localtime.c revision 1.42 1 /* $NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 7.78";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 ** POSIX-style TZ environment variable handling from Guy Harris
20 ** (guy (at) auspex.com).
21 */
22
23 /*LINTLIBRARY*/
24
25 #include "namespace.h"
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #if defined(__weak_alias)
32 __weak_alias(daylight,_daylight)
33 __weak_alias(tzname,_tzname)
34 __weak_alias(tzset,_tzset)
35 __weak_alias(tzsetwall,_tzsetwall)
36 #endif
37
38 /*
39 ** SunOS 4.1.1 headers lack O_BINARY.
40 */
41
42 #ifdef O_BINARY
43 #define OPEN_MODE (O_RDONLY | O_BINARY)
44 #endif /* defined O_BINARY */
45 #ifndef O_BINARY
46 #define OPEN_MODE O_RDONLY
47 #endif /* !defined O_BINARY */
48
49 #ifndef WILDABBR
50 /*
51 ** Someone might make incorrect use of a time zone abbreviation:
52 ** 1. They might reference tzname[0] before calling tzset (explicitly
53 ** or implicitly).
54 ** 2. They might reference tzname[1] before calling tzset (explicitly
55 ** or implicitly).
56 ** 3. They might reference tzname[1] after setting to a time zone
57 ** in which Daylight Saving Time is never observed.
58 ** 4. They might reference tzname[0] after setting to a time zone
59 ** in which Standard Time is never observed.
60 ** 5. They might reference tm.TM_ZONE after calling offtime.
61 ** What's best to do in the above cases is open to debate;
62 ** for now, we just set things up so that in any of the five cases
63 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
64 ** string "tzname[0] used before set", and similarly for the other cases.
65 ** And another: initialize tzname[0] to "ERA", with an explanation in the
66 ** manual page of what this "time zone abbreviation" means (doing this so
67 ** that tzname[0] has the "normal" length of three characters).
68 */
69 #define WILDABBR " "
70 #endif /* !defined WILDABBR */
71
72 static const char wildabbr[] = "WILDABBR";
73
74 static const char gmt[] = "GMT";
75
76 /*
77 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
78 ** We default to US rules as of 1999-08-17.
79 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
80 ** implementation dependent; for historical reasons, US rules are a
81 ** common default.
82 */
83 #ifndef TZDEFRULESTRING
84 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
85 #endif /* !defined TZDEFDST */
86
87 struct ttinfo { /* time type information */
88 long tt_gmtoff; /* UTC offset in seconds */
89 int tt_isdst; /* used to set tm_isdst */
90 int tt_abbrind; /* abbreviation list index */
91 int tt_ttisstd; /* TRUE if transition is std time */
92 int tt_ttisgmt; /* TRUE if transition is UTC */
93 };
94
95 struct lsinfo { /* leap second information */
96 time_t ls_trans; /* transition time */
97 long ls_corr; /* correction to apply */
98 };
99
100 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
101
102 #ifdef TZNAME_MAX
103 #define MY_TZNAME_MAX TZNAME_MAX
104 #endif /* defined TZNAME_MAX */
105 #ifndef TZNAME_MAX
106 #define MY_TZNAME_MAX 255
107 #endif /* !defined TZNAME_MAX */
108
109 struct state {
110 int leapcnt;
111 int timecnt;
112 int typecnt;
113 int charcnt;
114 time_t ats[TZ_MAX_TIMES]; /* time_t */
115 unsigned char types[TZ_MAX_TIMES];
116 struct ttinfo ttis[TZ_MAX_TYPES];
117 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
118 (2 * (MY_TZNAME_MAX + 1)))];
119 struct lsinfo lsis[TZ_MAX_LEAPS];
120 };
121
122 struct rule {
123 int r_type; /* type of rule--see below */
124 int r_day; /* day number of rule */
125 int r_week; /* week number of rule */
126 int r_mon; /* month number of rule */
127 long r_time; /* transition time of rule */
128 };
129
130 #define JULIAN_DAY 0 /* Jn - Julian day */
131 #define DAY_OF_YEAR 1 /* n - day of year */
132 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
133
134 /*
135 ** Prototypes for static functions.
136 */
137
138 static long detzcode P((const char * codep));
139 static const char * __getzname P((const char * strp));
140 static const char * getnum P((const char * strp, int * nump, int min,
141 int max));
142 static const char * getsecs P((const char * strp, long * secsp));
143 static const char * __getoffset P((const char * strp, long * offsetp));
144 static const char * __getrule P((const char * strp, struct rule * rulep));
145 static void __gmtload P((struct state * sp));
146 static void gmtsub P((const time_t * timep, long offset,
147 struct tm * tmp));
148 static void localsub P((const time_t * timep, long offset,
149 struct tm * tmp));
150 static int increment_overflow P((int * number, int delta));
151 static int normalize_overflow P((int * tensptr, int * unitsptr,
152 int base));
153 static void __settzname P((void));
154 static time_t time1 P((struct tm * tmp,
155 void(*funcp) P((const time_t *,
156 long, struct tm *)),
157 long offset));
158 static time_t time2 P((struct tm *tmp,
159 void(*funcp) P((const time_t *,
160 long, struct tm*)),
161 long offset, int * okayp));
162 static time_t time2sub P((struct tm *tmp,
163 void(*funcp) P((const time_t *,
164 long, struct tm*)),
165 long offset, int * okayp, int do_norm_secs));
166 static void timesub P((const time_t * timep, long offset,
167 const struct state * sp, struct tm * tmp));
168 static int tmcomp P((const struct tm * atmp,
169 const struct tm * btmp));
170 static time_t __transtime P((time_t janfirst, int year,
171 const struct rule * rulep, long offset));
172 static int __tzload P((const char * name, struct state * sp));
173 static int __tzparse P((const char * name, struct state * sp,
174 int lastditch));
175 static void __tzset_unlocked P((void));
176 static void __tzsetwall_unlocked P((void));
177 #ifdef STD_INSPIRED
178 static long leapcorr P((time_t * timep));
179 #endif
180
181 #ifdef ALL_STATE
182 static struct state * lclptr;
183 static struct state * gmtptr;
184 #endif /* defined ALL_STATE */
185
186 #ifndef ALL_STATE
187 static struct state lclmem;
188 static struct state gmtmem;
189 #define lclptr (&lclmem)
190 #define gmtptr (&gmtmem)
191 #endif /* State Farm */
192
193 #ifndef TZ_STRLEN_MAX
194 #define TZ_STRLEN_MAX 255
195 #endif /* !defined TZ_STRLEN_MAX */
196
197
198 static char __lcl_TZname[TZ_STRLEN_MAX + 1];
199 static int __lcl_is_set;
200 static int __gmt_is_set;
201
202 #if !defined(__LIBC12_SOURCE__)
203
204 __aconst char * tzname[2] = {
205 (__aconst char *)__UNCONST(wildabbr),
206 (__aconst char *)__UNCONST(wildabbr)
207 };
208
209 #else
210
211 extern __aconst char * tzname[2];
212
213 #endif
214
215 #ifdef _REENTRANT
216 static rwlock_t __lcl_lock = RWLOCK_INITIALIZER;
217 #endif
218
219 /*
220 ** Section 4.12.3 of X3.159-1989 requires that
221 ** Except for the strftime function, these functions [asctime,
222 ** ctime, gmtime, localtime] return values in one of two static
223 ** objects: a broken-down time structure and an array of char.
