Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.54.2.2
      1 /*	$NetBSD: localtime.c,v 1.54.2.2 2011/03/05 15:09:20 bouyer Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.9";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.54.2.2 2011/03/05 15:09:20 bouyer Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include "private.h"
     26 #include "tzfile.h"
     27 #include "fcntl.h"
     28 #include "reentrant.h"
     29 
     30 #if defined(__weak_alias)
     31 __weak_alias(daylight,_daylight)
     32 __weak_alias(tzname,_tzname)
     33 #endif
     34 
     35 #include "float.h"	/* for FLT_MAX and DBL_MAX */
     36 
     37 #ifndef TZ_ABBR_MAX_LEN
     38 #define TZ_ABBR_MAX_LEN	16
     39 #endif /* !defined TZ_ABBR_MAX_LEN */
     40 
     41 #ifndef TZ_ABBR_CHAR_SET
     42 #define TZ_ABBR_CHAR_SET \
     43 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     44 #endif /* !defined TZ_ABBR_CHAR_SET */
     45 
     46 #ifndef TZ_ABBR_ERR_CHAR
     47 #define TZ_ABBR_ERR_CHAR	'_'
     48 #endif /* !defined TZ_ABBR_ERR_CHAR */
     49 
     50 /*
     51 ** SunOS 4.1.1 headers lack O_BINARY.
     52 */
     53 
     54 #ifdef O_BINARY
     55 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     56 #endif /* defined O_BINARY */
     57 #ifndef O_BINARY
     58 #define OPEN_MODE	O_RDONLY
     59 #endif /* !defined O_BINARY */
     60 
     61 #ifndef WILDABBR
     62 /*
     63 ** Someone might make incorrect use of a time zone abbreviation:
     64 **	1.	They might reference tzname[0] before calling tzset (explicitly
     65 **		or implicitly).
     66 **	2.	They might reference tzname[1] before calling tzset (explicitly
     67 **		or implicitly).
     68 **	3.	They might reference tzname[1] after setting to a time zone
     69 **		in which Daylight Saving Time is never observed.
     70 **	4.	They might reference tzname[0] after setting to a time zone
     71 **		in which Standard Time is never observed.
     72 **	5.	They might reference tm.TM_ZONE after calling offtime.
     73 ** What's best to do in the above cases is open to debate;
     74 ** for now, we just set things up so that in any of the five cases
     75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     76 ** string "tzname[0] used before set", and similarly for the other cases.
     77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     78 ** manual page of what this "time zone abbreviation" means (doing this so
     79 ** that tzname[0] has the "normal" length of three characters).
     80 */
     81 #define WILDABBR	"   "
     82 #endif /* !defined WILDABBR */
     83 
     84 static const char	wildabbr[] = WILDABBR;
     85 
     86 static char		gmt[] = "GMT";
     87 
     88 /*
     89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     90 ** We default to US rules as of 1999-08-17.
     91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     92 ** implementation dependent; for historical reasons, US rules are a
     93 ** common default.
     94 */
     95 #ifndef TZDEFRULESTRING
     96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     97 #endif /* !defined TZDEFDST */
     98 
     99 struct ttinfo {				/* time type information */
    100 	long		tt_gmtoff;	/* UTC offset in seconds */
    101 	int		tt_isdst;	/* used to set tm_isdst */
    102 	int		tt_abbrind;	/* abbreviation list index */
    103 	int		tt_ttisstd;	/* TRUE if transition is std time */
    104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    105 };
    106 
    107 struct lsinfo {				/* leap second information */
    108 	time_t		ls_trans;	/* transition time */
    109 	long		ls_corr;	/* correction to apply */
    110 };
    111 
    112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    113 
    114 #ifdef TZNAME_MAX
    115 #define MY_TZNAME_MAX	TZNAME_MAX
    116 #endif /* defined TZNAME_MAX */
    117 #ifndef TZNAME_MAX
    118 #define MY_TZNAME_MAX	255
    119 #endif /* !defined TZNAME_MAX */
    120 
    121 struct __state {
    122 	int		leapcnt;
    123 	int		timecnt;
    124 	int		typecnt;
    125 	int		charcnt;
    126 	int		goback;
    127 	int		goahead;
    128 	time_t		ats[TZ_MAX_TIMES];
    129 	unsigned char	types[TZ_MAX_TIMES];
    130 	struct ttinfo	ttis[TZ_MAX_TYPES];
    131 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    132 				(2 * (MY_TZNAME_MAX + 1)))];
    133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    134 };
    135 
    136 struct rule {
    137 	int		r_type;		/* type of rule--see below */
    138 	int		r_day;		/* day number of rule */
    139 	int		r_week;		/* week number of rule */
    140 	int		r_mon;		/* month number of rule */
    141 	long		r_time;		/* transition time of rule */
    142 };
    143 
    144 #define JULIAN_DAY		0	/* Jn - Julian day */
    145 #define DAY_OF_YEAR		1	/* n - day of year */
    146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    147 
    148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    149 			       long offset, struct tm *tmp);
    150 
    151 /*
    152 ** Prototypes for static functions.
    153 */
    154 
    155 static long		detzcode(const char * codep);
    156 static time_t		detzcode64(const char * codep);
    157 static int		differ_by_repeat(time_t t1, time_t t0);
    158 static const char *	getzname(const char * strp);
    159 static const char *	getqzname(const char * strp, const int delim);
    160 static const char *	getnum(const char * strp, int * nump, int min,
    161 				int max);
    162 static const char *	getsecs(const char * strp, long * secsp);
    163 static const char *	getoffset(const char * strp, long * offsetp);
    164 static const char *	getrule(const char * strp, struct rule * rulep);
    165 static void		gmtload(timezone_t sp);
    166 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    167 				long offset, struct tm * tmp);
    168 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    169 				long offset, struct tm *tmp);
    170 static int		increment_overflow(int * number, int delta);
    171 static int		leaps_thru_end_of(int y);
    172 static int		long_increment_overflow(long * number, int delta);
    173 static int		long_normalize_overflow(long * tensptr,
    174 				int * unitsptr, int base);
    175 static int		normalize_overflow(int * tensptr, int * unitsptr,
    176 				int base);
    177 static void		settzname(void);
    178 static time_t		time1(const timezone_t sp, struct tm * const tmp,
    179 				subfun_t funcp, long offset);
    180 static time_t		time2(const timezone_t sp, struct tm * const tmp,
    181 				subfun_t funcp,
    182 				const long offset, int *const okayp);
    183 static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
    184 				subfun_t funcp, const long offset,
    185 				int *const okayp, const int do_norm_secs);
    186 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    187 				long offset, struct tm * tmp);
    188 static int		tmcomp(const struct tm * atmp,
    189 				const struct tm * btmp);
    190 static time_t		transtime(time_t janfirst, int year,
    191 				const struct rule * rulep, long offset);
    192 static int		typesequiv(const timezone_t sp, int a, int b);
    193 static int		tzload(timezone_t sp, const char * name,
    194 				int doextend);
    195 static int		tzparse(timezone_t sp, const char * name,
    196 				int lastditch);
    197 static void		tzset_unlocked(void);
    198 static void		tzsetwall_unlocked(void);
    199 static long		leapcorr(const timezone_t sp, time_t * timep);
    200 
    201 static timezone_t lclptr;
    202 static timezone_t gmtptr;
    203 
    204 #ifndef TZ_STRLEN_MAX
    205 #define TZ_STRLEN_MAX 255
    206 #endif /* !defined TZ_STRLEN_MAX */
    207 
    208 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    209 static int		lcl_is_set;
    210 static int		gmt_is_set;
    211 
    212 #if !defined(__LIBC12_SOURCE__)
    213 
    214 __aconst char *		tzname[2] = {
    215 	(__aconst char *)__UNCONST(wildabbr),
    216 	(__aconst char *)__UNCONST(wildabbr)
    217 };
    218 
    219 #else
    220 
    221 extern __aconst char *	tzname[2];
    222 
    223 #endif
    224 
    225 #ifdef _REENTRANT
    226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    227 #endif
    228 
    229 /*
    230 ** Section 4.12.3 of X3.159-1989 requires that
    231 **	Except for the strftime function, these functions [asctime,
    232 **	ctime, gmtime, localtime] return values in one of two static
    233 **	objects: a broken-down time structure and an array of char.
    234 ** Thanks to Paul Eggert for noting this.
