Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.54
      1 /*	$NetBSD: localtime.c,v 1.54 2011/01/15 15:42:10 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.9";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.54 2011/01/15 15:42:10 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include "private.h"
     26 #include "tzfile.h"
     27 #include "fcntl.h"
     28 #include "reentrant.h"
     29 
     30 #if defined(__weak_alias)
     31 __weak_alias(ctime_r,_ctime_r)
     32 __weak_alias(ctime_rz,_ctime_rz)
     33 __weak_alias(daylight,_daylight)
     34 __weak_alias(mktime_z,_mktime_z)
     35 __weak_alias(localtime_r,_localtime_r)
     36 __weak_alias(localtime_rz,_localtime_rz)
     37 __weak_alias(posix2time,_posix2time)
     38 __weak_alias(posix2time_z,_posix2time_z)
     39 __weak_alias(tzname,_tzname)
     40 #endif
     41 
     42 #include "float.h"	/* for FLT_MAX and DBL_MAX */
     43 
     44 #ifndef TZ_ABBR_MAX_LEN
     45 #define TZ_ABBR_MAX_LEN	16
     46 #endif /* !defined TZ_ABBR_MAX_LEN */
     47 
     48 #ifndef TZ_ABBR_CHAR_SET
     49 #define TZ_ABBR_CHAR_SET \
     50 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     51 #endif /* !defined TZ_ABBR_CHAR_SET */
     52 
     53 #ifndef TZ_ABBR_ERR_CHAR
     54 #define TZ_ABBR_ERR_CHAR	'_'
     55 #endif /* !defined TZ_ABBR_ERR_CHAR */
     56 
     57 /*
     58 ** SunOS 4.1.1 headers lack O_BINARY.
     59 */
     60 
     61 #ifdef O_BINARY
     62 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     63 #endif /* defined O_BINARY */
     64 #ifndef O_BINARY
     65 #define OPEN_MODE	O_RDONLY
     66 #endif /* !defined O_BINARY */
     67 
     68 #ifndef WILDABBR
     69 /*
     70 ** Someone might make incorrect use of a time zone abbreviation:
     71 **	1.	They might reference tzname[0] before calling tzset (explicitly
     72 **		or implicitly).
     73 **	2.	They might reference tzname[1] before calling tzset (explicitly
     74 **		or implicitly).
     75 **	3.	They might reference tzname[1] after setting to a time zone
     76 **		in which Daylight Saving Time is never observed.
     77 **	4.	They might reference tzname[0] after setting to a time zone
     78 **		in which Standard Time is never observed.
     79 **	5.	They might reference tm.TM_ZONE after calling offtime.
     80 ** What's best to do in the above cases is open to debate;
     81 ** for now, we just set things up so that in any of the five cases
     82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     83 ** string "tzname[0] used before set", and similarly for the other cases.
     84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     85 ** manual page of what this "time zone abbreviation" means (doing this so
     86 ** that tzname[0] has the "normal" length of three characters).
     87 */
     88 #define WILDABBR	"   "
     89 #endif /* !defined WILDABBR */
     90 
     91 static const char	wildabbr[] = WILDABBR;
     92 
     93 static char		gmt[] = "GMT";
     94 
     95 /*
     96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     97 ** We default to US rules as of 1999-08-17.
     98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     99 ** implementation dependent; for historical reasons, US rules are a
    100 ** common default.
    101 */
    102 #ifndef TZDEFRULESTRING
    103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    104 #endif /* !defined TZDEFDST */
    105 
    106 struct ttinfo {				/* time type information */
    107 	long		tt_gmtoff;	/* UTC offset in seconds */
    108 	int		tt_isdst;	/* used to set tm_isdst */
    109 	int		tt_abbrind;	/* abbreviation list index */
    110 	int		tt_ttisstd;	/* TRUE if transition is std time */
    111 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    112 };
    113 
    114 struct lsinfo {				/* leap second information */
    115 	time_t		ls_trans;	/* transition time */
    116 	long		ls_corr;	/* correction to apply */
    117 };
    118 
    119 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    120 
    121 #ifdef TZNAME_MAX
    122 #define MY_TZNAME_MAX	TZNAME_MAX
    123 #endif /* defined TZNAME_MAX */
    124 #ifndef TZNAME_MAX
    125 #define MY_TZNAME_MAX	255
    126 #endif /* !defined TZNAME_MAX */
    127 
    128 struct __state {
    129 	int		leapcnt;
    130 	int		timecnt;
    131 	int		typecnt;
    132 	int		charcnt;
    133 	int		goback;
    134 	int		goahead;
    135 	time_t		ats[TZ_MAX_TIMES];
    136 	unsigned char	types[TZ_MAX_TIMES];
    137 	struct ttinfo	ttis[TZ_MAX_TYPES];
    138 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    139 				(2 * (MY_TZNAME_MAX + 1)))];
    140 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    141 };
    142 
    143 struct rule {
    144 	int		r_type;		/* type of rule--see below */
    145 	int		r_day;		/* day number of rule */
    146 	int		r_week;		/* week number of rule */
    147 	int		r_mon;		/* month number of rule */
    148 	long		r_time;		/* transition time of rule */
    149 };
    150 
    151 #define JULIAN_DAY		0	/* Jn - Julian day */
    152 #define DAY_OF_YEAR		1	/* n - day of year */
    153 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    154 
    155 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    156 			       long offset, struct tm *tmp);
    157 
    158 /*
    159 ** Prototypes for static functions.
    160 */
    161 
    162 static long		detzcode(const char * codep);
    163 static time_t		detzcode64(const char * codep);
    164 static int		differ_by_repeat(time_t t1, time_t t0);
    165 static const char *	getzname(const char * strp);
    166 static const char *	getqzname(const char * strp, const int delim);
    167 static const char *	getnum(const char * strp, int * nump, int min,
    168 				int max);
    169 static const char *	getsecs(const char * strp, long * secsp);
    170 static const char *	getoffset(const char * strp, long * offsetp);
    171 static const char *	getrule(const char * strp, struct rule * rulep);
    172 static void		gmtload(timezone_t sp);
    173 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    174 				long offset, struct tm * tmp);
    175 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    176 				long offset, struct tm *tmp);
    177 static int		increment_overflow(int * number, int delta);
    178 static int		leaps_thru_end_of(int y);
    179 static int		long_increment_overflow(long * number, int delta);
    180 static int		long_normalize_overflow(long * tensptr,
    181 				int * unitsptr, int base);
    182 static int		normalize_overflow(int * tensptr, int * unitsptr,
    183 				int base);
    184 static void		settzname(void);
    185 static time_t		time1(const timezone_t sp, struct tm * const tmp,
    186 				subfun_t funcp, long offset);
    187 static time_t		time2(const timezone_t sp, struct tm * const tmp,
    188 				subfun_t funcp,
    189 				const long offset, int *const okayp);
    190 static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
    191 				subfun_t funcp, const long offset,
    192 				int *const okayp, const int do_norm_secs);
    193 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    194 				long offset, struct tm * tmp);
    195 static int		tmcomp(const struct tm * atmp,
    196 				const struct tm * btmp);
    197 static time_t		transtime(time_t janfirst, int year,
    198 				const struct rule * rulep, long offset);
    199 static int		typesequiv(const timezone_t sp, int a, int b);
    200 static int		tzload(timezone_t sp, const char * name,
    201 				int doextend);
    202 static int		tzparse(timezone_t sp, const char * name,
    203 				int lastditch);
    204 static void		tzset_unlocked(void);
    205 static void		tzsetwall_unlocked(void);
    206 static long		leapcorr(const timezone_t sp, time_t * timep);
    207 
    208 static timezone_t lclptr;
    209 static timezone_t gmtptr;
    210 
    211 #ifndef TZ_STRLEN_MAX
    212 #define TZ_STRLEN_MAX 255
    213 #endif /* !defined TZ_STRLEN_MAX */
    214 
    215 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    216 static int		lcl_is_set;
    217 static int		gmt_is_set;
    218 
    219 #if !defined(__LIBC12_SOURCE__)
    220 
    221 __aconst char *		tzname[2] = {
    222 	(__aconst char *)__UNCONST(wildabbr),
    223 	(__aconst char *)__UNCONST(wildabbr)
    224 };
    225 
    226 #else
    227 
    228 extern __aconst char *	tzname[2];
    229 
    230 #endif
    231 
    232 #ifdef _REENTRANT
    233 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    234 #endif
    235 
    236 /*
    237 ** Section 4.12.3 of X3.159-1989 requires that
    238 **	Except for the strftime function, these functions [asctime,
    239 **	ctime, gmtime, localtime] return values in one of two static
    240 **	objects: a broken-down time structure and an array of char.
    241 ** Thanks to Paul Eggert for noting this.
