localtime.c revision 1.50 1 /* $NetBSD: localtime.c,v 1.50 2010/12/17 23:11:57 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.9";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.50 2010/12/17 23:11:57 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29
30 #if defined(__weak_alias)
31 __weak_alias(ctime_r,_ctime_r)
32 __weak_alias(ctime_rz,_ctime_rz)
33 __weak_alias(daylight,_daylight)
34 __weak_alias(mktime_z,_mktime_z)
35 __weak_alias(localtime_r,_localtime_r)
36 __weak_alias(localtime_rz,_localtime_rz)
37 __weak_alias(posix2time,_posix2time)
38 __weak_alias(posix2time_z,_posix2time_z)
39 __weak_alias(tzname,_tzname)
40 #endif
41
42 #include "float.h" /* for FLT_MAX and DBL_MAX */
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE O_RDONLY
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 long tt_gmtoff; /* UTC offset in seconds */
108 int tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 int tt_ttisstd; /* TRUE if transition is std time */
111 int tt_ttisgmt; /* TRUE if transition is UTC */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 long ls_corr; /* correction to apply */
117 };
118
119 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
120
121 #ifdef TZNAME_MAX
122 #define MY_TZNAME_MAX TZNAME_MAX
123 #endif /* defined TZNAME_MAX */
124 #ifndef TZNAME_MAX
125 #define MY_TZNAME_MAX 255
126 #endif /* !defined TZNAME_MAX */
127
128 struct __state {
129 int leapcnt;
130 int timecnt;
131 int typecnt;
132 int charcnt;
133 int goback;
134 int goahead;
135 time_t ats[TZ_MAX_TIMES];
136 unsigned char types[TZ_MAX_TIMES];
137 struct ttinfo ttis[TZ_MAX_TYPES];
138 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
139 (2 * (MY_TZNAME_MAX + 1)))];
140 struct lsinfo lsis[TZ_MAX_LEAPS];
141 };
142
143 struct rule {
144 int r_type; /* type of rule--see below */
145 int r_day; /* day number of rule */
146 int r_week; /* week number of rule */
147 int r_mon; /* month number of rule */
148 long r_time; /* transition time of rule */
149 };
150
151 #define JULIAN_DAY 0 /* Jn - Julian day */
152 #define DAY_OF_YEAR 1 /* n - day of year */
153 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
154
155 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
156 long offset, struct tm *tmp);
157
158 /*
159 ** Prototypes for static functions.
160 */
161
162 static long detzcode(const char * codep);
163 static time_t detzcode64(const char * codep);
164 static int differ_by_repeat(time_t t1, time_t t0);
165 static const char * getzname(const char * strp);
166 static const char * getqzname(const char * strp, const int delim);
167 static const char * getnum(const char * strp, int * nump, int min,
168 int max);
169 static const char * getsecs(const char * strp, long * secsp);
170 static const char * getoffset(const char * strp, long * offsetp);
171 static const char * getrule(const char * strp, struct rule * rulep);
172 static void gmtload(timezone_t sp);
173 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
174 long offset, struct tm * tmp);
175 static struct tm * localsub(const timezone_t sp, const time_t *timep,
176 long offset, struct tm *tmp);
177 static int increment_overflow(int * number, int delta);
178 static int leaps_thru_end_of(int y);
179 static int long_increment_overflow(long * number, int delta);
180 static int long_normalize_overflow(long * tensptr,
181 int * unitsptr, int base);
182 static int normalize_overflow(int * tensptr, int * unitsptr,
183 int base);
184 static void settzname(void);
185 static time_t time1(const timezone_t sp, struct tm * const tmp,
186 subfun_t funcp, long offset);
187 static time_t time2(const timezone_t sp, struct tm * const tmp,
188 subfun_t funcp,
189 const long offset, int *const okayp);
190 static time_t time2sub(const timezone_t sp, struct tm * consttmp,
191 subfun_t funcp, const long offset,
192 int *const okayp, const int do_norm_secs);
193 static struct tm * timesub(const timezone_t sp, const time_t * timep,
194 long offset, struct tm * tmp);
195 static int tmcomp(const struct tm * atmp,
196 const struct tm * btmp);
197 static time_t transtime(time_t janfirst, int year,
198 const struct rule * rulep, long offset);
199 static int typesequiv(const timezone_t sp, int a, int b);
200 static int tzload(timezone_t sp, const char * name,
201 int doextend);
202 static int tzparse(timezone_t sp, const char * name,
203 int lastditch);
204 static void tzset_unlocked(void);
205 static void tzsetwall_unlocked(void);
206 static long leapcorr(const timezone_t sp, time_t * timep);
207
208 static timezone_t lclptr;
209 static timezone_t gmtptr;
210
211 #ifndef TZ_STRLEN_MAX
212 #define TZ_STRLEN_MAX 255
213 #endif /* !defined TZ_STRLEN_MAX */
214
215 static char lcl_TZname[TZ_STRLEN_MAX + 1];
216 static int lcl_is_set;
217 static int gmt_is_set;
218
219 #if !defined(__LIBC12_SOURCE__)
220
221 __aconst char * tzname[2] = {
222 (__aconst char *)__UNCONST(wildabbr),
223 (__aconst char *)__UNCONST(wildabbr)
224 };
225
226 #else
227
228 extern __aconst char * tzname[2];
229
230 #endif
231
232 #ifdef _REENTRANT
233 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
234 #endif
235
236 /*
237 ** Section 4.12.3 of X3.159-1989 requires that
238 ** Except for the strftime function, these functions [asctime,
239 ** ctime, gmtime, localtime] return values in one of two static
240 ** objects: a broken-down time structure and an array of char.
241 ** Thanks to Paul Eggert for noting this.
242 */
243
244 static struct tm tm;
245
246 #ifdef USG_COMPAT
247 #if !defined(__LIBC12_SOURCE__)
248 long timezone = 0;
249 int daylight = 0;
250 #else
251 extern int daylight;
252 extern long timezone __RENAME(__timezone13);
253 #endif
254 #endif /* defined USG_COMPAT */
255
256 #ifdef ALTZONE
257 time_t altzone = 0;
258 #endif /* defined ALTZONE */
259
260 static long
261 detzcode(const char *const codep)
262 {
263 long result;
264 int i;
265
266 result = (codep[0] & 0x80) ? ~0L : 0;
267 for (i = 0; i < 4; ++i)
268 result = (result << 8) | (codep[i] & 0xff);
269 return result;
270 }
271
272 static time_t
273 detzcode64(const char *const codep)
274 {
275 time_t result;
276 int i;
277
278 result = (codep[0] & 0x80) ? -1 : 0;
279 for (i = 0; i < 8; ++i)
280 result = result * 256 + (codep[i] & 0xff);
281 return result;
282 }
283
284 const char *
285 tzgetname(const timezone_t sp, int isdst)
286 {
287 int i;
288 for (i = 0; i < sp->timecnt; ++i) {
289 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
290
291 if (ttisp->tt_isdst == isdst)
292 return &sp->chars[ttisp->tt_abbrind];
293 }
294 return NULL;
295 }
296
297 static void
298 settzname_z(timezone_t sp)
299 {
300 int i;
301
302 /*
303 ** Scrub the abbreviations.
304 ** First, replace bogus characters.
305 */
306 for (i = 0; i < sp->charcnt; ++i)
307 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
308 sp->chars[i] = TZ_ABBR_ERR_CHAR;
309 /*
310 ** Second, truncate long abbreviations.