    235 */
    236 
    237 static struct tm	tm;
    238 
    239 #ifdef USG_COMPAT
    240 #if !defined(__LIBC12_SOURCE__)
    241 long 			timezone = 0;
    242 int			daylight = 0;
    243 #else
    244 extern int		daylight;
    245 extern long		timezone __RENAME(__timezone13);
    246 #endif
    247 #endif /* defined USG_COMPAT */
    248 
    249 #ifdef ALTZONE
    250 time_t			altzone = 0;
    251 #endif /* defined ALTZONE */
    252 
    253 static long
    254 detzcode(const char *const codep)
    255 {
    256 	long	result;
    257 	int	i;
    258 
    259 	result = (codep[0] & 0x80) ? ~0L : 0;
    260 	for (i = 0; i < 4; ++i)
    261 		result = (result << 8) | (codep[i] & 0xff);
    262 	return result;
    263 }
    264 
    265 static time_t
    266 detzcode64(const char *const codep)
    267 {
    268 	time_t	result;
    269 	int	i;
    270 
    271 	result = (codep[0] & 0x80) ? -1 : 0;
    272 	for (i = 0; i < 8; ++i)
    273 		result = result * 256 + (codep[i] & 0xff);
    274 	return result;
    275 }
    276 
    277 const char *
    278 tzgetname(const timezone_t sp, int isdst)
    279 {
    280 	int i;
    281 	for (i = 0; i < sp->timecnt; ++i) {
    282 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    283 
    284 		if (ttisp->tt_isdst == isdst)
    285 			return &sp->chars[ttisp->tt_abbrind];
    286 	}
    287 	return NULL;
    288 }
    289 
    290 static void
    291 settzname_z(timezone_t sp)
    292 {
    293 	int			i;
    294 
    295 	/*
    296 	** Scrub the abbreviations.
    297 	** First, replace bogus characters.
    298 	*/
    299 	for (i = 0; i < sp->charcnt; ++i)
    300 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    301 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    302 	/*
    303 	** Second, truncate long abbreviations.
    304 	*/
    305 	for (i = 0; i < sp->typecnt; ++i) {
    306 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    307 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    308 
    309 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    310 			strcmp(cp, GRANDPARENTED) != 0)
    311 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    312 	}
    313 }
    314 
    315 static void
    316 settzname(void)
    317 {
    318 	timezone_t const	sp = lclptr;
    319 	int			i;
    320 
    321 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    322 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    323 #ifdef USG_COMPAT
    324 	daylight = 0;
    325 	timezone = 0;
    326 #endif /* defined USG_COMPAT */
    327 #ifdef ALTZONE
    328 	altzone = 0;
    329 #endif /* defined ALTZONE */
    330 	if (sp == NULL) {
    331 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    332 		return;
    333 	}
    334 	for (i = 0; i < sp->typecnt; ++i) {
    335 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    336 
    337 		tzname[ttisp->tt_isdst] =
    338 			&sp->chars[ttisp->tt_abbrind];
    339 #ifdef USG_COMPAT
    340 		if (ttisp->tt_isdst)
    341 			daylight = 1;
    342 		if (i == 0 || !ttisp->tt_isdst)
    343 			timezone = -(ttisp->tt_gmtoff);
    344 #endif /* defined USG_COMPAT */
    345 #ifdef ALTZONE
    346 		if (i == 0 || ttisp->tt_isdst)
    347 			altzone = -(ttisp->tt_gmtoff);
    348 #endif /* defined ALTZONE */
    349 	}
    350 	/*
    351 	** And to get the latest zone names into tzname. . .
    352 	*/
    353 	for (i = 0; i < sp->timecnt; ++i) {
    354 		register const struct ttinfo * const	ttisp =
    355 							&sp->ttis[
    356 								sp->types[i]];
    357 
    358 		tzname[ttisp->tt_isdst] =
    359 			&sp->chars[ttisp->tt_abbrind];
    360 	}
    361 	settzname_z(sp);
    362 }
    363 
    364 static int
    365 differ_by_repeat(const time_t t1, const time_t t0)
    366 {
    367 /* CONSTCOND */
    368 	if (TYPE_INTEGRAL(time_t) &&
    369 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    370 			return 0;
    371 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    372 }
    373 
    374 static int
    375 tzload(timezone_t sp, const char *name, const int doextend)
    376 {
    377 	const char *		p;
    378 	int			i;
    379 	int			fid;
    380 	int			stored;
    381 	int			nread;
    382 	union {
    383 		struct tzhead	tzhead;
    384 		char		buf[2 * sizeof(struct tzhead) +
    385 					2 * sizeof *sp +
    386 					4 * TZ_MAX_TIMES];
    387 	} u;
    388 
    389 	sp->goback = sp->goahead = FALSE;
    390 	if (name == NULL && (name = TZDEFAULT) == NULL)
    391 		return -1;
    392 	{
    393 		int	doaccess;
    394 		/*
    395 		** Section 4.9.1 of the C standard says that
    396 		** "FILENAME_MAX expands to an integral constant expression
    397 		** that is the size needed for an array of char large enough
    398 		** to hold the longest file name string that the implementation
    399 		** guarantees can be opened."
    400 		*/
    401 		char		fullname[FILENAME_MAX + 1];
    402 
    403 		if (name[0] == ':')
    404 			++name;
    405 		doaccess = name[0] == '/';
    406 		if (!doaccess) {
    407 			if ((p = TZDIR) == NULL)
    408 				return -1;
    409 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    410 				return -1;
    411 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    412 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    413 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    414 			/*
    415 			** Set doaccess if '.' (as in "../") shows up in name.
    416 			*/
    417 			if (strchr(name, '.') != NULL)
    418 				doaccess = TRUE;
    419 			name = fullname;
    420 		}
    421 		if (doaccess && access(name, R_OK) != 0)
    422 			return -1;
    423 		/*
    424 		 * XXX potential security problem here if user of a set-id
    425 		 * program has set TZ (which is passed in as name) here,
    426 		 * and uses a race condition trick to defeat the access(2)
    427 		 * above.
    428 		 */
    429 		if ((fid = open(name, OPEN_MODE)) == -1)
    430 			return -1;
    431 	}
    432 	nread = read(fid, u.buf, sizeof u.buf);
    433 	if (close(fid) < 0 || nread <= 0)
    434 		return -1;
    435 	for (stored = 4; stored <= 8; stored *= 2) {
    436 		int		ttisstdcnt;
    437 		int		ttisgmtcnt;
    438 
    439 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    440 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    441 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    442 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    443 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    444 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    445 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    446 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    447 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    448 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    449 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    450 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    451 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    452 				return -1;
    453 		if (nread - (p - u.buf) <
    454 			sp->timecnt * stored +		/* ats */
    455 			sp->timecnt +			/* types */
    456 			sp->typecnt * 6 +		/* ttinfos */
    457 			sp->charcnt +			/* chars */
    458 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    459 			ttisstdcnt +			/* ttisstds */
    460 			ttisgmtcnt)			/* ttisgmts */
    461 				return -1;
    462 		for (i = 0; i < sp->timecnt; ++i) {
    463 			sp->ats[i] = (stored == 4) ?
    464 				detzcode(p) : detzcode64(p);
    465 			p += stored;
    466 		}
    467 		for (i = 0; i < sp->timecnt; ++i) {
    468 			sp->types[i] = (unsigned char) *p++;
    469 			if (sp->types[i] >= sp->typecnt)
    470 				return -1;
    471 		}
    472 		for (i = 0; i < sp->typecnt; ++i) {
    473 			struct ttinfo *	ttisp;
    474 
    475 			ttisp = &sp->ttis[i];
    476 			ttisp->tt_gmtoff = detzcode(p);
    477 			p += 4;
    478 			ttisp->tt_isdst = (unsigned char) *p++;
    479 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    480 				return -1;
    481 			ttisp->tt_abbrind = (unsigned char) *p++;
    482 			if (ttisp->tt_abbrind < 0 ||
    483 				ttisp->tt_abbrind > sp->charcnt)
    484 					return -1;
    485 		}
    486 		for (i = 0; i < sp->charcnt; ++i)
    487 			sp->chars[i] = *p++;
    488 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    489 		for (i = 0; i < sp->leapcnt; ++i) {
    490 			struct lsinfo *	lsisp;
    491 
    492 			lsisp = &sp->lsis[i];
    493 			lsisp->ls_trans = (stored == 4) ?
    494 				detzcode(p) : detzcode64(p);
    495 			p += stored;
    496 			lsisp->ls_corr = detzcode(p);
    497 			p += 4;
    498 		}
    499 		for (i = 0; i < sp->typecnt; ++i) {
    500 			struct ttinfo *	ttisp;
    501 
    502 			ttisp = &sp->ttis[i];
    503 			if (ttisstdcnt == 0)
    504 				ttisp->tt_ttisstd = FALSE;
    505 			else {
    506 				ttisp->tt_ttisstd = *p++;
    507 				if (ttisp->tt_ttisstd != TRUE &&
    508 					ttisp->tt_ttisstd != FALSE)
    509 						return -1;
    510 			}
    511 		}
    512 		for (i = 0; i < sp->typecnt; ++i) {
    513 			struct ttinfo *	ttisp;
    514 
    515 			ttisp = &sp->ttis[i];
    516 			if (ttisgmtcnt == 0)
    517 				ttisp->tt_ttisgmt = FALSE;
    518 			else {
    519 				ttisp->tt_ttisgmt = *p++;
    520 				if (ttisp->tt_ttisgmt != TRUE &&
    521 					ttisp->tt_ttisgmt != FALSE)
    522 						return -1;
    523 			}
    524 		}
    525 		/*
    526 		** Out-of-sort ats should mean we're running on a
    527 		** signed time_t system but using a data file with
    528 		** unsigned values (or vice versa).