    242 */
    243 
    244 static struct tm	tm;
    245 
    246 #ifdef USG_COMPAT
    247 #if !defined(__LIBC12_SOURCE__)
    248 long 			timezone = 0;
    249 int			daylight = 0;
    250 #else
    251 extern int		daylight;
    252 extern long		timezone __RENAME(__timezone13);
    253 #endif
    254 #endif /* defined USG_COMPAT */
    255 
    256 #ifdef ALTZONE
    257 time_t			altzone = 0;
    258 #endif /* defined ALTZONE */
    259 
    260 static long
    261 detzcode(const char *const codep)
    262 {
    263 	long	result;
    264 	int	i;
    265 
    266 	result = (codep[0] & 0x80) ? ~0L : 0;
    267 	for (i = 0; i < 4; ++i)
    268 		result = (result << 8) | (codep[i] & 0xff);
    269 	return result;
    270 }
    271 
    272 static time_t
    273 detzcode64(const char *const codep)
    274 {
    275 	time_t	result;
    276 	int	i;
    277 
    278 	result = (codep[0] & 0x80) ? -1 : 0;
    279 	for (i = 0; i < 8; ++i)
    280 		result = result * 256 + (codep[i] & 0xff);
    281 	return result;
    282 }
    283 
    284 const char *
    285 tzgetname(const timezone_t sp, int isdst)
    286 {
    287 	int i;
    288 	for (i = 0; i < sp->timecnt; ++i) {
    289 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    290 
    291 		if (ttisp->tt_isdst == isdst)
    292 			return &sp->chars[ttisp->tt_abbrind];
    293 	}
    294 	return NULL;
    295 }
    296 
    297 static void
    298 settzname_z(timezone_t sp)
    299 {
    300 	int			i;
    301 
    302 	/*
    303 	** Scrub the abbreviations.
    304 	** First, replace bogus characters.
    305 	*/
    306 	for (i = 0; i < sp->charcnt; ++i)
    307 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    308 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    309 	/*
    310 	** Second, truncate long abbreviations.
    311 	*/
    312 	for (i = 0; i < sp->typecnt; ++i) {
    313 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    314 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    315 
    316 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    317 			strcmp(cp, GRANDPARENTED) != 0)
    318 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    319 	}
    320 }
    321 
    322 static void
    323 settzname(void)
    324 {
    325 	timezone_t const	sp = lclptr;
    326 	int			i;
    327 
    328 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    329 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    330 #ifdef USG_COMPAT
    331 	daylight = 0;
    332 	timezone = 0;
    333 #endif /* defined USG_COMPAT */
    334 #ifdef ALTZONE
    335 	altzone = 0;
    336 #endif /* defined ALTZONE */
    337 	if (sp == NULL) {
    338 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    339 		return;
    340 	}
    341 	for (i = 0; i < sp->typecnt; ++i) {
    342 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    343 
    344 		tzname[ttisp->tt_isdst] =
    345 			&sp->chars[ttisp->tt_abbrind];
    346 #ifdef USG_COMPAT
    347 		if (ttisp->tt_isdst)
    348 			daylight = 1;
    349 		if (i == 0 || !ttisp->tt_isdst)
    350 			timezone = -(ttisp->tt_gmtoff);
    351 #endif /* defined USG_COMPAT */
    352 #ifdef ALTZONE
    353 		if (i == 0 || ttisp->tt_isdst)
    354 			altzone = -(ttisp->tt_gmtoff);
    355 #endif /* defined ALTZONE */
    356 	}
    357 	/*
    358 	** And to get the latest zone names into tzname. . .
    359 	*/
    360 	for (i = 0; i < sp->timecnt; ++i) {
    361 		register const struct ttinfo * const	ttisp =
    362 							&sp->ttis[
    363 								sp->types[i]];
    364 
    365 		tzname[ttisp->tt_isdst] =
    366 			&sp->chars[ttisp->tt_abbrind];
    367 	}
    368 	settzname_z(sp);
    369 }
    370 
    371 static int
    372 differ_by_repeat(const time_t t1, const time_t t0)
    373 {
    374 /* CONSTCOND */
    375 	if (TYPE_INTEGRAL(time_t) &&
    376 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    377 			return 0;
    378 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    379 }
    380 
    381 static int
    382 tzload(timezone_t sp, const char *name, const int doextend)
    383 {
    384 	const char *		p;
    385 	int			i;
    386 	int			fid;
    387 	int			stored;
    388 	int			nread;
    389 	union {
    390 		struct tzhead	tzhead;
    391 		char		buf[2 * sizeof(struct tzhead) +
    392 					2 * sizeof *sp +
    393 					4 * TZ_MAX_TIMES];
    394 	} u;
    395 
    396 	sp->goback = sp->goahead = FALSE;
    397 	if (name == NULL && (name = TZDEFAULT) == NULL)
    398 		return -1;
    399 	{
    400 		int	doaccess;
    401 		/*
    402 		** Section 4.9.1 of the C standard says that
    403 		** "FILENAME_MAX expands to an integral constant expression
    404 		** that is the size needed for an array of char large enough
    405 		** to hold the longest file name string that the implementation
    406 		** guarantees can be opened."
    407 		*/
    408 		char		fullname[FILENAME_MAX + 1];
    409 
    410 		if (name[0] == ':')
    411 			++name;
    412 		doaccess = name[0] == '/';
    413 		if (!doaccess) {
    414 			if ((p = TZDIR) == NULL)
    415 				return -1;
    416 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    417 				return -1;
    418 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    419 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    420 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    421 			/*
    422 			** Set doaccess if '.' (as in "../") shows up in name.
    423 			*/
    424 			if (strchr(name, '.') != NULL)
    425 				doaccess = TRUE;
    426 			name = fullname;
    427 		}
    428 		if (doaccess && access(name, R_OK) != 0)
    429 			return -1;
    430 		/*
    431 		 * XXX potential security problem here if user of a set-id
    432 		 * program has set TZ (which is passed in as name) here,
    433 		 * and uses a race condition trick to defeat the access(2)
    434 		 * above.
    435 		 */
    436 		if ((fid = open(name, OPEN_MODE)) == -1)
    437 			return -1;
    438 	}
    439 	nread = read(fid, u.buf, sizeof u.buf);
    440 	if (close(fid) < 0 || nread <= 0)
    441 		return -1;
    442 	for (stored = 4; stored <= 8; stored *= 2) {
    443 		int		ttisstdcnt;
    444 		int		ttisgmtcnt;
    445 
    446 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    447 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    448 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    449 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    450 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    451 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    452 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    453 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    454 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    455 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    456 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    457 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    458 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    459 				return -1;
    460 		if (nread - (p - u.buf) <
    461 			sp->timecnt * stored +		/* ats */
    462 			sp->timecnt +			/* types */
    463 			sp->typecnt * 6 +		/* ttinfos */
    464 			sp->charcnt +			/* chars */
    465 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    466 			ttisstdcnt +			/* ttisstds */
    467 			ttisgmtcnt)			/* ttisgmts */
    468 				return -1;
    469 		for (i = 0; i < sp->timecnt; ++i) {
    470 			sp->ats[i] = (stored == 4) ?
    471 				detzcode(p) : detzcode64(p);
    472 			p += stored;
    473 		}
    474 		for (i = 0; i < sp->timecnt; ++i) {
    475 			sp->types[i] = (unsigned char) *p++;
    476 			if (sp->types[i] >= sp->typecnt)
    477 				return -1;
    478 		}
    479 		for (i = 0; i < sp->typecnt; ++i) {
    480 			struct ttinfo *	ttisp;
    481 
    482 			ttisp = &sp->ttis[i];
    483 			ttisp->tt_gmtoff = detzcode(p);
    484 			p += 4;
    485 			ttisp->tt_isdst = (unsigned char) *p++;
    486 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    487 				return -1;
    488 			ttisp->tt_abbrind = (unsigned char) *p++;
    489 			if (ttisp->tt_abbrind < 0 ||
    490 				ttisp->tt_abbrind > sp->charcnt)
    491 					return -1;
    492 		}
    493 		for (i = 0; i < sp->charcnt; ++i)
    494 			sp->chars[i] = *p++;
    495 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    496 		for (i = 0; i < sp->leapcnt; ++i) {
    497 			struct lsinfo *	lsisp;
    498 
    499 			lsisp = &sp->lsis[i];
    500 			lsisp->ls_trans = (stored == 4) ?
    501 				detzcode(p) : detzcode64(p);
    502 			p += stored;
    503 			lsisp->ls_corr = detzcode(p);
    504 			p += 4;
    505 		}
    506 		for (i = 0; i < sp->typecnt; ++i) {
    507 			struct ttinfo *	ttisp;
    508 
    509 			ttisp = &sp->ttis[i];
    510 			if (ttisstdcnt == 0)
    511 				ttisp->tt_ttisstd = FALSE;
    512 			else {
    513 				ttisp->tt_ttisstd = *p++;
    514 				if (ttisp->tt_ttisstd != TRUE &&
    515 					ttisp->tt_ttisstd != FALSE)
    516 						return -1;
    517 			}
    518 		}
    519 		for (i = 0; i < sp->typecnt; ++i) {
    520 			struct ttinfo *	ttisp;
    521 
    522 			ttisp = &sp->ttis[i];
    523 			if (ttisgmtcnt == 0)
    524 				ttisp->tt_ttisgmt = FALSE;
    525 			else {
    526 				ttisp->tt_ttisgmt = *p++;
    527 				if (ttisp->tt_ttisgmt != TRUE &&
    528 					ttisp->tt_ttisgmt != FALSE)
    529 						return -1;
    530 			}
    531 		}
    532 		/*
    533 		** Out-of-sort ats should mean we're running on a
    534 		** signed time_t system but using a data file with
    535 		** unsigned values (or vice versa).