224 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
225 */
226
227 static struct tm tm;
228
229 #ifdef USG_COMPAT
230 #if !defined(__LIBC12_SOURCE__)
231 long timezone = 0;
232 int daylight = 0;
233 #else
234 extern int daylight;
235 extern long timezone __RENAME(__timezone13);
236 #endif
237 #endif /* defined USG_COMPAT */
238
239 #ifdef ALTZONE
240 time_t altzone = 0;
241 #endif /* defined ALTZONE */
242
243 static long
244 detzcode(codep)
245 const char * const codep;
246 {
247 register long result;
248
249 /*
250 ** The first character must be sign extended on systems with >32bit
251 ** longs. This was solved differently in the master tzcode sources
252 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
253 ** that this implementation is superior.
254 */
255
256 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
257
258 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
259 | (codep[1] & 0xff) << 16 \
260 | (codep[2] & 0xff) << 8
261 | (codep[3] & 0xff);
262 return result;
263 }
264
265 void
266 __settzname P((void))
267 {
268 register struct state * const sp = lclptr;
269 register int i;
270
271 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
272 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
273 #ifdef USG_COMPAT
274 daylight = 0;
275 timezone = 0;
276 #endif /* defined USG_COMPAT */
277 #ifdef ALTZONE
278 altzone = 0;
279 #endif /* defined ALTZONE */
280 #ifdef ALL_STATE
281 if (sp == NULL) {
282 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
283 return;
284 }
285 #endif /* defined ALL_STATE */
286 for (i = 0; i < sp->typecnt; ++i) {
287 register const struct ttinfo * const ttisp = &sp->ttis[i];
288
289 tzname[ttisp->tt_isdst] =
290 &sp->chars[ttisp->tt_abbrind];
291 }
292 /*
293 ** And to get the latest zone names into tzname. . .
294 */
295 for (i = 0; i < sp->timecnt; ++i) {
296 register const struct ttinfo * const ttisp =
297 &sp->ttis[
298 sp->types[i]];
299
300 tzname[ttisp->tt_isdst] =
301 &sp->chars[ttisp->tt_abbrind];
302 #ifdef USG_COMPAT
303 if (ttisp->tt_isdst)
304 daylight = 1;
305 if (i == 0 || !ttisp->tt_isdst)
306 timezone = -(ttisp->tt_gmtoff);
307 #endif /* defined USG_COMPAT */
308 #ifdef ALTZONE
309 if (i == 0 || ttisp->tt_isdst)
310 altzone = -(ttisp->tt_gmtoff);
311 #endif /* defined ALTZONE */
312 }
313 }
314
315 int
316 __tzload(name, sp)
317 register const char * name;
318 register struct state * const sp;
319 {
320 register const char * p;
321 register int i;
322 register int fid;
323
324 if (name == NULL && (name = TZDEFAULT) == NULL)
325 return -1;
326
327 {
328 register int doaccess;
329 /*
330 ** Section 4.9.1 of the C standard says that
331 ** "FILENAME_MAX expands to an integral constant expression
332 ** that is the size needed for an array of char large enough
333 ** to hold the longest file name string that the implementation
334 ** guarantees can be opened."
335 */
336 char fullname[FILENAME_MAX + 1];
337
338 if (name[0] == ':')
339 ++name;
340 doaccess = name[0] == '/';
341 if (!doaccess) {
342 if ((p = TZDIR) == NULL)
343 return -1;
344 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
345 return -1;
346 (void) strcpy(fullname, p); /* XXX strcpy is safe */
347 (void) strcat(fullname, "/"); /* XXX strcat is safe */
348 (void) strcat(fullname, name); /* XXX strcat is safe */
349 /*
350 ** Set doaccess if '.' (as in "../") shows up in name.
351 */
352 if (strchr(name, '.') != NULL)
353 doaccess = TRUE;
354 name = fullname;
355 }
356 if (doaccess && access(name, R_OK) != 0)
357 return -1;
358 /*
359 * XXX potential security problem here if user of a set-id
360 * program has set TZ (which is passed in as name) here,
361 * and uses a race condition trick to defeat the access(2)
362 * above.
363 */
364 if ((fid = open(name, OPEN_MODE)) == -1)
365 return -1;
366 }
367 {
368 struct tzhead * tzhp;
369 union {
370 struct tzhead tzhead;
371 char buf[sizeof *sp + sizeof *tzhp];
372 } u;
373 int ttisstdcnt;
374 int ttisgmtcnt;
375
376 i = read(fid, u.buf, sizeof u.buf);
377 if (close(fid) != 0)
378 return -1;
379 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
380 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
381 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
382 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
383 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
384 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
385 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
386 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
387 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
388 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
389 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
390 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
391 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
392 return -1;
393 if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
394 sp->timecnt + /* types */
395 sp->typecnt * (4 + 2) + /* ttinfos */
396 sp->charcnt + /* chars */
397 sp->leapcnt * (4 + 4) + /* lsinfos */
398 ttisstdcnt + /* ttisstds */
399 ttisgmtcnt) /* ttisgmts */
400 return -1;
401 for (i = 0; i < sp->timecnt; ++i) {
402 sp->ats[i] = detzcode(p);
403 p += 4;
404 }
405 for (i = 0; i < sp->timecnt; ++i) {
406 sp->types[i] = (unsigned char) *p++;
407 if (sp->types[i] >= sp->typecnt)
408 return -1;
409 }
410 for (i = 0; i < sp->typecnt; ++i) {
411 register struct ttinfo * ttisp;
412
413 ttisp = &sp->ttis[i];
414 ttisp->tt_gmtoff = detzcode(p);
415 p += 4;
416 ttisp->tt_isdst = (unsigned char) *p++;
417 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
418 return -1;
419 ttisp->tt_abbrind = (unsigned char) *p++;
420 if (ttisp->tt_abbrind < 0 ||
421 ttisp->tt_abbrind > sp->charcnt)
422 return -1;
423 }
424 for (i = 0; i < sp->charcnt; ++i)
425 sp->chars[i] = *p++;
426 sp->chars[i] = '\0'; /* ensure '\0' at end */
427 for (i = 0; i < sp->leapcnt; ++i) {
428 register struct lsinfo * lsisp;
429
430 lsisp = &sp->lsis[i];
431 lsisp->ls_trans = detzcode(p);
432 p += 4;
433 lsisp->ls_corr = detzcode(p);
434 p += 4;
435 }
436 for (i = 0; i < sp->typecnt; ++i) {
437 register struct ttinfo * ttisp;
438
439 ttisp = &sp->ttis[i];
440 if (ttisstdcnt == 0)
441 ttisp->tt_ttisstd = FALSE;
442 else {
443 ttisp->tt_ttisstd = *p++;
444 if (ttisp->tt_ttisstd != TRUE &&
445 ttisp->tt_ttisstd != FALSE)
446 return -1;
447 }
448 }
449 for (i = 0; i < sp->typecnt; ++i) {
450 register struct ttinfo * ttisp;
451
452 ttisp = &sp->ttis[i];
453 if (ttisgmtcnt == 0)
454 ttisp->tt_ttisgmt = FALSE;
455 else {
456 ttisp->tt_ttisgmt = *p++;
457 if (ttisp->tt_ttisgmt != TRUE &&
458 ttisp->tt_ttisgmt != FALSE)
459 return -1;
460 }
461 }
462 }
463 return 0;
464 }
465
466 static const int mon_lengths[2][MONSPERYEAR] = {
467 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
468 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
469 };
470
471 static const int year_lengths[2] = {
472 DAYSPERNYEAR, DAYSPERLYEAR
473 };
474
475 /*
476 ** Given a pointer into a time zone string, scan until a character that is not
477 ** a valid character in a zone name is found. Return a pointer to that
478 ** character.
