeof *lclptr);
934 if (lclptr == NULL) {
935 settzname(); /* all we can do */
936 return;
937 }
938 }
939 #endif /* defined ALL_STATE */
940 if (tzload((char *) NULL, lclptr) != 0)
941 gmtload(lclptr);
942 settzname();
943 }
944
945 void
946 tzset P((void))
947 {
948 register const char * name;
949
950 name = getenv("TZ");
951 if (name == NULL) {
952 tzsetwall();
953 return;
954 }
955
956 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
957 return;
958 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
959 if (lcl_is_set)
960 (void) strcpy(lcl_TZname, name);
961
962 #ifdef ALL_STATE
963 if (lclptr == NULL) {
964 lclptr = (struct state *) malloc(sizeof *lclptr);
965 if (lclptr == NULL) {
966 settzname(); /* all we can do */
967 return;
968 }
969 }
970 #endif /* defined ALL_STATE */
971 if (*name == '\0') {
972 /*
973 ** User wants it fast rather than right.
974 */
975 lclptr->leapcnt = 0; /* so, we're off a little */
976 lclptr->timecnt = 0;
977 lclptr->ttis[0].tt_gmtoff = 0;
978 lclptr->ttis[0].tt_abbrind = 0;
979 (void) strcpy(lclptr->chars, gmt);
980 } else if (tzload(name, lclptr) != 0)
981 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
982 (void) gmtload(lclptr);
983 settzname();
984 }
985
986 /*
987 ** The easy way to behave "as if no library function calls" localtime
988 ** is to not call it--so we drop its guts into "localsub", which can be
989 ** freely called. (And no, the PANS doesn't require the above behavior--
990 ** but it *is* desirable.)
991 **
992 ** The unused offset argument is for the benefit of mktime variants.
993 */
994
995 /*ARGSUSED*/
996 static void
997 localsub(timep, offset, tmp)
998 const time_t * const timep;
999 const long offset;
1000 struct tm * const tmp;
1001 {
1002 register struct state * sp;
1003 register const struct ttinfo * ttisp;
1004 register int i;
1005 const time_t t = *timep;
1006
1007 sp = lclptr;
1008 #ifdef ALL_STATE
1009 if (sp == NULL) {
1010 gmtsub(timep, offset, tmp);
1011 return;
1012 }
1013 #endif /* defined ALL_STATE */
1014 if (sp->timecnt == 0 || t < sp->ats[0]) {
1015 i = 0;
1016 while (sp->ttis[i].tt_isdst)
1017 if (++i >= sp->typecnt) {
1018 i = 0;
1019 break;
1020 }
1021 } else {
1022 for (i = 1; i < sp->timecnt; ++i)
1023 if (t < sp->ats[i])
1024 break;
1025 i = sp->types[i - 1];
1026 }
1027 ttisp = &sp->ttis[i];
1028 /*
1029 ** To get (wrong) behavior that's compatible with System V Release 2.0
1030 ** you'd replace the statement below with
1031 ** t += ttisp->tt_gmtoff;
1032 ** timesub(&t, 0L, sp, tmp);
1033 */
1034 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1035 tmp->tm_isdst = ttisp->tt_isdst;
1036 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1037 #ifdef TM_ZONE
1038 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1039 #endif /* defined TM_ZONE */
1040 }
1041
1042 struct tm *
1043 localtime(timep)
1044 const time_t * const timep;
1045 {
1046 tzset();
1047 localsub(timep, 0L, &tm);
1048 return &tm;
1049 }
1050
1051 /*
1052 ** gmtsub is to gmtime as localsub is to localtime.
1053 */
1054
1055 static void
1056 gmtsub(timep, offset, tmp)
1057 const time_t * const timep;
1058 const long offset;
1059 struct tm * const tmp;
1060 {
1061 if (!gmt_is_set) {
1062 gmt_is_set = TRUE;
1063 #ifdef ALL_STATE
1064 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1065 if (gmtptr != NULL)
1066 #endif /* defined ALL_STATE */
1067 gmtload(gmtptr);
1068 }
1069 timesub(timep, offset, gmtptr, tmp);
1070 #ifdef TM_ZONE
1071 /*
1072 ** Could get fancy here and deliver something such as
1073 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1074 ** but this is no time for a treasure hunt.