    536 		*/
    537 		for (i = 0; i < sp->timecnt - 2; ++i)
    538 			if (sp->ats[i] > sp->ats[i + 1]) {
    539 				++i;
    540 /* CONSTCOND */
    541 				if (TYPE_SIGNED(time_t)) {
    542 					/*
    543 					** Ignore the end (easy).
    544 					*/
    545 					sp->timecnt = i;
    546 				} else {
    547 					/*
    548 					** Ignore the beginning (harder).
    549 					*/
    550 					int	j;
    551 
    552 					for (j = 0; j + i < sp->timecnt; ++j) {
    553 						sp->ats[j] = sp->ats[j + i];
    554 						sp->types[j] = sp->types[j + i];
    555 					}
    556 					sp->timecnt = j;
    557 				}
    558 				break;
    559 			}
    560 		/*
    561 		** If this is an old file, we're done.
    562 		*/
    563 		if (u.tzhead.tzh_version[0] == '\0')
    564 			break;
    565 		nread -= p - u.buf;
    566 		for (i = 0; i < nread; ++i)
    567 			u.buf[i] = p[i];
    568 		/*
    569 		** If this is a narrow integer time_t system, we're done.
    570 		*/
    571 		if (stored >= (int) sizeof(time_t)
    572 /* CONSTCOND */
    573 				&& TYPE_INTEGRAL(time_t))
    574 			break;
    575 	}
    576 	if (doextend && nread > 2 &&
    577 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    578 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    579 			struct __state ts;
    580 			int	result;
    581 
    582 			u.buf[nread - 1] = '\0';
    583 			result = tzparse(&ts, &u.buf[1], FALSE);
    584 			if (result == 0 && ts.typecnt == 2 &&
    585 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    586 					for (i = 0; i < 2; ++i)
    587 						ts.ttis[i].tt_abbrind +=
    588 							sp->charcnt;
    589 					for (i = 0; i < ts.charcnt; ++i)
    590 						sp->chars[sp->charcnt++] =
    591 							ts.chars[i];
    592 					i = 0;
    593 					while (i < ts.timecnt &&
    594 						ts.ats[i] <=
    595 						sp->ats[sp->timecnt - 1])
    596 							++i;
    597 					while (i < ts.timecnt &&
    598 					    sp->timecnt < TZ_MAX_TIMES) {
    599 						sp->ats[sp->timecnt] =
    600 							ts.ats[i];
    601 						sp->types[sp->timecnt] =
    602 							sp->typecnt +
    603 							ts.types[i];
    604 						++sp->timecnt;
    605 						++i;
    606 					}
    607 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    608 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    609 			}
    610 	}
    611 	if (sp->timecnt > 1) {
    612 		for (i = 1; i < sp->timecnt; ++i)
    613 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    614 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    615 					sp->goback = TRUE;
    616 					break;
    617 				}
    618 		for (i = sp->timecnt - 2; i >= 0; --i)
    619 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    620 				sp->types[i]) &&
    621 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    622 				sp->ats[i])) {
    623 					sp->goahead = TRUE;
    624 					break;
    625 		}
    626 	}
    627 	return 0;
    628 }
    629 
    630 static int
    631 typesequiv(const timezone_t sp, const int a, const int b)
    632 {
    633 	int	result;
    634 
    635 	if (sp == NULL ||
    636 		a < 0 || a >= sp->typecnt ||
    637 		b < 0 || b >= sp->typecnt)
    638 			result = FALSE;
    639 	else {
    640 		const struct ttinfo *	ap = &sp->ttis[a];
    641 		const struct ttinfo *	bp = &sp->ttis[b];
    642 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    643 			ap->tt_isdst == bp->tt_isdst &&
    644 			ap->tt_ttisstd == bp->tt_ttisstd &&
    645 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    646 			strcmp(&sp->chars[ap->tt_abbrind],
    647 			&sp->chars[bp->tt_abbrind]) == 0;
    648 	}
    649 	return result;
    650 }
    651 
    652 static const int	mon_lengths[2][MONSPERYEAR] = {
    653 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    654 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    655 };
    656 
    657 static const int	year_lengths[2] = {
    658 	DAYSPERNYEAR, DAYSPERLYEAR
    659 };
    660 
    661 /*
    662 ** Given a pointer into a time zone string, scan until a character that is not
    663 ** a valid character in a zone name is found. Return a pointer to that
    664 ** character.
    665 */
    666 
    667 static const char *
    668 getzname(strp)
    669 const char *	strp;
    670 {
    671 	char	c;
    672 
    673 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    674 		c != '+')
    675 			++strp;
    676 	return strp;
    677 }
    678 
    679 /*
    680 ** Given a pointer into an extended time zone string, scan until the ending
    681 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    682 **
    683 ** As with getzname above, the legal character set is actually quite
    684 ** restricted, with other characters producing undefined results.
    685 ** We don't do any checking here; checking is done later in common-case code.
    686 */
    687 
    688 static const char *
    689 getqzname(const char *strp, const int delim)
    690 {
    691 	int	c;
    692 
    693 	while ((c = *strp) != '\0' && c != delim)
    694 		++strp;
    695 	return strp;
    696 }
    697 
    698 /*
    699 ** Given a pointer into a time zone string, extract a number from that string.
    700 ** Check that the number is within a specified range; if it is not, return
    701 ** NULL.
    702 ** Otherwise, return a pointer to the first character not part of the number.
    703 */
    704 
    705 static const char *
    706 getnum(strp, nump, min, max)
    707 const char *	strp;
    708 int * const		nump;
    709 const int		min;
    710 const int		max;
    711 {
    712 	char	c;
    713 	int	num;
    714 
    715 	if (strp == NULL || !is_digit(c = *strp)) {
    716 		errno = EINVAL;
    717 		return NULL;
    718 	}
    719 	num = 0;
    720 	do {
    721 		num = num * 10 + (c - '0');
    722 		if (num > max) {
    723 			errno = EOVERFLOW;
    724 			return NULL;	/* illegal value */
    725 		}
    726 		c = *++strp;
    727 	} while (is_digit(c));
    728 	if (num < min) {
    729 		errno = EINVAL;
    730 		return NULL;		/* illegal value */
    731 	}
    732 	*nump = num;
    733 	return strp;
    734 }
    735 
    736 /*
    737 ** Given a pointer into a time zone string, extract a number of seconds,
    738 ** in hh[:mm[:ss]] form, from the string.
    739 ** If any error occurs, return NULL.
    740 ** Otherwise, return a pointer to the first character not part of the number
    741 ** of seconds.
    742 */
    743 
    744 static const char *
    745 getsecs(const char *strp, long *const secsp)
    746 {
    747 	int	num;
    748 
    749 	/*
    750 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    751 	** "M10.4.6/26", which does not conform to Posix,
    752 	** but which specifies the equivalent of
    753 	** ``02:00 on the first Sunday on or after 23 Oct''.
    754 	*/
    755 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    756 	if (strp == NULL)
    757 		return NULL;
    758 	*secsp = num * (long) SECSPERHOUR;
    759 	if (*strp == ':') {
    760 		++strp;
    761 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    762 		if (strp == NULL)
    763 			return NULL;
    764 		*secsp += num * SECSPERMIN;
    765 		if (*strp == ':') {
    766 			++strp;
    767 			/* `SECSPERMIN' allows for leap seconds. */
    768 			strp = getnum(strp, &num, 0, SECSPERMIN);
    769 			if (strp == NULL)
    770 				return NULL;
    771 			*secsp += num;
    772 		}
    773 	}
    774 	return strp;
    775 }
    776 
    777 /*
    778 ** Given a pointer into a time zone string, extract an offset, in
    779 ** [+-]hh[:mm[:ss]] form, from the string.
    780 ** If any error occurs, return NULL.
    781 ** Otherwise, return a pointer to the first character not part of the time.
    782 */
    783 
    784 static const char *
    785 getoffset(const char *strp, long *const offsetp)
    786 {
    787 	int	neg = 0;
    788 
    789 	if (*strp == '-') {
    790 		neg = 1;
    791 		++strp;
    792 	} else if (*strp == '+')
    793 		++strp;
    794 	strp = getsecs(strp, offsetp);
    795 	if (strp == NULL)
    796 		return NULL;		/* illegal time */
    797 	if (neg)
    798 		*offsetp = -*offsetp;
    799 	return strp;
    800 }
    801 
    802 /*
    803 ** Given a pointer into a time zone string, extract a rule in the form
    804 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    805 ** If a valid rule is not found, return NULL.
    806 ** Otherwise, return a pointer to the first character not part of the rule.
    807 */
    808 
    809 static const char *
    810 getrule(const char *strp, struct rule *const rulep)
    811 {
    812 	if (*strp == 'J') {
    813 		/*
    814 		** Julian day.
