Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.42
      1 /*	$NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	7.78";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     19 ** POSIX-style TZ environment variable handling from Guy Harris
     20 ** (guy (at) auspex.com).
     21 */
     22 
     23 /*LINTLIBRARY*/
     24 
     25 #include "namespace.h"
     26 #include "private.h"
     27 #include "tzfile.h"
     28 #include "fcntl.h"
     29 #include "reentrant.h"
     30 
     31 #if defined(__weak_alias)
     32 __weak_alias(daylight,_daylight)
     33 __weak_alias(tzname,_tzname)
     34 __weak_alias(tzset,_tzset)
     35 __weak_alias(tzsetwall,_tzsetwall)
     36 #endif
     37 
     38 /*
     39 ** SunOS 4.1.1 headers lack O_BINARY.
     40 */
     41 
     42 #ifdef O_BINARY
     43 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     44 #endif /* defined O_BINARY */
     45 #ifndef O_BINARY
     46 #define OPEN_MODE	O_RDONLY
     47 #endif /* !defined O_BINARY */
     48 
     49 #ifndef WILDABBR
     50 /*
     51 ** Someone might make incorrect use of a time zone abbreviation:
     52 **	1.	They might reference tzname[0] before calling tzset (explicitly
     53 **		or implicitly).
     54 **	2.	They might reference tzname[1] before calling tzset (explicitly
     55 **		or implicitly).
     56 **	3.	They might reference tzname[1] after setting to a time zone
     57 **		in which Daylight Saving Time is never observed.
     58 **	4.	They might reference tzname[0] after setting to a time zone
     59 **		in which Standard Time is never observed.
     60 **	5.	They might reference tm.TM_ZONE after calling offtime.
     61 ** What's best to do in the above cases is open to debate;
     62 ** for now, we just set things up so that in any of the five cases
     63 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     64 ** string "tzname[0] used before set", and similarly for the other cases.
     65 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     66 ** manual page of what this "time zone abbreviation" means (doing this so
     67 ** that tzname[0] has the "normal" length of three characters).
     68 */
     69 #define WILDABBR	"   "
     70 #endif /* !defined WILDABBR */
     71 
     72 static const char	wildabbr[] = "WILDABBR";
     73 
     74 static const char	gmt[] = "GMT";
     75 
     76 /*
     77 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     78 ** We default to US rules as of 1999-08-17.
     79 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     80 ** implementation dependent; for historical reasons, US rules are a
     81 ** common default.
     82 */
     83 #ifndef TZDEFRULESTRING
     84 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     85 #endif /* !defined TZDEFDST */
     86 
     87 struct ttinfo {				/* time type information */
     88 	long		tt_gmtoff;	/* UTC offset in seconds */
     89 	int		tt_isdst;	/* used to set tm_isdst */
     90 	int		tt_abbrind;	/* abbreviation list index */
     91 	int		tt_ttisstd;	/* TRUE if transition is std time */
     92 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
     93 };
     94 
     95 struct lsinfo {				/* leap second information */
     96 	time_t		ls_trans;	/* transition time */
     97 	long		ls_corr;	/* correction to apply */
     98 };
     99 
    100 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    101 
    102 #ifdef TZNAME_MAX
    103 #define MY_TZNAME_MAX	TZNAME_MAX
    104 #endif /* defined TZNAME_MAX */
    105 #ifndef TZNAME_MAX
    106 #define MY_TZNAME_MAX	255
    107 #endif /* !defined TZNAME_MAX */
    108 
    109 struct state {
    110 	int		leapcnt;
    111 	int		timecnt;
    112 	int		typecnt;
    113 	int		charcnt;
    114 	time_t		ats[TZ_MAX_TIMES];	/* time_t */
    115 	unsigned char	types[TZ_MAX_TIMES];
    116 	struct ttinfo	ttis[TZ_MAX_TYPES];
    117 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    118 				(2 * (MY_TZNAME_MAX + 1)))];
    119 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    120 };
    121 
    122 struct rule {
    123 	int		r_type;		/* type of rule--see below */
    124 	int		r_day;		/* day number of rule */
    125 	int		r_week;		/* week number of rule */
    126 	int		r_mon;		/* month number of rule */
    127 	long		r_time;		/* transition time of rule */
    128 };
    129 
    130 #define JULIAN_DAY		0	/* Jn - Julian day */
    131 #define DAY_OF_YEAR		1	/* n - day of year */
    132 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    133 
    134 /*
    135 ** Prototypes for static functions.
    136 */
    137 
    138 static long		detzcode P((const char * codep));
    139 static const char *	__getzname P((const char * strp));
    140 static const char *	getnum P((const char * strp, int * nump, int min,
    141 				int max));
    142 static const char *	getsecs P((const char * strp, long * secsp));
    143 static const char *	__getoffset P((const char * strp, long * offsetp));
    144 static const char *	__getrule P((const char * strp, struct rule * rulep));
    145 static void		__gmtload P((struct state * sp));
    146 static void		gmtsub P((const time_t * timep, long offset,
    147 				struct tm * tmp));
    148 static void		localsub P((const time_t * timep, long offset,
    149 				struct tm * tmp));
    150 static int		increment_overflow P((int * number, int delta));
    151 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    152 				int base));
    153 static void		__settzname P((void));
    154 static time_t		time1 P((struct tm * tmp,
    155 				void(*funcp) P((const time_t *,
    156 				long, struct tm *)),
    157 				long offset));
    158 static time_t		time2 P((struct tm *tmp,
    159 				void(*funcp) P((const time_t *,
    160 				long, struct tm*)),
    161 				long offset, int * okayp));
    162 static time_t		time2sub P((struct tm *tmp,
    163 				void(*funcp) P((const time_t *,
    164 				long, struct tm*)),
    165 				long offset, int * okayp, int do_norm_secs));
    166 static void		timesub P((const time_t * timep, long offset,
    167 				const struct state * sp, struct tm * tmp));
    168 static int		tmcomp P((const struct tm * atmp,
    169 				const struct tm * btmp));
    170 static time_t		__transtime P((time_t janfirst, int year,
    171 				const struct rule * rulep, long offset));
    172 static int		__tzload P((const char * name, struct state * sp));
    173 static int		__tzparse P((const char * name, struct state * sp,
    174 				int lastditch));
    175 static void		__tzset_unlocked P((void));
    176 static void		__tzsetwall_unlocked P((void));
    177 #ifdef STD_INSPIRED
    178 static long		leapcorr P((time_t * timep));
    179 #endif
    180 
    181 #ifdef ALL_STATE
    182 static struct state *	lclptr;
    183 static struct state *	gmtptr;
    184 #endif /* defined ALL_STATE */
    185 
    186 #ifndef ALL_STATE
    187 static struct state	lclmem;
    188 static struct state	gmtmem;
    189 #define lclptr		(&lclmem)
    190 #define gmtptr		(&gmtmem)
    191 #endif /* State Farm */
    192 
    193 #ifndef TZ_STRLEN_MAX
    194 #define TZ_STRLEN_MAX 255
    195 #endif /* !defined TZ_STRLEN_MAX */
    196 
    197 
    198 static char		__lcl_TZname[TZ_STRLEN_MAX + 1];
    199 static int		__lcl_is_set;
    200 static int		__gmt_is_set;
    201 
    202 #if !defined(__LIBC12_SOURCE__)
    203 
    204 __aconst char *		tzname[2] = {
    205 	(__aconst char *)__UNCONST(wildabbr),
    206 	(__aconst char *)__UNCONST(wildabbr)
    207 };
    208 
    209 #else
    210 
    211 extern __aconst char *	tzname[2];
    212 
    213 #endif
    214 
    215 #ifdef _REENTRANT
    216 static rwlock_t __lcl_lock = RWLOCK_INITIALIZER;
    217 #endif
    218 
    219 /*
    220 ** Section 4.12.3 of X3.159-1989 requires that
    221 **	Except for the strftime function, these functions [asctime,
    222 **	ctime, gmtime, localtime] return values in one of two static
    223 **	objects: a broken-down time structure and an array of char.
