Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.6
      1 /*	$NetBSD: localtime.c,v 1.6 1996/01/20 02:31:04 jtc Exp $	*/
      2 
      3 #ifndef lint
      4 #ifndef NOID
      5 static char	elsieid[] = "@(#)localtime.c	7.53";
      6 #endif /* !defined NOID */
      7 #endif /* !defined lint */
      8 
      9 /*
     10 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     11 ** POSIX-style TZ environment variable handling from Guy Harris
     12 ** (guy (at) auspex.com).
     13 */
     14 
     15 /*LINTLIBRARY*/
     16 
     17 #include "private.h"
     18 #include "tzfile.h"
     19 #include "fcntl.h"
     20 
     21 /*
     22 ** SunOS 4.1.1 headers lack O_BINARY.
     23 */
     24 
     25 #ifdef O_BINARY
     26 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     27 #endif /* defined O_BINARY */
     28 #ifndef O_BINARY
     29 #define OPEN_MODE	O_RDONLY
     30 #endif /* !defined O_BINARY */
     31 
     32 #ifndef WILDABBR
     33 /*
     34 ** Someone might make incorrect use of a time zone abbreviation:
     35 **	1.	They might reference tzname[0] before calling tzset (explicitly
     36 **		or implicitly).
     37 **	2.	They might reference tzname[1] before calling tzset (explicitly
     38 **		or implicitly).
     39 **	3.	They might reference tzname[1] after setting to a time zone
     40 **		in which Daylight Saving Time is never observed.
     41 **	4.	They might reference tzname[0] after setting to a time zone
     42 **		in which Standard Time is never observed.
     43 **	5.	They might reference tm.TM_ZONE after calling offtime.
     44 ** What's best to do in the above cases is open to debate;
     45 ** for now, we just set things up so that in any of the five cases
     46 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     47 ** string "tzname[0] used before set", and similarly for the other cases.
     48 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     49 ** manual page of what this "time zone abbreviation" means (doing this so
     50 ** that tzname[0] has the "normal" length of three characters).
     51 */
     52 #define WILDABBR	"   "
     53 #endif /* !defined WILDABBR */
     54 
     55 static char		wildabbr[] = "WILDABBR";
     56 
     57 static const char	gmt[] = "GMT";
     58 
     59 struct ttinfo {				/* time type information */
     60 	long		tt_gmtoff;	/* GMT offset in seconds */
     61 	int		tt_isdst;	/* used to set tm_isdst */
     62 	int		tt_abbrind;	/* abbreviation list index */
     63 	int		tt_ttisstd;	/* TRUE if transition is std time */
     64 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
     65 };
     66 
     67 struct lsinfo {				/* leap second information */
     68 	time_t		ls_trans;	/* transition time */
     69 	long		ls_corr;	/* correction to apply */
     70 };
     71 
     72 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     73 
     74 #ifdef TZNAME_MAX
     75 #define MY_TZNAME_MAX	TZNAME_MAX
     76 #endif /* defined TZNAME_MAX */
     77 #ifndef TZNAME_MAX
     78 #define MY_TZNAME_MAX	255
     79 #endif /* !defined TZNAME_MAX */
     80 
     81 struct state {
     82 	int		leapcnt;
     83 	int		timecnt;
     84 	int		typecnt;
     85 	int		charcnt;
     86 	time_t		ats[TZ_MAX_TIMES];
     87 	unsigned char	types[TZ_MAX_TIMES];
     88 	struct ttinfo	ttis[TZ_MAX_TYPES];
     89 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
     90 				(2 * (MY_TZNAME_MAX + 1)))];
     91 	struct lsinfo	lsis[TZ_MAX_LEAPS];
     92 };
     93 
     94 struct rule {
     95 	int		r_type;		/* type of rule--see below */
     96 	int		r_day;		/* day number of rule */
     97 	int		r_week;		/* week number of rule */
     98 	int		r_mon;		/* month number of rule */
     99 	long		r_time;		/* transition time of rule */
    100 };
    101 
    102 #define JULIAN_DAY		0	/* Jn - Julian day */
    103 #define DAY_OF_YEAR		1	/* n - day of year */
    104 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    105 
    106 /*
    107 ** Prototypes for static functions.