    529 		*/
    530 		for (i = 0; i < sp->timecnt - 2; ++i)
    531 			if (sp->ats[i] > sp->ats[i + 1]) {
    532 				++i;
    533 /* CONSTCOND */
    534 				if (TYPE_SIGNED(time_t)) {
    535 					/*
    536 					** Ignore the end (easy).
    537 					*/
    538 					sp->timecnt = i;
    539 				} else {
    540 					/*
    541 					** Ignore the beginning (harder).
    542 					*/
    543 					int	j;
    544 
    545 					for (j = 0; j + i < sp->timecnt; ++j) {
    546 						sp->ats[j] = sp->ats[j + i];
    547 						sp->types[j] = sp->types[j + i];
    548 					}
    549 					sp->timecnt = j;
    550 				}
    551 				break;
    552 			}
    553 		/*
    554 		** If this is an old file, we're done.
    555 		*/
    556 		if (u.tzhead.tzh_version[0] == '\0')
    557 			break;
    558 		nread -= p - u.buf;
    559 		for (i = 0; i < nread; ++i)
    560 			u.buf[i] = p[i];
    561 		/*
    562 		** If this is a narrow integer time_t system, we're done.
    563 		*/
    564 		if (stored >= (int) sizeof(time_t)
    565 /* CONSTCOND */
    566 				&& TYPE_INTEGRAL(time_t))
    567 			break;
    568 	}
    569 	if (doextend && nread > 2 &&
    570 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    571 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    572 			struct __state ts;
    573 			int	result;
    574 
    575 			u.buf[nread - 1] = '\0';
    576 			result = tzparse(&ts, &u.buf[1], FALSE);
    577 			if (result == 0 && ts.typecnt == 2 &&
    578 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    579 					for (i = 0; i < 2; ++i)
    580 						ts.ttis[i].tt_abbrind +=
    581 							sp->charcnt;
    582 					for (i = 0; i < ts.charcnt; ++i)
    583 						sp->chars[sp->charcnt++] =
    584 							ts.chars[i];
    585 					i = 0;
    586 					while (i < ts.timecnt &&
    587 						ts.ats[i] <=
    588 						sp->ats[sp->timecnt - 1])
    589 							++i;
    590 					while (i < ts.timecnt &&
    591 					    sp->timecnt < TZ_MAX_TIMES) {
    592 						sp->ats[sp->timecnt] =
    593 							ts.ats[i];
    594 						sp->types[sp->timecnt] =
    595 							sp->typecnt +
    596 							ts.types[i];
    597 						++sp->timecnt;
    598 						++i;
    599 					}
    600 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    601 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    602 			}
    603 	}
    604 	if (sp->timecnt > 1) {
    605 		for (i = 1; i < sp->timecnt; ++i)
    606 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    607 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    608 					sp->goback = TRUE;
    609 					break;
    610 				}
    611 		for (i = sp->timecnt - 2; i >= 0; --i)
    612 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    613 				sp->types[i]) &&
    614 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    615 				sp->ats[i])) {
    616 					sp->goahead = TRUE;
    617 					break;
    618 		}
    619 	}
    620 	return 0;
    621 }
    622 
    623 static int
    624 typesequiv(const timezone_t sp, const int a, const int b)
    625 {
    626 	int	result;
    627 
    628 	if (sp == NULL ||
    629 		a < 0 || a >= sp->typecnt ||
    630 		b < 0 || b >= sp->typecnt)
    631 			result = FALSE;
    632 	else {
    633 		const struct ttinfo *	ap = &sp->ttis[a];
    634 		const struct ttinfo *	bp = &sp->ttis[b];
    635 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    636 			ap->tt_isdst == bp->tt_isdst &&
    637 			ap->tt_ttisstd == bp->tt_ttisstd &&
    638 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    639 			strcmp(&sp->chars[ap->tt_abbrind],
    640 			&sp->chars[bp->tt_abbrind]) == 0;
    641 	}
    642 	return result;
    643 }
    644 
    645 static const int	mon_lengths[2][MONSPERYEAR] = {
    646 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    647 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    648 };
    649 
    650 static const int	year_lengths[2] = {
    651 	DAYSPERNYEAR, DAYSPERLYEAR
    652 };
    653 
    654 /*
    655 ** Given a pointer into a time zone string, scan until a character that is not
    656 ** a valid character in a zone name is found. Return a pointer to that
    657 ** character.
    658 */
    659 
    660 static const char *
    661 getzname(strp)
    662 const char *	strp;
    663 {
    664 	char	c;
    665 
    666 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    667 		c != '+')
    668 			++strp;
    669 	return strp;
    670 }
    671 
    672 /*
    673 ** Given a pointer into an extended time zone string, scan until the ending
    674 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    675 **
    676 ** As with getzname above, the legal character set is actually quite
    677 ** restricted, with other characters producing undefined results.
    678 ** We don't do any checking here; checking is done later in common-case code.
    679 */
    680 
    681 static const char *
    682 getqzname(const char *strp, const int delim)
    683 {
    684 	int	c;
    685 
    686 	while ((c = *strp) != '\0' && c != delim)
    687 		++strp;
    688 	return strp;
    689 }
    690 
    691 /*
    692 ** Given a pointer into a time zone string, extract a number from that string.
    693 ** Check that the number is within a specified range; if it is not, return
    694 ** NULL.
    695 ** Otherwise, return a pointer to the first character not part of the number.
    696 */
    697 
    698 static const char *
    699 getnum(strp, nump, min, max)
    700 const char *	strp;
    701 int * const		nump;
    702 const int		min;
    703 const int		max;
    704 {
    705 	char	c;
    706 	int	num;
    707 
    708 	if (strp == NULL || !is_digit(c = *strp)) {
    709 		errno = EINVAL;
    710 		return NULL;
    711 	}
    712 	num = 0;
    713 	do {
    714 		num = num * 10 + (c - '0');
    715 		if (num > max) {
    716 			errno = EOVERFLOW;
    717 			return NULL;	/* illegal value */
    718 		}
    719 		c = *++strp;
    720 	} while (is_digit(c));
    721 	if (num < min) {
    722 		errno = EINVAL;
    723 		return NULL;		/* illegal value */
    724 	}
    725 	*nump = num;
    726 	return strp;
    727 }
    728 
    729 /*
    730 ** Given a pointer into a time zone string, extract a number of seconds,
    731 ** in hh[:mm[:ss]] form, from the string.
    732 ** If any error occurs, return NULL.
    733 ** Otherwise, return a pointer to the first character not part of the number
    734 ** of seconds.
    735 */
    736 
    737 static const char *
    738 getsecs(const char *strp, long *const secsp)
    739 {
    740 	int	num;
    741 
    742 	/*
    743 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    744 	** "M10.4.6/26", which does not conform to Posix,
    745 	** but which specifies the equivalent of
    746 	** ``02:00 on the first Sunday on or after 23 Oct''.
    747 	*/
    748 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    749 	if (strp == NULL)
    750 		return NULL;
    751 	*secsp = num * (long) SECSPERHOUR;
    752 	if (*strp == ':') {
    753 		++strp;
    754 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    755 		if (strp == NULL)
    756 			return NULL;
    757 		*secsp += num * SECSPERMIN;
    758 		if (*strp == ':') {
    759 			++strp;
    760 			/* `SECSPERMIN' allows for leap seconds. */
    761 			strp = getnum(strp, &num, 0, SECSPERMIN);
    762 			if (strp == NULL)
    763 				return NULL;
    764 			*secsp += num;
    765 		}
    766 	}
    767 	return strp;
    768 }
    769 
    770 /*
    771 ** Given a pointer into a time zone string, extract an offset, in
    772 ** [+-]hh[:mm[:ss]] form, from the string.
    773 ** If any error occurs, return NULL.
    774 ** Otherwise, return a pointer to the first character not part of the time.
    775 */
    776 
    777 static const char *
    778 getoffset(const char *strp, long *const offsetp)
    779 {
    780 	int	neg = 0;
    781 
    782 	if (*strp == '-') {
    783 		neg = 1;
    784 		++strp;
    785 	} else if (*strp == '+')
    786 		++strp;
    787 	strp = getsecs(strp, offsetp);
    788 	if (strp == NULL)
    789 		return NULL;		/* illegal time */
    790 	if (neg)
    791 		*offsetp = -*offsetp;
    792 	return strp;
    793 }
    794 
    795 /*
    796 ** Given a pointer into a time zone string, extract a rule in the form
    797 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    798 ** If a valid rule is not found, return NULL.
    799 ** Otherwise, return a pointer to the first character not part of the rule.
    800 */
    801 
    802 static const char *
    803 getrule(const char *strp, struct rule *const rulep)
    804 {
    805 	if (*strp == 'J') {
    806 		/*
    807 		** Julian day.
    808 		*/
    809 		rulep->r_type = JULIAN_DAY;
    810 		++strp;
    811 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    812 	} else if (*strp == 'M') {
    813 		/*
    814 		** Month, week, day.
    815 		*/
    816 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    817 		++strp;
    818 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    819 		if (strp == NULL)
    820 			return NULL;
    821 		if (*strp++ != '.')
    822 			return NULL;
    823 		strp = getnum(strp, &rulep->r_week, 1, 5);
    824 		if (strp == NULL)
    825 			return NULL;
    826 		if (*strp++ != '.')