    224 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    225 */
    226 
    227 static struct tm	tm;
    228 
    229 #ifdef USG_COMPAT
    230 #if !defined(__LIBC12_SOURCE__)
    231 long 			timezone = 0;
    232 int			daylight = 0;
    233 #else
    234 extern int		daylight;
    235 extern long		timezone __RENAME(__timezone13);
    236 #endif
    237 #endif /* defined USG_COMPAT */
    238 
    239 #ifdef ALTZONE
    240 time_t			altzone = 0;
    241 #endif /* defined ALTZONE */
    242 
    243 static long
    244 detzcode(codep)
    245 const char * const	codep;
    246 {
    247 	register long	result;
    248 
    249 	/*
    250         ** The first character must be sign extended on systems with >32bit
    251         ** longs.  This was solved differently in the master tzcode sources
    252         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    253 	** that this implementation is superior.
    254         */
    255 
    256 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    257 
    258 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    259 	       | (codep[1] & 0xff) << 16 \
    260 	       | (codep[2] & 0xff) << 8
    261 	       | (codep[3] & 0xff);
    262 	return result;
    263 }
    264 
    265 void
    266 __settzname P((void))
    267 {
    268 	register struct state * const	sp = lclptr;
    269 	register int			i;
    270 
    271 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    272 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    273 #ifdef USG_COMPAT
    274 	daylight = 0;
    275 	timezone = 0;
    276 #endif /* defined USG_COMPAT */
    277 #ifdef ALTZONE
    278 	altzone = 0;
    279 #endif /* defined ALTZONE */
    280 #ifdef ALL_STATE
    281 	if (sp == NULL) {
    282 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    283 		return;
    284 	}
    285 #endif /* defined ALL_STATE */
    286 	for (i = 0; i < sp->typecnt; ++i) {
    287 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    288 
    289 		tzname[ttisp->tt_isdst] =
    290 			&sp->chars[ttisp->tt_abbrind];
    291 	}
    292 	/*
    293 	** And to get the latest zone names into tzname. . .
    294 	*/
    295 	for (i = 0; i < sp->timecnt; ++i) {
    296 		register const struct ttinfo * const	ttisp =
    297 							&sp->ttis[
    298 								sp->types[i]];
    299 
    300 		tzname[ttisp->tt_isdst] =
    301 			&sp->chars[ttisp->tt_abbrind];
    302 #ifdef USG_COMPAT
    303 		if (ttisp->tt_isdst)
    304 			daylight = 1;
    305 		if (i == 0 || !ttisp->tt_isdst)
    306 			timezone = -(ttisp->tt_gmtoff);
    307 #endif /* defined USG_COMPAT */
    308 #ifdef ALTZONE
    309 		if (i == 0 || ttisp->tt_isdst)
    310 			altzone = -(ttisp->tt_gmtoff);
    311 #endif /* defined ALTZONE */
    312 	}
    313 }
    314 
    315 int
    316 __tzload(name, sp)
    317 register const char *		name;
    318 register struct state * const	sp;
    319 {
    320 	register const char *	p;
    321 	register int		i;
    322 	register int		fid;
    323 
    324 	if (name == NULL && (name = TZDEFAULT) == NULL)
    325 		return -1;
    326 
    327 	{
    328 		register int	doaccess;
    329 		/*
    330 		** Section 4.9.1 of the C standard says that
    331 		** "FILENAME_MAX expands to an integral constant expression
    332 		** that is the size needed for an array of char large enough
    333 		** to hold the longest file name string that the implementation
    334 		** guarantees can be opened."
    335 		*/
    336 		char		fullname[FILENAME_MAX + 1];
    337 
    338 		if (name[0] == ':')
    339 			++name;
    340 		doaccess = name[0] == '/';
    341 		if (!doaccess) {
    342 			if ((p = TZDIR) == NULL)
    343 				return -1;
    344 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    345 				return -1;
    346 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    347 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    348 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    349 			/*
    350 			** Set doaccess if '.' (as in "../") shows up in name.
    351 			*/
    352 			if (strchr(name, '.') != NULL)
    353 				doaccess = TRUE;
    354 			name = fullname;
    355 		}
    356 		if (doaccess && access(name, R_OK) != 0)
    357 			return -1;
    358 		/*
    359 		 * XXX potential security problem here if user of a set-id
    360 		 * program has set TZ (which is passed in as name) here,
    361 		 * and uses a race condition trick to defeat the access(2)
    362 		 * above.
    363 		 */
    364 		if ((fid = open(name, OPEN_MODE)) == -1)
    365 			return -1;
    366 	}
    367 	{
    368 		struct tzhead *	tzhp;
    369 		union {
    370 			struct tzhead	tzhead;
    371 			char		buf[sizeof *sp + sizeof *tzhp];
    372 		} u;
    373 		int		ttisstdcnt;
    374 		int		ttisgmtcnt;
    375 
    376 		i = read(fid, u.buf, sizeof u.buf);
    377 		if (close(fid) != 0)
    378 			return -1;
    379 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    380 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    381 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    382 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    383 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    384 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    385 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    386 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    387 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    388 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    389 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    390 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    391 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    392 				return -1;
    393 		if (i - (p - u.buf) < sp->timecnt * 4 +	/* ats */
    394 			sp->timecnt +			/* types */
    395 			sp->typecnt * (4 + 2) +		/* ttinfos */
    396 			sp->charcnt +			/* chars */
    397 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    398 			ttisstdcnt +			/* ttisstds */
    399 			ttisgmtcnt)			/* ttisgmts */
    400 				return -1;
    401 		for (i = 0; i < sp->timecnt; ++i) {
    402 			sp->ats[i] = detzcode(p);
    403 			p += 4;
    404 		}
    405 		for (i = 0; i < sp->timecnt; ++i) {
    406 			sp->types[i] = (unsigned char) *p++;
    407 			if (sp->types[i] >= sp->typecnt)
    408 				return -1;
    409 		}
    410 		for (i = 0; i < sp->typecnt; ++i) {
    411 			register struct ttinfo *	ttisp;
    412 
    413 			ttisp = &sp->ttis[i];
    414 			ttisp->tt_gmtoff = detzcode(p);
    415 			p += 4;
    416 			ttisp->tt_isdst = (unsigned char) *p++;
    417 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    418 				return -1;
    419 			ttisp->tt_abbrind = (unsigned char) *p++;
    420 			if (ttisp->tt_abbrind < 0 ||
    421 				ttisp->tt_abbrind > sp->charcnt)
    422 					return -1;
    423 		}
    424 		for (i = 0; i < sp->charcnt; ++i)
    425 			sp->chars[i] = *p++;
    426 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    427 		for (i = 0; i < sp->leapcnt; ++i) {
    428 			register struct lsinfo *	lsisp;
    429 
    430 			lsisp = &sp->lsis[i];
    431 			lsisp->ls_trans = detzcode(p);
    432 			p += 4;
    433 			lsisp->ls_corr = detzcode(p);
    434 			p += 4;
    435 		}
    436 		for (i = 0; i < sp->typecnt; ++i) {
    437 			register struct ttinfo *	ttisp;
    438 
    439 			ttisp = &sp->ttis[i];
    440 			if (ttisstdcnt == 0)
    441 				ttisp->tt_ttisstd = FALSE;
    442 			else {
    443 				ttisp->tt_ttisstd = *p++;
    444 				if (ttisp->tt_ttisstd != TRUE &&
    445 					ttisp->tt_ttisstd != FALSE)
    446 						return -1;
    447 			}
    448 		}
    449 		for (i = 0; i < sp->typecnt; ++i) {
    450 			register struct ttinfo *	ttisp;
    451 
    452 			ttisp = &sp->ttis[i];
    453 			if (ttisgmtcnt == 0)
    454 				ttisp->tt_ttisgmt = FALSE;
    455 			else {
    456 				ttisp->tt_ttisgmt = *p++;
    457 				if (ttisp->tt_ttisgmt != TRUE &&
    458 					ttisp->tt_ttisgmt != FALSE)
    459 						return -1;
    460 			}
    461 		}
    462 	}
    463 	return 0;
    464 }
    465 
    466 static const int	mon_lengths[2][MONSPERYEAR] = {
    467 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    468 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    469 };
    470 
    471 static const int	year_lengths[2] = {
    472 	DAYSPERNYEAR, DAYSPERLYEAR
    473 };
    474 
    475 /*
    476 ** Given a pointer into a time zone string, scan until a character that is not
    477 ** a valid character in a zone name is found.  Return a pointer to that
    478 ** character.