311 */
312 for (i = 0; i < sp->typecnt; ++i) {
313 const struct ttinfo * const ttisp = &sp->ttis[i];
314 char * cp = &sp->chars[ttisp->tt_abbrind];
315
316 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
317 strcmp(cp, GRANDPARENTED) != 0)
318 *(cp + TZ_ABBR_MAX_LEN) = '\0';
319 }
320 }
321
322 static void
323 settzname(void)
324 {
325 timezone_t const sp = lclptr;
326 int i;
327
328 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
329 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
330 #ifdef USG_COMPAT
331 daylight = 0;
332 timezone = 0;
333 #endif /* defined USG_COMPAT */
334 #ifdef ALTZONE
335 altzone = 0;
336 #endif /* defined ALTZONE */
337 if (sp == NULL) {
338 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
339 return;
340 }
341 for (i = 0; i < sp->typecnt; ++i) {
342 const struct ttinfo * const ttisp = &sp->ttis[i];
343
344 tzname[ttisp->tt_isdst] =
345 &sp->chars[ttisp->tt_abbrind];
346 #ifdef USG_COMPAT
347 if (ttisp->tt_isdst)
348 daylight = 1;
349 if (i == 0 || !ttisp->tt_isdst)
350 timezone = -(ttisp->tt_gmtoff);
351 #endif /* defined USG_COMPAT */
352 #ifdef ALTZONE
353 if (i == 0 || ttisp->tt_isdst)
354 altzone = -(ttisp->tt_gmtoff);
355 #endif /* defined ALTZONE */
356 }
357 /*
358 ** And to get the latest zone names into tzname. . .
359 */
360 for (i = 0; i < sp->timecnt; ++i) {
361 register const struct ttinfo * const ttisp =
362 &sp->ttis[
363 sp->types[i]];
364
365 tzname[ttisp->tt_isdst] =
366 &sp->chars[ttisp->tt_abbrind];
367 }
368 settzname_z(sp);
369 }
370
371 static int
372 differ_by_repeat(const time_t t1, const time_t t0)
373 {
374 /* CONSTCOND */
375 if (TYPE_INTEGRAL(time_t) &&
376 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
377 return 0;
378 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
379 }
380
381 static int
382 tzload(timezone_t sp, const char *name, const int doextend)
383 {
384 const char * p;
385 int i;
386 int fid;
387 int stored;
388 int nread;
389 union {
390 struct tzhead tzhead;
391 char buf[2 * sizeof(struct tzhead) +
392 2 * sizeof *sp +
393 4 * TZ_MAX_TIMES];
394 } u;
395
396 sp->goback = sp->goahead = FALSE;
397 if (name == NULL && (name = TZDEFAULT) == NULL)
398 return -1;
399 {
400 int doaccess;
401 /*
402 ** Section 4.9.1 of the C standard says that
403 ** "FILENAME_MAX expands to an integral constant expression
404 ** that is the size needed for an array of char large enough
405 ** to hold the longest file name string that the implementation
406 ** guarantees can be opened."
407 */
408 char fullname[FILENAME_MAX + 1];
409
410 if (name[0] == ':')
411 ++name;
412 doaccess = name[0] == '/';
413 if (!doaccess) {
414 if ((p = TZDIR) == NULL)
415 return -1;
416 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
417 return -1;
418 (void) strcpy(fullname, p); /* XXX strcpy is safe */
419 (void) strcat(fullname, "/"); /* XXX strcat is safe */
420 (void) strcat(fullname, name); /* XXX strcat is safe */
421 /*
422 ** Set doaccess if '.' (as in "../") shows up in name.
423 */
424 if (strchr(name, '.') != NULL)
425 doaccess = TRUE;
426 name = fullname;
427 }
428 if (doaccess && access(name, R_OK) != 0)
429 return -1;
430 /*
431 * XXX potential security problem here if user of a set-id
432 * program has set TZ (which is passed in as name) here,
433 * and uses a race condition trick to defeat the access(2)
434 * above.
435 */
436 if ((fid = open(name, OPEN_MODE)) == -1)
437 return -1;
438 }
439 nread = read(fid, u.buf, sizeof u.buf);
440 if (close(fid) < 0 || nread <= 0)
441 return -1;
442 for (stored = 4; stored <= 8; stored *= 2) {
443 int ttisstdcnt;
444 int ttisgmtcnt;
445
446 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
447 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
448 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
449 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
450 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
451 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
452 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
453 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
454 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
455 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
456 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
457 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
458 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
459 return -1;
460 if (nread - (p - u.buf) <
461 sp->timecnt * stored + /* ats */
462 sp->timecnt + /* types */
463 sp->typecnt * 6 + /* ttinfos */
464 sp->charcnt + /* chars */
465 sp->leapcnt * (stored + 4) + /* lsinfos */
466 ttisstdcnt + /* ttisstds */
467 ttisgmtcnt) /* ttisgmts */
468 return -1;
469 for (i = 0; i < sp->timecnt; ++i) {
470 sp->ats[i] = (stored == 4) ?
471 detzcode(p) : detzcode64(p);
472 p += stored;
473 }
474 for (i = 0; i < sp->timecnt; ++i) {
475 sp->types[i] = (unsigned char) *p++;
476 if (sp->types[i] >= sp->typecnt)
477 return -1;
478 }
479 for (i = 0; i < sp->typecnt; ++i) {
480 struct ttinfo * ttisp;
481
482 ttisp = &sp->ttis[i];
483 ttisp->tt_gmtoff = detzcode(p);
484 p += 4;
485 ttisp->tt_isdst = (unsigned char) *p++;
486 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
487 return -1;
488 ttisp->tt_abbrind = (unsigned char) *p++;
489 if (ttisp->tt_abbrind < 0 ||
490 ttisp->tt_abbrind > sp->charcnt)
491 return -1;
492 }
493 for (i = 0; i < sp->charcnt; ++i)
494 sp->chars[i] = *p++;
495 sp->chars[i] = '\0'; /* ensure '\0' at end */
496 for (i = 0; i < sp->leapcnt; ++i) {
497 struct lsinfo * lsisp;
498
499 lsisp = &sp->lsis[i];
500 lsisp->ls_trans = (stored == 4) ?
501 detzcode(p) : detzcode64(p);
502 p += stored;
503 lsisp->ls_corr = detzcode(p);
504 p += 4;
505 }
506 for (i = 0; i < sp->typecnt; ++i) {
507 struct ttinfo * ttisp;
508
509 ttisp = &sp->ttis[i];
510 if (ttisstdcnt == 0)
511 ttisp->tt_ttisstd = FALSE;
512 else {
513 ttisp->tt_ttisstd = *p++;
514 if (ttisp->tt_ttisstd != TRUE &&
515 ttisp->tt_ttisstd != FALSE)
516 return -1;
517 }
518 }
519 for (i = 0; i < sp->typecnt; ++i) {
520 struct ttinfo * ttisp;
521
522 ttisp = &sp->ttis[i];
523 if (ttisgmtcnt == 0)
524 ttisp->tt_ttisgmt = FALSE;
525 else {
526 ttisp->tt_ttisgmt = *p++;
527 if (ttisp->tt_ttisgmt != TRUE &&
528 ttisp->tt_ttisgmt != FALSE)
529 return -1;
530 }
531 }
532 /*
533 ** Out-of-sort ats should mean we're running on a
534 ** signed time_t system but using a data file with
535 ** unsigned values (or vice versa).
536 */
537 for (i = 0; i < sp->timecnt - 2; ++i)
538 if (sp->ats[i] > sp->ats[i + 1]) {
539 ++i;
540 /* CONSTCOND */
541 if (TYPE_SIGNED(time_t)) {
542 /*
543 ** Ignore the end (easy).
544 */
545 sp->timecnt = i;
546 } else {
547 /*
548 ** Ignore the beginning (harder).
549 */
550 int j;
551
552 for (j = 0; j + i < sp->timecnt; ++j) {
553 sp->ats[j] = sp->ats[j + i];
554 sp->types[j] = sp->types[j + i];
555 }
556 sp->timecnt = j;
557 }
558 break;
559 }
560 /*
561 ** If this is an old file, we're done.
562 */
563 if (u.tzhead.tzh_version[0] == '\0')
564 break;
565 nread -= p - u.buf;
566 for (i = 0; i < nread; ++i)
567 u.buf[i] = p[i];
568 /*
569 ** If this is a narrow integer time_t system, we're done.