    815 		*/
    816 		rulep->r_type = JULIAN_DAY;
    817 		++strp;
    818 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    819 	} else if (*strp == 'M') {
    820 		/*
    821 		** Month, week, day.
    822 		*/
    823 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    824 		++strp;
    825 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    826 		if (strp == NULL)
    827 			return NULL;
    828 		if (*strp++ != '.')
    829 			return NULL;
    830 		strp = getnum(strp, &rulep->r_week, 1, 5);
    831 		if (strp == NULL)
    832 			return NULL;
    833 		if (*strp++ != '.')
    834 			return NULL;
    835 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    836 	} else if (is_digit(*strp)) {
    837 		/*
    838 		** Day of year.
    839 		*/
    840 		rulep->r_type = DAY_OF_YEAR;
    841 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    842 	} else	return NULL;		/* invalid format */
    843 	if (strp == NULL)
    844 		return NULL;
    845 	if (*strp == '/') {
    846 		/*
    847 		** Time specified.
    848 		*/
    849 		++strp;
    850 		strp = getsecs(strp, &rulep->r_time);
    851 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    852 	return strp;
    853 }
    854 
    855 /*
    856 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    857 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    858 ** calculate the Epoch-relative time that rule takes effect.
    859 */
    860 
    861 static time_t
    862 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    863     const long offset)
    864 {
    865 	int	leapyear;
    866 	time_t	value;
    867 	int	i;
    868 	int		d, m1, yy0, yy1, yy2, dow;
    869 
    870 	INITIALIZE(value);
    871 	leapyear = isleap(year);
    872 	switch (rulep->r_type) {
    873 
    874 	case JULIAN_DAY:
    875 		/*
    876 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    877 		** years.
    878 		** In non-leap years, or if the day number is 59 or less, just
    879 		** add SECSPERDAY times the day number-1 to the time of
    880 		** January 1, midnight, to get the day.
    881 		*/
    882 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    883 		if (leapyear && rulep->r_day >= 60)
    884 			value += SECSPERDAY;
    885 		break;
    886 
    887 	case DAY_OF_YEAR:
    888 		/*
    889 		** n - day of year.
    890 		** Just add SECSPERDAY times the day number to the time of
    891 		** January 1, midnight, to get the day.
    892 		*/
    893 		value = janfirst + rulep->r_day * SECSPERDAY;
    894 		break;
    895 
    896 	case MONTH_NTH_DAY_OF_WEEK:
    897 		/*
    898 		** Mm.n.d - nth "dth day" of month m.
    899 		*/
    900 		value = janfirst;
    901 		for (i = 0; i < rulep->r_mon - 1; ++i)
    902 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    903 
    904 		/*
    905 		** Use Zeller's Congruence to get day-of-week of first day of
    906 		** month.
    907 		*/
    908 		m1 = (rulep->r_mon + 9) % 12 + 1;
    909 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    910 		yy1 = yy0 / 100;
    911 		yy2 = yy0 % 100;
    912 		dow = ((26 * m1 - 2) / 10 +
    913 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    914 		if (dow < 0)
    915 			dow += DAYSPERWEEK;
    916 
    917 		/*
    918 		** "dow" is the day-of-week of the first day of the month. Get
    919 		** the day-of-month (zero-origin) of the first "dow" day of the
    920 		** month.
    921 		*/
    922 		d = rulep->r_day - dow;
    923 		if (d < 0)
    924 			d += DAYSPERWEEK;
    925 		for (i = 1; i < rulep->r_week; ++i) {
    926 			if (d + DAYSPERWEEK >=
    927 				mon_lengths[leapyear][rulep->r_mon - 1])
    928 					break;
    929 			d += DAYSPERWEEK;
    930 		}
    931 
    932 		/*
    933 		** "d" is the day-of-month (zero-origin) of the day we want.
    934 		*/
    935 		value += d * SECSPERDAY;
    936 		break;
    937 	}
    938 
    939 	/*
    940 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    941 	** question. To get the Epoch-relative time of the specified local
    942 	** time on that day, add the transition time and the current offset
    943 	** from UTC.
    944 	*/
    945 	return value + rulep->r_time + offset;
    946 }
    947 
    948 /*
    949 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    950 ** appropriate.
    951 */
    952 
    953 static int
    954 tzparse(timezone_t sp, const char *name, const int lastditch)
    955 {
    956 	const char *			stdname;
    957 	const char *			dstname;
    958 	size_t				stdlen;
    959 	size_t				dstlen;
    960 	long				stdoffset;
    961 	long				dstoffset;
    962 	time_t *		atp;
    963 	unsigned char *	typep;
    964 	char *			cp;
    965 	int			load_result;
    966 
    967 	INITIALIZE(dstname);
    968 	stdname = name;
    969 	if (lastditch) {
    970 		stdlen = strlen(name);	/* length of standard zone name */
    971 		name += stdlen;
    972 		if (stdlen >= sizeof sp->chars)
    973 			stdlen = (sizeof sp->chars) - 1;
    974 		stdoffset = 0;
    975 	} else {
    976 		if (*name == '<') {
    977 			name++;
    978 			stdname = name;
    979 			name = getqzname(name, '>');
    980 			if (*name != '>')
    981 				return (-1);
    982 			stdlen = name - stdname;
    983 			name++;
    984 		} else {
    985 			name = getzname(name);
    986 			stdlen = name - stdname;
    987 		}
    988 		if (*name == '\0')
    989 			return -1;
    990 		name = getoffset(name, &stdoffset);
    991 		if (name == NULL)
    992 			return -1;
    993 	}
    994 	load_result = tzload(sp, TZDEFRULES, FALSE);
    995 	if (load_result != 0)
    996 		sp->leapcnt = 0;		/* so, we're off a little */
    997 	if (*name != '\0') {
    998 		if (*name == '<') {
    999 			dstname = ++name;
   1000 			name = getqzname(name, '>');
   1001 			if (*name != '>')
   1002 				return -1;
   1003 			dstlen = name - dstname;
   1004 			name++;
   1005 		} else {
   1006 			dstname = name;
   1007 			name = getzname(name);
   1008 			dstlen = name - dstname; /* length of DST zone name */
   1009 		}
   1010 		if (*name != '\0' && *name != ',' && *name != ';') {
   1011 			name = getoffset(name, &dstoffset);
   1012 			if (name == NULL)
   1013 				return -1;
   1014 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1015 		if (*name == '\0' && load_result != 0)
   1016 			name = TZDEFRULESTRING;
   1017 		if (*name == ',' || *name == ';') {
   1018 			struct rule	start;
   1019 			struct rule	end;
   1020 			int	year;
   1021 			time_t	janfirst;
   1022 			time_t		starttime;
   1023 			time_t		endtime;
   1024 
   1025 			++name;
   1026 			if ((name = getrule(name, &start)) == NULL)
   1027 				return -1;
   1028 			if (*name++ != ',')
   1029 				return -1;
   1030 			if ((name = getrule(name, &end)) == NULL)
   1031 				return -1;
   1032 			if (*name != '\0')
   1033 				return -1;
   1034 			sp->typecnt = 2;	/* standard time and DST */
   1035 			/*
   1036 			** Two transitions per year, from EPOCH_YEAR forward.
   1037 			*/
   1038 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1039 			sp->ttis[0].tt_isdst = 1;
   1040 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1041 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1042 			sp->ttis[1].tt_isdst = 0;
   1043 			sp->ttis[1].tt_abbrind = 0;
   1044 			atp = sp->ats;
   1045 			typep = sp->types;
   1046 			janfirst = 0;
   1047 			sp->timecnt = 0;
   1048 			for (year = EPOCH_YEAR;
   1049 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1050 			    ++year) {
   1051 			    	time_t	newfirst;
   1052 
   1053 				starttime = transtime(janfirst, year, &start,
   1054 					stdoffset);
   1055 				endtime = transtime(janfirst, year, &end,
   1056 					dstoffset);
   1057 				if (starttime > endtime) {
   1058 					*atp++ = endtime;
   1059 					*typep++ = 1;	/* DST ends */
   1060 					*atp++ = starttime;
   1061 					*typep++ = 0;	/* DST begins */
   1062 				} else {
   1063 					*atp++ = starttime;
   1064 					*typep++ = 0;	/* DST begins */
   1065 					*atp++ = endtime;
   1066 					*typep++ = 1;	/* DST ends */
   1067 				}
   1068 				sp->timecnt += 2;
   1069 				newfirst = janfirst;
   1070 				newfirst += year_lengths[isleap(year)] *
   1071 					SECSPERDAY;
   1072 				if (newfirst <= janfirst)
   1073 					break;
   1074 				janfirst = newfirst;
   1075 			}
   1076 		} else {
   1077 			long	theirstdoffset;
   1078 			long	theirdstoffset;
   1079 			long	theiroffset;
   1080 			int	isdst;
   1081 			int	i;
   1082 			int	j;
   1083 
   1084 			if (*name != '\0')
   1085 				return -1;
   1086 			/*
   1087 			** Initial values of theirstdoffset
   1088 			*/
   1089 			theirstdoffset = 0;
   1090 			for (i = 0; i < sp->timecnt; ++i) {
   1091 				j = sp->types[i];
   1092 				if (!sp->ttis[j].tt_isdst) {
   1093 					theirstdoffset =
   1094 						-sp->ttis[j].tt_gmtoff;
   1095 					break;
   1096 				}
   1097 			}
   1098 			theirdstoffset = 0;
   1099 			for (i = 0; i < sp->timecnt; ++i) {
   1100 				j = sp->types[i];
   1101 				if (sp->ttis[j].tt_isdst) {
   1102 					theirdstoffset =
   1103 						-sp->ttis[j].tt_gmtoff;
   1104 					break;
   1105 				}
   1106 			}
   1107 			/*
   1108 			** Initially we're assumed to be in standard time.