    827 			return NULL;
    828 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    829 	} else if (is_digit(*strp)) {
    830 		/*
    831 		** Day of year.
    832 		*/
    833 		rulep->r_type = DAY_OF_YEAR;
    834 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    835 	} else	return NULL;		/* invalid format */
    836 	if (strp == NULL)
    837 		return NULL;
    838 	if (*strp == '/') {
    839 		/*
    840 		** Time specified.
    841 		*/
    842 		++strp;
    843 		strp = getsecs(strp, &rulep->r_time);
    844 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    845 	return strp;
    846 }
    847 
    848 /*
    849 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    850 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    851 ** calculate the Epoch-relative time that rule takes effect.
    852 */
    853 
    854 static time_t
    855 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    856     const long offset)
    857 {
    858 	int	leapyear;
    859 	time_t	value;
    860 	int	i;
    861 	int		d, m1, yy0, yy1, yy2, dow;
    862 
    863 	INITIALIZE(value);
    864 	leapyear = isleap(year);
    865 	switch (rulep->r_type) {
    866 
    867 	case JULIAN_DAY:
    868 		/*
    869 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    870 		** years.
    871 		** In non-leap years, or if the day number is 59 or less, just
    872 		** add SECSPERDAY times the day number-1 to the time of
    873 		** January 1, midnight, to get the day.
    874 		*/
    875 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    876 		if (leapyear && rulep->r_day >= 60)
    877 			value += SECSPERDAY;
    878 		break;
    879 
    880 	case DAY_OF_YEAR:
    881 		/*
    882 		** n - day of year.
    883 		** Just add SECSPERDAY times the day number to the time of
    884 		** January 1, midnight, to get the day.
    885 		*/
    886 		value = janfirst + rulep->r_day * SECSPERDAY;
    887 		break;
    888 
    889 	case MONTH_NTH_DAY_OF_WEEK:
    890 		/*
    891 		** Mm.n.d - nth "dth day" of month m.
    892 		*/
    893 		value = janfirst;
    894 		for (i = 0; i < rulep->r_mon - 1; ++i)
    895 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    896 
    897 		/*
    898 		** Use Zeller's Congruence to get day-of-week of first day of
    899 		** month.
    900 		*/
    901 		m1 = (rulep->r_mon + 9) % 12 + 1;
    902 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    903 		yy1 = yy0 / 100;
    904 		yy2 = yy0 % 100;
    905 		dow = ((26 * m1 - 2) / 10 +
    906 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    907 		if (dow < 0)
    908 			dow += DAYSPERWEEK;
    909 
    910 		/*
    911 		** "dow" is the day-of-week of the first day of the month. Get
    912 		** the day-of-month (zero-origin) of the first "dow" day of the
    913 		** month.
    914 		*/
    915 		d = rulep->r_day - dow;
    916 		if (d < 0)
    917 			d += DAYSPERWEEK;
    918 		for (i = 1; i < rulep->r_week; ++i) {
    919 			if (d + DAYSPERWEEK >=
    920 				mon_lengths[leapyear][rulep->r_mon - 1])
    921 					break;
    922 			d += DAYSPERWEEK;
    923 		}
    924 
    925 		/*
    926 		** "d" is the day-of-month (zero-origin) of the day we want.
    927 		*/
    928 		value += d * SECSPERDAY;
    929 		break;
    930 	}
    931 
    932 	/*
    933 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    934 	** question. To get the Epoch-relative time of the specified local
    935 	** time on that day, add the transition time and the current offset
    936 	** from UTC.
    937 	*/
    938 	return value + rulep->r_time + offset;
    939 }
    940 
    941 /*
    942 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    943 ** appropriate.
    944 */
    945 
    946 static int
    947 tzparse(timezone_t sp, const char *name, const int lastditch)
    948 {
    949 	const char *			stdname;
    950 	const char *			dstname;
    951 	size_t				stdlen;
    952 	size_t				dstlen;
    953 	long				stdoffset;
    954 	long				dstoffset;
    955 	time_t *		atp;
    956 	unsigned char *	typep;
    957 	char *			cp;
    958 	int			load_result;
    959 
    960 	INITIALIZE(dstname);
    961 	stdname = name;
    962 	if (lastditch) {
    963 		stdlen = strlen(name);	/* length of standard zone name */
    964 		name += stdlen;
    965 		if (stdlen >= sizeof sp->chars)
    966 			stdlen = (sizeof sp->chars) - 1;
    967 		stdoffset = 0;
    968 	} else {
    969 		if (*name == '<') {
    970 			name++;
    971 			stdname = name;
    972 			name = getqzname(name, '>');
    973 			if (*name != '>')
    974 				return (-1);
    975 			stdlen = name - stdname;
    976 			name++;
    977 		} else {
    978 			name = getzname(name);
    979 			stdlen = name - stdname;
    980 		}
    981 		if (*name == '\0')
    982 			return -1;
    983 		name = getoffset(name, &stdoffset);
    984 		if (name == NULL)
    985 			return -1;
    986 	}
    987 	load_result = tzload(sp, TZDEFRULES, FALSE);
    988 	if (load_result != 0)
    989 		sp->leapcnt = 0;		/* so, we're off a little */
    990 	if (*name != '\0') {
    991 		if (*name == '<') {
    992 			dstname = ++name;
    993 			name = getqzname(name, '>');
    994 			if (*name != '>')
    995 				return -1;
    996 			dstlen = name - dstname;
    997 			name++;
    998 		} else {
    999 			dstname = name;
   1000 			name = getzname(name);
   1001 			dstlen = name - dstname; /* length of DST zone name */
   1002 		}
   1003 		if (*name != '\0' && *name != ',' && *name != ';') {
   1004 			name = getoffset(name, &dstoffset);
   1005 			if (name == NULL)
   1006 				return -1;
   1007 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1008 		if (*name == '\0' && load_result != 0)
   1009 			name = TZDEFRULESTRING;
   1010 		if (*name == ',' || *name == ';') {
   1011 			struct rule	start;
   1012 			struct rule	end;
   1013 			int	year;
   1014 			time_t	janfirst;
   1015 			time_t		starttime;
   1016 			time_t		endtime;
   1017 
   1018 			++name;
   1019 			if ((name = getrule(name, &start)) == NULL)
   1020 				return -1;
   1021 			if (*name++ != ',')
   1022 				return -1;
   1023 			if ((name = getrule(name, &end)) == NULL)
   1024 				return -1;
   1025 			if (*name != '\0')
   1026 				return -1;
   1027 			sp->typecnt = 2;	/* standard time and DST */
   1028 			/*
   1029 			** Two transitions per year, from EPOCH_YEAR forward.
   1030 			*/
   1031 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1032 			sp->ttis[0].tt_isdst = 1;
   1033 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1034 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1035 			sp->ttis[1].tt_isdst = 0;
   1036 			sp->ttis[1].tt_abbrind = 0;
   1037 			atp = sp->ats;
   1038 			typep = sp->types;
   1039 			janfirst = 0;
   1040 			sp->timecnt = 0;
   1041 			for (year = EPOCH_YEAR;
   1042 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1043 			    ++year) {
   1044 			    	time_t	newfirst;
   1045 
   1046 				starttime = transtime(janfirst, year, &start,
   1047 					stdoffset);
   1048 				endtime = transtime(janfirst, year, &end,
   1049 					dstoffset);
   1050 				if (starttime > endtime) {
   1051 					*atp++ = endtime;
   1052 					*typep++ = 1;	/* DST ends */
   1053 					*atp++ = starttime;
   1054 					*typep++ = 0;	/* DST begins */
   1055 				} else {
   1056 					*atp++ = starttime;
   1057 					*typep++ = 0;	/* DST begins */
   1058 					*atp++ = endtime;
   1059 					*typep++ = 1;	/* DST ends */
   1060 				}
   1061 				sp->timecnt += 2;
   1062 				newfirst = janfirst;
   1063 				newfirst += year_lengths[isleap(year)] *
   1064 					SECSPERDAY;
   1065 				if (newfirst <= janfirst)
   1066 					break;
   1067 				janfirst = newfirst;
   1068 			}
   1069 		} else {
   1070 			long	theirstdoffset;
   1071 			long	theirdstoffset;
   1072 			long	theiroffset;
   1073 			int	isdst;
   1074 			int	i;
   1075 			int	j;
   1076 
   1077 			if (*name != '\0')
   1078 				return -1;
   1079 			/*
   1080 			** Initial values of theirstdoffset
   1081 			*/
   1082 			theirstdoffset = 0;
   1083 			for (i = 0; i < sp->timecnt; ++i) {
   1084 				j = sp->types[i];
   1085 				if (!sp->ttis[j].tt_isdst) {
   1086 					theirstdoffset =
   1087 						-sp->ttis[j].tt_gmtoff;
   1088 					break;
   1089 				}
   1090 			}
   1091 			theirdstoffset = 0;
   1092 			for (i = 0; i < sp->timecnt; ++i) {
   1093 				j = sp->types[i];
   1094 				if (sp->ttis[j].tt_isdst) {
   1095 					theirdstoffset =
   1096 						-sp->ttis[j].tt_gmtoff;
   1097 					break;
   1098 				}
   1099 			}
   1100 			/*
   1101 			** Initially we're assumed to be in standard time.