    108 */
    109 
    110 static long		detzcode P((const char * codep));
    111 static const char *	getzname P((const char * strp));
    112 static const char *	getnum P((const char * strp, int * nump, int min,
    113 				int max));
    114 static const char *	getsecs P((const char * strp, long * secsp));
    115 static const char *	getoffset P((const char * strp, long * offsetp));
    116 static const char *	getrule P((const char * strp, struct rule * rulep));
    117 static void		gmtload P((struct state * sp));
    118 static void		gmtsub P((const time_t * timep, long offset,
    119 				struct tm * tmp));
    120 static void		localsub P((const time_t * timep, long offset,
    121 				struct tm * tmp));
    122 static int		increment_overflow P((int * number, int delta));
    123 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    124 				int base));
    125 static void		settzname P((void));
    126 static time_t		time1 P((struct tm * tmp,
    127 				void(*funcp) P((const time_t *,
    128 				long, struct tm *)),
    129 				long offset));
    130 static time_t		time2 P((struct tm *tmp,
    131 				void(*funcp) P((const time_t *,
    132 				long, struct tm*)),
    133 				long offset, int * okayp));
    134 static void		timesub P((const time_t * timep, long offset,
    135 				const struct state * sp, struct tm * tmp));
    136 static int		tmcomp P((const struct tm * atmp,
    137 				const struct tm * btmp));
    138 static time_t		transtime P((time_t janfirst, int year,
    139 				const struct rule * rulep, long offset));
    140 static int		tzload P((const char * name, struct state * sp));
    141 static int		tzparse P((const char * name, struct state * sp,
    142 				int lastditch));
    143 
    144 #ifdef ALL_STATE
    145 static struct state *	lclptr;
    146 static struct state *	gmtptr;
    147 #endif /* defined ALL_STATE */
    148 
    149 #ifndef ALL_STATE
    150 static struct state	lclmem;
    151 static struct state	gmtmem;
    152 #define lclptr		(&lclmem)
    153 #define gmtptr		(&gmtmem)
    154 #endif /* State Farm */
    155 
    156 #ifndef TZ_STRLEN_MAX
    157 #define TZ_STRLEN_MAX 255
    158 #endif /* !defined TZ_STRLEN_MAX */
    159 
    160 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    161 static int		lcl_is_set;
    162 static int		gmt_is_set;
    163 
    164 char *			tzname[2] = {
    165 	wildabbr,
    166 	wildabbr
    167 };
    168 
    169 /*
    170 ** Section 4.12.3 of X3.159-1989 requires that
    171 **	Except for the strftime function, these functions [asctime,
    172 **	ctime, gmtime, localtime] return values in one of two static
    173 **	objects: a broken-down time structure and an array of char.
    174 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    175 */
    176 
    177 static struct tm	tm;
    178 
    179 #ifdef USG_COMPAT
    180 time_t			timezone = 0;
    181 int			daylight = 0;
    182 #endif /* defined USG_COMPAT */
    183 
    184 #ifdef ALTZONE
    185 time_t			altzone = 0;
    186 #endif /* defined ALTZONE */
    187 
    188 static long
    189 detzcode(codep)
    190 const char * const	codep;
    191 {
    192 	register long	result;
    193 
    194 	/*
    195         ** The first character must be sign extended on systems with >32bit
    196         ** longs.  This was solved differently in the master tzcode sources
    197         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    198 	** that this implementation is superior.