   1109 			*/
   1110 			isdst = FALSE;
   1111 			theiroffset = theirstdoffset;
   1112 			/*
   1113 			** Now juggle transition times and types
   1114 			** tracking offsets as you do.
   1115 			*/
   1116 			for (i = 0; i < sp->timecnt; ++i) {
   1117 				j = sp->types[i];
   1118 				sp->types[i] = sp->ttis[j].tt_isdst;
   1119 				if (sp->ttis[j].tt_ttisgmt) {
   1120 					/* No adjustment to transition time */
   1121 				} else {
   1122 					/*
   1123 					** If summer time is in effect, and the
   1124 					** transition time was not specified as
   1125 					** standard time, add the summer time
   1126 					** offset to the transition time;
   1127 					** otherwise, add the standard time
   1128 					** offset to the transition time.
   1129 					*/
   1130 					/*
   1131 					** Transitions from DST to DDST
   1132 					** will effectively disappear since
   1133 					** POSIX provides for only one DST
   1134 					** offset.
   1135 					*/
   1136 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1137 						sp->ats[i] += dstoffset -
   1138 							theirdstoffset;
   1139 					} else {
   1140 						sp->ats[i] += stdoffset -
   1141 							theirstdoffset;
   1142 					}
   1143 				}
   1144 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1145 				if (!sp->ttis[j].tt_isdst)
   1146 					theirstdoffset = theiroffset;
   1147 				else	theirdstoffset = theiroffset;
   1148 			}
   1149 			/*
   1150 			** Finally, fill in ttis.
   1151 			** ttisstd and ttisgmt need not be handled.
   1152 			*/
   1153 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1154 			sp->ttis[0].tt_isdst = FALSE;
   1155 			sp->ttis[0].tt_abbrind = 0;
   1156 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1157 			sp->ttis[1].tt_isdst = TRUE;
   1158 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1159 			sp->typecnt = 2;
   1160 		}
   1161 	} else {
   1162 		dstlen = 0;
   1163 		sp->typecnt = 1;		/* only standard time */
   1164 		sp->timecnt = 0;
   1165 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1166 		sp->ttis[0].tt_isdst = 0;
   1167 		sp->ttis[0].tt_abbrind = 0;
   1168 	}
   1169 	sp->charcnt = stdlen + 1;
   1170 	if (dstlen != 0)
   1171 		sp->charcnt += dstlen + 1;
   1172 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1173 		return -1;
   1174 	cp = sp->chars;
   1175 	(void) strncpy(cp, stdname, stdlen);
   1176 	cp += stdlen;
   1177 	*cp++ = '\0';
   1178 	if (dstlen != 0) {
   1179 		(void) strncpy(cp, dstname, dstlen);
   1180 		*(cp + dstlen) = '\0';
   1181 	}
   1182 	return 0;
   1183 }
   1184 
   1185 static void
   1186 gmtload(timezone_t sp)
   1187 {
   1188 	if (tzload(sp, gmt, TRUE) != 0)
   1189 		(void) tzparse(sp, gmt, TRUE);
   1190 }
   1191 
   1192 timezone_t
   1193 tzalloc(const char *name)
   1194 {
   1195 	timezone_t sp = calloc(1, sizeof *sp);
   1196 	if (sp == NULL)
   1197 		return NULL;
   1198 	if (tzload(sp, name, TRUE) != 0) {
   1199 		free(sp);
   1200 		return NULL;
   1201 	}
   1202 	settzname_z(sp);
   1203 	return sp;
   1204 }
   1205 
   1206 void
   1207 tzfree(const timezone_t sp)
   1208 {
   1209 	free(sp);
   1210 }
   1211 
   1212 static void
   1213 tzsetwall_unlocked(void)
   1214 {
   1215 	if (lcl_is_set < 0)
   1216 		return;
   1217 	lcl_is_set = -1;
   1218 
   1219 	if (lclptr == NULL) {
   1220 		int saveerrno = errno;
   1221 		lclptr = calloc(1, sizeof *lclptr);
   1222 		errno = saveerrno;
   1223 		if (lclptr == NULL) {
   1224 			settzname();	/* all we can do */
   1225 			return;
   1226 		}
   1227 	}
   1228 	if (tzload(lclptr, NULL, TRUE) != 0)
   1229 		gmtload(lclptr);
   1230 	settzname();
   1231 }
   1232 
   1233 #ifndef STD_INSPIRED
   1234 /*
   1235 ** A non-static declaration of tzsetwall in a system header file
   1236 ** may cause a warning about this upcoming static declaration...
   1237 */
   1238 static
   1239 #endif /* !defined STD_INSPIRED */
   1240 void
   1241 tzsetwall(void)
   1242 {
   1243 	rwlock_wrlock(&lcl_lock);
   1244 	tzsetwall_unlocked();
   1245 	rwlock_unlock(&lcl_lock);
   1246 }
   1247 
   1248 #ifndef STD_INSPIRED
   1249 /*
   1250 ** A non-static declaration of tzsetwall in a system header file
   1251 ** may cause a warning about this upcoming static declaration...
   1252 */
   1253 static
   1254 #endif /* !defined STD_INSPIRED */
   1255 void
   1256 tzset_unlocked(void)
   1257 {
   1258 	const char *	name;
   1259 	int saveerrno;
   1260 
   1261 	saveerrno = errno;
   1262 	name = getenv("TZ");
   1263 	errno = saveerrno;
   1264 	if (name == NULL) {
   1265 		tzsetwall_unlocked();
   1266 		return;
   1267 	}
   1268 
   1269 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1270 		return;
   1271 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1272 	if (lcl_is_set)
   1273 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1274 
   1275 	if (lclptr == NULL) {
   1276 		saveerrno = errno;
   1277 		lclptr = calloc(1, sizeof *lclptr);
   1278 		errno = saveerrno;
   1279 		if (lclptr == NULL) {
   1280 			settzname();	/* all we can do */
   1281 			return;
   1282 		}
   1283 	}
   1284 	if (*name == '\0') {
   1285 		/*
   1286 		** User wants it fast rather than right.
   1287 		*/
   1288 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1289 		lclptr->timecnt = 0;
   1290 		lclptr->typecnt = 0;
   1291 		lclptr->ttis[0].tt_isdst = 0;
   1292 		lclptr->ttis[0].tt_gmtoff = 0;
   1293 		lclptr->ttis[0].tt_abbrind = 0;
   1294 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1295 	} else if (tzload(lclptr, name, TRUE) != 0)
   1296 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1297 			(void) gmtload(lclptr);
   1298 	settzname();
   1299 }
   1300 
   1301 void
   1302 tzset(void)
   1303 {
   1304 	rwlock_wrlock(&lcl_lock);
   1305 	tzset_unlocked();
   1306 	rwlock_unlock(&lcl_lock);
   1307 }
   1308 
   1309 /*
   1310 ** The easy way to behave "as if no library function calls" localtime
   1311 ** is to not call it--so we drop its guts into "localsub", which can be
   1312 ** freely called. (And no, the PANS doesn't require the above behavior--
   1313 ** but it *is* desirable.)
   1314 **
   1315 ** The unused offset argument is for the benefit of mktime variants.