479 */
480
481 static const char *
482 __getzname(strp)
483 register const char * strp;
484 {
485 register char c;
486
487 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
488 c != '+')
489 ++strp;
490 return strp;
491 }
492
493 /*
494 ** Given a pointer into a time zone string, extract a number from that string.
495 ** Check that the number is within a specified range; if it is not, return
496 ** NULL.
497 ** Otherwise, return a pointer to the first character not part of the number.
498 */
499
500 static const char *
501 getnum(strp, nump, min, max)
502 register const char * strp;
503 int * const nump;
504 const int min;
505 const int max;
506 {
507 register char c;
508 register int num;
509
510 if (strp == NULL || !is_digit(c = *strp))
511 return NULL;
512 num = 0;
513 do {
514 num = num * 10 + (c - '0');
515 if (num > max)
516 return NULL; /* illegal value */
517 c = *++strp;
518 } while (is_digit(c));
519 if (num < min)
520 return NULL; /* illegal value */
521 *nump = num;
522 return strp;
523 }
524
525 /*
526 ** Given a pointer into a time zone string, extract a number of seconds,
527 ** in hh[:mm[:ss]] form, from the string.
528 ** If any error occurs, return NULL.
529 ** Otherwise, return a pointer to the first character not part of the number
530 ** of seconds.
531 */
532
533 static const char *
534 getsecs(strp, secsp)
535 register const char * strp;
536 long * const secsp;
537 {
538 int num;
539
540 /*
541 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
542 ** "M10.4.6/26", which does not conform to Posix,
543 ** but which specifies the equivalent of
544 ** ``02:00 on the first Sunday on or after 23 Oct''.
545 */
546 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
547 if (strp == NULL)
548 return NULL;
549 *secsp = num * (long) SECSPERHOUR;
550 if (*strp == ':') {
551 ++strp;
552 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
553 if (strp == NULL)
554 return NULL;
555 *secsp += num * SECSPERMIN;
556 if (*strp == ':') {
557 ++strp;
558 /* `SECSPERMIN' allows for leap seconds. */
559 strp = getnum(strp, &num, 0, SECSPERMIN);
560 if (strp == NULL)
561 return NULL;
562 *secsp += num;
563 }
564 }
565 return strp;
566 }
567
568 /*
569 ** Given a pointer into a time zone string, extract an offset, in
570 ** [+-]hh[:mm[:ss]] form, from the string.
571 ** If any error occurs, return NULL.
572 ** Otherwise, return a pointer to the first character not part of the time.
573 */
574
575 static const char *
576 __getoffset(strp, offsetp)
577 register const char * strp;
578 long * const offsetp;
579 {
580 register int neg = 0;
581
582 if (*strp == '-') {
583 neg = 1;
584 ++strp;
585 } else if (*strp == '+')
586 ++strp;
587 strp = getsecs(strp, offsetp);
588 if (strp == NULL)
589 return NULL; /* illegal time */
590 if (neg)
591 *offsetp = -*offsetp;
592 return strp;
593 }
594
595 /*
596 ** Given a pointer into a time zone string, extract a rule in the form
597 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
598 ** If a valid rule is not found, return NULL.
599 ** Otherwise, return a pointer to the first character not part of the rule.
600 */
601
602 static const char *
603 __getrule(strp, rulep)
604 const char * strp;
605 register struct rule * const rulep;
606 {
607 if (*strp == 'J') {
608 /*
609 ** Julian day.
610 */
611 rulep->r_type = JULIAN_DAY;
612 ++strp;
613 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
614 } else if (*strp == 'M') {
615 /*
616 ** Month, week, day.
617 */
618 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
619 ++strp;
620 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
621 if (strp == NULL)
622 return NULL;
623 if (*strp++ != '.')
624 return NULL;
625 strp = getnum(strp, &rulep->r_week, 1, 5);
626 if (strp == NULL)
627 return NULL;
628 if (*strp++ != '.')
629 return NULL;
630 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
631 } else if (is_digit(*strp)) {
632 /*
633 ** Day of year.
634 */
635 rulep->r_type = DAY_OF_YEAR;
636 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
637 } else return NULL; /* invalid format */
638 if (strp == NULL)
639 return NULL;
640 if (*strp == '/') {
641 /*
642 ** Time specified.
643 */
644 ++strp;
645 strp = getsecs(strp, &rulep->r_time);
646 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
647 return strp;
648 }
649
650 /*
651 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
652 ** year, a rule, and the offset from UTC at the time that rule takes effect,
653 ** calculate the Epoch-relative time that rule takes effect.
654 */
655
656 static time_t
657 __transtime(janfirst, year, rulep, offset)
658 const time_t janfirst;
659 const int year;
660 register const struct rule * const rulep;
661 const long offset;
662 {
663 register int leapyear;
664 register time_t value;
665 register int i;
666 int d, m1, yy0, yy1, yy2, dow;
667
668 INITIALIZE(value);
669 leapyear = isleap(year);
670 switch (rulep->r_type) {
671
672 case JULIAN_DAY:
673 /*
674 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
675 ** years.
676 ** In non-leap years, or if the day number is 59 or less, just
677 ** add SECSPERDAY times the day number-1 to the time of
678 ** January 1, midnight, to get the day.
679 */
680 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
681 if (leapyear && rulep->r_day >= 60)
682 value += SECSPERDAY;
683 break;
684
685 case DAY_OF_YEAR:
686 /*
687 ** n - day of year.
688 ** Just add SECSPERDAY times the day number to the time of
689 ** January 1, midnight, to get the day.