    199         */
    200 
    201 #ifdef __STDC__
    202 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    203 #else
    204 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
    205 #endif
    206 
    207 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    208 	       | (codep[1] & 0xff) << 16 \
    209 	       | (codep[2] & 0xff) << 8
    210 	       | (codep[3] & 0xff);
    211 	return result;
    212 }
    213 
    214 static void
    215 settzname P((void))
    216 {
    217 	register struct state * const	sp = lclptr;
    218 	register int			i;
    219 
    220 	tzname[0] = wildabbr;
    221 	tzname[1] = wildabbr;
    222 #ifdef USG_COMPAT
    223 	daylight = 0;
    224 	timezone = 0;
    225 #endif /* defined USG_COMPAT */
    226 #ifdef ALTZONE
    227 	altzone = 0;
    228 #endif /* defined ALTZONE */
    229 #ifdef ALL_STATE
    230 	if (sp == NULL) {
    231 		tzname[0] = tzname[1] = gmt;
    232 		return;
    233 	}
    234 #endif /* defined ALL_STATE */
    235 	for (i = 0; i < sp->typecnt; ++i) {
    236 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    237 
    238 		tzname[ttisp->tt_isdst] =
    239 			&sp->chars[ttisp->tt_abbrind];
    240 #ifdef USG_COMPAT
    241 		if (ttisp->tt_isdst)
    242 			daylight = 1;
    243 		if (i == 0 || !ttisp->tt_isdst)
    244 			timezone = -(ttisp->tt_gmtoff);
    245 #endif /* defined USG_COMPAT */
    246 #ifdef ALTZONE
    247 		if (i == 0 || ttisp->tt_isdst)
    248 			altzone = -(ttisp->tt_gmtoff);
    249 #endif /* defined ALTZONE */
    250 	}
    251 	/*
    252 	** And to get the latest zone names into tzname. . .
    253 	*/
    254 	for (i = 0; i < sp->timecnt; ++i) {
    255 		register const struct ttinfo * const	ttisp =
    256 							&sp->ttis[
    257 								sp->types[i]];
    258 
    259 		tzname[ttisp->tt_isdst] =
    260 			&sp->chars[ttisp->tt_abbrind];
    261 	}
    262 }
    263 
    264 static int
    265 tzload(name, sp)
    266 register const char *		name;
    267 register struct state * const	sp;
    268 {
    269 	register const char *	p;
    270 	register int		i;
    271 	register int		fid;
    272 
    273 	if (name == NULL && (name = TZDEFAULT) == NULL)
    274 		return -1;
    275 	{
    276 		register int	doaccess;
    277 		/*
    278 		** Section 4.9.1 of the C standard says that
    279 		** "FILENAME_MAX expands to an integral constant expression
    280 		** that is the sie needed for an array of char large enough
    281 		** to hold the longest file name string that the implementation
    282 		** guarantees can be opened."
    283 		*/
    284 		char		fullname[FILENAME_MAX + 1];
    285 
    286 		if (name[0] == ':')
    287 			++name;
    288 		doaccess = name[0] == '/';
    289 		if (!doaccess) {
    290 			if ((p = TZDIR) == NULL)
    291 				return -1;
    292 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    293 				return -1;
    294 			(void) strcpy(fullname, p);
    295 			(void) strcat(fullname, "/");
    296 			(void) strcat(fullname, name);
    297 			/*
    298 			** Set doaccess if '.' (as in "../") shows up in name.
    299 			*/
    300 			if (strchr(name, '.') != NULL)
    301 				doaccess = TRUE;
    302 			name = fullname;
    303 		}
    304 		if (doaccess && access(name, R_OK) != 0)
    305 			return -1;
    306 		if ((fid = open(name, OPEN_MODE)) == -1)
    307 			return -1;
    308 	}
    309 	{
    310 		struct tzhead *	tzhp;
    311 		char		buf[sizeof *sp + sizeof *tzhp];
    312 		int		ttisstdcnt;
    313 		int		ttisgmtcnt;
    314 
    315 		i = read(fid, buf, sizeof buf);
    316 		if (close(fid) != 0)
    317 			return -1;
    318 		p = buf;
    319 		p += sizeof tzhp->tzh_reserved;
    320 		ttisstdcnt = (int) detzcode(p);
    321 		p += 4;
    322 		ttisgmtcnt = (int) detzcode(p);
    323 		p += 4;
    324 		sp->leapcnt = (int) detzcode(p);
    325 		p += 4;
    326 		sp->timecnt = (int) detzcode(p);
    327 		p += 4;
    328 		sp->typecnt = (int) detzcode(p);
    329 		p += 4;
    330 		sp->charcnt = (int) detzcode(p);
    331 		p += 4;
    332 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    333 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    334 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    335 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    336 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    337 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    338 				return -1;