   1102 			*/
   1103 			isdst = FALSE;
   1104 			theiroffset = theirstdoffset;
   1105 			/*
   1106 			** Now juggle transition times and types
   1107 			** tracking offsets as you do.
   1108 			*/
   1109 			for (i = 0; i < sp->timecnt; ++i) {
   1110 				j = sp->types[i];
   1111 				sp->types[i] = sp->ttis[j].tt_isdst;
   1112 				if (sp->ttis[j].tt_ttisgmt) {
   1113 					/* No adjustment to transition time */
   1114 				} else {
   1115 					/*
   1116 					** If summer time is in effect, and the
   1117 					** transition time was not specified as
   1118 					** standard time, add the summer time
   1119 					** offset to the transition time;
   1120 					** otherwise, add the standard time
   1121 					** offset to the transition time.
   1122 					*/
   1123 					/*
   1124 					** Transitions from DST to DDST
   1125 					** will effectively disappear since
   1126 					** POSIX provides for only one DST
   1127 					** offset.
   1128 					*/
   1129 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1130 						sp->ats[i] += dstoffset -
   1131 							theirdstoffset;
   1132 					} else {
   1133 						sp->ats[i] += stdoffset -
   1134 							theirstdoffset;
   1135 					}
   1136 				}
   1137 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1138 				if (!sp->ttis[j].tt_isdst)
   1139 					theirstdoffset = theiroffset;
   1140 				else	theirdstoffset = theiroffset;
   1141 			}
   1142 			/*
   1143 			** Finally, fill in ttis.
   1144 			** ttisstd and ttisgmt need not be handled.
   1145 			*/
   1146 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1147 			sp->ttis[0].tt_isdst = FALSE;
   1148 			sp->ttis[0].tt_abbrind = 0;
   1149 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1150 			sp->ttis[1].tt_isdst = TRUE;
   1151 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1152 			sp->typecnt = 2;
   1153 		}
   1154 	} else {
   1155 		dstlen = 0;
   1156 		sp->typecnt = 1;		/* only standard time */
   1157 		sp->timecnt = 0;
   1158 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1159 		sp->ttis[0].tt_isdst = 0;
   1160 		sp->ttis[0].tt_abbrind = 0;
   1161 	}
   1162 	sp->charcnt = stdlen + 1;
   1163 	if (dstlen != 0)
   1164 		sp->charcnt += dstlen + 1;
   1165 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1166 		return -1;
   1167 	cp = sp->chars;
   1168 	(void) strncpy(cp, stdname, stdlen);
   1169 	cp += stdlen;
   1170 	*cp++ = '\0';
   1171 	if (dstlen != 0) {
   1172 		(void) strncpy(cp, dstname, dstlen);
   1173 		*(cp + dstlen) = '\0';
   1174 	}
   1175 	return 0;
   1176 }
   1177 
   1178 static void
   1179 gmtload(timezone_t sp)
   1180 {
   1181 	if (tzload(sp, gmt, TRUE) != 0)
   1182 		(void) tzparse(sp, gmt, TRUE);
   1183 }
   1184 
   1185 timezone_t
   1186 tzalloc(const char *name)
   1187 {
   1188 	timezone_t sp = calloc(1, sizeof *sp);
   1189 	if (sp == NULL)
   1190 		return NULL;
   1191 	if (tzload(sp, name, TRUE) != 0) {
   1192 		free(sp);
   1193 		return NULL;
   1194 	}
   1195 	settzname_z(sp);
   1196 	return sp;
   1197 }
   1198 
   1199 void
   1200 tzfree(const timezone_t sp)
   1201 {
   1202 	free(sp);
   1203 }
   1204 
   1205 static void
   1206 tzsetwall_unlocked(void)
   1207 {
   1208 	if (lcl_is_set < 0)
   1209 		return;
   1210 	lcl_is_set = -1;
   1211 
   1212 	if (lclptr == NULL) {
   1213 		int saveerrno = errno;
   1214 		lclptr = calloc(1, sizeof *lclptr);
   1215 		errno = saveerrno;
   1216 		if (lclptr == NULL) {
   1217 			settzname();	/* all we can do */
   1218 			return;
   1219 		}
   1220 	}
   1221 	if (tzload(lclptr, NULL, TRUE) != 0)
   1222 		gmtload(lclptr);
   1223 	settzname();
   1224 }
   1225 
   1226 #ifndef STD_INSPIRED
   1227 /*
   1228 ** A non-static declaration of tzsetwall in a system header file
   1229 ** may cause a warning about this upcoming static declaration...
   1230 */
   1231 static
   1232 #endif /* !defined STD_INSPIRED */
   1233 void
   1234 tzsetwall(void)
   1235 {
   1236 	rwlock_wrlock(&lcl_lock);
   1237 	tzsetwall_unlocked();
   1238 	rwlock_unlock(&lcl_lock);
   1239 }
   1240 
   1241 #ifndef STD_INSPIRED
   1242 /*
   1243 ** A non-static declaration of tzsetwall in a system header file
   1244 ** may cause a warning about this upcoming static declaration...
   1245 */
   1246 static
   1247 #endif /* !defined STD_INSPIRED */
   1248 void
   1249 tzset_unlocked(void)
   1250 {
   1251 	const char *	name;
   1252 	int saveerrno;
   1253 
   1254 	saveerrno = errno;
   1255 	name = getenv("TZ");
   1256 	errno = saveerrno;
   1257 	if (name == NULL) {
   1258 		tzsetwall_unlocked();
   1259 		return;
   1260 	}
   1261 
   1262 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1263 		return;
   1264 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1265 	if (lcl_is_set)
   1266 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1267 
   1268 	if (lclptr == NULL) {
   1269 		saveerrno = errno;
   1270 		lclptr = calloc(1, sizeof *lclptr);
   1271 		errno = saveerrno;
   1272 		if (lclptr == NULL) {
   1273 			settzname();	/* all we can do */
   1274 			return;
   1275 		}
   1276 	}
   1277 	if (*name == '\0') {
   1278 		/*
   1279 		** User wants it fast rather than right.
   1280 		*/
   1281 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1282 		lclptr->timecnt = 0;
   1283 		lclptr->typecnt = 0;
   1284 		lclptr->ttis[0].tt_isdst = 0;
   1285 		lclptr->ttis[0].tt_gmtoff = 0;
   1286 		lclptr->ttis[0].tt_abbrind = 0;
   1287 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1288 	} else if (tzload(lclptr, name, TRUE) != 0)
   1289 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1290 			(void) gmtload(lclptr);
   1291 	settzname();
   1292 }
   1293 
   1294 void
   1295 tzset(void)
   1296 {
   1297 	rwlock_wrlock(&lcl_lock);
   1298 	tzset_unlocked();
   1299 	rwlock_unlock(&lcl_lock);
   1300 }
   1301 
   1302 /*
   1303 ** The easy way to behave "as if no library function calls" localtime
   1304 ** is to not call it--so we drop its guts into "localsub", which can be
   1305 ** freely called. (And no, the PANS doesn't require the above behavior--
   1306 ** but it *is* desirable.)
   1307 **
   1308 ** The unused offset argument is for the benefit of mktime variants.
   1309 */
   1310 
   1311 /*ARGSUSED*/
   1312 static struct tm *
   1313 localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1314     struct tm *const tmp)
   1315 {
   1316 	const struct ttinfo *	ttisp;
   1317 	int			i;
   1318 	struct tm *		result;
   1319 	const time_t			t = *timep;
   1320 
   1321 	if ((sp->goback && t < sp->ats[0]) ||
   1322 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1323 			time_t			newt = t;
   1324 			time_t		seconds;
   1325 			time_t		tcycles;
   1326 			int_fast64_t	icycles;
   1327 
   1328 			if (t < sp->ats[0])
   1329 				seconds = sp->ats[0] - t;
   1330 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1331 			--seconds;
   1332 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1333 			++tcycles;
   1334 			icycles = tcycles;
   1335 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1336 				return NULL;
   1337 			seconds = (time_t) icycles;
   1338 			seconds *= YEARSPERREPEAT;
   1339 			seconds *= AVGSECSPERYEAR;
   1340 			if (t < sp->ats[0])
   1341 				newt += seconds;
   1342 			else	newt -= seconds;
   1343 			if (newt < sp->ats[0] ||
   1344 				newt > sp->ats[sp->timecnt - 1])
   1345 					return NULL;	/* "cannot happen" */
   1346 			result = localsub(sp, &newt, offset, tmp);
   1347 			if (result == tmp) {
   1348 				time_t	newy;
   1349 
   1350 				newy = tmp->tm_year;
   1351 				if (t < sp->ats[0])
   1352 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1353 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1354 				tmp->tm_year = (int)newy;
   1355 				if (tmp->tm_year != newy)
   1356 					return NULL;
   1357 			}
   1358 			return result;
   1359 	}
   1360 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1361 		i = 0;
   1362 		while (sp->ttis[i].tt_isdst)
   1363 			if (++i >= sp->typecnt) {
   1364 				i = 0;
   1365 				break;
   1366 			}
   1367 	} else {
   1368 		int	lo = 1;
   1369 		int	hi = sp->timecnt;
   1370 
   1371 		while (lo < hi) {
   1372 			int	mid = (lo + hi) / 2;
   1373 
   1374 			if (t < sp->ats[mid])
   1375 				hi = mid;
   1376 			else	lo = mid + 1;
   1377 		}
   1378 		i = (int) sp->types[lo - 1];
   1379 	}
   1380 	ttisp = &sp->ttis[i];
   1381 	/*
   1382 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1383 	** you'd replace the statement below with
   1384 	**	t += ttisp->tt_gmtoff;
   1385 	**	timesub(&t, 0L, sp, tmp);
   1386 	*/
   1387 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1388 	tmp->tm_isdst = ttisp->tt_isdst;
   1389 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1390 #ifdef TM_ZONE
   1391 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1392 #endif /* defined TM_ZONE */
   1393 	return result;
   1394 }
   1395 
   1396 /*
   1397 ** Re-entrant version of localtime.