    479 */
    480 
    481 static const char *
    482 __getzname(strp)
    483 register const char *	strp;
    484 {
    485 	register char	c;
    486 
    487 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    488 		c != '+')
    489 			++strp;
    490 	return strp;
    491 }
    492 
    493 /*
    494 ** Given a pointer into a time zone string, extract a number from that string.
    495 ** Check that the number is within a specified range; if it is not, return
    496 ** NULL.
    497 ** Otherwise, return a pointer to the first character not part of the number.
    498 */
    499 
    500 static const char *
    501 getnum(strp, nump, min, max)
    502 register const char *	strp;
    503 int * const		nump;
    504 const int		min;
    505 const int		max;
    506 {
    507 	register char	c;
    508 	register int	num;
    509 
    510 	if (strp == NULL || !is_digit(c = *strp))
    511 		return NULL;
    512 	num = 0;
    513 	do {
    514 		num = num * 10 + (c - '0');
    515 		if (num > max)
    516 			return NULL;	/* illegal value */
    517 		c = *++strp;
    518 	} while (is_digit(c));
    519 	if (num < min)
    520 		return NULL;		/* illegal value */
    521 	*nump = num;
    522 	return strp;
    523 }
    524 
    525 /*
    526 ** Given a pointer into a time zone string, extract a number of seconds,
    527 ** in hh[:mm[:ss]] form, from the string.
    528 ** If any error occurs, return NULL.
    529 ** Otherwise, return a pointer to the first character not part of the number
    530 ** of seconds.
    531 */
    532 
    533 static const char *
    534 getsecs(strp, secsp)
    535 register const char *	strp;
    536 long * const		secsp;
    537 {
    538 	int	num;
    539 
    540 	/*
    541 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    542 	** "M10.4.6/26", which does not conform to Posix,
    543 	** but which specifies the equivalent of
    544 	** ``02:00 on the first Sunday on or after 23 Oct''.
    545 	*/
    546 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    547 	if (strp == NULL)
    548 		return NULL;
    549 	*secsp = num * (long) SECSPERHOUR;
    550 	if (*strp == ':') {
    551 		++strp;
    552 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    553 		if (strp == NULL)
    554 			return NULL;
    555 		*secsp += num * SECSPERMIN;
    556 		if (*strp == ':') {
    557 			++strp;
    558 			/* `SECSPERMIN' allows for leap seconds.  */
    559 			strp = getnum(strp, &num, 0, SECSPERMIN);
    560 			if (strp == NULL)
    561 				return NULL;
    562 			*secsp += num;
    563 		}
    564 	}
    565 	return strp;
    566 }
    567 
    568 /*
    569 ** Given a pointer into a time zone string, extract an offset, in
    570 ** [+-]hh[:mm[:ss]] form, from the string.
    571 ** If any error occurs, return NULL.
    572 ** Otherwise, return a pointer to the first character not part of the time.
    573 */
    574 
    575 static const char *
    576 __getoffset(strp, offsetp)
    577 register const char *	strp;
    578 long * const		offsetp;
    579 {
    580 	register int	neg = 0;
    581 
    582 	if (*strp == '-') {
    583 		neg = 1;
    584 		++strp;
    585 	} else if (*strp == '+')
    586 		++strp;
    587 	strp = getsecs(strp, offsetp);
    588 	if (strp == NULL)
    589 		return NULL;		/* illegal time */
    590 	if (neg)
    591 		*offsetp = -*offsetp;
    592 	return strp;
    593 }
    594 
    595 /*
    596 ** Given a pointer into a time zone string, extract a rule in the form
    597 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    598 ** If a valid rule is not found, return NULL.
    599 ** Otherwise, return a pointer to the first character not part of the rule.
    600 */
    601 
    602 static const char *
    603 __getrule(strp, rulep)
    604 const char *			strp;
    605 register struct rule * const	rulep;
    606 {
    607 	if (*strp == 'J') {
    608 		/*
    609 		** Julian day.
    610 		*/
    611 		rulep->r_type = JULIAN_DAY;
    612 		++strp;
    613 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    614 	} else if (*strp == 'M') {
    615 		/*
    616 		** Month, week, day.
    617 		*/
    618 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    619 		++strp;
    620 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    621 		if (strp == NULL)
    622 			return NULL;
    623 		if (*strp++ != '.')
    624 			return NULL;
    625 		strp = getnum(strp, &rulep->r_week, 1, 5);
    626 		if (strp == NULL)
    627 			return NULL;
    628 		if (*strp++ != '.')
    629 			return NULL;
    630 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    631 	} else if (is_digit(*strp)) {
    632 		/*
    633 		** Day of year.
    634 		*/
    635 		rulep->r_type = DAY_OF_YEAR;
    636 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    637 	} else	return NULL;		/* invalid format */
    638 	if (strp == NULL)
    639 		return NULL;
    640 	if (*strp == '/') {
    641 		/*
    642 		** Time specified.
    643 		*/
    644 		++strp;
    645 		strp = getsecs(strp, &rulep->r_time);
    646 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    647 	return strp;
    648 }
    649 
    650 /*
    651 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    652 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    653 ** calculate the Epoch-relative time that rule takes effect.
    654 */
    655 
    656 static time_t
    657 __transtime(janfirst, year, rulep, offset)
    658 const time_t				janfirst;
    659 const int				year;
    660 register const struct rule * const	rulep;
    661 const long				offset;
    662 {
    663 	register int	leapyear;
    664 	register time_t	value;
    665 	register int	i;
    666 	int		d, m1, yy0, yy1, yy2, dow;
    667 
    668 	INITIALIZE(value);
    669 	leapyear = isleap(year);
    670 	switch (rulep->r_type) {
    671 
    672 	case JULIAN_DAY:
    673 		/*
    674 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    675 		** years.
    676 		** In non-leap years, or if the day number is 59 or less, just
    677 		** add SECSPERDAY times the day number-1 to the time of
    678 		** January 1, midnight, to get the day.
    679 		*/
    680 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    681 		if (leapyear && rulep->r_day >= 60)
    682 			value += SECSPERDAY;
    683 		break;
    684 
    685 	case DAY_OF_YEAR:
    686 		/*
    687 		** n - day of year.
    688 		** Just add SECSPERDAY times the day number to the time of
    689 		** January 1, midnight, to get the day.