570 */
571 if (stored >= (int) sizeof(time_t)
572 /* CONSTCOND */
573 && TYPE_INTEGRAL(time_t))
574 break;
575 }
576 if (doextend && nread > 2 &&
577 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
578 sp->typecnt + 2 <= TZ_MAX_TYPES) {
579 struct __state ts;
580 int result;
581
582 u.buf[nread - 1] = '\0';
583 result = tzparse(&ts, &u.buf[1], FALSE);
584 if (result == 0 && ts.typecnt == 2 &&
585 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
586 for (i = 0; i < 2; ++i)
587 ts.ttis[i].tt_abbrind +=
588 sp->charcnt;
589 for (i = 0; i < ts.charcnt; ++i)
590 sp->chars[sp->charcnt++] =
591 ts.chars[i];
592 i = 0;
593 while (i < ts.timecnt &&
594 ts.ats[i] <=
595 sp->ats[sp->timecnt - 1])
596 ++i;
597 while (i < ts.timecnt &&
598 sp->timecnt < TZ_MAX_TIMES) {
599 sp->ats[sp->timecnt] =
600 ts.ats[i];
601 sp->types[sp->timecnt] =
602 sp->typecnt +
603 ts.types[i];
604 ++sp->timecnt;
605 ++i;
606 }
607 sp->ttis[sp->typecnt++] = ts.ttis[0];
608 sp->ttis[sp->typecnt++] = ts.ttis[1];
609 }
610 }
611 if (sp->timecnt > 1) {
612 for (i = 1; i < sp->timecnt; ++i)
613 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
614 differ_by_repeat(sp->ats[i], sp->ats[0])) {
615 sp->goback = TRUE;
616 break;
617 }
618 for (i = sp->timecnt - 2; i >= 0; --i)
619 if (typesequiv(sp, sp->types[sp->timecnt - 1],
620 sp->types[i]) &&
621 differ_by_repeat(sp->ats[sp->timecnt - 1],
622 sp->ats[i])) {
623 sp->goahead = TRUE;
624 break;
625 }
626 }
627 return 0;
628 }
629
630 static int
631 typesequiv(const timezone_t sp, const int a, const int b)
632 {
633 int result;
634
635 if (sp == NULL ||
636 a < 0 || a >= sp->typecnt ||
637 b < 0 || b >= sp->typecnt)
638 result = FALSE;
639 else {
640 const struct ttinfo * ap = &sp->ttis[a];
641 const struct ttinfo * bp = &sp->ttis[b];
642 result = ap->tt_gmtoff == bp->tt_gmtoff &&
643 ap->tt_isdst == bp->tt_isdst &&
644 ap->tt_ttisstd == bp->tt_ttisstd &&
645 ap->tt_ttisgmt == bp->tt_ttisgmt &&
646 strcmp(&sp->chars[ap->tt_abbrind],
647 &sp->chars[bp->tt_abbrind]) == 0;
648 }
649 return result;
650 }
651
652 static const int mon_lengths[2][MONSPERYEAR] = {
653 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
654 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
655 };
656
657 static const int year_lengths[2] = {
658 DAYSPERNYEAR, DAYSPERLYEAR
659 };
660
661 /*
662 ** Given a pointer into a time zone string, scan until a character that is not
663 ** a valid character in a zone name is found. Return a pointer to that
664 ** character.
665 */
666
667 static const char *
668 getzname(strp)
669 const char * strp;
670 {
671 char c;
672
673 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
674 c != '+')
675 ++strp;
676 return strp;
677 }
678
679 /*
680 ** Given a pointer into an extended time zone string, scan until the ending
681 ** delimiter of the zone name is located. Return a pointer to the delimiter.
682 **
683 ** As with getzname above, the legal character set is actually quite
684 ** restricted, with other characters producing undefined results.
685 ** We don't do any checking here; checking is done later in common-case code.
686 */
687
688 static const char *
689 getqzname(const char *strp, const int delim)
690 {
691 int c;
692
693 while ((c = *strp) != '\0' && c != delim)
694 ++strp;
695 return strp;
696 }
697
698 /*
699 ** Given a pointer into a time zone string, extract a number from that string.
700 ** Check that the number is within a specified range; if it is not, return
701 ** NULL.
702 ** Otherwise, return a pointer to the first character not part of the number.
703 */
704
705 static const char *
706 getnum(strp, nump, min, max)
707 const char * strp;
708 int * const nump;
709 const int min;
710 const int max;
711 {
712 char c;
713 int num;
714
715 if (strp == NULL || !is_digit(c = *strp)) {
716 errno = EINVAL;
717 return NULL;
718 }
719 num = 0;
720 do {
721 num = num * 10 + (c - '0');
722 if (num > max) {
723 errno = EOVERFLOW;
724 return NULL; /* illegal value */
725 }
726 c = *++strp;
727 } while (is_digit(c));
728 if (num < min) {
729 errno = EINVAL;
730 return NULL; /* illegal value */
731 }
732 *nump = num;
733 return strp;
734 }
735
736 /*
737 ** Given a pointer into a time zone string, extract a number of seconds,
738 ** in hh[:mm[:ss]] form, from the string.
739 ** If any error occurs, return NULL.
740 ** Otherwise, return a pointer to the first character not part of the number
741 ** of seconds.
742 */
743
744 static const char *
745 getsecs(const char *strp, long *const secsp)
746 {
747 int num;
748
749 /*
750 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
751 ** "M10.4.6/26", which does not conform to Posix,
752 ** but which specifies the equivalent of
753 ** ``02:00 on the first Sunday on or after 23 Oct''.
754 */
755 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
756 if (strp == NULL)
757 return NULL;
758 *secsp = num * (long) SECSPERHOUR;
759 if (*strp == ':') {
760 ++strp;
761 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
762 if (strp == NULL)
763 return NULL;
764 *secsp += num * SECSPERMIN;
765 if (*strp == ':') {
766 ++strp;
767 /* `SECSPERMIN' allows for leap seconds. */
768 strp = getnum(strp, &num, 0, SECSPERMIN);
769 if (strp == NULL)
770 return NULL;
771 *secsp += num;
772 }
773 }
774 return strp;
775 }
776
777 /*
778 ** Given a pointer into a time zone string, extract an offset, in
779 ** [+-]hh[:mm[:ss]] form, from the string.
780 ** If any error occurs, return NULL.
781 ** Otherwise, return a pointer to the first character not part of the time.
782 */
783
784 static const char *
785 getoffset(const char *strp, long *const offsetp)
786 {
787 int neg = 0;
788
789 if (*strp == '-') {
790 neg = 1;
791 ++strp;
792 } else if (*strp == '+')
793 ++strp;
794 strp = getsecs(strp, offsetp);
795 if (strp == NULL)
796 return NULL; /* illegal time */
797 if (neg)
798 *offsetp = -*offsetp;
799 return strp;
800 }
801
802 /*
803 ** Given a pointer into a time zone string, extract a rule in the form
804 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
805 ** If a valid rule is not found, return NULL.
806 ** Otherwise, return a pointer to the first character not part of the rule.
807 */
808
809 static const char *
810 getrule(const char *strp, struct rule *const rulep)
811 {
812 if (*strp == 'J') {
813 /*
814 ** Julian day.
815 */
816 rulep->r_type = JULIAN_DAY;
817 ++strp;
818 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
819 } else if (*strp == 'M') {
820 /*
821 ** Month, week, day.
822 */
823 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
824 ++strp;
825 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
826 if (strp == NULL)
827 return NULL;
828 if (*strp++ != '.')
829 return NULL;
830 strp = getnum(strp, &rulep->r_week, 1, 5);
831 if (strp == NULL)
832 return NULL;
833 if (*strp++ != '.')
834 return NULL;
835 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
836 } else if (is_digit(*strp)) {
837 /*
838 ** Day of year.
839 */
840 rulep->r_type = DAY_OF_YEAR;
841 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
842 } else return NULL; /* invalid format */
843 if (strp == NULL)
844 return NULL;
845 if (*strp == '/') {
846 /*
847 ** Time specified.
848 */
849 ++strp;
850 strp = getsecs(strp, &rulep->r_time);
851 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
852 return strp;
853 }
854
855 /*
856 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
857 ** year, a rule, and the offset from UTC at the time that rule takes effect,
858 ** calculate the Epoch-relative time that rule takes effect.
859 */
860
861 static time_t
862 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
863 const long offset)
864 {
865 int leapyear;
866 time_t value;
867 int i;
868 int d, m1, yy0, yy1, yy2, dow;
869
870 INITIALIZE(value);
871 leapyear = isleap(year);
872 switch (rulep->r_type) {
873
874 case JULIAN_DAY:
875 /*
876 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
877 ** years.