690 */
691 value = janfirst + rulep->r_day * SECSPERDAY;
692 break;
693
694 case MONTH_NTH_DAY_OF_WEEK:
695 /*
696 ** Mm.n.d - nth "dth day" of month m.
697 */
698 value = janfirst;
699 for (i = 0; i < rulep->r_mon - 1; ++i)
700 value += mon_lengths[leapyear][i] * SECSPERDAY;
701
702 /*
703 ** Use Zeller's Congruence to get day-of-week of first day of
704 ** month.
705 */
706 m1 = (rulep->r_mon + 9) % 12 + 1;
707 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
708 yy1 = yy0 / 100;
709 yy2 = yy0 % 100;
710 dow = ((26 * m1 - 2) / 10 +
711 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
712 if (dow < 0)
713 dow += DAYSPERWEEK;
714
715 /*
716 ** "dow" is the day-of-week of the first day of the month. Get
717 ** the day-of-month (zero-origin) of the first "dow" day of the
718 ** month.
719 */
720 d = rulep->r_day - dow;
721 if (d < 0)
722 d += DAYSPERWEEK;
723 for (i = 1; i < rulep->r_week; ++i) {
724 if (d + DAYSPERWEEK >=
725 mon_lengths[leapyear][rulep->r_mon - 1])
726 break;
727 d += DAYSPERWEEK;
728 }
729
730 /*
731 ** "d" is the day-of-month (zero-origin) of the day we want.
732 */
733 value += d * SECSPERDAY;
734 break;
735 }
736
737 /*
738 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
739 ** question. To get the Epoch-relative time of the specified local
740 ** time on that day, add the transition time and the current offset
741 ** from UTC.
742 */
743 return value + rulep->r_time + offset;
744 }
745
746 /*
747 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
748 ** appropriate.
749 */
750
751 static int
752 __tzparse(name, sp, lastditch)
753 const char * name;
754 register struct state * const sp;
755 const int lastditch;
756 {
757 const char * stdname;
758 const char * dstname;
759 size_t stdlen;
760 size_t dstlen;
761 long stdoffset;
762 long dstoffset;
763 register time_t * atp;
764 register unsigned char * typep;
765 register char * cp;
766 register int load_result;
767
768 INITIALIZE(dstname);
769 stdname = name;
770 if (lastditch) {
771 stdlen = strlen(name); /* length of standard zone name */
772 name += stdlen;
773 if (stdlen >= sizeof sp->chars)
774 stdlen = (sizeof sp->chars) - 1;
775 stdoffset = 0;
776 } else {
777 name = __getzname(name);
778 stdlen = name - stdname;
779 if (stdlen < 3)
780 return -1;
781 if (*name == '\0')
782 return -1;
783 name = __getoffset(name, &stdoffset);
784 if (name == NULL)
785 return -1;
786 }
787 load_result = __tzload(TZDEFRULES, sp);
788 if (load_result != 0)
789 sp->leapcnt = 0; /* so, we're off a little */
790 if (*name != '\0') {
791 dstname = name;
792 name = __getzname(name);
793 dstlen = name - dstname; /* length of DST zone name */
794 if (dstlen < 3)
795 return -1;
796 if (*name != '\0' && *name != ',' && *name != ';') {
797 name = __getoffset(name, &dstoffset);
798 if (name == NULL)
799 return -1;
800 } else dstoffset = stdoffset - SECSPERHOUR;
801 if (*name == '\0' && load_result != 0)
802 name = TZDEFRULESTRING;
803 if (*name == ',' || *name == ';') {
804 struct rule start;
805 struct rule end;
806 register int year;
807 register time_t janfirst;
808 time_t starttime;
809 time_t endtime;
810
811 ++name;
812 if ((name = __getrule(name, &start)) == NULL)
813 return -1;
814 if (*name++ != ',')
815 return -1;
816 if ((name = __getrule(name, &end)) == NULL)
817 return -1;
818 if (*name != '\0')
819 return -1;
820 sp->typecnt = 2; /* standard time and DST */
821 /*
822 ** Two transitions per year, from EPOCH_YEAR to 2037.
823 */
824 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
825 if (sp->timecnt > TZ_MAX_TIMES)
826 return -1;
827 sp->ttis[0].tt_gmtoff = -dstoffset;
828 sp->ttis[0].tt_isdst = 1;
829 sp->ttis[0].tt_abbrind = stdlen + 1;
830 sp->ttis[1].tt_gmtoff = -stdoffset;
831 sp->ttis[1].tt_isdst = 0;
832 sp->ttis[1].tt_abbrind = 0;
833 atp = sp->ats;
834 typep = sp->types;
835 janfirst = 0;
836 for (year = EPOCH_YEAR; year <= 2037; ++year) {
837 starttime = __transtime(janfirst, year, &start,
838 stdoffset);
839 endtime = __transtime(janfirst, year, &end,
840 dstoffset);
841 if (starttime > endtime) {
842 *atp++ = endtime;
843 *typep++ = 1; /* DST ends */
844 *atp++ = starttime;
845 *typep++ = 0; /* DST begins */
846 } else {
847 *atp++ = starttime;
848 *typep++ = 0; /* DST begins */
849 *atp++ = endtime;
850 *typep++ = 1; /* DST ends */
851 }
852 janfirst += year_lengths[isleap(year)] *
853 SECSPERDAY;
854 }
855 } else {
856 register long theirstdoffset;
857 register long theiroffset;
858 register int i;
859 register int j;
860
861 if (*name != '\0')
862 return -1;
863 /*
864 ** Initial values of theirstdoffset
865 */
866 theirstdoffset = 0;
867 for (i = 0; i < sp->timecnt; ++i) {
868 j = sp->types[i];
869 if (!sp->ttis[j].tt_isdst) {
870 theirstdoffset =
871 -sp->ttis[j].tt_gmtoff;
872 break;
873 }
874 }
875 /*
876 ** Initially we're assumed to be in standard time.
877 */
878 theiroffset = theirstdoffset;
879 /*
880 ** Now juggle transition times and types
881 ** tracking offsets as you do.
882 */
883 for (i = 0; i < sp->timecnt; ++i) {
884 j = sp->types[i];
885 sp->types[i] = sp->ttis[j].tt_isdst;
886 if (sp->ttis[j].tt_ttisgmt) {
887 /* No adjustment to transition time */
888 } else {
889 /*
890 ** If summer time is in effect, and the
891 ** transition time was not specified as
892 ** standard time, add the summer time
893 ** offset to the transition time;
894 ** otherwise, add the standard time
895 ** offset to the transition time.
896 */
897 /*
898 ** Transitions from DST to DDST
899 ** will effectively disappear since
900 ** POSIX provides for only one DST
901 ** offset.
902 */
903 sp->ats[i] += stdoffset -
904 theirstdoffset;
905 }
906 theiroffset = -sp->ttis[j].tt_gmtoff;
907 if (!sp->ttis[j].tt_isdst)
908 theirstdoffset = theiroffset;
909 }
910 /*
911 ** Finally, fill in ttis.