1075 */
1076 if (offset != 0)
1077 tmp->TM_ZONE = wildabbr;
1078 else {
1079 #ifdef ALL_STATE
1080 if (gmtptr == NULL)
1081 tmp->TM_ZONE = gmt;
1082 else tmp->TM_ZONE = gmtptr->chars;
1083 #endif /* defined ALL_STATE */
1084 #ifndef ALL_STATE
1085 tmp->TM_ZONE = gmtptr->chars;
1086 #endif /* State Farm */
1087 }
1088 #endif /* defined TM_ZONE */
1089 }
1090
1091 struct tm *
1092 gmtime(timep)
1093 const time_t * const timep;
1094 {
1095 gmtsub(timep, 0L, &tm);
1096 return &tm;
1097 }
1098
1099 #ifdef STD_INSPIRED
1100
1101 struct tm *
1102 offtime(timep, offset)
1103 const time_t * const timep;
1104 const long offset;
1105 {
1106 gmtsub(timep, offset, &tm);
1107 return &tm;
1108 }
1109
1110 #endif /* defined STD_INSPIRED */
1111
1112 static void
1113 timesub(timep, offset, sp, tmp)
1114 const time_t * const timep;
1115 const long offset;
1116 register const struct state * const sp;
1117 register struct tm * const tmp;
1118 {
1119 register const struct lsinfo * lp;
1120 register long days;
1121 register long rem;
1122 register int y;
1123 register int yleap;
1124 register const int * ip;
1125 register long corr;
1126 register int hit;
1127 register int i;
1128
1129 corr = 0;
1130 hit = 0;
1131 #ifdef ALL_STATE
1132 i = (sp == NULL) ? 0 : sp->leapcnt;
1133 #endif /* defined ALL_STATE */
1134 #ifndef ALL_STATE
1135 i = sp->leapcnt;
1136 #endif /* State Farm */
1137 while (--i >= 0) {
1138 lp = &sp->lsis[i];
1139 if (*timep >= lp->ls_trans) {
1140 if (*timep == lp->ls_trans) {
1141 hit = ((i == 0 && lp->ls_corr > 0) ||
1142 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1143 if (hit)
1144 while (i > 0 &&
1145 sp->lsis[i].ls_trans ==
1146 sp->lsis[i - 1].ls_trans + 1 &&
1147 sp->lsis[i].ls_corr ==
1148 sp->lsis[i - 1].ls_corr + 1) {
1149 ++hit;
1150 --i;
1151 }
1152 }
1153 corr = lp->ls_corr;
1154 break;
1155 }
1156 }
1157 days = *timep / SECSPERDAY;
1158 rem = *timep % SECSPERDAY;
1159 #ifdef mc68k
1160 if (*timep == 0x80000000) {
1161 /*
1162 ** A 3B1 muffs the division on the most negative number.
1163 */
1164 days = -24855;
1165 rem = -11648;
1166 }
1167 #endif /* defined mc68k */
1168 rem += (offset - corr);
1169 while (rem < 0) {
1170 rem += SECSPERDAY;
1171 --days;
1172 }
1173 while (rem >= SECSPERDAY) {
1174 rem -= SECSPERDAY;
1175 ++days;
1176 }
1177 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1178 rem = rem % SECSPERHOUR;
1179 tmp->tm_min = (int) (rem / SECSPERMIN);
1180 tmp->tm_sec = (int) (rem % SECSPERMIN);
1181 if (hit)
1182 /*
1183 ** A positive leap second requires a special
1184 ** representation. This uses "... ??:59:60" et seq.