878 ** In non-leap years, or if the day number is 59 or less, just
879 ** add SECSPERDAY times the day number-1 to the time of
880 ** January 1, midnight, to get the day.
881 */
882 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
883 if (leapyear && rulep->r_day >= 60)
884 value += SECSPERDAY;
885 break;
886
887 case DAY_OF_YEAR:
888 /*
889 ** n - day of year.
890 ** Just add SECSPERDAY times the day number to the time of
891 ** January 1, midnight, to get the day.
892 */
893 value = janfirst + rulep->r_day * SECSPERDAY;
894 break;
895
896 case MONTH_NTH_DAY_OF_WEEK:
897 /*
898 ** Mm.n.d - nth "dth day" of month m.
899 */
900 value = janfirst;
901 for (i = 0; i < rulep->r_mon - 1; ++i)
902 value += mon_lengths[leapyear][i] * SECSPERDAY;
903
904 /*
905 ** Use Zeller's Congruence to get day-of-week of first day of
906 ** month.
907 */
908 m1 = (rulep->r_mon + 9) % 12 + 1;
909 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
910 yy1 = yy0 / 100;
911 yy2 = yy0 % 100;
912 dow = ((26 * m1 - 2) / 10 +
913 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
914 if (dow < 0)
915 dow += DAYSPERWEEK;
916
917 /*
918 ** "dow" is the day-of-week of the first day of the month. Get
919 ** the day-of-month (zero-origin) of the first "dow" day of the
920 ** month.
921 */
922 d = rulep->r_day - dow;
923 if (d < 0)
924 d += DAYSPERWEEK;
925 for (i = 1; i < rulep->r_week; ++i) {
926 if (d + DAYSPERWEEK >=
927 mon_lengths[leapyear][rulep->r_mon - 1])
928 break;
929 d += DAYSPERWEEK;
930 }
931
932 /*
933 ** "d" is the day-of-month (zero-origin) of the day we want.
934 */
935 value += d * SECSPERDAY;
936 break;
937 }
938
939 /*
940 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
941 ** question. To get the Epoch-relative time of the specified local
942 ** time on that day, add the transition time and the current offset
943 ** from UTC.
944 */
945 return value + rulep->r_time + offset;
946 }
947
948 /*
949 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
950 ** appropriate.
951 */
952
953 static int
954 tzparse(timezone_t sp, const char *name, const int lastditch)
955 {
956 const char * stdname;
957 const char * dstname;
958 size_t stdlen;
959 size_t dstlen;
960 long stdoffset;
961 long dstoffset;
962 time_t * atp;
963 unsigned char * typep;
964 char * cp;
965 int load_result;
966
967 INITIALIZE(dstname);
968 stdname = name;
969 if (lastditch) {
970 stdlen = strlen(name); /* length of standard zone name */
971 name += stdlen;
972 if (stdlen >= sizeof sp->chars)
973 stdlen = (sizeof sp->chars) - 1;
974 stdoffset = 0;
975 } else {
976 if (*name == '<') {
977 name++;
978 stdname = name;
979 name = getqzname(name, '>');
980 if (*name != '>')
981 return (-1);
982 stdlen = name - stdname;
983 name++;
984 } else {
985 name = getzname(name);
986 stdlen = name - stdname;
987 }
988 if (*name == '\0')
989 return -1;
990 name = getoffset(name, &stdoffset);
991 if (name == NULL)
992 return -1;
993 }
994 load_result = tzload(sp, TZDEFRULES, FALSE);
995 if (load_result != 0)
996 sp->leapcnt = 0; /* so, we're off a little */
997 if (*name != '\0') {
998 if (*name == '<') {
999 dstname = ++name;
1000 name = getqzname(name, '>');
1001 if (*name != '>')
1002 return -1;
1003 dstlen = name - dstname;
1004 name++;
1005 } else {
1006 dstname = name;
1007 name = getzname(name);
1008 dstlen = name - dstname; /* length of DST zone name */
1009 }
1010 if (*name != '\0' && *name != ',' && *name != ';') {
1011 name = getoffset(name, &dstoffset);
1012 if (name == NULL)
1013 return -1;
1014 } else dstoffset = stdoffset - SECSPERHOUR;
1015 if (*name == '\0' && load_result != 0)
1016 name = TZDEFRULESTRING;
1017 if (*name == ',' || *name == ';') {
1018 struct rule start;
1019 struct rule end;
1020 int year;
1021 time_t janfirst;
1022 time_t starttime;
1023 time_t endtime;
1024
1025 ++name;
1026 if ((name = getrule(name, &start)) == NULL)
1027 return -1;
1028 if (*name++ != ',')
1029 return -1;
1030 if ((name = getrule(name, &end)) == NULL)
1031 return -1;
1032 if (*name != '\0')
1033 return -1;
1034 sp->typecnt = 2; /* standard time and DST */
1035 /*
1036 ** Two transitions per year, from EPOCH_YEAR forward.
1037 */
1038 sp->ttis[0].tt_gmtoff = -dstoffset;
1039 sp->ttis[0].tt_isdst = 1;
1040 sp->ttis[0].tt_abbrind = stdlen + 1;
1041 sp->ttis[1].tt_gmtoff = -stdoffset;
1042 sp->ttis[1].tt_isdst = 0;
1043 sp->ttis[1].tt_abbrind = 0;
1044 atp = sp->ats;
1045 typep = sp->types;
1046 janfirst = 0;
1047 sp->timecnt = 0;
1048 for (year = EPOCH_YEAR;
1049 sp->timecnt + 2 <= TZ_MAX_TIMES;
1050 ++year) {
1051 time_t newfirst;
1052
1053 starttime = transtime(janfirst, year, &start,
1054 stdoffset);
1055 endtime = transtime(janfirst, year, &end,
1056 dstoffset);
1057 if (starttime > endtime) {
1058 *atp++ = endtime;
1059 *typep++ = 1; /* DST ends */
1060 *atp++ = starttime;
1061 *typep++ = 0; /* DST begins */
1062 } else {
1063 *atp++ = starttime;
1064 *typep++ = 0; /* DST begins */
1065 *atp++ = endtime;
1066 *typep++ = 1; /* DST ends */
1067 }
1068 sp->timecnt += 2;
1069 newfirst = janfirst;
1070 newfirst += year_lengths[isleap(year)] *
1071 SECSPERDAY;
1072 if (newfirst <= janfirst)
1073 break;
1074 janfirst = newfirst;
1075 }
1076 } else {
1077 long theirstdoffset;
1078 long theirdstoffset;
1079 long theiroffset;
1080 int isdst;
1081 int i;
1082 int j;
1083
1084 if (*name != '\0')
1085 return -1;
1086 /*
1087 ** Initial values of theirstdoffset
1088 */
1089 theirstdoffset = 0;
1090 for (i = 0; i < sp->timecnt; ++i) {
1091 j = sp->types[i];
1092 if (!sp->ttis[j].tt_isdst) {
1093 theirstdoffset =
1094 -sp->ttis[j].tt_gmtoff;
1095 break;
1096 }
1097 }
1098 theirdstoffset = 0;
1099 for (i = 0; i < sp->timecnt; ++i) {
1100 j = sp->types[i];
1101 if (sp->ttis[j].tt_isdst) {
1102 theirdstoffset =
1103 -sp->ttis[j].tt_gmtoff;
1104 break;
1105 }
1106 }
1107 /*
1108 ** Initially we're assumed to be in standard time.
1109 */
1110 isdst = FALSE;
1111 theiroffset = theirstdoffset;
1112 /*
1113 ** Now juggle transition times and types
1114 ** tracking offsets as you do.
1115 */
1116 for (i = 0; i < sp->timecnt; ++i) {
1117 j = sp->types[i];
1118 sp->types[i] = sp->ttis[j].tt_isdst;
1119 if (sp->ttis[j].tt_ttisgmt) {
1120 /* No adjustment to transition time */
1121 } else {
1122 /*
1123 ** If summer time is in effect, and the
1124 ** transition time was not specified as
1125 ** standard time, add the summer time
1126 ** offset to the transition time;
1127 ** otherwise, add the standard time
1128 ** offset to the transition time.