912 ** ttisstd and ttisgmt need not be handled.
913 */
914 sp->ttis[0].tt_gmtoff = -stdoffset;
915 sp->ttis[0].tt_isdst = FALSE;
916 sp->ttis[0].tt_abbrind = 0;
917 sp->ttis[1].tt_gmtoff = -dstoffset;
918 sp->ttis[1].tt_isdst = TRUE;
919 sp->ttis[1].tt_abbrind = stdlen + 1;
920 sp->typecnt = 2;
921 }
922 } else {
923 dstlen = 0;
924 sp->typecnt = 1; /* only standard time */
925 sp->timecnt = 0;
926 sp->ttis[0].tt_gmtoff = -stdoffset;
927 sp->ttis[0].tt_isdst = 0;
928 sp->ttis[0].tt_abbrind = 0;
929 }
930 sp->charcnt = stdlen + 1;
931 if (dstlen != 0)
932 sp->charcnt += dstlen + 1;
933 if ((size_t) sp->charcnt > sizeof sp->chars)
934 return -1;
935 cp = sp->chars;
936 (void) strncpy(cp, stdname, stdlen);
937 cp += stdlen;
938 *cp++ = '\0';
939 if (dstlen != 0) {
940 (void) strncpy(cp, dstname, dstlen);
941 *(cp + dstlen) = '\0';
942 }
943 return 0;
944 }
945
946 static void
947 __gmtload(sp)
948 struct state * const sp;
949 {
950 if (__tzload(gmt, sp) != 0)
951 (void) __tzparse(gmt, sp, TRUE);
952 }
953
954 static void
955 __tzsetwall_unlocked P((void))
956 {
957 if (__lcl_is_set < 0)
958 return;
959 __lcl_is_set = -1;
960
961 #ifdef ALL_STATE
962 if (lclptr == NULL) {
963 int saveerrno = errno;
964 lclptr = (struct state *) malloc(sizeof *lclptr);
965 errno = saveerrno;
966 if (lclptr == NULL) {
967 __settzname(); /* all we can do */
968 return;
969 }
970 }
971 #endif /* defined ALL_STATE */
972 if (__tzload((char *) NULL, lclptr) != 0)
973 __gmtload(lclptr);
974 __settzname();
975 }
976
977 #ifndef STD_INSPIRED
978 /*
979 ** A non-static declaration of tzsetwall in a system header file
980 ** may cause a warning about this upcoming static declaration...
981 */
982 static
983 #endif /* !defined STD_INSPIRED */
984 void
985 tzsetwall P((void))
986 {
987 rwlock_wrlock(&__lcl_lock);
988 __tzsetwall_unlocked();
989 rwlock_unlock(&__lcl_lock);
990 }
991
992 static void
993 __tzset_unlocked P((void))
994 {
995 register const char * name;
996 int saveerrno;
997
998 saveerrno = errno;
999 name = getenv("TZ");
1000 errno = saveerrno;
1001 if (name == NULL) {
1002 __tzsetwall_unlocked();
1003 return;
1004 }
1005
1006 if (__lcl_is_set > 0 && strcmp(__lcl_TZname, name) == 0)
1007 return;
1008 __lcl_is_set = strlen(name) < sizeof __lcl_TZname;
1009 if (__lcl_is_set)
1010 (void)strlcpy(__lcl_TZname, name, sizeof(__lcl_TZname));
1011
1012 #ifdef ALL_STATE
1013 if (lclptr == NULL) {
1014 saveerrno = errno;
1015 lclptr = (struct state *) malloc(sizeof *lclptr);
1016 errno = saveerrno;
1017 if (lclptr == NULL) {
1018 __settzname(); /* all we can do */
1019 return;
1020 }
1021 }
1022 #endif /* defined ALL_STATE */
1023 if (*name == '\0') {
1024 /*
1025 ** User wants it fast rather than right.
1026 */
1027 lclptr->leapcnt = 0; /* so, we're off a little */
1028 lclptr->timecnt = 0;
1029 lclptr->typecnt = 0;
1030 lclptr->ttis[0].tt_isdst = 0;
1031 lclptr->ttis[0].tt_gmtoff = 0;
1032 lclptr->ttis[0].tt_abbrind = 0;
1033 (void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1034 } else if (__tzload(name, lclptr) != 0)
1035 if (name[0] == ':' || __tzparse(name, lclptr, FALSE) != 0)
1036 (void) __gmtload(lclptr);
1037 __settzname();
1038 }
1039
1040 void
1041 tzset P((void))
1042 {
1043 rwlock_wrlock(&__lcl_lock);
1044 __tzset_unlocked();
1045 rwlock_unlock(&__lcl_lock);
1046 }
1047
1048 /*
1049 ** The easy way to behave "as if no library function calls" localtime
1050 ** is to not call it--so we drop its guts into "localsub", which can be
1051 ** freely called. (And no, the PANS doesn't require the above behavior--
1052 ** but it *is* desirable.)
1053 **
1054 ** The unused offset argument is for the benefit of mktime variants.
1055 */
1056
1057 /*ARGSUSED*/
1058 static void
1059 localsub(timep, offset, tmp)
1060 const time_t * const timep;
1061 const long offset;
1062 struct tm * const tmp;
1063 {
1064 register struct state * sp;
1065 register const struct ttinfo * ttisp;
1066 register int i;
1067 const time_t t = *timep;
1068
1069 sp = lclptr;
1070 #ifdef ALL_STATE
1071 if (sp == NULL) {
1072 gmtsub(timep, offset, tmp);
1073 return;
1074 }
1075 #endif /* defined ALL_STATE */
1076 if (sp->timecnt == 0 || t < sp->ats[0]) {
1077 i = 0;
1078 while (sp->ttis[i].tt_isdst)
1079 if (++i >= sp->typecnt) {
1080 i = 0;
1081 break;
1082 }
1083 } else {
1084 for (i = 1; i < sp->timecnt; ++i)
1085 if (t < sp->ats[i])
1086 break;
1087 i = sp->types[i - 1];
1088 }
1089 ttisp = &sp->ttis[i];
1090 /*
1091 ** To get (wrong) behavior that's compatible with System V Release 2.0
1092 ** you'd replace the statement below with
1093 ** t += ttisp->tt_gmtoff;
1094 ** timesub(&t, 0L, sp, tmp);
1095 */
1096 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1097 tmp->tm_isdst = ttisp->tt_isdst;
1098 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1099 #ifdef TM_ZONE
1100 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1101 #endif /* defined TM_ZONE */
1102 }
1103
1104 struct tm *
1105 localtime(timep)
1106 const time_t * const timep;
1107 {
1108 rwlock_wrlock(&__lcl_lock);
1109 __tzset_unlocked();
1110 localsub(timep, 0L, &tm);
1111 rwlock_unlock(&__lcl_lock);
1112 return &tm;
1113 }
1114
1115 /*
1116 ** Re-entrant version of localtime.