    690 		*/
    691 		value = janfirst + rulep->r_day * SECSPERDAY;
    692 		break;
    693 
    694 	case MONTH_NTH_DAY_OF_WEEK:
    695 		/*
    696 		** Mm.n.d - nth "dth day" of month m.
    697 		*/
    698 		value = janfirst;
    699 		for (i = 0; i < rulep->r_mon - 1; ++i)
    700 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    701 
    702 		/*
    703 		** Use Zeller's Congruence to get day-of-week of first day of
    704 		** month.
    705 		*/
    706 		m1 = (rulep->r_mon + 9) % 12 + 1;
    707 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    708 		yy1 = yy0 / 100;
    709 		yy2 = yy0 % 100;
    710 		dow = ((26 * m1 - 2) / 10 +
    711 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    712 		if (dow < 0)
    713 			dow += DAYSPERWEEK;
    714 
    715 		/*
    716 		** "dow" is the day-of-week of the first day of the month.  Get
    717 		** the day-of-month (zero-origin) of the first "dow" day of the
    718 		** month.
    719 		*/
    720 		d = rulep->r_day - dow;
    721 		if (d < 0)
    722 			d += DAYSPERWEEK;
    723 		for (i = 1; i < rulep->r_week; ++i) {
    724 			if (d + DAYSPERWEEK >=
    725 				mon_lengths[leapyear][rulep->r_mon - 1])
    726 					break;
    727 			d += DAYSPERWEEK;
    728 		}
    729 
    730 		/*
    731 		** "d" is the day-of-month (zero-origin) of the day we want.
    732 		*/
    733 		value += d * SECSPERDAY;
    734 		break;
    735 	}
    736 
    737 	/*
    738 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    739 	** question.  To get the Epoch-relative time of the specified local
    740 	** time on that day, add the transition time and the current offset
    741 	** from UTC.
    742 	*/
    743 	return value + rulep->r_time + offset;
    744 }
    745 
    746 /*
    747 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    748 ** appropriate.
    749 */
    750 
    751 static int
    752 __tzparse(name, sp, lastditch)
    753 const char *			name;
    754 register struct state * const	sp;
    755 const int			lastditch;
    756 {
    757 	const char *			stdname;
    758 	const char *			dstname;
    759 	size_t				stdlen;
    760 	size_t				dstlen;
    761 	long				stdoffset;
    762 	long				dstoffset;
    763 	register time_t *		atp;
    764 	register unsigned char *	typep;
    765 	register char *			cp;
    766 	register int			load_result;
    767 
    768 	INITIALIZE(dstname);
    769 	stdname = name;
    770 	if (lastditch) {
    771 		stdlen = strlen(name);	/* length of standard zone name */
    772 		name += stdlen;
    773 		if (stdlen >= sizeof sp->chars)
    774 			stdlen = (sizeof sp->chars) - 1;
    775 		stdoffset = 0;
    776 	} else {
    777 		name = __getzname(name);
    778 		stdlen = name - stdname;
    779 		if (stdlen < 3)
    780 			return -1;
    781 		if (*name == '\0')
    782 			return -1;
    783 		name = __getoffset(name, &stdoffset);
    784 		if (name == NULL)
    785 			return -1;
    786 	}
    787 	load_result = __tzload(TZDEFRULES, sp);
    788 	if (load_result != 0)
    789 		sp->leapcnt = 0;		/* so, we're off a little */
    790 	if (*name != '\0') {
    791 		dstname = name;
    792 		name = __getzname(name);
    793 		dstlen = name - dstname;	/* length of DST zone name */
    794 		if (dstlen < 3)
    795 			return -1;
    796 		if (*name != '\0' && *name != ',' && *name != ';') {
    797 			name = __getoffset(name, &dstoffset);
    798 			if (name == NULL)
    799 				return -1;
    800 		} else	dstoffset = stdoffset - SECSPERHOUR;
    801 		if (*name == '\0' && load_result != 0)
    802 			name = TZDEFRULESTRING;
    803 		if (*name == ',' || *name == ';') {
    804 			struct rule	start;
    805 			struct rule	end;
    806 			register int	year;
    807 			register time_t	janfirst;
    808 			time_t		starttime;
    809 			time_t		endtime;
    810 
    811 			++name;
    812 			if ((name = __getrule(name, &start)) == NULL)
    813 				return -1;
    814 			if (*name++ != ',')
    815 				return -1;
    816 			if ((name = __getrule(name, &end)) == NULL)
    817 				return -1;
    818 			if (*name != '\0')
    819 				return -1;
    820 			sp->typecnt = 2;	/* standard time and DST */
    821 			/*
    822 			** Two transitions per year, from EPOCH_YEAR to 2037.
    823 			*/
    824 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    825 			if (sp->timecnt > TZ_MAX_TIMES)
    826 				return -1;
    827 			sp->ttis[0].tt_gmtoff = -dstoffset;
    828 			sp->ttis[0].tt_isdst = 1;
    829 			sp->ttis[0].tt_abbrind = stdlen + 1;
    830 			sp->ttis[1].tt_gmtoff = -stdoffset;
    831 			sp->ttis[1].tt_isdst = 0;
    832 			sp->ttis[1].tt_abbrind = 0;
    833 			atp = sp->ats;
    834 			typep = sp->types;
    835 			janfirst = 0;
    836 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    837 				starttime = __transtime(janfirst, year, &start,
    838 					stdoffset);
    839 				endtime = __transtime(janfirst, year, &end,
    840 					dstoffset);
    841 				if (starttime > endtime) {
    842 					*atp++ = endtime;
    843 					*typep++ = 1;	/* DST ends */
    844 					*atp++ = starttime;
    845 					*typep++ = 0;	/* DST begins */
    846 				} else {
    847 					*atp++ = starttime;
    848 					*typep++ = 0;	/* DST begins */
    849 					*atp++ = endtime;
    850 					*typep++ = 1;	/* DST ends */
    851 				}
    852 				janfirst += year_lengths[isleap(year)] *
    853 					SECSPERDAY;
    854 			}
    855 		} else {
    856 			register long	theirstdoffset;
    857 			register long	theiroffset;
    858 			register int	i;
    859 			register int	j;
    860 
    861 			if (*name != '\0')
    862 				return -1;
    863 			/*
    864 			** Initial values of theirstdoffset
    865 			*/
    866 			theirstdoffset = 0;
    867 			for (i = 0; i < sp->timecnt; ++i) {
    868 				j = sp->types[i];
    869 				if (!sp->ttis[j].tt_isdst) {
    870 					theirstdoffset =
    871 						-sp->ttis[j].tt_gmtoff;
    872 					break;
    873 				}
    874 			}
    875 			/*
    876 			** Initially we're assumed to be in standard time.
    877 			*/
    878 			theiroffset = theirstdoffset;
    879 			/*
    880 			** Now juggle transition times and types
    881 			** tracking offsets as you do.
    882 			*/
    883 			for (i = 0; i < sp->timecnt; ++i) {
    884 				j = sp->types[i];
    885 				sp->types[i] = sp->ttis[j].tt_isdst;
    886 				if (sp->ttis[j].tt_ttisgmt) {
    887 					/* No adjustment to transition time */
    888 				} else {
    889 					/*
    890 					** If summer time is in effect, and the
    891 					** transition time was not specified as
    892 					** standard time, add the summer time
    893 					** offset to the transition time;
    894 					** otherwise, add the standard time
    895 					** offset to the transition time.
    896 					*/
    897 					/*
    898 					** Transitions from DST to DDST
    899 					** will effectively disappear since
    900 					** POSIX provides for only one DST
    901 					** offset.