1185 */
1186 tmp->tm_sec += hit;
1187 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1188 if (tmp->tm_wday < 0)
1189 tmp->tm_wday += DAYSPERWEEK;
1190 y = EPOCH_YEAR;
1191 if (days >= 0)
1192 for ( ; ; ) {
1193 yleap = isleap(y);
1194 if (days < (long) year_lengths[yleap])
1195 break;
1196 ++y;
1197 days = days - (long) year_lengths[yleap];
1198 }
1199 else do {
1200 --y;
1201 yleap = isleap(y);
1202 days = days + (long) year_lengths[yleap];
1203 } while (days < 0);
1204 tmp->tm_year = y - TM_YEAR_BASE;
1205 tmp->tm_yday = (int) days;
1206 ip = mon_lengths[yleap];
1207 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1208 days = days - (long) ip[tmp->tm_mon];
1209 tmp->tm_mday = (int) (days + 1);
1210 tmp->tm_isdst = 0;
1211 #ifdef TM_GMTOFF
1212 tmp->TM_GMTOFF = offset;
1213 #endif /* defined TM_GMTOFF */
1214 }
1215
1216 char *
1217 ctime(timep)
1218 const time_t * const timep;
1219 {
1220 /*
1221 ** Section 4.12.3.2 of X3.159-1989 requires that
1222 ** The ctime funciton converts the calendar time pointed to by timer
1223 ** to local time in the form of a string. It is equivalent to
1224 ** asctime(localtime(timer))
1225 */
1226 return asctime(localtime(timep));
1227 }
1228
1229 /*
1230 ** Adapted from code provided by Robert Elz, who writes:
1231 ** The "best" way to do mktime I think is based on an idea of Bob
1232 ** Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
1233 ** It does a binary search of the time_t space. Since time_t's are
1234 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1235 ** would still be very reasonable).
1236 */
1237
1238 #ifndef WRONG
1239 #define WRONG (-1)
1240 #endif /* !defined WRONG */
1241
1242 /*
1243 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1244 */
1245
1246 static int
1247 increment_overflow(number, delta)
1248 int * number;
1249 int delta;
1250 {
1251 int number0;
1252
1253 number0 = *number;
1254 *number += delta;
1255 return (*number < number0) != (delta < 0);
1256 }
1257
1258 static int
1259 normalize_overflow(tensptr, unitsptr, base)
1260 int * const tensptr;
1261 int * const unitsptr;
1262 const int base;
1263 {
1264 register int tensdelta;
1265
1266 tensdelta = (*unitsptr >= 0) ?
1267 (*unitsptr / base) :
1268 (-1 - (-1 - *unitsptr) / base);
1269 *unitsptr -= tensdelta * base;
1270 return increment_overflow(tensptr, tensdelta);
1271 }
1272
1273 static int
1274 tmcomp(atmp, btmp)
1275 register const struct tm * const atmp;
1276 register const struct tm * const btmp;
1277 {
1278 register int result;
1279
1280 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1281 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1282 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1283 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1284 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1285 result = atmp->tm_sec - btmp->tm_sec;
1286 return result;
1287 }
1288
1289 static time_t
1290 time2(tmp, funcp, offset, okayp)
1291 struct tm * const tmp;
1292 void (* const funcp) P((const time_t*, long, struct tm*));
1293 const long offset;
1294 int * const okayp;
1295 {
1296 register const struct state * sp;
1297 register int dir;
1298 register int bits;
1299 register int i, j ;
1300 register int saved_seconds;
1301 time_t newt;
1302 time_t t;
1303 struct tm yourtm, mytm;
1304
1305 *okayp = FALSE;
1306 yourtm = *tmp;
1307 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1308 return WRONG;
1309 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1310 return WRONG;
1311 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1312 return WRONG;
1313 /*
1314 ** Turn yourtm.tm_year into an actual year number for now.
1315 ** It is converted back to an offset from TM_YEAR_BASE later.
1316 */
1317 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1318 return WRONG;
1319 while (yourtm.tm_mday <= 0) {
1320 if (increment_overflow(&yourtm.tm_year, -1))
1321 return WRONG;
1322 yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
1323 }
1324 while (yourtm.tm_mday > DAYSPERLYEAR) {
1325 yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
1326 if (increment_overflow(&yourtm.tm_year, 1))
1327 return WRONG;
1328 }
1329 for ( ; ; ) {
1330 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1331 if (yourtm.tm_mday <= i)
1332 break;
1333 yourtm.tm_mday -= i;
1334 if (++yourtm.tm_mon >= MONSPERYEAR) {
1335 yourtm.tm_mon = 0;
1336 if (increment_overflow(&yourtm.tm_year, 1))
1337 return WRONG;
1338 }
1339 }
1340 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1341 return WRONG;
1342 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1343 /*
1344 ** We can't set tm_sec to 0, because that might push the
1345 ** time below the minimum representable time.