    339 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
    340 			sp->timecnt +			/* types */
    341 			sp->typecnt * (4 + 2) +		/* ttinfos */
    342 			sp->charcnt +			/* chars */
    343 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    344 			ttisstdcnt +			/* ttisstds */
    345 			ttisgmtcnt)			/* ttisgmts */
    346 				return -1;
    347 		for (i = 0; i < sp->timecnt; ++i) {
    348 			sp->ats[i] = detzcode(p);
    349 			p += 4;
    350 		}
    351 		for (i = 0; i < sp->timecnt; ++i) {
    352 			sp->types[i] = (unsigned char) *p++;
    353 			if (sp->types[i] >= sp->typecnt)
    354 				return -1;
    355 		}
    356 		for (i = 0; i < sp->typecnt; ++i) {
    357 			register struct ttinfo *	ttisp;
    358 
    359 			ttisp = &sp->ttis[i];
    360 			ttisp->tt_gmtoff = detzcode(p);
    361 			p += 4;
    362 			ttisp->tt_isdst = (unsigned char) *p++;
    363 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    364 				return -1;
    365 			ttisp->tt_abbrind = (unsigned char) *p++;
    366 			if (ttisp->tt_abbrind < 0 ||
    367 				ttisp->tt_abbrind > sp->charcnt)
    368 					return -1;
    369 		}
    370 		for (i = 0; i < sp->charcnt; ++i)
    371 			sp->chars[i] = *p++;
    372 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    373 		for (i = 0; i < sp->leapcnt; ++i) {
    374 			register struct lsinfo *	lsisp;
    375 
    376 			lsisp = &sp->lsis[i];
    377 			lsisp->ls_trans = detzcode(p);
    378 			p += 4;
    379 			lsisp->ls_corr = detzcode(p);
    380 			p += 4;
    381 		}
    382 		for (i = 0; i < sp->typecnt; ++i) {
    383 			register struct ttinfo *	ttisp;
    384 
    385 			ttisp = &sp->ttis[i];
    386 			if (ttisstdcnt == 0)
    387 				ttisp->tt_ttisstd = FALSE;
    388 			else {
    389 				ttisp->tt_ttisstd = *p++;
    390 				if (ttisp->tt_ttisstd != TRUE &&
    391 					ttisp->tt_ttisstd != FALSE)
    392 						return -1;
    393 			}
    394 		}
    395 		for (i = 0; i < sp->typecnt; ++i) {
    396 			register struct ttinfo *	ttisp;
    397 
    398 			ttisp = &sp->ttis[i];
    399 			if (ttisgmtcnt == 0)
    400 				ttisp->tt_ttisgmt = FALSE;
    401 			else {
    402 				ttisp->tt_ttisgmt = *p++;
    403 				if (ttisp->tt_ttisgmt != TRUE &&
    404 					ttisp->tt_ttisgmt != FALSE)
    405 						return -1;
    406 			}
    407 		}
    408 	}
    409 	return 0;
    410 }
    411 
    412 static const int	mon_lengths[2][MONSPERYEAR] = {
    413 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    414 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    415 };
    416 
    417 static const int	year_lengths[2] = {
    418 	DAYSPERNYEAR, DAYSPERLYEAR
    419 };
    420 
    421 /*
    422 ** Given a pointer into a time zone string, scan until a character that is not
    423 ** a valid character in a zone name is found.  Return a pointer to that
    424 ** character.
    425 */
    426 
    427 static const char *
    428 getzname(strp)
    429 register const char *	strp;
    430 {
    431 	register char	c;
    432 
    433 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    434 		c != '+')
    435 			++strp;
    436 	return strp;
    437 }
    438 
    439 /*
    440 ** Given a pointer into a time zone string, extract a number from that string.
    441 ** Check that the number is within a specified range; if it is not, return
    442 ** NULL.
    443 ** Otherwise, return a pointer to the first character not part of the number.
    444 */
    445 
    446 static const char *
    447 getnum(strp, nump, min, max)
    448 register const char *	strp;
    449 int * const		nump;
    450 const int		min;
    451 const int		max;
    452 {
    453 	register char	c;
    454 	register int	num;
    455 
    456 	if (strp == NULL || !is_digit(c = *strp))
    457 		return NULL;
    458 	num = 0;
    459 	do {
    460 		num = num * 10 + (c - '0');
    461 		if (num > max)
    462 			return NULL;	/* illegal value */
    463 		c = *++strp;
    464 	} while (is_digit(c));
    465 	if (num < min)
    466 		return NULL;		/* illegal value */
    467 	*nump = num;
    468 	return strp;
    469 }
    470 
    471 /*
    472 ** Given a pointer into a time zone string, extract a number of seconds,
    473 ** in hh[:mm[:ss]] form, from the string.