1117 */
1118
1119 struct tm *
1120 localtime_r(timep, tmp)
1121 const time_t * const timep;
1122 struct tm * tmp;
1123 {
1124 rwlock_rdlock(&__lcl_lock);
1125 __tzset_unlocked();
1126 localsub(timep, 0L, tmp);
1127 rwlock_unlock(&__lcl_lock);
1128 return tmp;
1129 }
1130
1131 /*
1132 ** gmtsub is to gmtime as localsub is to localtime.
1133 */
1134
1135 static void
1136 gmtsub(timep, offset, tmp)
1137 const time_t * const timep;
1138 const long offset;
1139 struct tm * const tmp;
1140 {
1141 #ifdef _REENTRANT
1142 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1143 #endif
1144
1145 mutex_lock(&gmt_mutex);
1146 if (!__gmt_is_set) {
1147 #ifdef ALL_STATE
1148 int saveerrno;
1149 #endif
1150 __gmt_is_set = TRUE;
1151 #ifdef ALL_STATE
1152 saveerrno = errno;
1153 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1154 errno = saveerrno;
1155 if (gmtptr != NULL)
1156 #endif /* defined ALL_STATE */
1157 __gmtload(gmtptr);
1158 }
1159 mutex_unlock(&gmt_mutex);
1160 timesub(timep, offset, gmtptr, tmp);
1161 #ifdef TM_ZONE
1162 /*
1163 ** Could get fancy here and deliver something such as
1164 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1165 ** but this is no time for a treasure hunt.
1166 */
1167 if (offset != 0)
1168 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1169 else {
1170 #ifdef ALL_STATE
1171 if (gmtptr == NULL)
1172 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1173 else tmp->TM_ZONE = gmtptr->chars;
1174 #endif /* defined ALL_STATE */
1175 #ifndef ALL_STATE
1176 tmp->TM_ZONE = gmtptr->chars;
1177 #endif /* State Farm */
1178 }
1179 #endif /* defined TM_ZONE */
1180 }
1181
1182 struct tm *
1183 gmtime(timep)
1184 const time_t * const timep;
1185 {
1186 gmtsub(timep, 0L, &tm);
1187 return &tm;
1188 }
1189
1190 /*
1191 ** Re-entrant version of gmtime.
1192 */
1193
1194 struct tm *
1195 gmtime_r(timep, tmp)
1196 const time_t * const timep;
1197 struct tm * tmp;
1198 {
1199 gmtsub(timep, 0L, tmp);
1200 return tmp;
1201 }
1202
1203 #ifdef STD_INSPIRED
1204
1205 struct tm *
1206 offtime(timep, offset)
1207 const time_t * const timep;
1208 const long offset;
1209 {
1210 gmtsub(timep, offset, &tm);
1211 return &tm;
1212 }
1213
1214 #endif /* defined STD_INSPIRED */
1215
1216 static void
1217 timesub(timep, offset, sp, tmp)
1218 const time_t * const timep;
1219 const long offset;
1220 register const struct state * const sp;
1221 register struct tm * const tmp;
1222 {
1223 register const struct lsinfo * lp;
1224 register time_t days;
1225 register time_t rem;
1226 register time_t y;
1227 register int yleap;
1228 register const int * ip;
1229 register long corr;
1230 register int hit;
1231 register int i;
1232
1233 corr = 0;
1234 hit = 0;
1235 #ifdef ALL_STATE
1236 i = (sp == NULL) ? 0 : sp->leapcnt;
1237 #endif /* defined ALL_STATE */
1238 #ifndef ALL_STATE
1239 i = sp->leapcnt;
1240 #endif /* State Farm */
1241 while (--i >= 0) {
1242 lp = &sp->lsis[i];
1243 if (*timep >= lp->ls_trans) {
1244 if (*timep == lp->ls_trans) {
1245 hit = ((i == 0 && lp->ls_corr > 0) ||
1246 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1247 if (hit)
1248 while (i > 0 &&
1249 sp->lsis[i].ls_trans ==
1250 sp->lsis[i - 1].ls_trans + 1 &&
1251 sp->lsis[i].ls_corr ==
1252 sp->lsis[i - 1].ls_corr + 1) {
1253 ++hit;
1254 --i;
1255 }
1256 }
1257 corr = lp->ls_corr;
1258 break;
1259 }
1260 }
1261 days = *timep / SECSPERDAY;
1262 rem = *timep % SECSPERDAY;
1263 #ifdef mc68k
1264 if (*timep == (((time_t)1) << (TYPE_BITS(time_t) - 1))) {
1265 /*
1266 ** A 3B1 muffs the division on the most negative number.
1267 */
1268 days = -24855;
1269 rem = -11648;
1270 }
1271 #endif /* defined mc68k */
1272 rem += (offset - corr);
1273 while (rem < 0) {
1274 rem += SECSPERDAY;
1275 --days;
1276 }
1277 while (rem >= SECSPERDAY) {
1278 rem -= SECSPERDAY;
1279 ++days;
1280 }
1281 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1282 rem = rem % SECSPERHOUR;
1283 tmp->tm_min = (int) (rem / SECSPERMIN);
1284 /*
1285 ** A positive leap second requires a special
1286 ** representation. This uses "... ??:59:60" et seq.
1287 */
1288 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1289 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1290 if (tmp->tm_wday < 0)
1291 tmp->tm_wday += DAYSPERWEEK;
1292 y = EPOCH_YEAR;
1293 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1294 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1295 register time_t newy;
1296 newy = (y + days / DAYSPERNYEAR);
1297 if (days < 0)
1298 --newy;
1299 days -= (newy - y) * DAYSPERNYEAR +
1300 LEAPS_THRU_END_OF(newy - 1) -
1301 LEAPS_THRU_END_OF(y - 1);
1302 y = newy;
1303 }
1304 tmp->tm_year = (int) y - TM_YEAR_BASE;
1305 tmp->tm_yday = (int) days;
1306 ip = mon_lengths[yleap];
1307 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1308 days = days - (long) ip[tmp->tm_mon];
1309 tmp->tm_mday = (int) (days + 1);
1310 tmp->tm_isdst = 0;
1311 #ifdef TM_GMTOFF
1312 tmp->TM_GMTOFF = offset;
1313 #endif /* defined TM_GMTOFF */
1314 }
1315
1316 char *
1317 ctime(timep)
1318 const time_t * const timep;
1319 {
1320 /*
1321 ** Section 4.12.3.2 of X3.159-1989 requires that
1322 ** The ctime function converts the calendar time pointed to by timer
1323 ** to local time in the form of a string. It is equivalent to
1324 ** asctime(localtime(timer))
1325 */
1326 return asctime(localtime(timep));
1327 }
1328
1329 char *
1330 ctime_r(timep, buf)
1331 const time_t * const timep;
1332 char * buf;
1333 {
1334 struct tm tmp;
1335
1336 return asctime_r(localtime_r(timep, &tmp), buf);
1337 }
1338
1339 /*
1340 ** Adapted from code provided by Robert Elz, who writes:
1341 ** The "best" way to do mktime I think is based on an idea of Bob
1342 ** Kridle's (so its said...) from a long time ago.