1129 */
1130 /*
1131 ** Transitions from DST to DDST
1132 ** will effectively disappear since
1133 ** POSIX provides for only one DST
1134 ** offset.
1135 */
1136 if (isdst && !sp->ttis[j].tt_ttisstd) {
1137 sp->ats[i] += dstoffset -
1138 theirdstoffset;
1139 } else {
1140 sp->ats[i] += stdoffset -
1141 theirstdoffset;
1142 }
1143 }
1144 theiroffset = -sp->ttis[j].tt_gmtoff;
1145 if (!sp->ttis[j].tt_isdst)
1146 theirstdoffset = theiroffset;
1147 else theirdstoffset = theiroffset;
1148 }
1149 /*
1150 ** Finally, fill in ttis.
1151 ** ttisstd and ttisgmt need not be handled.
1152 */
1153 sp->ttis[0].tt_gmtoff = -stdoffset;
1154 sp->ttis[0].tt_isdst = FALSE;
1155 sp->ttis[0].tt_abbrind = 0;
1156 sp->ttis[1].tt_gmtoff = -dstoffset;
1157 sp->ttis[1].tt_isdst = TRUE;
1158 sp->ttis[1].tt_abbrind = stdlen + 1;
1159 sp->typecnt = 2;
1160 }
1161 } else {
1162 dstlen = 0;
1163 sp->typecnt = 1; /* only standard time */
1164 sp->timecnt = 0;
1165 sp->ttis[0].tt_gmtoff = -stdoffset;
1166 sp->ttis[0].tt_isdst = 0;
1167 sp->ttis[0].tt_abbrind = 0;
1168 }
1169 sp->charcnt = stdlen + 1;
1170 if (dstlen != 0)
1171 sp->charcnt += dstlen + 1;
1172 if ((size_t) sp->charcnt > sizeof sp->chars)
1173 return -1;
1174 cp = sp->chars;
1175 (void) strncpy(cp, stdname, stdlen);
1176 cp += stdlen;
1177 *cp++ = '\0';
1178 if (dstlen != 0) {
1179 (void) strncpy(cp, dstname, dstlen);
1180 *(cp + dstlen) = '\0';
1181 }
1182 return 0;
1183 }
1184
1185 static void
1186 gmtload(timezone_t sp)
1187 {
1188 if (tzload(sp, gmt, TRUE) != 0)
1189 (void) tzparse(sp, gmt, TRUE);
1190 }
1191
1192 timezone_t
1193 tzalloc(const char *name)
1194 {
1195 timezone_t sp = calloc(1, sizeof *sp);
1196 if (sp == NULL)
1197 return NULL;
1198 if (tzload(sp, name, TRUE) != 0) {
1199 free(sp);
1200 return NULL;
1201 }
1202 settzname_z(sp);
1203 return sp;
1204 }
1205
1206 void
1207 tzfree(const timezone_t sp)
1208 {
1209 free(sp);
1210 }
1211
1212 static void
1213 tzsetwall_unlocked(void)
1214 {
1215 if (lcl_is_set < 0)
1216 return;
1217 lcl_is_set = -1;
1218
1219 if (lclptr == NULL) {
1220 int saveerrno = errno;
1221 lclptr = calloc(1, sizeof *lclptr);
1222 errno = saveerrno;
1223 if (lclptr == NULL) {
1224 settzname(); /* all we can do */
1225 return;
1226 }
1227 }
1228 if (tzload(lclptr, NULL, TRUE) != 0)
1229 gmtload(lclptr);
1230 settzname();
1231 }
1232
1233 #ifndef STD_INSPIRED
1234 /*
1235 ** A non-static declaration of tzsetwall in a system header file
1236 ** may cause a warning about this upcoming static declaration...
1237 */
1238 static
1239 #endif /* !defined STD_INSPIRED */
1240 void
1241 tzsetwall(void)
1242 {
1243 rwlock_wrlock(&lcl_lock);
1244 tzsetwall_unlocked();
1245 rwlock_unlock(&lcl_lock);
1246 }
1247
1248 #ifndef STD_INSPIRED
1249 /*
1250 ** A non-static declaration of tzsetwall in a system header file
1251 ** may cause a warning about this upcoming static declaration...
1252 */
1253 static
1254 #endif /* !defined STD_INSPIRED */
1255 void
1256 tzset_unlocked(void)
1257 {
1258 const char * name;
1259 int saveerrno;
1260
1261 saveerrno = errno;
1262 name = getenv("TZ");
1263 errno = saveerrno;
1264 if (name == NULL) {
1265 tzsetwall_unlocked();
1266 return;
1267 }
1268
1269 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1270 return;
1271 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1272 if (lcl_is_set)
1273 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1274
1275 if (lclptr == NULL) {
1276 saveerrno = errno;
1277 lclptr = calloc(1, sizeof *lclptr);
1278 errno = saveerrno;
1279 if (lclptr == NULL) {
1280 settzname(); /* all we can do */
1281 return;
1282 }
1283 }
1284 if (*name == '\0') {
1285 /*
1286 ** User wants it fast rather than right.
1287 */
1288 lclptr->leapcnt = 0; /* so, we're off a little */
1289 lclptr->timecnt = 0;
1290 lclptr->typecnt = 0;
1291 lclptr->ttis[0].tt_isdst = 0;
1292 lclptr->ttis[0].tt_gmtoff = 0;
1293 lclptr->ttis[0].tt_abbrind = 0;
1294 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1295 } else if (tzload(lclptr, name, TRUE) != 0)
1296 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1297 (void) gmtload(lclptr);
1298 settzname();
1299 }
1300
1301 void
1302 tzset(void)
1303 {
1304 rwlock_wrlock(&lcl_lock);
1305 tzset_unlocked();
1306 rwlock_unlock(&lcl_lock);
1307 }
1308
1309 /*
1310 ** The easy way to behave "as if no library function calls" localtime
1311 ** is to not call it--so we drop its guts into "localsub", which can be
1312 ** freely called. (And no, the PANS doesn't require the above behavior--
1313 ** but it *is* desirable.)
1314 **
1315 ** The unused offset argument is for the benefit of mktime variants.
1316 */
1317
1318 /*ARGSUSED*/
1319 static struct tm *
1320 localsub(const timezone_t sp, const time_t * const timep, const long offset,
1321 struct tm *const tmp)
1322 {
1323 const struct ttinfo * ttisp;
1324 int i;
1325 struct tm * result;
1326 const time_t t = *timep;
1327
1328 if ((sp->goback && t < sp->ats[0]) ||
1329 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1330 time_t newt = t;
1331 time_t seconds;
1332 time_t tcycles;
1333 int_fast64_t icycles;
1334
1335 if (t < sp->ats[0])
1336 seconds = sp->ats[0] - t;
1337 else seconds = t - sp->ats[sp->timecnt - 1];
1338 --seconds;
1339 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1340 ++tcycles;
1341 icycles = tcycles;
1342 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1343 return NULL;
1344 seconds = (time_t) icycles;
1345 seconds *= YEARSPERREPEAT;
1346 seconds *= AVGSECSPERYEAR;
1347 if (t < sp->ats[0])
1348 newt += seconds;
1349 else newt -= seconds;
1350 if (newt < sp->ats[0] ||
1351 newt > sp->ats[sp->timecnt - 1]) {
1352 errno = EOVERFLOW;
1353 return NULL; /* "cannot happen" */
1354 }
1355 result = localsub(sp, &newt, offset, tmp);
1356 if (result == tmp) {
1357 time_t newy;
1358
1359 newy = tmp->tm_year;
1360 if (t < sp->ats[0])
1361 newy -= (time_t)icycles * YEARSPERREPEAT;
1362 else newy += (time_t)icycles * YEARSPERREPEAT;
1363 tmp->tm_year = (int)newy;
1364 if (tmp->tm_year != newy) {
1365 errno = EOVERFLOW;
1366 return NULL;
1367 }
1368 }
1369 return result;
1370 }
1371 if (sp->timecnt == 0 || t < sp->ats[0]) {
1372 i = 0;
1373 while (sp->ttis[i].tt_isdst)
1374 if (++i >= sp->typecnt) {
1375 i = 0;
1376 break;
1377 }
1378 } else {
1379 int lo = 1;
1380 int hi = sp->timecnt;
1381
1382 while (lo < hi) {
1383 int mid = (lo + hi) / 2;
1384
1385 if (t < sp->ats[mid])
1386 hi = mid;
1387 else lo = mid + 1;
1388 }
1389 i = (int) sp->types[lo - 1];
1390 }
1391 ttisp = &sp->ttis[i];
1392 /*
1393 ** To get (wrong) behavior that's compatible with System V Release 2.0
1394 ** you'd replace the statement below with
1395 ** t += ttisp->tt_gmtoff;
1396 ** timesub(&t, 0L, sp, tmp);
1397 */
1398 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1399 tmp->tm_isdst = ttisp->tt_isdst;
1400 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1401 #ifdef TM_ZONE
1402 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1403 #endif /* defined TM_ZONE */
1404 return result;
1405 }
1406
1407 /*
1408 ** Re-entrant version of localtime.