1346 ** Set tm_sec to 59 instead.
1347 ** This assumes that the minimum representable time is
1348 ** not in the same minute that a leap second was deleted from,
1349 ** which is a safer assumption than using 58 would be.
1350 */
1351 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1352 return WRONG;
1353 saved_seconds = yourtm.tm_sec;
1354 yourtm.tm_sec = SECSPERMIN - 1;
1355 } else {
1356 saved_seconds = yourtm.tm_sec;
1357 yourtm.tm_sec = 0;
1358 }
1359 /*
1360 ** Calculate the number of magnitude bits in a time_t
1361 ** (this works regardless of whether time_t is
1362 ** signed or unsigned, though lint complains if unsigned).
1363 */
1364 for (bits = 0, t = 1; t > 0; ++bits, t <<= 1)
1365 continue;
1366 /*
1367 ** If time_t is signed, then 0 is the median value,
1368 ** if time_t is unsigned, then 1 << bits is median.
1369 */
1370 t = (t < 0) ? 0 : ((time_t) 1 << bits);
1371 for ( ; ; ) {
1372 (*funcp)(&t, offset, &mytm);
1373 dir = tmcomp(&mytm, &yourtm);
1374 if (dir != 0) {
1375 if (bits-- < 0)
1376 return WRONG;
1377 if (bits < 0)
1378 --t;
1379 else if (dir > 0)
1380 t -= (time_t) 1 << bits;
1381 else t += (time_t) 1 << bits;
1382 continue;
1383 }
1384 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1385 break;
1386 /*
1387 ** Right time, wrong type.
1388 ** Hunt for right time, right type.
1389 ** It's okay to guess wrong since the guess
1390 ** gets checked.
1391 */
1392 /*
1393 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1394 */
1395 sp = (const struct state *)
1396 (((void *) funcp == (void *) localsub) ?
1397 lclptr : gmtptr);
1398 #ifdef ALL_STATE
1399 if (sp == NULL)
1400 return WRONG;
1401 #endif /* defined ALL_STATE */
1402 for (i = 0; i < sp->typecnt; ++i) {
1403 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1404 continue;
1405 for (j = 0; j < sp->typecnt; ++j) {
1406 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1407 continue;
1408 newt = t + sp->ttis[j].tt_gmtoff -
1409 sp->ttis[i].tt_gmtoff;
1410 (*funcp)(&newt, offset, &mytm);
1411 if (tmcomp(&mytm, &yourtm) != 0)
1412 continue;
1413 if (mytm.tm_isdst != yourtm.tm_isdst)
1414 continue;
1415 /*
1416 ** We have a match.
1417 */
1418 t = newt;
1419 goto label;
1420 }
1421 }
1422 return WRONG;
1423 }
1424 label:
1425 newt = t + saved_seconds;
1426 if ((newt < t) != (saved_seconds < 0))
1427 return WRONG;
1428 t = newt;
1429 (*funcp)(&t, offset, tmp);
1430 *okayp = TRUE;
1431 return t;
1432 }
1433
1434 static time_t
1435 time1(tmp, funcp, offset)
1436 struct tm * const tmp;
1437 void (* const funcp) P((const time_t*, long, struct tm*));
1438 const long offset;
1439 {
1440 register time_t t;
1441 register const struct state * sp;
1442 register int samei, otheri;
1443 int okay;
1444
1445 if (tmp->tm_isdst > 1)
1446 tmp->tm_isdst = 1;
1447 t = time2(tmp, funcp, offset, &okay);
1448 #ifdef PCTS
1449 /*
1450 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1451 */
1452 if (okay)
1453 return t;
1454 if (tmp->tm_isdst < 0)
1455 tmp->tm_isdst = 0; /* reset to std and try again */
1456 #endif /* defined PCTS */
1457 #ifndef PCTS
1458 if (okay || tmp->tm_isdst < 0)
1459 return t;
1460 #endif /* !defined PCTS */
1461 /*
1462 ** We're supposed to assume that somebody took a time of one type
1463 ** and did some math on it that yielded a "struct tm" that's bad.
1464 ** We try to divine the type they started from and adjust to the
1465 ** type they need.