    474 ** If any error occurs, return NULL.
    475 ** Otherwise, return a pointer to the first character not part of the number
    476 ** of seconds.
    477 */
    478 
    479 static const char *
    480 getsecs(strp, secsp)
    481 register const char *	strp;
    482 long * const		secsp;
    483 {
    484 	int	num;
    485 
    486 	/*
    487 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    488 	** "M10.4.6/26", which does not conform to Posix,
    489 	** but which specifies the equivalent of
    490 	** ``02:00 on the first Sunday on or after 23 Oct''.
    491 	*/
    492 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    493 	if (strp == NULL)
    494 		return NULL;
    495 	*secsp = num * (long) SECSPERHOUR;
    496 	if (*strp == ':') {
    497 		++strp;
    498 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    499 		if (strp == NULL)
    500 			return NULL;
    501 		*secsp += num * SECSPERMIN;
    502 		if (*strp == ':') {
    503 			++strp;
    504 			/* `SECSPERMIN' allows for leap seconds.  */
    505 			strp = getnum(strp, &num, 0, SECSPERMIN);
    506 			if (strp == NULL)
    507 				return NULL;
    508 			*secsp += num;
    509 		}
    510 	}
    511 	return strp;
    512 }
    513 
    514 /*
    515 ** Given a pointer into a time zone string, extract an offset, in
    516 ** [+-]hh[:mm[:ss]] form, from the string.
    517 ** If any error occurs, return NULL.
    518 ** Otherwise, return a pointer to the first character not part of the time.
    519 */
    520 
    521 static const char *
    522 getoffset(strp, offsetp)
    523 register const char *	strp;
    524 long * const		offsetp;
    525 {
    526 	register int	neg = 0;
    527 
    528 	if (*strp == '-') {
    529 		neg = 1;
    530 		++strp;
    531 	} else if (*strp == '+')
    532 		++strp;
    533 	strp = getsecs(strp, offsetp);
    534 	if (strp == NULL)
    535 		return NULL;		/* illegal time */
    536 	if (neg)
    537 		*offsetp = -*offsetp;
    538 	return strp;
    539 }
    540 
    541 /*
    542 ** Given a pointer into a time zone string, extract a rule in the form
    543 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    544 ** If a valid rule is not found, return NULL.
    545 ** Otherwise, return a pointer to the first character not part of the rule.
    546 */
    547 
    548 static const char *
    549 getrule(strp, rulep)
    550 const char *			strp;
    551 register struct rule * const	rulep;
    552 {
    553 	if (*strp == 'J') {
    554 		/*
    555 		** Julian day.
    556 		*/
    557 		rulep->r_type = JULIAN_DAY;
    558 		++strp;
    559 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    560 	} else if (*strp == 'M') {
    561 		/*
    562 		** Month, week, day.
    563 		*/
    564 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    565 		++strp;
    566 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    567 		if (strp == NULL)
    568 			return NULL;
    569 		if (*strp++ != '.')
    570 			return NULL;
    571 		strp = getnum(strp, &rulep->r_week, 1, 5);
    572 		if (strp == NULL)
    573 			return NULL;
    574 		if (*strp++ != '.')
    575 			return NULL;
    576 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    577 	} else if (is_digit(*strp)) {
    578 		/*
    579 		** Day of year.
    580 		*/
    581 		rulep->r_type = DAY_OF_YEAR;
    582 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    583 	} else	return NULL;		/* invalid format */
    584 	if (strp == NULL)
    585 		return NULL;
    586 	if (*strp == '/') {
    587 		/*
    588 		** Time specified.
    589 		*/
    590 		++strp;
    591 		strp = getsecs(strp, &rulep->r_time);
    592 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    593 	return strp;
    594 }
    595 
    596 /*
    597 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
    598 ** year, a rule, and the offset from GMT at the time that rule takes effect,
    599 ** calculate the Epoch-relative time that rule takes effect.