1409 */
1410
1411 struct tm *
1412 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1413 {
1414 rwlock_rdlock(&lcl_lock);
1415 tzset_unlocked();
1416 tmp = localtime_rz(lclptr, timep, tmp);
1417 rwlock_unlock(&lcl_lock);
1418 return tmp;
1419 }
1420
1421 struct tm *
1422 localtime(const time_t *const timep)
1423 {
1424 return localtime_r(timep, &tm);
1425 }
1426
1427 struct tm *
1428 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1429 {
1430 if (sp == NULL)
1431 return gmtsub(NULL, timep, 0L, tmp);
1432 else
1433 return localsub(sp, timep, 0L, tmp);
1434 }
1435
1436 /*
1437 ** gmtsub is to gmtime as localsub is to localtime.
1438 */
1439
1440 static struct tm *
1441 gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
1442 struct tm *const tmp)
1443 {
1444 struct tm * result;
1445 #ifdef _REENTRANT
1446 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1447 #endif
1448
1449 mutex_lock(&gmt_mutex);
1450 if (!gmt_is_set) {
1451 int saveerrno;
1452 gmt_is_set = TRUE;
1453 saveerrno = errno;
1454 gmtptr = calloc(1, sizeof *gmtptr);
1455 errno = saveerrno;
1456 if (gmtptr != NULL)
1457 gmtload(gmtptr);
1458 }
1459 mutex_unlock(&gmt_mutex);
1460 result = timesub(gmtptr, timep, offset, tmp);
1461 #ifdef TM_ZONE
1462 /*
1463 ** Could get fancy here and deliver something such as
1464 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1465 ** but this is no time for a treasure hunt.
1466 */
1467 if (offset != 0)
1468 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1469 else {
1470 if (gmtptr == NULL)
1471 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1472 else tmp->TM_ZONE = gmtptr->chars;
1473 }
1474 #endif /* defined TM_ZONE */
1475 return result;
1476 }
1477
1478 struct tm *
1479 gmtime(const time_t *const timep)
1480 {
1481 return gmtsub(NULL, timep, 0L, &tm);
1482 }
1483
1484 /*
1485 ** Re-entrant version of gmtime.
1486 */
1487
1488 struct tm *
1489 gmtime_r(const time_t * const timep, struct tm *tmp)
1490 {
1491 return gmtsub(NULL, timep, 0L, tmp);
1492 }
1493
1494 #ifdef STD_INSPIRED
1495
1496 struct tm *
1497 offtime(const time_t *const timep, long offset)
1498 {
1499 return gmtsub(NULL, timep, offset, &tm);
1500 }
1501
1502 struct tm *
1503 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1504 {
1505 return gmtsub(NULL, timep, offset, tmp);
1506 }
1507
1508 #endif /* defined STD_INSPIRED */
1509
1510 /*
1511 ** Return the number of leap years through the end of the given year
1512 ** where, to make the math easy, the answer for year zero is defined as zero.
1513 */
1514
1515 static int
1516 leaps_thru_end_of(const int y)
1517 {
1518 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1519 -(leaps_thru_end_of(-(y + 1)) + 1);
1520 }
1521
1522 static struct tm *
1523 timesub(const timezone_t sp, const time_t *const timep, const long offset,
1524 struct tm *const tmp)
1525 {
1526 const struct lsinfo * lp;
1527 time_t tdays;
1528 int idays; /* unsigned would be so 2003 */
1529 long rem;
1530 int y;
1531 const int * ip;
1532 long corr;
1533 int hit;
1534 int i;
1535
1536 corr = 0;
1537 hit = 0;
1538 i = (sp == NULL) ? 0 : sp->leapcnt;
1539 while (--i >= 0) {
1540 lp = &sp->lsis[i];
1541 if (*timep >= lp->ls_trans) {
1542 if (*timep == lp->ls_trans) {
1543 hit = ((i == 0 && lp->ls_corr > 0) ||
1544 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1545 if (hit)
1546 while (i > 0 &&
1547 sp->lsis[i].ls_trans ==
1548 sp->lsis[i - 1].ls_trans + 1 &&
1549 sp->lsis[i].ls_corr ==
1550 sp->lsis[i - 1].ls_corr + 1) {
1551 ++hit;
1552 --i;
1553 }
1554 }
1555 corr = lp->ls_corr;
1556 break;
1557 }
1558 }
1559 y = EPOCH_YEAR;
1560 tdays = *timep / SECSPERDAY;
1561 rem = (long) (*timep - tdays * SECSPERDAY);
1562 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1563 int newy;
1564 time_t tdelta;
1565 int idelta;
1566 int leapdays;
1567
1568 tdelta = tdays / DAYSPERLYEAR;
1569 idelta = (int) tdelta;
1570 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) {
1571 errno = EOVERFLOW;
1572 return NULL;
1573 }
1574 if (idelta == 0)
1575 idelta = (tdays < 0) ? -1 : 1;
1576 newy = y;
1577 if (increment_overflow(&newy, idelta)) {
1578 errno = EOVERFLOW;
1579 return NULL;
1580 }
1581 leapdays = leaps_thru_end_of(newy - 1) -
1582 leaps_thru_end_of(y - 1);
1583 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1584 tdays -= leapdays;
1585 y = newy;
1586 }
1587 {
1588 long seconds;
1589
1590 seconds = tdays * SECSPERDAY + 0.5;
1591 tdays = seconds / SECSPERDAY;
1592 rem += (long) (seconds - tdays * SECSPERDAY);
1593 }
1594 /*
1595 ** Given the range, we can now fearlessly cast...
1596 */
1597 idays = (int) tdays;
1598 rem += offset - corr;
1599 while (rem < 0) {
1600 rem += SECSPERDAY;
1601 --idays;
1602 }
1603 while (rem >= SECSPERDAY) {
1604 rem -= SECSPERDAY;
1605 ++idays;
1606 }
1607 while (idays < 0) {
1608 if (increment_overflow(&y, -1)) {
1609 errno = EOVERFLOW;
1610 return NULL;
1611 }
1612 idays += year_lengths[isleap(y)];
1613 }
1614 while (idays >= year_lengths[isleap(y)]) {
1615 idays -= year_lengths[isleap(y)];
1616 if (increment_overflow(&y, 1)) {
1617 errno = EOVERFLOW;
1618 return NULL;
1619 }
1620 }
1621 tmp->tm_year = y;
1622 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) {
1623 errno = EOVERFLOW;
1624 return NULL;
1625 }
1626 tmp->tm_yday = idays;
1627 /*
1628 ** The "extra" mods below avoid overflow problems.
1629 */
1630 tmp->tm_wday = EPOCH_WDAY +
1631 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1632 (DAYSPERNYEAR % DAYSPERWEEK) +
1633 leaps_thru_end_of(y - 1) -
1634 leaps_thru_end_of(EPOCH_YEAR - 1) +
1635 idays;
1636 tmp->tm_wday %= DAYSPERWEEK;
1637 if (tmp->tm_wday < 0)
1638 tmp->tm_wday += DAYSPERWEEK;
1639 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1640 rem %= SECSPERHOUR;
1641 tmp->tm_min = (int) (rem / SECSPERMIN);
1642 /*
1643 ** A positive leap second requires a special
1644 ** representation. This uses "... ??:59:60" et seq.