1343 ** [kridle (at) xinet.com as of 1996-01-16.]
1344 ** It does a binary search of the time_t space. Since time_t's are
1345 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1346 ** would still be very reasonable).
1347 */
1348
1349 #ifndef WRONG
1350 #define WRONG (-1)
1351 #endif /* !defined WRONG */
1352
1353 /*
1354 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1355 */
1356
1357 static int
1358 increment_overflow(number, delta)
1359 int * number;
1360 int delta;
1361 {
1362 int number0;
1363
1364 number0 = *number;
1365 *number += delta;
1366 return (*number < number0) != (delta < 0);
1367 }
1368
1369 static int
1370 normalize_overflow(tensptr, unitsptr, base)
1371 int * const tensptr;
1372 int * const unitsptr;
1373 const int base;
1374 {
1375 register int tensdelta;
1376
1377 tensdelta = (*unitsptr >= 0) ?
1378 (*unitsptr / base) :
1379 (-1 - (-1 - *unitsptr) / base);
1380 *unitsptr -= tensdelta * base;
1381 return increment_overflow(tensptr, tensdelta);
1382 }
1383
1384 static int
1385 tmcomp(atmp, btmp)
1386 register const struct tm * const atmp;
1387 register const struct tm * const btmp;
1388 {
1389 register int result;
1390
1391 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1392 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1393 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1394 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1395 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1396 result = atmp->tm_sec - btmp->tm_sec;
1397 return result;
1398 }
1399
1400 static time_t
1401 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1402 struct tm * const tmp;
1403 void (* const funcp) P((const time_t*, long, struct tm*));
1404 const long offset;
1405 int * const okayp;
1406 const int do_norm_secs;
1407 {
1408 register const struct state * sp;
1409 register int dir;
1410 register int bits;
1411 register int i, j ;
1412 register int saved_seconds;
1413 time_t newt;
1414 time_t t;
1415 struct tm yourtm, mytm;
1416
1417 *okayp = FALSE;
1418 yourtm = *tmp;
1419 if (do_norm_secs) {
1420 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1421 SECSPERMIN))
1422 return WRONG;
1423 }
1424 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1425 return WRONG;
1426 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1427 return WRONG;
1428 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1429 return WRONG;
1430 /*
1431 ** Turn yourtm.tm_year into an actual year number for now.
1432 ** It is converted back to an offset from TM_YEAR_BASE later.
1433 */
1434 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1435 return WRONG;
1436 while (yourtm.tm_mday <= 0) {
1437 if (increment_overflow(&yourtm.tm_year, -1))
1438 return WRONG;
1439 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1440 yourtm.tm_mday += year_lengths[isleap(i)];
1441 }
1442 while (yourtm.tm_mday > DAYSPERLYEAR) {
1443 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1444 yourtm.tm_mday -= year_lengths[isleap(i)];
1445 if (increment_overflow(&yourtm.tm_year, 1))
1446 return WRONG;
1447 }
1448 for ( ; ; ) {
1449 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1450 if (yourtm.tm_mday <= i)
1451 break;
1452 yourtm.tm_mday -= i;
1453 if (++yourtm.tm_mon >= MONSPERYEAR) {
1454 yourtm.tm_mon = 0;
1455 if (increment_overflow(&yourtm.tm_year, 1))
1456 return WRONG;
1457 }
1458 }
1459 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1460 return WRONG;
1461 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1462 saved_seconds = 0;
1463 else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1464 /*
1465 ** We can't set tm_sec to 0, because that might push the
1466 ** time below the minimum representable time.
1467 ** Set tm_sec to 59 instead.
1468 ** This assumes that the minimum representable time is
1469 ** not in the same minute that a leap second was deleted from,
1470 ** which is a safer assumption than using 58 would be.
1471 */
1472 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1473 return WRONG;
1474 saved_seconds = yourtm.tm_sec;
1475 yourtm.tm_sec = SECSPERMIN - 1;
1476 } else {
1477 saved_seconds = yourtm.tm_sec;
1478 yourtm.tm_sec = 0;
1479 }
1480 /*
1481 ** Divide the search space in half
1482 ** (this works whether time_t is signed or unsigned).
1483 */
1484 bits = TYPE_BIT(time_t) - 1;
1485 /*
1486 ** If time_t is signed, then 0 is just above the median,
1487 ** assuming two's complement arithmetic.
1488 ** If time_t is unsigned, then (1 << bits) is just above the median.
1489 */
1490 /*CONSTCOND*/
1491 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1492 for ( ; ; ) {
1493 (*funcp)(&t, offset, &mytm);
1494 dir = tmcomp(&mytm, &yourtm);
1495 if (dir != 0) {
1496 if (bits-- < 0)
1497 return WRONG;
1498 if (bits < 0)
1499 --t; /* may be needed if new t is minimal */
1500 else if (dir > 0)
1501 t -= ((time_t) 1) << bits;
1502 else t += ((time_t) 1) << bits;
1503 continue;
1504 }
1505 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1506 break;
1507 /*
1508 ** Right time, wrong type.
1509 ** Hunt for right time, right type.
1510 ** It's okay to guess wrong since the guess
1511 ** gets checked.
1512 */
1513 /*
1514 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1515 */
1516 sp = (const struct state *)
1517 (((void *) funcp == (void *) localsub) ?
1518 lclptr : gmtptr);
1519 #ifdef ALL_STATE
1520 if (sp == NULL)
1521 return WRONG;
1522 #endif /* defined ALL_STATE */
1523 for (i = sp->typecnt - 1; i >= 0; --i) {
1524 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1525 continue;
1526 for (j = sp->typecnt - 1; j >= 0; --j) {
1527 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1528 continue;
1529 newt = t + sp->ttis[j].tt_gmtoff -
1530 sp->ttis[i].tt_gmtoff;
1531 (*funcp)(&newt, offset, &mytm);
1532 if (tmcomp(&mytm, &yourtm) != 0)
1533 continue;
1534 if (mytm.tm_isdst != yourtm.tm_isdst)
1535 continue;
1536 /*
1537 ** We have a match.
1538 */
1539 t = newt;
1540 goto label;
1541 }
1542 }
1543 return WRONG;
1544 }
1545 label:
1546 newt = t + saved_seconds;
1547 if ((newt < t) != (saved_seconds < 0))
1548 return WRONG;
1549 t = newt;
1550 (*funcp)(&t, offset, tmp);
1551 *okayp = TRUE;
1552 return t;
1553 }
1554
1555 static time_t
1556 time2(tmp, funcp, offset, okayp)
1557 struct tm * const tmp;
1558 void (* const funcp) P((const time_t*, long, struct tm*));
1559 const long offset;
1560 int * const okayp;
1561 {
1562 time_t t;
1563
1564 /*
1565 ** First try without normalization of seconds
1566 ** (in case tm_sec contains a value associated with a leap second).