1466 */
1467 /*
1468 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1469 */
1470 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1471 lclptr : gmtptr);
1472 #ifdef ALL_STATE
1473 if (sp == NULL)
1474 return WRONG;
1475 #endif /* defined ALL_STATE */
1476 for (samei = 0; samei < sp->typecnt; ++samei) {
1477 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1478 continue;
1479 for (otheri = 0; otheri < sp->typecnt; ++otheri) {
1480 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1481 continue;
1482 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1483 sp->ttis[samei].tt_gmtoff;
1484 tmp->tm_isdst = !tmp->tm_isdst;
1485 t = time2(tmp, funcp, offset, &okay);
1486 if (okay)
1487 return t;
1488 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1489 sp->ttis[samei].tt_gmtoff;
1490 tmp->tm_isdst = !tmp->tm_isdst;
1491 }
1492 }
1493 return WRONG;
1494 }
1495
1496 time_t
1497 mktime(tmp)
1498 struct tm * const tmp;
1499 {
1500 tzset();
1501 return time1(tmp, localsub, 0L);
1502 }
1503
1504 #ifdef STD_INSPIRED
1505
1506 time_t
1507 timelocal(tmp)
1508 struct tm * const tmp;
1509 {
1510 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1511 return mktime(tmp);
1512 }
1513
1514 time_t
1515 timegm(tmp)
1516 struct tm * const tmp;
1517 {
1518 tmp->tm_isdst = 0;
1519 return time1(tmp, gmtsub, 0L);
1520 }
1521
1522 time_t
1523 timeoff(tmp, offset)
1524 struct tm * const tmp;
1525 const long offset;
1526 {
1527 tmp->tm_isdst = 0;
1528 return time1(tmp, gmtsub, offset);
1529 }
1530
1531 #endif /* defined STD_INSPIRED */
1532
1533 #ifdef CMUCS
1534
1535 /*
1536 ** The following is supplied for compatibility with
1537 ** previous versions of the CMUCS runtime library.
1538 */
1539
1540 long
1541 gtime(tmp)
1542 struct tm * const tmp;
1543 {
1544 const time_t t = mktime(tmp);
1545
1546 if (t == WRONG)
1547 return -1;
1548 return t;
1549 }
1550
1551 #endif /* defined CMUCS */
1552
1553 /*
1554 ** XXX--is the below the right way to conditionalize??
1555 */
1556
1557 #ifdef STD_INSPIRED
1558
1559 /*
1560 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1561 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1562 ** is not the case if we are accounting for leap seconds.
1563 ** So, we provide the following conversion routines for use
1564 ** when exchanging timestamps with POSIX conforming systems.
1565 */
1566
1567 static long
1568 leapcorr(timep)
1569 time_t * timep;
1570 {
1571 register struct state * sp;
1572 register struct lsinfo * lp;
1573 register int i;
1574
1575 sp = lclptr;
1576 i = sp->leapcnt;
1577 while (--i >= 0) {
1578 lp = &sp->lsis[i];
1579 if (*timep >= lp->ls_trans)
1580 return lp->ls_corr;
1581 }
1582 return 0;
1583 }
1584
1585 time_t
1586 time2posix(t)
1587 time_t t;
1588 {
1589 tzset();
1590 return t - leapcorr(&t);
1591 }
1592
1593 time_t
1594 posix2time(t)
1595 time_t t;
1596 {
1597 time_t x;
1598 time_t y;
1599
1600 tzset();
1601 /*
1602 ** For a positive leap second hit, the result
1603 ** is not unique. For a negative leap second
1604 ** hit, the corresponding time doesn't exist,
1605 ** so we return an adjacent second.
1606 */
1607 x = t + leapcorr(&t);
1608 y = x - leapcorr(&x);
1609 if (y < t) {
1610 do {
1611 x++;
1612 y = x - leapcorr(&x);
1613 } while (y < t);
1614 if (t != y)
1615 return x - 1;
1616 } else if (y > t) {
1617 do {
1618 --x;
1619 y = x - leapcorr(&x);
1620 } while (y > t);
1621 if (t != y)
1622 return x + 1;
1623 }
1624 return x;
1625 }
1626
1627 #endif /* defined STD_INSPIRED */
1628