   1316 */
   1317 
   1318 /*ARGSUSED*/
   1319 static struct tm *
   1320 localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1321     struct tm *const tmp)
   1322 {
   1323 	const struct ttinfo *	ttisp;
   1324 	int			i;
   1325 	struct tm *		result;
   1326 	const time_t			t = *timep;
   1327 
   1328 	if ((sp->goback && t < sp->ats[0]) ||
   1329 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1330 			time_t			newt = t;
   1331 			time_t		seconds;
   1332 			time_t		tcycles;
   1333 			int_fast64_t	icycles;
   1334 
   1335 			if (t < sp->ats[0])
   1336 				seconds = sp->ats[0] - t;
   1337 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1338 			--seconds;
   1339 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1340 			++tcycles;
   1341 			icycles = tcycles;
   1342 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1343 				return NULL;
   1344 			seconds = (time_t) icycles;
   1345 			seconds *= YEARSPERREPEAT;
   1346 			seconds *= AVGSECSPERYEAR;
   1347 			if (t < sp->ats[0])
   1348 				newt += seconds;
   1349 			else	newt -= seconds;
   1350 			if (newt < sp->ats[0] ||
   1351 				newt > sp->ats[sp->timecnt - 1])
   1352 					return NULL;	/* "cannot happen" */
   1353 			result = localsub(sp, &newt, offset, tmp);
   1354 			if (result == tmp) {
   1355 				time_t	newy;
   1356 
   1357 				newy = tmp->tm_year;
   1358 				if (t < sp->ats[0])
   1359 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1360 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1361 				tmp->tm_year = (int)newy;
   1362 				if (tmp->tm_year != newy)
   1363 					return NULL;
   1364 			}
   1365 			return result;
   1366 	}
   1367 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1368 		i = 0;
   1369 		while (sp->ttis[i].tt_isdst)
   1370 			if (++i >= sp->typecnt) {
   1371 				i = 0;
   1372 				break;
   1373 			}
   1374 	} else {
   1375 		int	lo = 1;
   1376 		int	hi = sp->timecnt;
   1377 
   1378 		while (lo < hi) {
   1379 			int	mid = (lo + hi) / 2;
   1380 
   1381 			if (t < sp->ats[mid])
   1382 				hi = mid;
   1383 			else	lo = mid + 1;
   1384 		}
   1385 		i = (int) sp->types[lo - 1];
   1386 	}
   1387 	ttisp = &sp->ttis[i];
   1388 	/*
   1389 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1390 	** you'd replace the statement below with
   1391 	**	t += ttisp->tt_gmtoff;
   1392 	**	timesub(&t, 0L, sp, tmp);
   1393 	*/
   1394 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1395 	tmp->tm_isdst = ttisp->tt_isdst;
   1396 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1397 #ifdef TM_ZONE
   1398 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1399 #endif /* defined TM_ZONE */
   1400 	return result;
   1401 }
   1402 
   1403 /*
   1404 ** Re-entrant version of localtime.
   1405 */
   1406 
   1407 struct tm *
   1408 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1409 {
   1410 	rwlock_rdlock(&lcl_lock);
   1411 	tzset_unlocked();
   1412 	tmp = localtime_rz(lclptr, timep, tmp);
   1413 	rwlock_unlock(&lcl_lock);
   1414 	return tmp;
   1415 }
   1416 
   1417 struct tm *
   1418 localtime(const time_t *const timep)
   1419 {
   1420 	return localtime_r(timep, &tm);
   1421 }
   1422 
   1423 struct tm *
   1424 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1425 {
   1426 	if (sp == NULL)
   1427 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1428 	else
   1429 		tmp = localsub(sp, timep, 0L, tmp);
   1430 	if (tmp == NULL)
   1431 		errno = EOVERFLOW;
   1432 	return tmp;
   1433 }
   1434 
   1435 /*
   1436 ** gmtsub is to gmtime as localsub is to localtime.
   1437 */
   1438 
   1439 static struct tm *
   1440 gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
   1441     struct tm *const tmp)
   1442 {
   1443 	struct tm *	result;
   1444 #ifdef _REENTRANT
   1445 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1446 #endif
   1447 
   1448 	mutex_lock(&gmt_mutex);
   1449 	if (!gmt_is_set) {
   1450 		int saveerrno;
   1451 		gmt_is_set = TRUE;
   1452 		saveerrno = errno;
   1453 		gmtptr = calloc(1, sizeof *gmtptr);
   1454 		errno = saveerrno;
   1455 		if (gmtptr != NULL)
   1456 			gmtload(gmtptr);
   1457 	}
   1458 	mutex_unlock(&gmt_mutex);
   1459 	result = timesub(gmtptr, timep, offset, tmp);
   1460 #ifdef TM_ZONE
   1461 	/*
   1462 	** Could get fancy here and deliver something such as
   1463 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1464 	** but this is no time for a treasure hunt.
   1465 	*/
   1466 	if (offset != 0)
   1467 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1468 	else {
   1469 		if (gmtptr == NULL)
   1470 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1471 		else	tmp->TM_ZONE = gmtptr->chars;
   1472 	}
   1473 #endif /* defined TM_ZONE */
   1474 	return result;
   1475 }
   1476 
   1477 struct tm *
   1478 gmtime(const time_t *const timep)
   1479 {
   1480 	return gmtsub(NULL, timep, 0L, &tm);
   1481 }
   1482 
   1483 /*
   1484 ** Re-entrant version of gmtime.
   1485 */
   1486 
   1487 struct tm *
   1488 gmtime_r(const time_t * const timep, struct tm *tmp)
   1489 {
   1490 	return gmtsub(NULL, timep, 0L, tmp);
   1491 }
   1492 
   1493 #ifdef STD_INSPIRED
   1494 
   1495 struct tm *
   1496 offtime(const time_t *const timep, long offset)
   1497 {
   1498 	return gmtsub(NULL, timep, offset, &tm);
   1499 }
   1500 
   1501 struct tm *
   1502 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1503 {
   1504 	return gmtsub(NULL, timep, offset, tmp);
   1505 }
   1506 
   1507 #endif /* defined STD_INSPIRED */
   1508 
   1509 /*
   1510 ** Return the number of leap years through the end of the given year
   1511 ** where, to make the math easy, the answer for year zero is defined as zero.
   1512 */
   1513 
   1514 static int
   1515 leaps_thru_end_of(const int y)
   1516 {
   1517 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1518 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1519 }
   1520 
   1521 static struct tm *
   1522 timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1523     struct tm *const tmp)
   1524 {
   1525 	const struct lsinfo *	lp;
   1526 	time_t			tdays;
   1527 	int			idays;	/* unsigned would be so 2003 */
   1528 	long			rem;
   1529 	int			y;
   1530 	const int *		ip;
   1531 	long			corr;
   1532 	int			hit;
   1533 	int			i;
   1534 
   1535 	corr = 0;
   1536 	hit = 0;
   1537 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1538 	while (--i >= 0) {
   1539 		lp = &sp->lsis[i];
   1540 		if (*timep >= lp->ls_trans) {
   1541 			if (*timep == lp->ls_trans) {
   1542 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1543 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1544 				if (hit)
   1545 					while (i > 0 &&
   1546 						sp->lsis[i].ls_trans ==
   1547 						sp->lsis[i - 1].ls_trans + 1 &&
   1548 						sp->lsis[i].ls_corr ==
   1549 						sp->lsis[i - 1].ls_corr + 1) {
   1550 							++hit;
   1551 							--i;
   1552 					}
   1553 			}
   1554 			corr = lp->ls_corr;
   1555 			break;
   1556 		}
   1557 	}
   1558 	y = EPOCH_YEAR;
   1559 	tdays = *timep / SECSPERDAY;
   1560 	rem = (long) (*timep - tdays * SECSPERDAY);
   1561 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1562 		int		newy;
   1563 		time_t	tdelta;
   1564 		int	idelta;
   1565 		int	leapdays;
   1566 
   1567 		tdelta = tdays / DAYSPERLYEAR;
   1568 		idelta = (int) tdelta;
   1569 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1570 			return NULL;
   1571 		if (idelta == 0)
   1572 			idelta = (tdays < 0) ? -1 : 1;
   1573 		newy = y;
   1574 		if (increment_overflow(&newy, idelta))
   1575 			return NULL;
   1576 		leapdays = leaps_thru_end_of(newy - 1) -
   1577 			leaps_thru_end_of(y - 1);
   1578 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1579 		tdays -= leapdays;
   1580 		y = newy;
   1581 	}
   1582 	{
   1583 		long	seconds;
   1584 
   1585 		seconds = tdays * SECSPERDAY + 0.5;
   1586 		tdays = seconds / SECSPERDAY;
   1587 		rem += (long) (seconds - tdays * SECSPERDAY);
   1588 	}
   1589 	/*
   1590 	** Given the range, we can now fearlessly cast...
   1591 	*/
   1592 	idays = (int) tdays;
   1593 	rem += offset - corr;
   1594 	while (rem < 0) {
   1595 		rem += SECSPERDAY;
   1596 		--idays;
   1597 	}
   1598 	while (rem >= SECSPERDAY) {
   1599 		rem -= SECSPERDAY;
   1600 		++idays;
   1601 	}
   1602 	while (idays < 0) {
   1603 		if (increment_overflow(&y, -1))
   1604 			return NULL;
   1605 		idays += year_lengths[isleap(y)];
   1606 	}
   1607 	while (idays >= year_lengths[isleap(y)]) {
   1608 		idays -= year_lengths[isleap(y)];
   1609 		if (increment_overflow(&y, 1))
   1610 			return NULL;
   1611 	}
   1612 	tmp->tm_year = y;
   1613 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1614 		return NULL;
   1615 	tmp->tm_yday = idays;
   1616 	/*
   1617 	** The "extra" mods below avoid overflow problems.
   1618 	*/
   1619 	tmp->tm_wday = EPOCH_WDAY +
   1620 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1621 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1622 		leaps_thru_end_of(y - 1) -
   1623 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1624 		idays;
   1625 	tmp->tm_wday %= DAYSPERWEEK;
   1626 	if (tmp->tm_wday < 0)
   1627 		tmp->tm_wday += DAYSPERWEEK;
   1628 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1629 	rem %= SECSPERHOUR;
   1630 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1631 	/*
   1632 	** A positive leap second requires a special
   1633 	** representation. This uses "... ??:59:60" et seq.