1645 */
1646 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1647 ip = mon_lengths[isleap(y)];
1648 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1649 idays -= ip[tmp->tm_mon];
1650 tmp->tm_mday = (int) (idays + 1);
1651 tmp->tm_isdst = 0;
1652 #ifdef TM_GMTOFF
1653 tmp->TM_GMTOFF = offset;
1654 #endif /* defined TM_GMTOFF */
1655 return tmp;
1656 }
1657
1658 char *
1659 ctime(const time_t *const timep)
1660 {
1661 /*
1662 ** Section 4.12.3.2 of X3.159-1989 requires that
1663 ** The ctime function converts the calendar time pointed to by timer
1664 ** to local time in the form of a string. It is equivalent to
1665 ** asctime(localtime(timer))
1666 */
1667 struct tm *rtm = localtime(timep);
1668 if (rtm == NULL)
1669 return NULL;
1670 return asctime(rtm);
1671 }
1672
1673 char *
1674 ctime_r(const time_t *const timep, char *buf)
1675 {
1676 struct tm mytm, *rtm;
1677
1678 rtm = localtime_r(timep, &mytm);
1679 if (rtm == NULL)
1680 return NULL;
1681 return asctime_r(rtm, buf);
1682 }
1683
1684 char *
1685 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1686 {
1687 struct tm mytm, *rtm;
1688
1689 rtm = localtime_rz(sp, timep, &mytm);
1690 if (rtm == NULL)
1691 return NULL;
1692 return asctime_r(rtm, buf);
1693 }
1694
1695 /*
1696 ** Adapted from code provided by Robert Elz, who writes:
1697 ** The "best" way to do mktime I think is based on an idea of Bob
1698 ** Kridle's (so its said...) from a long time ago.
1699 ** It does a binary search of the time_t space. Since time_t's are
1700 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1701 ** would still be very reasonable).
1702 */
1703
1704 #ifndef WRONG
1705 #define WRONG (-1)
1706 #endif /* !defined WRONG */
1707
1708 /*
1709 ** Simplified normalize logic courtesy Paul Eggert.
1710 */
1711
1712 static int
1713 increment_overflow(int *number, int delta)
1714 {
1715 int number0;
1716
1717 number0 = *number;
1718 *number += delta;
1719 return (*number < number0) != (delta < 0);
1720 }
1721
1722 static int
1723 long_increment_overflow(long *number, int delta)
1724 {
1725 long number0;
1726
1727 number0 = *number;
1728 *number += delta;
1729 return (*number < number0) != (delta < 0);
1730 }
1731
1732 static int
1733 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1734 {
1735 int tensdelta;
1736
1737 tensdelta = (*unitsptr >= 0) ?
1738 (*unitsptr / base) :
1739 (-1 - (-1 - *unitsptr) / base);
1740 *unitsptr -= tensdelta * base;
1741 return increment_overflow(tensptr, tensdelta);
1742 }
1743
1744 static int
1745 long_normalize_overflow(long *const tensptr, int *const unitsptr,
1746 const int base)
1747 {
1748 int tensdelta;
1749
1750 tensdelta = (*unitsptr >= 0) ?
1751 (*unitsptr / base) :
1752 (-1 - (-1 - *unitsptr) / base);
1753 *unitsptr -= tensdelta * base;
1754 return long_increment_overflow(tensptr, tensdelta);
1755 }
1756
1757 static int
1758 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1759 {
1760 int result;
1761
1762 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1763 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1764 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1765 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1766 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1767 result = atmp->tm_sec - btmp->tm_sec;
1768 return result;
1769 }
1770
1771 static time_t
1772 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1773 const long offset, int *const okayp, const int do_norm_secs)
1774 {
1775 int dir;
1776 int i, j;
1777 int saved_seconds;
1778 long li;
1779 time_t lo;
1780 time_t hi;
1781 long y;
1782 time_t newt;
1783 time_t t;
1784 struct tm yourtm, mytm;
1785
1786 *okayp = FALSE;
1787 yourtm = *tmp;
1788 if (do_norm_secs) {
1789 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1790 SECSPERMIN))
1791 return WRONG;
1792 }
1793 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1794 return WRONG;
1795 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1796 return WRONG;
1797 y = yourtm.tm_year;
1798 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1799 return WRONG;
1800 /*
1801 ** Turn y into an actual year number for now.
1802 ** It is converted back to an offset from TM_YEAR_BASE later.
1803 */
1804 if (long_increment_overflow(&y, TM_YEAR_BASE))
1805 return WRONG;
1806 while (yourtm.tm_mday <= 0) {
1807 if (long_increment_overflow(&y, -1))
1808 return WRONG;
1809 li = y + (1 < yourtm.tm_mon);
1810 yourtm.tm_mday += year_lengths[isleap(li)];
1811 }
1812 while (yourtm.tm_mday > DAYSPERLYEAR) {
1813 li = y + (1 < yourtm.tm_mon);
1814 yourtm.tm_mday -= year_lengths[isleap(li)];
1815 if (long_increment_overflow(&y, 1))
1816 return WRONG;
1817 }
1818 for ( ; ; ) {
1819 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1820 if (yourtm.tm_mday <= i)
1821 break;
1822 yourtm.tm_mday -= i;
1823 if (++yourtm.tm_mon >= MONSPERYEAR) {
1824 yourtm.tm_mon = 0;
1825 if (long_increment_overflow(&y, 1))
1826 return WRONG;
1827 }
1828 }
1829 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1830 return WRONG;
1831 yourtm.tm_year = y;
1832 if (yourtm.tm_year != y)
1833 return WRONG;
1834 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1835 saved_seconds = 0;
1836 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1837 /*
1838 ** We can't set tm_sec to 0, because that might push the
1839 ** time below the minimum representable time.
1840 ** Set tm_sec to 59 instead.
1841 ** This assumes that the minimum representable time is
1842 ** not in the same minute that a leap second was deleted from,
1843 ** which is a safer assumption than using 58 would be.
1844 */
1845 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1846 return WRONG;
1847 saved_seconds = yourtm.tm_sec;
1848 yourtm.tm_sec = SECSPERMIN - 1;
1849 } else {
1850 saved_seconds = yourtm.tm_sec;
1851 yourtm.tm_sec = 0;
1852 }
1853 /*
1854 ** Do a binary search (this works whatever time_t's type is).
1855 */
1856 /* LINTED constant */
1857 if (!TYPE_SIGNED(time_t)) {
1858 lo = 0;
1859 hi = lo - 1;
1860 /* LINTED constant */
1861 } else if (!TYPE_INTEGRAL(time_t)) {
1862 /* CONSTCOND */
1863 if (sizeof(time_t) > sizeof(float))
1864 /* LINTED assumed double */
1865 hi = (time_t) DBL_MAX;
1866 /* LINTED assumed float */
1867 else hi = (time_t) FLT_MAX;
1868 lo = -hi;
1869 } else {
1870 lo = 1;
1871 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1872 lo *= 2;
1873 hi = -(lo + 1);
1874 }
1875 for ( ; ; ) {
1876 t = lo / 2 + hi / 2;
1877 if (t < lo)
1878 t = lo;
1879 else if (t > hi)
1880 t = hi;
1881 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1882 /*
1883 ** Assume that t is too extreme to be represented in
1884 ** a struct tm; arrange things so that it is less
1885 ** extreme on the next pass.
1886 */
1887 dir = (t > 0) ? 1 : -1;
1888 } else dir = tmcomp(&mytm, &yourtm);
1889 if (dir != 0) {
1890 if (t == lo) {
1891 ++t;
1892 if (t <= lo)
1893 return WRONG;
1894 ++lo;
1895 } else if (t == hi) {
1896 --t;
1897 if (t >= hi)
1898 return WRONG;
1899 --hi;
1900 }
1901 if (lo > hi)
1902 return WRONG;
1903 if (dir > 0)
1904 hi = t;
1905 else lo = t;
1906 continue;
1907 }
1908 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1909 break;
1910 /*
1911 ** Right time, wrong type.
1912 ** Hunt for right time, right type.
1913 ** It's okay to guess wrong since the guess
1914 ** gets checked.