   1398 */
   1399 
   1400 struct tm *
   1401 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1402 {
   1403 	rwlock_rdlock(&lcl_lock);
   1404 	tzset_unlocked();
   1405 	tmp = localtime_rz(lclptr, timep, tmp);
   1406 	rwlock_unlock(&lcl_lock);
   1407 	return tmp;
   1408 }
   1409 
   1410 struct tm *
   1411 localtime(const time_t *const timep)
   1412 {
   1413 	return localtime_r(timep, &tm);
   1414 }
   1415 
   1416 struct tm *
   1417 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1418 {
   1419 	if (sp == NULL)
   1420 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1421 	else
   1422 		tmp = localsub(sp, timep, 0L, tmp);
   1423 	if (tmp == NULL)
   1424 		errno = EOVERFLOW;
   1425 	return tmp;
   1426 }
   1427 
   1428 /*
   1429 ** gmtsub is to gmtime as localsub is to localtime.
   1430 */
   1431 
   1432 static struct tm *
   1433 gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
   1434     struct tm *const tmp)
   1435 {
   1436 	struct tm *	result;
   1437 #ifdef _REENTRANT
   1438 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1439 #endif
   1440 
   1441 	mutex_lock(&gmt_mutex);
   1442 	if (!gmt_is_set) {
   1443 		int saveerrno;
   1444 		gmt_is_set = TRUE;
   1445 		saveerrno = errno;
   1446 		gmtptr = calloc(1, sizeof *gmtptr);
   1447 		errno = saveerrno;
   1448 		if (gmtptr != NULL)
   1449 			gmtload(gmtptr);
   1450 	}
   1451 	mutex_unlock(&gmt_mutex);
   1452 	result = timesub(gmtptr, timep, offset, tmp);
   1453 #ifdef TM_ZONE
   1454 	/*
   1455 	** Could get fancy here and deliver something such as
   1456 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1457 	** but this is no time for a treasure hunt.
   1458 	*/
   1459 	if (offset != 0)
   1460 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1461 	else {
   1462 		if (gmtptr == NULL)
   1463 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1464 		else	tmp->TM_ZONE = gmtptr->chars;
   1465 	}
   1466 #endif /* defined TM_ZONE */
   1467 	return result;
   1468 }
   1469 
   1470 struct tm *
   1471 gmtime(const time_t *const timep)
   1472 {
   1473 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
   1474 
   1475 	if (tmp == NULL)
   1476 		errno = EOVERFLOW;
   1477 
   1478 	return tmp;
   1479 }
   1480 
   1481 /*
   1482 ** Re-entrant version of gmtime.
   1483 */
   1484 
   1485 struct tm *
   1486 gmtime_r(const time_t * const timep, struct tm *tmp)
   1487 {
   1488 	tmp = gmtsub(NULL, timep, 0L, tmp);
   1489 
   1490 	if (tmp == NULL)
   1491 		errno = EOVERFLOW;
   1492 
   1493 	return tmp;
   1494 }
   1495 
   1496 #ifdef STD_INSPIRED
   1497 
   1498 struct tm *
   1499 offtime(const time_t *const timep, long offset)
   1500 {
   1501 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
   1502 
   1503 	if (tmp == NULL)
   1504 		errno = EOVERFLOW;
   1505 
   1506 	return tmp;
   1507 }
   1508 
   1509 struct tm *
   1510 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1511 {
   1512 	tmp = gmtsub(NULL, timep, offset, tmp);
   1513 
   1514 	if (tmp == NULL)
   1515 		errno = EOVERFLOW;
   1516 
   1517 	return tmp;
   1518 }
   1519 
   1520 #endif /* defined STD_INSPIRED */
   1521 
   1522 /*
   1523 ** Return the number of leap years through the end of the given year
   1524 ** where, to make the math easy, the answer for year zero is defined as zero.
   1525 */
   1526 
   1527 static int
   1528 leaps_thru_end_of(const int y)
   1529 {
   1530 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1531 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1532 }
   1533 
   1534 static struct tm *
   1535 timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1536     struct tm *const tmp)
   1537 {
   1538 	const struct lsinfo *	lp;
   1539 	time_t			tdays;
   1540 	int			idays;	/* unsigned would be so 2003 */
   1541 	long			rem;
   1542 	int			y;
   1543 	const int *		ip;
   1544 	long			corr;
   1545 	int			hit;
   1546 	int			i;
   1547 
   1548 	corr = 0;
   1549 	hit = 0;
   1550 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1551 	while (--i >= 0) {
   1552 		lp = &sp->lsis[i];
   1553 		if (*timep >= lp->ls_trans) {
   1554 			if (*timep == lp->ls_trans) {
   1555 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1556 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1557 				if (hit)
   1558 					while (i > 0 &&
   1559 						sp->lsis[i].ls_trans ==
   1560 						sp->lsis[i - 1].ls_trans + 1 &&
   1561 						sp->lsis[i].ls_corr ==
   1562 						sp->lsis[i - 1].ls_corr + 1) {
   1563 							++hit;
   1564 							--i;
   1565 					}
   1566 			}
   1567 			corr = lp->ls_corr;
   1568 			break;
   1569 		}
   1570 	}
   1571 	y = EPOCH_YEAR;
   1572 	tdays = *timep / SECSPERDAY;
   1573 	rem = (long) (*timep - tdays * SECSPERDAY);
   1574 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1575 		int		newy;
   1576 		time_t	tdelta;
   1577 		int	idelta;
   1578 		int	leapdays;
   1579 
   1580 		tdelta = tdays / DAYSPERLYEAR;
   1581 		idelta = (int) tdelta;
   1582 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1583 			return NULL;
   1584 		if (idelta == 0)
   1585 			idelta = (tdays < 0) ? -1 : 1;
   1586 		newy = y;
   1587 		if (increment_overflow(&newy, idelta))
   1588 			return NULL;
   1589 		leapdays = leaps_thru_end_of(newy - 1) -
   1590 			leaps_thru_end_of(y - 1);
   1591 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1592 		tdays -= leapdays;
   1593 		y = newy;
   1594 	}
   1595 	{
   1596 		long	seconds;
   1597 
   1598 		seconds = tdays * SECSPERDAY + 0.5;
   1599 		tdays = seconds / SECSPERDAY;
   1600 		rem += (long) (seconds - tdays * SECSPERDAY);
   1601 	}
   1602 	/*
   1603 	** Given the range, we can now fearlessly cast...
   1604 	*/
   1605 	idays = (int) tdays;
   1606 	rem += offset - corr;
   1607 	while (rem < 0) {
   1608 		rem += SECSPERDAY;
   1609 		--idays;
   1610 	}
   1611 	while (rem >= SECSPERDAY) {
   1612 		rem -= SECSPERDAY;
   1613 		++idays;
   1614 	}
   1615 	while (idays < 0) {
   1616 		if (increment_overflow(&y, -1))
   1617 			return NULL;
   1618 		idays += year_lengths[isleap(y)];
   1619 	}
   1620 	while (idays >= year_lengths[isleap(y)]) {
   1621 		idays -= year_lengths[isleap(y)];
   1622 		if (increment_overflow(&y, 1))
   1623 			return NULL;
   1624 	}
   1625 	tmp->tm_year = y;
   1626 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1627 		return NULL;
   1628 	tmp->tm_yday = idays;
   1629 	/*
   1630 	** The "extra" mods below avoid overflow problems.
   1631 	*/
   1632 	tmp->tm_wday = EPOCH_WDAY +
   1633 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1634 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1635 		leaps_thru_end_of(y - 1) -
   1636 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1637 		idays;
   1638 	tmp->tm_wday %= DAYSPERWEEK;
   1639 	if (tmp->tm_wday < 0)
   1640 		tmp->tm_wday += DAYSPERWEEK;
   1641 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1642 	rem %= SECSPERHOUR;
   1643 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1644 	/*
   1645 	** A positive leap second requires a special
   1646 	** representation. This uses "... ??:59:60" et seq.