   1634 	*/
   1635 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1636 	ip = mon_lengths[isleap(y)];
   1637 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1638 		idays -= ip[tmp->tm_mon];
   1639 	tmp->tm_mday = (int) (idays + 1);
   1640 	tmp->tm_isdst = 0;
   1641 #ifdef TM_GMTOFF
   1642 	tmp->TM_GMTOFF = offset;
   1643 #endif /* defined TM_GMTOFF */
   1644 	return tmp;
   1645 }
   1646 
   1647 char *
   1648 ctime(const time_t *const timep)
   1649 {
   1650 /*
   1651 ** Section 4.12.3.2 of X3.159-1989 requires that
   1652 **	The ctime function converts the calendar time pointed to by timer
   1653 **	to local time in the form of a string. It is equivalent to
   1654 **		asctime(localtime(timer))
   1655 */
   1656 	struct tm *rtm = localtime(timep);
   1657 	if (rtm == NULL)
   1658 		return NULL;
   1659 	return asctime(rtm);
   1660 }
   1661 
   1662 char *
   1663 ctime_r(const time_t *const timep, char *buf)
   1664 {
   1665 	struct tm	mytm, *rtm;
   1666 
   1667 	rtm = localtime_r(timep, &mytm);
   1668 	if (rtm == NULL)
   1669 		return NULL;
   1670 	return asctime_r(rtm, buf);
   1671 }
   1672 
   1673 char *
   1674 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1675 {
   1676 	struct tm	mytm, *rtm;
   1677 
   1678 	rtm = localtime_rz(sp, timep, &mytm);
   1679 	if (rtm == NULL)
   1680 		return NULL;
   1681 	return asctime_r(rtm, buf);
   1682 }
   1683 
   1684 /*
   1685 ** Adapted from code provided by Robert Elz, who writes:
   1686 **	The "best" way to do mktime I think is based on an idea of Bob
   1687 **	Kridle's (so its said...) from a long time ago.
   1688 **	It does a binary search of the time_t space. Since time_t's are
   1689 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1690 **	would still be very reasonable).
   1691 */
   1692 
   1693 #ifndef WRONG
   1694 #define WRONG	((time_t)-1)
   1695 #endif /* !defined WRONG */
   1696 
   1697 /*
   1698 ** Simplified normalize logic courtesy Paul Eggert.
   1699 */
   1700 
   1701 static int
   1702 increment_overflow(int *number, int delta)
   1703 {
   1704 	int	number0;
   1705 
   1706 	number0 = *number;
   1707 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
   1708 		  return 1;
   1709 	*number += delta;
   1710 	return 0;
   1711 }
   1712 
   1713 static int
   1714 long_increment_overflow(long *number, int delta)
   1715 {
   1716 	long	number0;
   1717 
   1718 	number0 = *number;
   1719 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
   1720 		  return 1;
   1721 	*number += delta;
   1722 	return 0;
   1723 }
   1724 
   1725 static int
   1726 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1727 {
   1728 	int	tensdelta;
   1729 
   1730 	tensdelta = (*unitsptr >= 0) ?
   1731 		(*unitsptr / base) :
   1732 		(-1 - (-1 - *unitsptr) / base);
   1733 	*unitsptr -= tensdelta * base;
   1734 	return increment_overflow(tensptr, tensdelta);
   1735 }
   1736 
   1737 static int
   1738 long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1739     const int base)
   1740 {
   1741 	int	tensdelta;
   1742 
   1743 	tensdelta = (*unitsptr >= 0) ?
   1744 		(*unitsptr / base) :
   1745 		(-1 - (-1 - *unitsptr) / base);
   1746 	*unitsptr -= tensdelta * base;
   1747 	return long_increment_overflow(tensptr, tensdelta);
   1748 }
   1749 
   1750 static int
   1751 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1752 {
   1753 	int	result;
   1754 
   1755 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1756 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1757 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1758 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1759 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1760 			result = atmp->tm_sec - btmp->tm_sec;
   1761 	return result;
   1762 }
   1763 
   1764 static time_t
   1765 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1766     const long offset, int *const okayp, const int do_norm_secs)
   1767 {
   1768 	int			dir;
   1769 	int			i, j;
   1770 	int			saved_seconds;
   1771 	long			li;
   1772 	time_t			lo;
   1773 	time_t			hi;
   1774 	long				y;
   1775 	time_t				newt;
   1776 	time_t				t;
   1777 	struct tm			yourtm, mytm;
   1778 
   1779 	*okayp = FALSE;
   1780 	yourtm = *tmp;
   1781 	if (do_norm_secs) {
   1782 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1783 			SECSPERMIN))
   1784 				return WRONG;
   1785 	}
   1786 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1787 		return WRONG;
   1788 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1789 		return WRONG;
   1790 	y = yourtm.tm_year;
   1791 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1792 		return WRONG;
   1793 	/*
   1794 	** Turn y into an actual year number for now.
   1795 	** It is converted back to an offset from TM_YEAR_BASE later.
   1796 	*/
   1797 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1798 		return WRONG;
   1799 	while (yourtm.tm_mday <= 0) {
   1800 		if (long_increment_overflow(&y, -1))
   1801 			return WRONG;
   1802 		li = y + (1 < yourtm.tm_mon);
   1803 		yourtm.tm_mday += year_lengths[isleap(li)];
   1804 	}
   1805 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1806 		li = y + (1 < yourtm.tm_mon);
   1807 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1808 		if (long_increment_overflow(&y, 1))
   1809 			return WRONG;
   1810 	}
   1811 	for ( ; ; ) {
   1812 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1813 		if (yourtm.tm_mday <= i)
   1814 			break;
   1815 		yourtm.tm_mday -= i;
   1816 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1817 			yourtm.tm_mon = 0;
   1818 			if (long_increment_overflow(&y, 1))
   1819 				return WRONG;
   1820 		}
   1821 	}
   1822 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1823 		return WRONG;
   1824 	yourtm.tm_year = y;
   1825 	if (yourtm.tm_year != y)
   1826 		return WRONG;
   1827 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1828 		saved_seconds = 0;
   1829 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1830 		/*
   1831 		** We can't set tm_sec to 0, because that might push the
   1832 		** time below the minimum representable time.
   1833 		** Set tm_sec to 59 instead.
   1834 		** This assumes that the minimum representable time is
   1835 		** not in the same minute that a leap second was deleted from,
   1836 		** which is a safer assumption than using 58 would be.
   1837 		*/
   1838 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1839 			return WRONG;
   1840 		saved_seconds = yourtm.tm_sec;
   1841 		yourtm.tm_sec = SECSPERMIN - 1;
   1842 	} else {
   1843 		saved_seconds = yourtm.tm_sec;
   1844 		yourtm.tm_sec = 0;
   1845 	}
   1846 	/*
   1847 	** Do a binary search (this works whatever time_t's type is).
   1848 	*/
   1849 /* LINTED constant */
   1850 	if (!TYPE_SIGNED(time_t)) {
   1851 		lo = 0;
   1852 		hi = lo - 1;
   1853 /* LINTED constant */
   1854 	} else if (!TYPE_INTEGRAL(time_t)) {
   1855 /* CONSTCOND */
   1856 		if (sizeof(time_t) > sizeof(float))
   1857 /* LINTED assumed double */
   1858 			hi = (time_t) DBL_MAX;
   1859 /* LINTED assumed float */
   1860 		else	hi = (time_t) FLT_MAX;
   1861 		lo = -hi;
   1862 	} else {
   1863 		lo = 1;
   1864 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1865 			lo *= 2;
   1866 		hi = -(lo + 1);
   1867 	}
   1868 	for ( ; ; ) {
   1869 		t = lo / 2 + hi / 2;
   1870 		if (t < lo)
   1871 			t = lo;
   1872 		else if (t > hi)
   1873 			t = hi;
   1874 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1875 			/*
   1876 			** Assume that t is too extreme to be represented in
   1877 			** a struct tm; arrange things so that it is less
   1878 			** extreme on the next pass.
   1879 			*/
   1880 			dir = (t > 0) ? 1 : -1;
   1881 		} else	dir = tmcomp(&mytm, &yourtm);
   1882 		if (dir != 0) {
   1883 			if (t == lo) {
   1884 				++t;
   1885 				if (t <= lo)
   1886 					return WRONG;
   1887 				++lo;
   1888 			} else if (t == hi) {
   1889 				--t;
   1890 				if (t >= hi)
   1891 					return WRONG;
   1892 				--hi;
   1893 			}
   1894 			if (lo > hi)
   1895 				return WRONG;
   1896 			if (dir > 0)
   1897 				hi = t;
   1898 			else	lo = t;
   1899 			continue;
   1900 		}
   1901 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1902 			break;
   1903 		/*
   1904 		** Right time, wrong type.
   1905 		** Hunt for right time, right type.
   1906 		** It's okay to guess wrong since the guess
   1907 		** gets checked.
   1908 		*/
   1909 		if (sp == NULL)
   1910 			return WRONG;
   1911 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1912 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1913 				continue;
   1914 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1915 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1916 					continue;
   1917 				newt = t + sp->ttis[j].tt_gmtoff -
   1918 					sp->ttis[i].tt_gmtoff;
   1919 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1920 					continue;
   1921 				if (tmcomp(&mytm, &yourtm) != 0)
   1922 					continue;
   1923 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1924 					continue;
   1925 				/*
   1926 				** We have a match.