    902 					*/
    903 					sp->ats[i] += stdoffset -
    904 					    theirstdoffset;
    905 				}
    906 				theiroffset = -sp->ttis[j].tt_gmtoff;
    907 				if (!sp->ttis[j].tt_isdst)
    908 					theirstdoffset = theiroffset;
    909 			}
    910 			/*
    911 			** Finally, fill in ttis.
    912 			** ttisstd and ttisgmt need not be handled.
    913 			*/
    914 			sp->ttis[0].tt_gmtoff = -stdoffset;
    915 			sp->ttis[0].tt_isdst = FALSE;
    916 			sp->ttis[0].tt_abbrind = 0;
    917 			sp->ttis[1].tt_gmtoff = -dstoffset;
    918 			sp->ttis[1].tt_isdst = TRUE;
    919 			sp->ttis[1].tt_abbrind = stdlen + 1;
    920 			sp->typecnt = 2;
    921 		}
    922 	} else {
    923 		dstlen = 0;
    924 		sp->typecnt = 1;		/* only standard time */
    925 		sp->timecnt = 0;
    926 		sp->ttis[0].tt_gmtoff = -stdoffset;
    927 		sp->ttis[0].tt_isdst = 0;
    928 		sp->ttis[0].tt_abbrind = 0;
    929 	}
    930 	sp->charcnt = stdlen + 1;
    931 	if (dstlen != 0)
    932 		sp->charcnt += dstlen + 1;
    933 	if ((size_t) sp->charcnt > sizeof sp->chars)
    934 		return -1;
    935 	cp = sp->chars;
    936 	(void) strncpy(cp, stdname, stdlen);
    937 	cp += stdlen;
    938 	*cp++ = '\0';
    939 	if (dstlen != 0) {
    940 		(void) strncpy(cp, dstname, dstlen);
    941 		*(cp + dstlen) = '\0';
    942 	}
    943 	return 0;
    944 }
    945 
    946 static void
    947 __gmtload(sp)
    948 struct state * const	sp;
    949 {
    950 	if (__tzload(gmt, sp) != 0)
    951 		(void) __tzparse(gmt, sp, TRUE);
    952 }
    953 
    954 static void
    955 __tzsetwall_unlocked P((void))
    956 {
    957 	if (__lcl_is_set < 0)
    958 		return;
    959 	__lcl_is_set = -1;
    960 
    961 #ifdef ALL_STATE
    962 	if (lclptr == NULL) {
    963 		int saveerrno = errno;
    964 		lclptr = (struct state *) malloc(sizeof *lclptr);
    965 		errno = saveerrno;
    966 		if (lclptr == NULL) {
    967 			__settzname();	/* all we can do */
    968 			return;
    969 		}
    970 	}
    971 #endif /* defined ALL_STATE */
    972 	if (__tzload((char *) NULL, lclptr) != 0)
    973 		__gmtload(lclptr);
    974 	__settzname();
    975 }
    976 
    977 #ifndef STD_INSPIRED
    978 /*
    979 ** A non-static declaration of tzsetwall in a system header file
    980 ** may cause a warning about this upcoming static declaration...
    981 */
    982 static
    983 #endif /* !defined STD_INSPIRED */
    984 void
    985 tzsetwall P((void))
    986 {
    987 	rwlock_wrlock(&__lcl_lock);
    988 	__tzsetwall_unlocked();
    989 	rwlock_unlock(&__lcl_lock);
    990 }
    991 
    992 static void
    993 __tzset_unlocked P((void))
    994 {
    995 	register const char *	name;
    996 	int saveerrno;
    997 
    998 	saveerrno = errno;
    999 	name = getenv("TZ");
   1000 	errno = saveerrno;
   1001 	if (name == NULL) {
   1002 		__tzsetwall_unlocked();
   1003 		return;
   1004 	}
   1005 
   1006 	if (__lcl_is_set > 0 && strcmp(__lcl_TZname, name) == 0)
   1007 		return;
   1008 	__lcl_is_set = strlen(name) < sizeof __lcl_TZname;
   1009 	if (__lcl_is_set)
   1010 		(void)strlcpy(__lcl_TZname, name, sizeof(__lcl_TZname));
   1011 
   1012 #ifdef ALL_STATE
   1013 	if (lclptr == NULL) {
   1014 		saveerrno = errno;
   1015 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1016 		errno = saveerrno;
   1017 		if (lclptr == NULL) {
   1018 			__settzname();	/* all we can do */
   1019 			return;
   1020 		}
   1021 	}
   1022 #endif /* defined ALL_STATE */
   1023 	if (*name == '\0') {
   1024 		/*
   1025 		** User wants it fast rather than right.
   1026 		*/
   1027 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1028 		lclptr->timecnt = 0;
   1029 		lclptr->typecnt = 0;
   1030 		lclptr->ttis[0].tt_isdst = 0;
   1031 		lclptr->ttis[0].tt_gmtoff = 0;
   1032 		lclptr->ttis[0].tt_abbrind = 0;
   1033 		(void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1034 	} else if (__tzload(name, lclptr) != 0)
   1035 		if (name[0] == ':' || __tzparse(name, lclptr, FALSE) != 0)
   1036 			(void) __gmtload(lclptr);
   1037 	__settzname();
   1038 }
   1039 
   1040 void
   1041 tzset P((void))
   1042 {
   1043 	rwlock_wrlock(&__lcl_lock);
   1044 	__tzset_unlocked();
   1045 	rwlock_unlock(&__lcl_lock);
   1046 }
   1047 
   1048 /*
   1049 ** The easy way to behave "as if no library function calls" localtime
   1050 ** is to not call it--so we drop its guts into "localsub", which can be
   1051 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1052 ** but it *is* desirable.)
   1053 **
   1054 ** The unused offset argument is for the benefit of mktime variants.
   1055 */
   1056 
   1057 /*ARGSUSED*/
   1058 static void
   1059 localsub(timep, offset, tmp)
   1060 const time_t * const	timep;
   1061 const long		offset;
   1062 struct tm * const	tmp;
   1063 {
   1064 	register struct state *		sp;
   1065 	register const struct ttinfo *	ttisp;
   1066 	register int			i;
   1067 	const time_t			t = *timep;
   1068 
   1069 	sp = lclptr;
   1070 #ifdef ALL_STATE
   1071 	if (sp == NULL) {
   1072 		gmtsub(timep, offset, tmp);
   1073 		return;
   1074 	}
   1075 #endif /* defined ALL_STATE */
   1076 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1077 		i = 0;
   1078 		while (sp->ttis[i].tt_isdst)
   1079 			if (++i >= sp->typecnt) {
   1080 				i = 0;
   1081 				break;
   1082 			}
   1083 	} else {
   1084 		for (i = 1; i < sp->timecnt; ++i)
   1085 			if (t < sp->ats[i])
   1086 				break;
   1087 		i = sp->types[i - 1];
   1088 	}
   1089 	ttisp = &sp->ttis[i];
   1090 	/*
   1091 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1092 	** you'd replace the statement below with
   1093 	**	t += ttisp->tt_gmtoff;
   1094 	**	timesub(&t, 0L, sp, tmp);
   1095 	*/
   1096 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1097 	tmp->tm_isdst = ttisp->tt_isdst;
   1098 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1099 #ifdef TM_ZONE
   1100 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1101 #endif /* defined TM_ZONE */
   1102 }
   1103 
   1104 struct tm *
   1105 localtime(timep)
   1106 const time_t * const	timep;
   1107 {
   1108 	rwlock_wrlock(&__lcl_lock);
   1109 	__tzset_unlocked();
   1110 	localsub(timep, 0L, &tm);
   1111 	rwlock_unlock(&__lcl_lock);
   1112 	return &tm;
   1113 }
   1114 
   1115 /*
   1116 ** Re-entrant version of localtime.