   1647 	*/
   1648 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1649 	ip = mon_lengths[isleap(y)];
   1650 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1651 		idays -= ip[tmp->tm_mon];
   1652 	tmp->tm_mday = (int) (idays + 1);
   1653 	tmp->tm_isdst = 0;
   1654 #ifdef TM_GMTOFF
   1655 	tmp->TM_GMTOFF = offset;
   1656 #endif /* defined TM_GMTOFF */
   1657 	return tmp;
   1658 }
   1659 
   1660 char *
   1661 ctime(const time_t *const timep)
   1662 {
   1663 /*
   1664 ** Section 4.12.3.2 of X3.159-1989 requires that
   1665 **	The ctime function converts the calendar time pointed to by timer
   1666 **	to local time in the form of a string. It is equivalent to
   1667 **		asctime(localtime(timer))
   1668 */
   1669 	struct tm *rtm = localtime(timep);
   1670 	if (rtm == NULL)
   1671 		return NULL;
   1672 	return asctime(rtm);
   1673 }
   1674 
   1675 char *
   1676 ctime_r(const time_t *const timep, char *buf)
   1677 {
   1678 	struct tm	mytm, *rtm;
   1679 
   1680 	rtm = localtime_r(timep, &mytm);
   1681 	if (rtm == NULL)
   1682 		return NULL;
   1683 	return asctime_r(rtm, buf);
   1684 }
   1685 
   1686 char *
   1687 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1688 {
   1689 	struct tm	mytm, *rtm;
   1690 
   1691 	rtm = localtime_rz(sp, timep, &mytm);
   1692 	if (rtm == NULL)
   1693 		return NULL;
   1694 	return asctime_r(rtm, buf);
   1695 }
   1696 
   1697 /*
   1698 ** Adapted from code provided by Robert Elz, who writes:
   1699 **	The "best" way to do mktime I think is based on an idea of Bob
   1700 **	Kridle's (so its said...) from a long time ago.
   1701 **	It does a binary search of the time_t space. Since time_t's are
   1702 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1703 **	would still be very reasonable).
   1704 */
   1705 
   1706 #ifndef WRONG
   1707 #define WRONG	((time_t)-1)
   1708 #endif /* !defined WRONG */
   1709 
   1710 /*
   1711 ** Simplified normalize logic courtesy Paul Eggert.
   1712 */
   1713 
   1714 static int
   1715 increment_overflow(int *number, int delta)
   1716 {
   1717 	int	number0;
   1718 
   1719 	number0 = *number;
   1720 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
   1721 		  return 1;
   1722 	*number += delta;
   1723 	return 0;
   1724 }
   1725 
   1726 static int
   1727 long_increment_overflow(long *number, int delta)
   1728 {
   1729 	long	number0;
   1730 
   1731 	number0 = *number;
   1732 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
   1733 		  return 1;
   1734 	*number += delta;
   1735 	return 0;
   1736 }
   1737 
   1738 static int
   1739 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1740 {
   1741 	int	tensdelta;
   1742 
   1743 	tensdelta = (*unitsptr >= 0) ?
   1744 		(*unitsptr / base) :
   1745 		(-1 - (-1 - *unitsptr) / base);
   1746 	*unitsptr -= tensdelta * base;
   1747 	return increment_overflow(tensptr, tensdelta);
   1748 }
   1749 
   1750 static int
   1751 long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1752     const int base)
   1753 {
   1754 	int	tensdelta;
   1755 
   1756 	tensdelta = (*unitsptr >= 0) ?
   1757 		(*unitsptr / base) :
   1758 		(-1 - (-1 - *unitsptr) / base);
   1759 	*unitsptr -= tensdelta * base;
   1760 	return long_increment_overflow(tensptr, tensdelta);
   1761 }
   1762 
   1763 static int
   1764 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1765 {
   1766 	int	result;
   1767 
   1768 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1769 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1770 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1771 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1772 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1773 			result = atmp->tm_sec - btmp->tm_sec;
   1774 	return result;
   1775 }
   1776 
   1777 static time_t
   1778 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1779     const long offset, int *const okayp, const int do_norm_secs)
   1780 {
   1781 	int			dir;
   1782 	int			i, j;
   1783 	int			saved_seconds;
   1784 	long			li;
   1785 	time_t			lo;
   1786 	time_t			hi;
   1787 	long				y;
   1788 	time_t				newt;
   1789 	time_t				t;
   1790 	struct tm			yourtm, mytm;
   1791 
   1792 	*okayp = FALSE;
   1793 	yourtm = *tmp;
   1794 	if (do_norm_secs) {
   1795 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1796 			SECSPERMIN))
   1797 				return WRONG;
   1798 	}
   1799 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1800 		return WRONG;
   1801 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1802 		return WRONG;
   1803 	y = yourtm.tm_year;
   1804 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1805 		return WRONG;
   1806 	/*
   1807 	** Turn y into an actual year number for now.
   1808 	** It is converted back to an offset from TM_YEAR_BASE later.
   1809 	*/
   1810 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1811 		return WRONG;
   1812 	while (yourtm.tm_mday <= 0) {
   1813 		if (long_increment_overflow(&y, -1))
   1814 			return WRONG;
   1815 		li = y + (1 < yourtm.tm_mon);
   1816 		yourtm.tm_mday += year_lengths[isleap(li)];
   1817 	}
   1818 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1819 		li = y + (1 < yourtm.tm_mon);
   1820 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1821 		if (long_increment_overflow(&y, 1))
   1822 			return WRONG;
   1823 	}
   1824 	for ( ; ; ) {
   1825 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1826 		if (yourtm.tm_mday <= i)
   1827 			break;
   1828 		yourtm.tm_mday -= i;
   1829 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1830 			yourtm.tm_mon = 0;
   1831 			if (long_increment_overflow(&y, 1))
   1832 				return WRONG;
   1833 		}
   1834 	}
   1835 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1836 		return WRONG;
   1837 	yourtm.tm_year = y;
   1838 	if (yourtm.tm_year != y)
   1839 		return WRONG;
   1840 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1841 		saved_seconds = 0;
   1842 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1843 		/*
   1844 		** We can't set tm_sec to 0, because that might push the
   1845 		** time below the minimum representable time.
   1846 		** Set tm_sec to 59 instead.
   1847 		** This assumes that the minimum representable time is
   1848 		** not in the same minute that a leap second was deleted from,
   1849 		** which is a safer assumption than using 58 would be.
   1850 		*/
   1851 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1852 			return WRONG;
   1853 		saved_seconds = yourtm.tm_sec;
   1854 		yourtm.tm_sec = SECSPERMIN - 1;
   1855 	} else {
   1856 		saved_seconds = yourtm.tm_sec;
   1857 		yourtm.tm_sec = 0;
   1858 	}
   1859 	/*
   1860 	** Do a binary search (this works whatever time_t's type is).
   1861 	*/
   1862 /* LINTED constant */
   1863 	if (!TYPE_SIGNED(time_t)) {
   1864 		lo = 0;
   1865 		hi = lo - 1;
   1866 /* LINTED constant */
   1867 	} else if (!TYPE_INTEGRAL(time_t)) {
   1868 /* CONSTCOND */
   1869 		if (sizeof(time_t) > sizeof(float))
   1870 /* LINTED assumed double */
   1871 			hi = (time_t) DBL_MAX;
   1872 /* LINTED assumed float */
   1873 		else	hi = (time_t) FLT_MAX;
   1874 		lo = -hi;
   1875 	} else {
   1876 		lo = 1;
   1877 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1878 			lo *= 2;
   1879 		hi = -(lo + 1);
   1880 	}
   1881 	for ( ; ; ) {
   1882 		t = lo / 2 + hi / 2;
   1883 		if (t < lo)
   1884 			t = lo;
   1885 		else if (t > hi)
   1886 			t = hi;
   1887 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1888 			/*
   1889 			** Assume that t is too extreme to be represented in
   1890 			** a struct tm; arrange things so that it is less
   1891 			** extreme on the next pass.
   1892 			*/
   1893 			dir = (t > 0) ? 1 : -1;
   1894 		} else	dir = tmcomp(&mytm, &yourtm);
   1895 		if (dir != 0) {
   1896 			if (t == lo) {
   1897 				++t;
   1898 				if (t <= lo)
   1899 					return WRONG;
   1900 				++lo;
   1901 			} else if (t == hi) {
   1902 				--t;
   1903 				if (t >= hi)
   1904 					return WRONG;
   1905 				--hi;
   1906 			}
   1907 			if (lo > hi)
   1908 				return WRONG;
   1909 			if (dir > 0)
   1910 				hi = t;
   1911 			else	lo = t;
   1912 			continue;
   1913 		}
   1914 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1915 			break;
   1916 		/*
   1917 		** Right time, wrong type.
   1918 		** Hunt for right time, right type.
   1919 		** It's okay to guess wrong since the guess
   1920 		** gets checked.
   1921 		*/
   1922 		if (sp == NULL)
   1923 			return WRONG;
   1924 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1925 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1926 				continue;
   1927 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1928 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1929 					continue;
   1930 				newt = t + sp->ttis[j].tt_gmtoff -
   1931 					sp->ttis[i].tt_gmtoff;
   1932 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1933 					continue;
   1934 				if (tmcomp(&mytm, &yourtm) != 0)
   1935 					continue;
   1936 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1937 					continue;
   1938 				/*
   1939 				** We have a match.