1567 ** If that fails, try with normalization of seconds.
1568 */
1569 t = time2sub(tmp, funcp, offset, okayp, FALSE);
1570 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1571 }
1572
1573 static time_t
1574 time1(tmp, funcp, offset)
1575 struct tm * const tmp;
1576 void (* const funcp) P((const time_t *, long, struct tm *));
1577 const long offset;
1578 {
1579 register time_t t;
1580 register const struct state * sp;
1581 register int samei, otheri;
1582 register int sameind, otherind;
1583 register int i;
1584 register int nseen;
1585 int seen[TZ_MAX_TYPES];
1586 int types[TZ_MAX_TYPES];
1587 int okay;
1588
1589 if (tmp->tm_isdst > 1)
1590 tmp->tm_isdst = 1;
1591 t = time2(tmp, funcp, offset, &okay);
1592 #ifdef PCTS
1593 /*
1594 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1595 */
1596 if (okay)
1597 return t;
1598 if (tmp->tm_isdst < 0)
1599 tmp->tm_isdst = 0; /* reset to std and try again */
1600 #endif /* defined PCTS */
1601 #ifndef PCTS
1602 if (okay || tmp->tm_isdst < 0)
1603 return t;
1604 #endif /* !defined PCTS */
1605 /*
1606 ** We're supposed to assume that somebody took a time of one type
1607 ** and did some math on it that yielded a "struct tm" that's bad.
1608 ** We try to divine the type they started from and adjust to the
1609 ** type they need.
1610 */
1611 /*
1612 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1613 */
1614 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1615 lclptr : gmtptr);
1616 #ifdef ALL_STATE
1617 if (sp == NULL)
1618 return WRONG;
1619 #endif /* defined ALL_STATE */
1620 for (i = 0; i < sp->typecnt; ++i)
1621 seen[i] = FALSE;
1622 nseen = 0;
1623 for (i = sp->timecnt - 1; i >= 0; --i)
1624 if (!seen[sp->types[i]]) {
1625 seen[sp->types[i]] = TRUE;
1626 types[nseen++] = sp->types[i];
1627 }
1628 for (sameind = 0; sameind < nseen; ++sameind) {
1629 samei = types[sameind];
1630 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1631 continue;
1632 for (otherind = 0; otherind < nseen; ++otherind) {
1633 otheri = types[otherind];
1634 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1635 continue;
1636 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1637 sp->ttis[samei].tt_gmtoff);
1638 tmp->tm_isdst = !tmp->tm_isdst;
1639 t = time2(tmp, funcp, offset, &okay);
1640 if (okay)
1641 return t;
1642 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1643 sp->ttis[samei].tt_gmtoff);
1644 tmp->tm_isdst = !tmp->tm_isdst;
1645 }
1646 }
1647 return WRONG;
1648 }
1649
1650 time_t
1651 mktime(tmp)
1652 struct tm * const tmp;
1653 {
1654 time_t result;
1655
1656 rwlock_wrlock(&__lcl_lock);
1657 __tzset_unlocked();
1658 result = time1(tmp, localsub, 0L);
1659 rwlock_unlock(&__lcl_lock);
1660 return (result);
1661 }
1662
1663 #ifdef STD_INSPIRED
1664
1665 time_t
1666 timelocal(tmp)
1667 struct tm * const tmp;
1668 {
1669 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1670 return mktime(tmp);
1671 }
1672
1673 time_t
1674 timegm(tmp)
1675 struct tm * const tmp;
1676 {
1677 tmp->tm_isdst = 0;
1678 return time1(tmp, gmtsub, 0L);
1679 }
1680
1681 time_t
1682 timeoff(tmp, offset)
1683 struct tm * const tmp;
1684 const long offset;
1685 {
1686 tmp->tm_isdst = 0;
1687 return time1(tmp, gmtsub, offset);
1688 }
1689
1690 #endif /* defined STD_INSPIRED */
1691
1692 #ifdef CMUCS
1693
1694 /*
1695 ** The following is supplied for compatibility with
1696 ** previous versions of the CMUCS runtime library.
1697 */
1698
1699 long
1700 gtime(tmp)
1701 struct tm * const tmp;
1702 {
1703 const time_t t = mktime(tmp);
1704
1705 if (t == WRONG)
1706 return -1;
1707 return t;
1708 }
1709
1710 #endif /* defined CMUCS */
1711
1712 /*
1713 ** XXX--is the below the right way to conditionalize??
1714 */
1715
1716 #ifdef STD_INSPIRED
1717
1718 /*
1719 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1720 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1721 ** is not the case if we are accounting for leap seconds.
1722 ** So, we provide the following conversion routines for use
1723 ** when exchanging timestamps with POSIX conforming systems.
1724 */
1725
1726 static long
1727 leapcorr(timep)
1728 time_t * timep;
1729 {
1730 register struct state * sp;
1731 register struct lsinfo * lp;
1732 register int i;
1733
1734 sp = lclptr;
1735 i = sp->leapcnt;
1736 while (--i >= 0) {
1737 lp = &sp->lsis[i];
1738 if (*timep >= lp->ls_trans)
1739 return lp->ls_corr;
1740 }
1741 return 0;
1742 }
1743
1744 time_t
1745 time2posix(t)
1746 time_t t;
1747 {
1748 time_t result;
1749
1750 rwlock_wrlock(&__lcl_lock);
1751 __tzset_unlocked();
1752 result = t - leapcorr(&t);
1753 rwlock_unlock(&__lcl_lock);
1754 return (result);
1755 }
1756
1757 time_t
1758 posix2time(t)
1759 time_t t;
1760 {
1761 time_t x;
1762 time_t y;
1763
1764 rwlock_wrlock(&__lcl_lock);
1765 __tzset_unlocked();
1766 /*
1767 ** For a positive leap second hit, the result
1768 ** is not unique. For a negative leap second
1769 ** hit, the corresponding time doesn't exist,
1770 ** so we return an adjacent second.
1771 */
1772 x = t + leapcorr(&t);
1773 y = x - leapcorr(&x);
1774 if (y < t) {
1775 do {
1776 x++;
1777 y = x - leapcorr(&x);
1778 } while (y < t);
1779 if (t != y) {
1780 rwlock_unlock(&__lcl_lock);
1781 return x - 1;
1782 }
1783 } else if (y > t) {
1784 do {
1785 --x;
1786 y = x - leapcorr(&x);
1787 } while (y > t);
1788 if (t != y) {
1789 rwlock_unlock(&__lcl_lock);
1790 return x + 1;
1791 }
1792 }
1793 rwlock_unlock(&__lcl_lock);
1794 return x;
1795 }
1796
1797 #endif /* defined STD_INSPIRED */
1798