   1117 */
   1118 
   1119 struct tm *
   1120 localtime_r(timep, tmp)
   1121 const time_t * const	timep;
   1122 struct tm *		tmp;
   1123 {
   1124 	rwlock_rdlock(&__lcl_lock);
   1125 	__tzset_unlocked();
   1126 	localsub(timep, 0L, tmp);
   1127 	rwlock_unlock(&__lcl_lock);
   1128 	return tmp;
   1129 }
   1130 
   1131 /*
   1132 ** gmtsub is to gmtime as localsub is to localtime.
   1133 */
   1134 
   1135 static void
   1136 gmtsub(timep, offset, tmp)
   1137 const time_t * const	timep;
   1138 const long		offset;
   1139 struct tm * const	tmp;
   1140 {
   1141 #ifdef _REENTRANT
   1142 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1143 #endif
   1144 
   1145 	mutex_lock(&gmt_mutex);
   1146 	if (!__gmt_is_set) {
   1147 #ifdef ALL_STATE
   1148 		int saveerrno;
   1149 #endif
   1150 		__gmt_is_set = TRUE;
   1151 #ifdef ALL_STATE
   1152 		saveerrno = errno;
   1153 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1154 		errno = saveerrno;
   1155 		if (gmtptr != NULL)
   1156 #endif /* defined ALL_STATE */
   1157 			__gmtload(gmtptr);
   1158 	}
   1159 	mutex_unlock(&gmt_mutex);
   1160 	timesub(timep, offset, gmtptr, tmp);
   1161 #ifdef TM_ZONE
   1162 	/*
   1163 	** Could get fancy here and deliver something such as
   1164 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1165 	** but this is no time for a treasure hunt.
   1166 	*/
   1167 	if (offset != 0)
   1168 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1169 	else {
   1170 #ifdef ALL_STATE
   1171 		if (gmtptr == NULL)
   1172 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1173 		else	tmp->TM_ZONE = gmtptr->chars;
   1174 #endif /* defined ALL_STATE */
   1175 #ifndef ALL_STATE
   1176 		tmp->TM_ZONE = gmtptr->chars;
   1177 #endif /* State Farm */
   1178 	}
   1179 #endif /* defined TM_ZONE */
   1180 }
   1181 
   1182 struct tm *
   1183 gmtime(timep)
   1184 const time_t * const	timep;
   1185 {
   1186 	gmtsub(timep, 0L, &tm);
   1187 	return &tm;
   1188 }
   1189 
   1190 /*
   1191 ** Re-entrant version of gmtime.
   1192 */
   1193 
   1194 struct tm *
   1195 gmtime_r(timep, tmp)
   1196 const time_t * const	timep;
   1197 struct tm *		tmp;
   1198 {
   1199 	gmtsub(timep, 0L, tmp);
   1200 	return tmp;
   1201 }
   1202 
   1203 #ifdef STD_INSPIRED
   1204 
   1205 struct tm *
   1206 offtime(timep, offset)
   1207 const time_t * const	timep;
   1208 const long		offset;
   1209 {
   1210 	gmtsub(timep, offset, &tm);
   1211 	return &tm;
   1212 }
   1213 
   1214 #endif /* defined STD_INSPIRED */
   1215 
   1216 static void
   1217 timesub(timep, offset, sp, tmp)
   1218 const time_t * const			timep;
   1219 const long				offset;
   1220 register const struct state * const	sp;
   1221 register struct tm * const		tmp;
   1222 {
   1223 	register const struct lsinfo *	lp;
   1224 	register time_t			days;
   1225 	register time_t			rem;
   1226 	register time_t			y;
   1227 	register int			yleap;
   1228 	register const int *		ip;
   1229 	register long			corr;
   1230 	register int			hit;
   1231 	register int			i;
   1232 
   1233 	corr = 0;
   1234 	hit = 0;
   1235 #ifdef ALL_STATE
   1236 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1237 #endif /* defined ALL_STATE */
   1238 #ifndef ALL_STATE
   1239 	i = sp->leapcnt;
   1240 #endif /* State Farm */
   1241 	while (--i >= 0) {
   1242 		lp = &sp->lsis[i];
   1243 		if (*timep >= lp->ls_trans) {
   1244 			if (*timep == lp->ls_trans) {
   1245 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1246 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1247 				if (hit)
   1248 					while (i > 0 &&
   1249 						sp->lsis[i].ls_trans ==
   1250 						sp->lsis[i - 1].ls_trans + 1 &&
   1251 						sp->lsis[i].ls_corr ==
   1252 						sp->lsis[i - 1].ls_corr + 1) {
   1253 							++hit;
   1254 							--i;
   1255 					}
   1256 			}
   1257 			corr = lp->ls_corr;
   1258 			break;
   1259 		}
   1260 	}
   1261 	days = *timep / SECSPERDAY;
   1262 	rem = *timep % SECSPERDAY;
   1263 #ifdef mc68k
   1264 	if (*timep == (((time_t)1) << (TYPE_BITS(time_t) - 1))) {
   1265 		/*
   1266 		** A 3B1 muffs the division on the most negative number.
   1267 		*/
   1268 		days = -24855;
   1269 		rem = -11648;
   1270 	}
   1271 #endif /* defined mc68k */
   1272 	rem += (offset - corr);
   1273 	while (rem < 0) {
   1274 		rem += SECSPERDAY;
   1275 		--days;
   1276 	}
   1277 	while (rem >= SECSPERDAY) {
   1278 		rem -= SECSPERDAY;
   1279 		++days;
   1280 	}
   1281 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1282 	rem = rem % SECSPERHOUR;
   1283 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1284 	/*
   1285 	** A positive leap second requires a special
   1286 	** representation.  This uses "... ??:59:60" et seq.
   1287 	*/
   1288 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1289 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1290 	if (tmp->tm_wday < 0)
   1291 		tmp->tm_wday += DAYSPERWEEK;
   1292 	y = EPOCH_YEAR;
   1293 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1294 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1295 		register time_t	newy;
   1296 		newy = (y + days / DAYSPERNYEAR);
   1297 		if (days < 0)
   1298 			--newy;
   1299 		days -= (newy - y) * DAYSPERNYEAR +
   1300 			LEAPS_THRU_END_OF(newy - 1) -
   1301 			LEAPS_THRU_END_OF(y - 1);
   1302 		y = newy;
   1303 	}
   1304 	tmp->tm_year = (int) y - TM_YEAR_BASE;
   1305 	tmp->tm_yday = (int) days;
   1306 	ip = mon_lengths[yleap];
   1307 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1308 		days = days - (long) ip[tmp->tm_mon];
   1309 	tmp->tm_mday = (int) (days + 1);
   1310 	tmp->tm_isdst = 0;
   1311 #ifdef TM_GMTOFF
   1312 	tmp->TM_GMTOFF = offset;
   1313 #endif /* defined TM_GMTOFF */
   1314 }
   1315 
   1316 char *
   1317 ctime(timep)
   1318 const time_t * const	timep;
   1319 {
   1320 /*
   1321 ** Section 4.12.3.2 of X3.159-1989 requires that
   1322 **	The ctime function converts the calendar time pointed to by timer
   1323 **	to local time in the form of a string.  It is equivalent to
   1324 **		asctime(localtime(timer))
   1325 */
   1326 	return asctime(localtime(timep));
   1327 }
   1328 
   1329 char *
   1330 ctime_r(timep, buf)
   1331 const time_t * const	timep;
   1332 char *			buf;
   1333 {
   1334 	struct tm	tmp;
   1335 
   1336 	return asctime_r(localtime_r(timep, &tmp), buf);
   1337 }
   1338 
   1339 /*
   1340 ** Adapted from code provided by Robert Elz, who writes:
   1341 **	The "best" way to do mktime I think is based on an idea of Bob
   1342 **	Kridle's (so its said...) from a long time ago.