   1940 				*/
   1941 				t = newt;
   1942 				goto label;
   1943 			}
   1944 		}
   1945 		return WRONG;
   1946 	}
   1947 label:
   1948 	newt = t + saved_seconds;
   1949 	if ((newt < t) != (saved_seconds < 0))
   1950 		return WRONG;
   1951 	t = newt;
   1952 	if ((*funcp)(sp, &t, offset, tmp)) {
   1953 		*okayp = TRUE;
   1954 		return t;
   1955 	} else
   1956 		return WRONG;
   1957 }
   1958 
   1959 static time_t
   1960 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1961     const long offset, int *const okayp)
   1962 {
   1963 	time_t	t;
   1964 
   1965 	/*
   1966 	** First try without normalization of seconds
   1967 	** (in case tm_sec contains a value associated with a leap second).
   1968 	** If that fails, try with normalization of seconds.
   1969 	*/
   1970 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   1971 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   1972 }
   1973 
   1974 static time_t
   1975 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1976     long offset)
   1977 {
   1978 	time_t			t;
   1979 	int			samei, otheri;
   1980 	int			sameind, otherind;
   1981 	int			i;
   1982 	int			nseen;
   1983 	int				seen[TZ_MAX_TYPES];
   1984 	int				types[TZ_MAX_TYPES];
   1985 	int				okay;
   1986 
   1987 	if (tmp->tm_isdst > 1)
   1988 		tmp->tm_isdst = 1;
   1989 	t = time2(sp, tmp, funcp, offset, &okay);
   1990 #ifdef PCTS
   1991 	/*
   1992 	** PCTS code courtesy Grant Sullivan.
   1993 	*/
   1994 	if (okay)
   1995 		return t;
   1996 	if (tmp->tm_isdst < 0)
   1997 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1998 #endif /* defined PCTS */
   1999 #ifndef PCTS
   2000 	if (okay || tmp->tm_isdst < 0)
   2001 		return t;
   2002 #endif /* !defined PCTS */
   2003 	/*
   2004 	** We're supposed to assume that somebody took a time of one type
   2005 	** and did some math on it that yielded a "struct tm" that's bad.
   2006 	** We try to divine the type they started from and adjust to the
   2007 	** type they need.
   2008 	*/
   2009 	if (sp == NULL)
   2010 		return WRONG;
   2011 	for (i = 0; i < sp->typecnt; ++i)
   2012 		seen[i] = FALSE;
   2013 	nseen = 0;
   2014 	for (i = sp->timecnt - 1; i >= 0; --i)
   2015 		if (!seen[sp->types[i]]) {
   2016 			seen[sp->types[i]] = TRUE;
   2017 			types[nseen++] = sp->types[i];
   2018 		}
   2019 	for (sameind = 0; sameind < nseen; ++sameind) {
   2020 		samei = types[sameind];
   2021 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2022 			continue;
   2023 		for (otherind = 0; otherind < nseen; ++otherind) {
   2024 			otheri = types[otherind];
   2025 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2026 				continue;
   2027 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2028 					sp->ttis[samei].tt_gmtoff);
   2029 			tmp->tm_isdst = !tmp->tm_isdst;
   2030 			t = time2(sp, tmp, funcp, offset, &okay);
   2031 			if (okay)
   2032 				return t;
   2033 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2034 					sp->ttis[samei].tt_gmtoff);
   2035 			tmp->tm_isdst = !tmp->tm_isdst;
   2036 		}
   2037 	}
   2038 	return WRONG;
   2039 }
   2040 
   2041 time_t
   2042 mktime_z(const timezone_t sp, struct tm *tmp)
   2043 {
   2044 	time_t t;
   2045 	if (sp == NULL)
   2046 		t = time1(NULL, tmp, gmtsub, 0L);
   2047 	else
   2048 		t = time1(sp, tmp, localsub, 0L);
   2049 	if (t == WRONG)
   2050 		errno = EOVERFLOW;
   2051 	return t;
   2052 }
   2053 
   2054 time_t
   2055 mktime(struct tm * const	tmp)
   2056 {
   2057 	time_t result;
   2058 
   2059 	rwlock_wrlock(&lcl_lock);
   2060 	tzset_unlocked();
   2061 	result = mktime_z(lclptr, tmp);
   2062 	rwlock_unlock(&lcl_lock);
   2063 	return result;
   2064 }
   2065 
   2066 #ifdef STD_INSPIRED
   2067 
   2068 time_t
   2069 timelocal_z(const timezone_t sp, struct tm *tmp)
   2070 {
   2071 	if (tmp != NULL)
   2072 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2073 	return mktime_z(sp, tmp);
   2074 }
   2075 
   2076 time_t
   2077 timelocal(struct tm *const tmp)
   2078 {
   2079 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2080 	return mktime(tmp);
   2081 }
   2082 
   2083 time_t
   2084 timegm(struct tm *const tmp)
   2085 {
   2086 	time_t t;
   2087 
   2088 	tmp->tm_isdst = 0;
   2089 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2090 	if (t == WRONG)
   2091 		errno = EOVERFLOW;
   2092 	return t;
   2093 }
   2094 
   2095 time_t
   2096 timeoff(struct tm *const tmp, const long offset)
   2097 {
   2098 	time_t t;
   2099 
   2100 	tmp->tm_isdst = 0;
   2101 	t = time1(gmtptr, tmp, gmtsub, offset);
   2102 	if (t == WRONG)
   2103 		errno = EOVERFLOW;
   2104 	return t;
   2105 }
   2106 
   2107 #endif /* defined STD_INSPIRED */
   2108 
   2109 #ifdef CMUCS
   2110 
   2111 /*
   2112 ** The following is supplied for compatibility with
   2113 ** previous versions of the CMUCS runtime library.
   2114 */
   2115 
   2116 long
   2117 gtime(struct tm *const tmp)
   2118 {
   2119 	const time_t t = mktime(tmp);
   2120 
   2121 	if (t == WRONG)
   2122 		return -1;
   2123 	return t;
   2124 }
   2125 
   2126 #endif /* defined CMUCS */
   2127 
   2128 /*
   2129 ** XXX--is the below the right way to conditionalize??
   2130 */
   2131 
   2132 #ifdef STD_INSPIRED
   2133 
   2134 /*
   2135 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2136 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2137 ** is not the case if we are accounting for leap seconds.
   2138 ** So, we provide the following conversion routines for use
   2139 ** when exchanging timestamps with POSIX conforming systems.
   2140 */
   2141 
   2142 static long
   2143 leapcorr(const timezone_t sp, time_t *timep)
   2144 {
   2145 	struct lsinfo * lp;
   2146 	int		i;
   2147 
   2148 	i = sp->leapcnt;
   2149 	while (--i >= 0) {
   2150 		lp = &sp->lsis[i];
   2151 		if (*timep >= lp->ls_trans)
   2152 			return lp->ls_corr;
   2153 	}
   2154 	return 0;
   2155 }
   2156 
   2157 time_t
   2158 time2posix_z(const timezone_t sp, time_t t)
   2159 {
   2160 	return t - leapcorr(sp, &t);
   2161 }
   2162 
   2163 time_t
   2164 time2posix(time_t t)
   2165 {
   2166 	time_t result;
   2167 	rwlock_wrlock(&lcl_lock);
   2168 	tzset_unlocked();
   2169 	result = t - leapcorr(lclptr, &t);
   2170 	rwlock_unlock(&lcl_lock);
   2171 	return (result);
   2172 }
   2173 
   2174 time_t
   2175 posix2time_z(const timezone_t sp, time_t t)
   2176 {
   2177 	time_t	x;
   2178 	time_t	y;
   2179 
   2180 	/*
   2181 	** For a positive leap second hit, the result
   2182 	** is not unique. For a negative leap second
   2183 	** hit, the corresponding time doesn't exist,
   2184 	** so we return an adjacent second.
   2185 	*/
   2186 	x = t + leapcorr(sp, &t);
   2187 	y = x - leapcorr(sp, &x);
   2188 	if (y < t) {
   2189 		do {
   2190 			x++;
   2191 			y = x - leapcorr(sp, &x);
   2192 		} while (y < t);
   2193 		if (t != y) {
   2194 			return x - 1;
   2195 		}
   2196 	} else if (y > t) {
   2197 		do {
   2198 			--x;
   2199 			y = x - leapcorr(sp, &x);
   2200 		} while (y > t);
   2201 		if (t != y) {
   2202 			return x + 1;
   2203 		}
   2204 	}
   2205 	return x;
   2206 }
   2207 
   2208 
   2209 
   2210 time_t
   2211 posix2time(time_t t)
   2212 {
   2213 	time_t result;
   2214 
   2215 	rwlock_wrlock(&lcl_lock);
   2216 	tzset_unlocked();
   2217 	result = posix2time_z(lclptr, t);
   2218 	rwlock_unlock(&lcl_lock);
   2219 	return result;
   2220 }
   2221 
   2222 #endif /* defined STD_INSPIRED */
   2223