    600 */
    601 
    602 static time_t
    603 transtime(janfirst, year, rulep, offset)
    604 const time_t				janfirst;
    605 const int				year;
    606 register const struct rule * const	rulep;
    607 const long				offset;
    608 {
    609 	register int	leapyear;
    610 	register time_t	value;
    611 	register int	i;
    612 	int		d, m1, yy0, yy1, yy2, dow;
    613 
    614 	INITIALIZE(value);
    615 	leapyear = isleap(year);
    616 	switch (rulep->r_type) {
    617 
    618 	case JULIAN_DAY:
    619 		/*
    620 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    621 		** years.
    622 		** In non-leap years, or if the day number is 59 or less, just
    623 		** add SECSPERDAY times the day number-1 to the time of
    624 		** January 1, midnight, to get the day.
    625 		*/
    626 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    627 		if (leapyear && rulep->r_day >= 60)
    628 			value += SECSPERDAY;
    629 		break;
    630 
    631 	case DAY_OF_YEAR:
    632 		/*
    633 		** n - day of year.
    634 		** Just add SECSPERDAY times the day number to the time of
    635 		** January 1, midnight, to get the day.
    636 		*/
    637 		value = janfirst + rulep->r_day * SECSPERDAY;
    638 		break;
    639 
    640 	case MONTH_NTH_DAY_OF_WEEK:
    641 		/*
    642 		** Mm.n.d - nth "dth day" of month m.
    643 		*/
    644 		value = janfirst;
    645 		for (i = 0; i < rulep->r_mon - 1; ++i)
    646 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    647 
    648 		/*
    649 		** Use Zeller's Congruence to get day-of-week of first day of
    650 		** month.
    651 		*/
    652 		m1 = (rulep->r_mon + 9) % 12 + 1;
    653 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    654 		yy1 = yy0 / 100;
    655 		yy2 = yy0 % 100;
    656 		dow = ((26 * m1 - 2) / 10 +
    657 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    658 		if (dow < 0)
    659 			dow += DAYSPERWEEK;
    660 
    661 		/*
    662 		** "dow" is the day-of-week of the first day of the month.  Get
    663 		** the day-of-month (zero-origin) of the first "dow" day of the
    664 		** month.
    665 		*/
    666 		d = rulep->r_day - dow;
    667 		if (d < 0)
    668 			d += DAYSPERWEEK;
    669 		for (i = 1; i < rulep->r_week; ++i) {
    670 			if (d + DAYSPERWEEK >=
    671 				mon_lengths[leapyear][rulep->r_mon - 1])
    672 					break;
    673 			d += DAYSPERWEEK;
    674 		}
    675 
    676 		/*
    677 		** "d" is the day-of-month (zero-origin) of the day we want.
    678 		*/
    679 		value += d * SECSPERDAY;
    680 		break;
    681 	}
    682 
    683 	/*
    684 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
    685 	** question.  To get the Epoch-relative time of the specified local
    686 	** time on that day, add the transition time and the current offset
    687 	** from GMT.
    688 	*/
    689 	return value + rulep->r_time + offset;
    690 }
    691 
    692 /*
    693 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    694 ** appropriate.