1915 */
1916 if (sp == NULL)
1917 return WRONG;
1918 for (i = sp->typecnt - 1; i >= 0; --i) {
1919 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1920 continue;
1921 for (j = sp->typecnt - 1; j >= 0; --j) {
1922 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1923 continue;
1924 newt = t + sp->ttis[j].tt_gmtoff -
1925 sp->ttis[i].tt_gmtoff;
1926 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1927 continue;
1928 if (tmcomp(&mytm, &yourtm) != 0)
1929 continue;
1930 if (mytm.tm_isdst != yourtm.tm_isdst)
1931 continue;
1932 /*
1933 ** We have a match.
1934 */
1935 t = newt;
1936 goto label;
1937 }
1938 }
1939 return WRONG;
1940 }
1941 label:
1942 newt = t + saved_seconds;
1943 if ((newt < t) != (saved_seconds < 0))
1944 return WRONG;
1945 t = newt;
1946 if ((*funcp)(sp, &t, offset, tmp))
1947 *okayp = TRUE;
1948 return t;
1949 }
1950
1951 static time_t
1952 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1953 const long offset, int *const okayp)
1954 {
1955 time_t t;
1956
1957 /*
1958 ** First try without normalization of seconds
1959 ** (in case tm_sec contains a value associated with a leap second).
1960 ** If that fails, try with normalization of seconds.
1961 */
1962 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
1963 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
1964 }
1965
1966 static time_t
1967 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1968 long offset)
1969 {
1970 time_t t;
1971 int samei, otheri;
1972 int sameind, otherind;
1973 int i;
1974 int nseen;
1975 int seen[TZ_MAX_TYPES];
1976 int types[TZ_MAX_TYPES];
1977 int okay;
1978
1979 if (tmp->tm_isdst > 1)
1980 tmp->tm_isdst = 1;
1981 t = time2(sp, tmp, funcp, offset, &okay);
1982 #ifdef PCTS
1983 /*
1984 ** PCTS code courtesy Grant Sullivan.
1985 */
1986 if (okay)
1987 return t;
1988 if (tmp->tm_isdst < 0)
1989 tmp->tm_isdst = 0; /* reset to std and try again */
1990 #endif /* defined PCTS */
1991 #ifndef PCTS
1992 if (okay || tmp->tm_isdst < 0)
1993 return t;
1994 #endif /* !defined PCTS */
1995 /*
1996 ** We're supposed to assume that somebody took a time of one type
1997 ** and did some math on it that yielded a "struct tm" that's bad.
1998 ** We try to divine the type they started from and adjust to the
1999 ** type they need.
2000 */
2001 if (sp == NULL)
2002 return WRONG;
2003 for (i = 0; i < sp->typecnt; ++i)
2004 seen[i] = FALSE;
2005 nseen = 0;
2006 for (i = sp->timecnt - 1; i >= 0; --i)
2007 if (!seen[sp->types[i]]) {
2008 seen[sp->types[i]] = TRUE;
2009 types[nseen++] = sp->types[i];
2010 }
2011 for (sameind = 0; sameind < nseen; ++sameind) {
2012 samei = types[sameind];
2013 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2014 continue;
2015 for (otherind = 0; otherind < nseen; ++otherind) {
2016 otheri = types[otherind];
2017 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2018 continue;
2019 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2020 sp->ttis[samei].tt_gmtoff);
2021 tmp->tm_isdst = !tmp->tm_isdst;
2022 t = time2(sp, tmp, funcp, offset, &okay);
2023 if (okay)
2024 return t;
2025 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2026 sp->ttis[samei].tt_gmtoff);
2027 tmp->tm_isdst = !tmp->tm_isdst;
2028 }
2029 }
2030 return WRONG;
2031 }
2032
2033 time_t
2034 mktime_z(const timezone_t sp, struct tm *tmp)
2035 {
2036 if (sp == NULL)
2037 return time1(NULL, tmp, gmtsub, 0L);
2038 else
2039 return time1(sp, tmp, localsub, 0L);
2040 }
2041
2042 time_t
2043 mktime(struct tm * const tmp)
2044 {
2045 time_t result;
2046
2047 rwlock_wrlock(&lcl_lock);
2048 tzset_unlocked();
2049 result = mktime_z(lclptr, tmp);
2050 rwlock_unlock(&lcl_lock);
2051 return result;
2052 }
2053
2054 #ifdef STD_INSPIRED
2055
2056 time_t
2057 timelocal_z(const timezone_t sp, struct tm *tmp)
2058 {
2059 if (tmp != NULL)
2060 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2061 return mktime_z(sp, tmp);
2062 }
2063
2064 time_t
2065 timelocal(struct tm *const tmp)
2066 {
2067 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2068 return mktime(tmp);
2069 }
2070
2071 time_t
2072 timegm(struct tm *const tmp)
2073 {
2074 tmp->tm_isdst = 0;
2075 return time1(gmtptr, tmp, gmtsub, 0L);
2076 }
2077
2078 time_t
2079 timeoff(struct tm *const tmp, const long offset)
2080 {
2081 tmp->tm_isdst = 0;
2082 return time1(gmtptr, tmp, gmtsub, offset);
2083 }
2084
2085 #endif /* defined STD_INSPIRED */
2086
2087 #ifdef CMUCS
2088
2089 /*
2090 ** The following is supplied for compatibility with
2091 ** previous versions of the CMUCS runtime library.
2092 */
2093
2094 long
2095 gtime(struct tm *const tmp)
2096 {
2097 const time_t t = mktime(tmp);
2098
2099 if (t == WRONG)
2100 return -1;
2101 return t;
2102 }
2103
2104 #endif /* defined CMUCS */
2105
2106 /*
2107 ** XXX--is the below the right way to conditionalize??
2108 */
2109
2110 #ifdef STD_INSPIRED
2111
2112 /*
2113 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2114 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2115 ** is not the case if we are accounting for leap seconds.
2116 ** So, we provide the following conversion routines for use
2117 ** when exchanging timestamps with POSIX conforming systems.
2118 */
2119
2120 static long
2121 leapcorr(const timezone_t sp, time_t *timep)
2122 {
2123 struct lsinfo * lp;
2124 int i;
2125
2126 i = sp->leapcnt;
2127 while (--i >= 0) {
2128 lp = &sp->lsis[i];
2129 if (*timep >= lp->ls_trans)
2130 return lp->ls_corr;
2131 }
2132 return 0;
2133 }
2134
2135 time_t
2136 time2posix_z(const timezone_t sp, time_t t)
2137 {
2138 return t - leapcorr(sp, &t);
2139 }
2140
2141 time_t
2142 time2posix(time_t t)
2143 {
2144 time_t result;
2145 rwlock_wrlock(&lcl_lock);
2146 tzset_unlocked();
2147 result = t - leapcorr(lclptr, &t);
2148 rwlock_unlock(&lcl_lock);
2149 return (result);
2150 }
2151
2152 time_t
2153 posix2time_z(const timezone_t sp, time_t t)
2154 {
2155 time_t x;
2156 time_t y;
2157
2158 /*
2159 ** For a positive leap second hit, the result
2160 ** is not unique. For a negative leap second
2161 ** hit, the corresponding time doesn't exist,
2162 ** so we return an adjacent second.
2163 */
2164 x = t + leapcorr(sp, &t);
2165 y = x - leapcorr(sp, &x);
2166 if (y < t) {
2167 do {
2168 x++;
2169 y = x - leapcorr(sp, &x);
2170 } while (y < t);
2171 if (t != y) {
2172 return x - 1;
2173 }
2174 } else if (y > t) {
2175 do {
2176 --x;
2177 y = x - leapcorr(sp, &x);
2178 } while (y > t);
2179 if (t != y) {
2180 return x + 1;
2181 }
2182 }
2183 return x;
2184 }
2185
2186
2187
2188 time_t
2189 posix2time(time_t t)
2190 {
2191 time_t result;
2192
2193 rwlock_wrlock(&lcl_lock);
2194 tzset_unlocked();
2195 result = posix2time_z(lclptr, t);
2196 rwlock_unlock(&lcl_lock);
2197 return result;
2198 }
2199
2200 #endif /* defined STD_INSPIRED */
2201