   1343 **	[kridle (at) xinet.com as of 1996-01-16.]
   1344 **	It does a binary search of the time_t space.  Since time_t's are
   1345 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1346 **	would still be very reasonable).
   1347 */
   1348 
   1349 #ifndef WRONG
   1350 #define WRONG	(-1)
   1351 #endif /* !defined WRONG */
   1352 
   1353 /*
   1354 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1355 */
   1356 
   1357 static int
   1358 increment_overflow(number, delta)
   1359 int *	number;
   1360 int	delta;
   1361 {
   1362 	int	number0;
   1363 
   1364 	number0 = *number;
   1365 	*number += delta;
   1366 	return (*number < number0) != (delta < 0);
   1367 }
   1368 
   1369 static int
   1370 normalize_overflow(tensptr, unitsptr, base)
   1371 int * const	tensptr;
   1372 int * const	unitsptr;
   1373 const int	base;
   1374 {
   1375 	register int	tensdelta;
   1376 
   1377 	tensdelta = (*unitsptr >= 0) ?
   1378 		(*unitsptr / base) :
   1379 		(-1 - (-1 - *unitsptr) / base);
   1380 	*unitsptr -= tensdelta * base;
   1381 	return increment_overflow(tensptr, tensdelta);
   1382 }
   1383 
   1384 static int
   1385 tmcomp(atmp, btmp)
   1386 register const struct tm * const atmp;
   1387 register const struct tm * const btmp;
   1388 {
   1389 	register int	result;
   1390 
   1391 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1392 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1393 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1394 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1395 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1396 			result = atmp->tm_sec - btmp->tm_sec;
   1397 	return result;
   1398 }
   1399 
   1400 static time_t
   1401 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1402 struct tm * const	tmp;
   1403 void (* const		funcp) P((const time_t*, long, struct tm*));
   1404 const long		offset;
   1405 int * const		okayp;
   1406 const int		do_norm_secs;
   1407 {
   1408 	register const struct state *	sp;
   1409 	register int			dir;
   1410 	register int			bits;
   1411 	register int			i, j ;
   1412 	register int			saved_seconds;
   1413 	time_t				newt;
   1414 	time_t				t;
   1415 	struct tm			yourtm, mytm;
   1416 
   1417 	*okayp = FALSE;
   1418 	yourtm = *tmp;
   1419 	if (do_norm_secs) {
   1420 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1421 			SECSPERMIN))
   1422 				return WRONG;
   1423 	}
   1424 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1425 		return WRONG;
   1426 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1427 		return WRONG;
   1428 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1429 		return WRONG;
   1430 	/*
   1431 	** Turn yourtm.tm_year into an actual year number for now.
   1432 	** It is converted back to an offset from TM_YEAR_BASE later.
   1433 	*/
   1434 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1435 		return WRONG;
   1436 	while (yourtm.tm_mday <= 0) {
   1437 		if (increment_overflow(&yourtm.tm_year, -1))
   1438 			return WRONG;
   1439 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1440 		yourtm.tm_mday += year_lengths[isleap(i)];
   1441 	}
   1442 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1443 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1444 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1445 		if (increment_overflow(&yourtm.tm_year, 1))
   1446 			return WRONG;
   1447 	}
   1448 	for ( ; ; ) {
   1449 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1450 		if (yourtm.tm_mday <= i)
   1451 			break;
   1452 		yourtm.tm_mday -= i;
   1453 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1454 			yourtm.tm_mon = 0;
   1455 			if (increment_overflow(&yourtm.tm_year, 1))
   1456 				return WRONG;
   1457 		}
   1458 	}
   1459 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1460 		return WRONG;
   1461 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1462 		saved_seconds = 0;
   1463 	else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1464 		/*
   1465 		** We can't set tm_sec to 0, because that might push the
   1466 		** time below the minimum representable time.
   1467 		** Set tm_sec to 59 instead.
   1468 		** This assumes that the minimum representable time is
   1469 		** not in the same minute that a leap second was deleted from,
   1470 		** which is a safer assumption than using 58 would be.
   1471 		*/
   1472 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1473 			return WRONG;
   1474 		saved_seconds = yourtm.tm_sec;
   1475 		yourtm.tm_sec = SECSPERMIN - 1;
   1476 	} else {
   1477 		saved_seconds = yourtm.tm_sec;
   1478 		yourtm.tm_sec = 0;
   1479 	}
   1480 	/*
   1481 	** Divide the search space in half
   1482 	** (this works whether time_t is signed or unsigned).
   1483 	*/
   1484 	bits = TYPE_BIT(time_t) - 1;
   1485 	/*
   1486 	** If time_t is signed, then 0 is just above the median,
   1487 	** assuming two's complement arithmetic.
   1488 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1489 	*/
   1490 	/*CONSTCOND*/
   1491 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1492 	for ( ; ; ) {
   1493 		(*funcp)(&t, offset, &mytm);
   1494 		dir = tmcomp(&mytm, &yourtm);
   1495 		if (dir != 0) {
   1496 			if (bits-- < 0)
   1497 				return WRONG;
   1498 			if (bits < 0)
   1499 				--t; /* may be needed if new t is minimal */
   1500 			else if (dir > 0)
   1501 				t -= ((time_t) 1) << bits;
   1502 			else	t += ((time_t) 1) << bits;
   1503 			continue;
   1504 		}
   1505 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1506 			break;
   1507 		/*
   1508 		** Right time, wrong type.
   1509 		** Hunt for right time, right type.
   1510 		** It's okay to guess wrong since the guess
   1511 		** gets checked.
   1512 		*/
   1513 		/*
   1514 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1515 		*/
   1516 		sp = (const struct state *)
   1517 			(((void *) funcp == (void *) localsub) ?
   1518 			lclptr : gmtptr);
   1519 #ifdef ALL_STATE
   1520 		if (sp == NULL)
   1521 			return WRONG;
   1522 #endif /* defined ALL_STATE */
   1523 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1524 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1525 				continue;
   1526 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1527 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1528 					continue;
   1529 				newt = t + sp->ttis[j].tt_gmtoff -
   1530 					sp->ttis[i].tt_gmtoff;
   1531 				(*funcp)(&newt, offset, &mytm);
   1532 				if (tmcomp(&mytm, &yourtm) != 0)
   1533 					continue;
   1534 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1535 					continue;
   1536 				/*
   1537 				** We have a match.
   1538 				*/
   1539 				t = newt;
   1540 				goto label;
   1541 			}
   1542 		}
   1543 		return WRONG;
   1544 	}
   1545 label:
   1546 	newt = t + saved_seconds;
   1547 	if ((newt < t) != (saved_seconds < 0))
   1548 		return WRONG;
   1549 	t = newt;
   1550 	(*funcp)(&t, offset, tmp);
   1551 	*okayp = TRUE;
   1552 	return t;
   1553 }
   1554 
   1555 static time_t
   1556 time2(tmp, funcp, offset, okayp)
   1557 struct tm * const	tmp;
   1558 void (* const		funcp) P((const time_t*, long, struct tm*));
   1559 const long		offset;
   1560 int * const		okayp;
   1561 {
   1562 	time_t	t;
   1563 
   1564 	/*
   1565 	** First try without normalization of seconds
   1566 	** (in case tm_sec contains a value associated with a leap second).