   1927 				*/
   1928 				t = newt;
   1929 				goto label;
   1930 			}
   1931 		}
   1932 		return WRONG;
   1933 	}
   1934 label:
   1935 	newt = t + saved_seconds;
   1936 	if ((newt < t) != (saved_seconds < 0))
   1937 		return WRONG;
   1938 	t = newt;
   1939 	if ((*funcp)(sp, &t, offset, tmp)) {
   1940 		*okayp = TRUE;
   1941 		return t;
   1942 	} else
   1943 		return WRONG;
   1944 }
   1945 
   1946 static time_t
   1947 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1948     const long offset, int *const okayp)
   1949 {
   1950 	time_t	t;
   1951 
   1952 	/*
   1953 	** First try without normalization of seconds
   1954 	** (in case tm_sec contains a value associated with a leap second).
   1955 	** If that fails, try with normalization of seconds.
   1956 	*/
   1957 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   1958 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   1959 }
   1960 
   1961 static time_t
   1962 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1963     long offset)
   1964 {
   1965 	time_t			t;
   1966 	int			samei, otheri;
   1967 	int			sameind, otherind;
   1968 	int			i;
   1969 	int			nseen;
   1970 	int				seen[TZ_MAX_TYPES];
   1971 	int				types[TZ_MAX_TYPES];
   1972 	int				okay;
   1973 
   1974 	if (tmp->tm_isdst > 1)
   1975 		tmp->tm_isdst = 1;
   1976 	t = time2(sp, tmp, funcp, offset, &okay);
   1977 #ifdef PCTS
   1978 	/*
   1979 	** PCTS code courtesy Grant Sullivan.
   1980 	*/
   1981 	if (okay)
   1982 		return t;
   1983 	if (tmp->tm_isdst < 0)
   1984 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1985 #endif /* defined PCTS */
   1986 #ifndef PCTS
   1987 	if (okay || tmp->tm_isdst < 0)
   1988 		return t;
   1989 #endif /* !defined PCTS */
   1990 	/*
   1991 	** We're supposed to assume that somebody took a time of one type
   1992 	** and did some math on it that yielded a "struct tm" that's bad.
   1993 	** We try to divine the type they started from and adjust to the
   1994 	** type they need.
   1995 	*/
   1996 	if (sp == NULL)
   1997 		return WRONG;
   1998 	for (i = 0; i < sp->typecnt; ++i)
   1999 		seen[i] = FALSE;
   2000 	nseen = 0;
   2001 	for (i = sp->timecnt - 1; i >= 0; --i)
   2002 		if (!seen[sp->types[i]]) {
   2003 			seen[sp->types[i]] = TRUE;
   2004 			types[nseen++] = sp->types[i];
   2005 		}
   2006 	for (sameind = 0; sameind < nseen; ++sameind) {
   2007 		samei = types[sameind];
   2008 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2009 			continue;
   2010 		for (otherind = 0; otherind < nseen; ++otherind) {
   2011 			otheri = types[otherind];
   2012 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2013 				continue;
   2014 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2015 					sp->ttis[samei].tt_gmtoff);
   2016 			tmp->tm_isdst = !tmp->tm_isdst;
   2017 			t = time2(sp, tmp, funcp, offset, &okay);
   2018 			if (okay)
   2019 				return t;
   2020 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2021 					sp->ttis[samei].tt_gmtoff);
   2022 			tmp->tm_isdst = !tmp->tm_isdst;
   2023 		}
   2024 	}
   2025 	return WRONG;
   2026 }
   2027 
   2028 time_t
   2029 mktime_z(const timezone_t sp, struct tm *tmp)
   2030 {
   2031 	time_t t;
   2032 	if (sp == NULL)
   2033 		t = time1(NULL, tmp, gmtsub, 0L);
   2034 	else
   2035 		t = time1(sp, tmp, localsub, 0L);
   2036 	if (t == WRONG)
   2037 		errno = EOVERFLOW;
   2038 	return t;
   2039 }
   2040 
   2041 time_t
   2042 mktime(struct tm * const	tmp)
   2043 {
   2044 	time_t result;
   2045 
   2046 	rwlock_wrlock(&lcl_lock);
   2047 	tzset_unlocked();
   2048 	result = mktime_z(lclptr, tmp);
   2049 	rwlock_unlock(&lcl_lock);
   2050 	return result;
   2051 }
   2052 
   2053 #ifdef STD_INSPIRED
   2054 
   2055 time_t
   2056 timelocal_z(const timezone_t sp, struct tm *tmp)
   2057 {
   2058 	if (tmp != NULL)
   2059 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2060 	return mktime_z(sp, tmp);
   2061 }
   2062 
   2063 time_t
   2064 timelocal(struct tm *const tmp)
   2065 {
   2066 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2067 	return mktime(tmp);
   2068 }
   2069 
   2070 time_t
   2071 timegm(struct tm *const tmp)
   2072 {
   2073 	time_t t;
   2074 
   2075 	tmp->tm_isdst = 0;
   2076 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2077 	if (t == WRONG)
   2078 		errno = EOVERFLOW;
   2079 	return t;
   2080 }
   2081 
   2082 time_t
   2083 timeoff(struct tm *const tmp, const long offset)
   2084 {
   2085 	time_t t;
   2086 
   2087 	tmp->tm_isdst = 0;
   2088 	t = time1(gmtptr, tmp, gmtsub, offset);
   2089 	if (t == WRONG)
   2090 		errno = EOVERFLOW;
   2091 	return t;
   2092 }
   2093 
   2094 #endif /* defined STD_INSPIRED */
   2095 
   2096 #ifdef CMUCS
   2097 
   2098 /*
   2099 ** The following is supplied for compatibility with
   2100 ** previous versions of the CMUCS runtime library.
   2101 */
   2102 
   2103 long
   2104 gtime(struct tm *const tmp)
   2105 {
   2106 	const time_t t = mktime(tmp);
   2107 
   2108 	if (t == WRONG)
   2109 		return -1;
   2110 	return t;
   2111 }
   2112 
   2113 #endif /* defined CMUCS */
   2114 
   2115 /*
   2116 ** XXX--is the below the right way to conditionalize??
   2117 */
   2118 
   2119 #ifdef STD_INSPIRED
   2120 
   2121 /*
   2122 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2123 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2124 ** is not the case if we are accounting for leap seconds.
   2125 ** So, we provide the following conversion routines for use
   2126 ** when exchanging timestamps with POSIX conforming systems.
   2127 */
   2128 
   2129 static long
   2130 leapcorr(const timezone_t sp, time_t *timep)
   2131 {
   2132 	struct lsinfo * lp;
   2133 	int		i;
   2134 
   2135 	i = sp->leapcnt;
   2136 	while (--i >= 0) {
   2137 		lp = &sp->lsis[i];
   2138 		if (*timep >= lp->ls_trans)
   2139 			return lp->ls_corr;
   2140 	}
   2141 	return 0;
   2142 }
   2143 
   2144 time_t
   2145 time2posix_z(const timezone_t sp, time_t t)
   2146 {
   2147 	return t - leapcorr(sp, &t);
   2148 }
   2149 
   2150 time_t
   2151 time2posix(time_t t)
   2152 {
   2153 	time_t result;
   2154 	rwlock_wrlock(&lcl_lock);
   2155 	tzset_unlocked();
   2156 	result = t - leapcorr(lclptr, &t);
   2157 	rwlock_unlock(&lcl_lock);
   2158 	return (result);
   2159 }
   2160 
   2161 time_t
   2162 posix2time_z(const timezone_t sp, time_t t)
   2163 {
   2164 	time_t	x;
   2165 	time_t	y;
   2166 
   2167 	/*
   2168 	** For a positive leap second hit, the result
   2169 	** is not unique. For a negative leap second
   2170 	** hit, the corresponding time doesn't exist,
   2171 	** so we return an adjacent second.
   2172 	*/
   2173 	x = t + leapcorr(sp, &t);
   2174 	y = x - leapcorr(sp, &x);
   2175 	if (y < t) {
   2176 		do {
   2177 			x++;
   2178 			y = x - leapcorr(sp, &x);
   2179 		} while (y < t);
   2180 		if (t != y) {
   2181 			return x - 1;
   2182 		}
   2183 	} else if (y > t) {
   2184 		do {
   2185 			--x;
   2186 			y = x - leapcorr(sp, &x);
   2187 		} while (y > t);
   2188 		if (t != y) {
   2189 			return x + 1;
   2190 		}
   2191 	}
   2192 	return x;
   2193 }
   2194 
   2195 
   2196 
   2197 time_t
   2198 posix2time(time_t t)
   2199 {
   2200 	time_t result;
   2201 
   2202 	rwlock_wrlock(&lcl_lock);
   2203 	tzset_unlocked();
   2204 	result = posix2time_z(lclptr, t);
   2205 	rwlock_unlock(&lcl_lock);
   2206 	return result;
   2207 }
   2208 
   2209 #endif /* defined STD_INSPIRED */
   2210