   1567 	** If that fails, try with normalization of seconds.
   1568 	*/
   1569 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1570 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1571 }
   1572 
   1573 static time_t
   1574 time1(tmp, funcp, offset)
   1575 struct tm * const	tmp;
   1576 void (* const		funcp) P((const time_t *, long, struct tm *));
   1577 const long		offset;
   1578 {
   1579 	register time_t			t;
   1580 	register const struct state *	sp;
   1581 	register int			samei, otheri;
   1582 	register int			sameind, otherind;
   1583 	register int			i;
   1584 	register int			nseen;
   1585 	int				seen[TZ_MAX_TYPES];
   1586 	int				types[TZ_MAX_TYPES];
   1587 	int				okay;
   1588 
   1589 	if (tmp->tm_isdst > 1)
   1590 		tmp->tm_isdst = 1;
   1591 	t = time2(tmp, funcp, offset, &okay);
   1592 #ifdef PCTS
   1593 	/*
   1594 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1595 	*/
   1596 	if (okay)
   1597 		return t;
   1598 	if (tmp->tm_isdst < 0)
   1599 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1600 #endif /* defined PCTS */
   1601 #ifndef PCTS
   1602 	if (okay || tmp->tm_isdst < 0)
   1603 		return t;
   1604 #endif /* !defined PCTS */
   1605 	/*
   1606 	** We're supposed to assume that somebody took a time of one type
   1607 	** and did some math on it that yielded a "struct tm" that's bad.
   1608 	** We try to divine the type they started from and adjust to the
   1609 	** type they need.
   1610 	*/
   1611 	/*
   1612 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1613 	*/
   1614 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1615 		lclptr : gmtptr);
   1616 #ifdef ALL_STATE
   1617 	if (sp == NULL)
   1618 		return WRONG;
   1619 #endif /* defined ALL_STATE */
   1620 	for (i = 0; i < sp->typecnt; ++i)
   1621 		seen[i] = FALSE;
   1622 	nseen = 0;
   1623 	for (i = sp->timecnt - 1; i >= 0; --i)
   1624 		if (!seen[sp->types[i]]) {
   1625 			seen[sp->types[i]] = TRUE;
   1626 			types[nseen++] = sp->types[i];
   1627 		}
   1628 	for (sameind = 0; sameind < nseen; ++sameind) {
   1629 		samei = types[sameind];
   1630 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1631 			continue;
   1632 		for (otherind = 0; otherind < nseen; ++otherind) {
   1633 			otheri = types[otherind];
   1634 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1635 				continue;
   1636 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   1637 					sp->ttis[samei].tt_gmtoff);
   1638 			tmp->tm_isdst = !tmp->tm_isdst;
   1639 			t = time2(tmp, funcp, offset, &okay);
   1640 			if (okay)
   1641 				return t;
   1642 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   1643 					sp->ttis[samei].tt_gmtoff);
   1644 			tmp->tm_isdst = !tmp->tm_isdst;
   1645 		}
   1646 	}
   1647 	return WRONG;
   1648 }
   1649 
   1650 time_t
   1651 mktime(tmp)
   1652 struct tm * const	tmp;
   1653 {
   1654 	time_t result;
   1655 
   1656 	rwlock_wrlock(&__lcl_lock);
   1657 	__tzset_unlocked();
   1658 	result = time1(tmp, localsub, 0L);
   1659 	rwlock_unlock(&__lcl_lock);
   1660 	return (result);
   1661 }
   1662 
   1663 #ifdef STD_INSPIRED
   1664 
   1665 time_t
   1666 timelocal(tmp)
   1667 struct tm * const	tmp;
   1668 {
   1669 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1670 	return mktime(tmp);
   1671 }
   1672 
   1673 time_t
   1674 timegm(tmp)
   1675 struct tm * const	tmp;
   1676 {
   1677 	tmp->tm_isdst = 0;
   1678 	return time1(tmp, gmtsub, 0L);
   1679 }
   1680 
   1681 time_t
   1682 timeoff(tmp, offset)
   1683 struct tm * const	tmp;
   1684 const long		offset;
   1685 {
   1686 	tmp->tm_isdst = 0;
   1687 	return time1(tmp, gmtsub, offset);
   1688 }
   1689 
   1690 #endif /* defined STD_INSPIRED */
   1691 
   1692 #ifdef CMUCS
   1693 
   1694 /*
   1695 ** The following is supplied for compatibility with
   1696 ** previous versions of the CMUCS runtime library.
   1697 */
   1698 
   1699 long
   1700 gtime(tmp)
   1701 struct tm * const	tmp;
   1702 {
   1703 	const time_t	t = mktime(tmp);
   1704 
   1705 	if (t == WRONG)
   1706 		return -1;
   1707 	return t;
   1708 }
   1709 
   1710 #endif /* defined CMUCS */
   1711 
   1712 /*
   1713 ** XXX--is the below the right way to conditionalize??
   1714 */
   1715 
   1716 #ifdef STD_INSPIRED
   1717 
   1718 /*
   1719 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1720 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1721 ** is not the case if we are accounting for leap seconds.
   1722 ** So, we provide the following conversion routines for use
   1723 ** when exchanging timestamps with POSIX conforming systems.
   1724 */
   1725 
   1726 static long
   1727 leapcorr(timep)
   1728 time_t *	timep;
   1729 {
   1730 	register struct state *		sp;
   1731 	register struct lsinfo *	lp;
   1732 	register int			i;
   1733 
   1734 	sp = lclptr;
   1735 	i = sp->leapcnt;
   1736 	while (--i >= 0) {
   1737 		lp = &sp->lsis[i];
   1738 		if (*timep >= lp->ls_trans)
   1739 			return lp->ls_corr;
   1740 	}
   1741 	return 0;
   1742 }
   1743 
   1744 time_t
   1745 time2posix(t)
   1746 time_t	t;
   1747 {
   1748 	time_t result;
   1749 
   1750 	rwlock_wrlock(&__lcl_lock);
   1751 	__tzset_unlocked();
   1752 	result = t - leapcorr(&t);
   1753 	rwlock_unlock(&__lcl_lock);
   1754 	return (result);
   1755 }
   1756 
   1757 time_t
   1758 posix2time(t)
   1759 time_t	t;
   1760 {
   1761 	time_t	x;
   1762 	time_t	y;
   1763 
   1764 	rwlock_wrlock(&__lcl_lock);
   1765 	__tzset_unlocked();
   1766 	/*
   1767 	** For a positive leap second hit, the result
   1768 	** is not unique.  For a negative leap second
   1769 	** hit, the corresponding time doesn't exist,
   1770 	** so we return an adjacent second.
   1771 	*/
   1772 	x = t + leapcorr(&t);
   1773 	y = x - leapcorr(&x);
   1774 	if (y < t) {
   1775 		do {
   1776 			x++;
   1777 			y = x - leapcorr(&x);
   1778 		} while (y < t);
   1779 		if (t != y) {
   1780 			rwlock_unlock(&__lcl_lock);
   1781 			return x - 1;
   1782 		}
   1783 	} else if (y > t) {
   1784 		do {
   1785 			--x;
   1786 			y = x - leapcorr(&x);
   1787 		} while (y > t);
   1788 		if (t != y) {
   1789 			rwlock_unlock(&__lcl_lock);
   1790 			return x + 1;
   1791 		}
   1792 	}
   1793 	rwlock_unlock(&__lcl_lock);
   1794 	return x;
   1795 }
   1796 
   1797 #endif /* defined STD_INSPIRED */
   1798