    695 */
    696 
    697 static int
    698 tzparse(name, sp, lastditch)
    699 const char *			name;
    700 register struct state * const	sp;
    701 const int			lastditch;
    702 {
    703 	const char *			stdname;
    704 	const char *			dstname;
    705 	size_t				stdlen;
    706 	size_t				dstlen;
    707 	long				stdoffset;
    708 	long				dstoffset;
    709 	register time_t *		atp;
    710 	register unsigned char *	typep;
    711 	register char *			cp;
    712 	register int			load_result;
    713 
    714 	INITIALIZE(dstname);
    715 	stdname = name;
    716 	if (lastditch) {
    717 		stdlen = strlen(name);	/* length of standard zone name */
    718 		name += stdlen;
    719 		if (stdlen >= sizeof sp->chars)
    720 			stdlen = (sizeof sp->chars) - 1;
    721 	} else {
    722 		name = getzname(name);
    723 		stdlen = name - stdname;
    724 		if (stdlen < 3)
    725 			return -1;
    726 	}
    727 	if (*name == '\0')
    728 		return -1;	/* was "stdoffset = 0;" */
    729 	else {
    730 		name = getoffset(name, &stdoffset);
    731 		if (name == NULL)
    732 			return -1;
    733 	}
    734 	load_result = tzload(TZDEFRULES, sp);
    735 	if (load_result != 0)
    736 		sp->leapcnt = 0;		/* so, we're off a little */
    737 	if (*name != '\0') {
    738 		dstname = name;
    739 		name = getzname(name);
    740 		dstlen = name - dstname;	/* length of DST zone name */
    741 		if (dstlen < 3)
    742 			return -1;
    743 		if (*name != '\0' && *name != ',' && *name != ';') {
    744 			name = getoffset(name, &dstoffset);
    745 			if (name == NULL)
    746 				return -1;
    747 		} else	dstoffset = stdoffset - SECSPERHOUR;
    748 		if (*name == ',' || *name == ';') {
    749 			struct rule	start;
    750 			struct rule	end;
    751 			register int	year;
    752 			register time_t	janfirst;
    753 			time_t		starttime;
    754 			time_t		endtime;
    755 
    756 			++name;
    757 			if ((name = getrule(name, &start)) == NULL)
    758 				return -1;
    759 			if (*name++ != ',')
    760 				return -1;
    761 			if ((name = getrule(name, &end)) == NULL)
    762 				return -1;
    763 			if (*name != '\0')
    764 				return -1;
    765 			sp->typecnt = 2;	/* standard time and DST */
    766 			/*
    767 			** Two transitions per year, from EPOCH_YEAR to 2037.
    768 			*/
    769 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    770 			if (sp->timecnt > TZ_MAX_TIMES)
    771 				return -1;
    772 			sp->ttis[0].tt_gmtoff = -dstoffset;
    773 			sp->ttis[0].tt_isdst = 1;
    774 			sp->ttis[0].tt_abbrind = stdlen + 1;
    775 			sp->ttis[1].tt_gmtoff = -stdoffset;
    776 			sp->ttis[1].tt_isdst = 0;
    777 			sp->ttis[1].tt_abbrind = 0;
    778 			atp = sp->ats;
    779 			typep = sp->types;
    780 			janfirst = 0;
    781 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    782 				starttime = transtime(janfirst, year, &start,
    783 					stdoffset);
    784 				endtime = transtime(janfirst, year, &end,
    785 					dstoffset);
    786 				if (starttime > endtime) {
    787 					*atp++ = endtime;
    788 					*typep++ = 1;	/* DST ends */
    789 					*atp++ = starttime;
    790 					*typep++ = 0;	/* DST begins */
    791 				} else {
    792 					*atp++ = starttime;
    793 					*typep++ = 0;	/* DST begins */
    794 					*atp++ = endtime;
    795 					*typep++ = 1;	/* DST ends */
    796 				}
    797 				janfirst += year_lengths[isleap(year)] *
    798 					SECSPERDAY;
    799 			}
    800 		} else {
    801 			register long	theirstdoffset;
    802 			register long	theirdstoffset;
    803 			register long	theiroffset;
    804 			register int	isdst;
    805 			register int	i;
    806 			register int	j;
    807 
    808 			if (*name != '\0')
    809 				return -1;
    810 			if (load_result != 0)
    811 				return -1;
    812 			/*
    813 			** Initial values of theirstdoffset and theirdstoffset.
    814 			*/
    815 			theirstdoffset = 0;
    816 			for (i = 0; i < sp->timecnt; ++i) {
    817 				j = sp->types[i];
    818 				if (!sp->ttis[j].tt_isdst) {
    819 					theirstdoffset =
    820 						-sp->ttis[j].tt_gmtoff;
    821 					break;
    822 				}
    823 			}
    824 			theirdstoffset = 0;
    825 			for (i = 0; i < sp->timecnt; ++i) {
    826 				j = sp->types[i];
    827 				if (sp->ttis[j].tt_isdst) {
    828 					theirdstoffset =
    829 						-sp->ttis[j].tt_gmtoff;
    830 					break;
    831 				}
    832 			}
    833 			/*
    834 			** Initially we're assumed to be in standard time.
    835 			*/
    836 			isdst = FALSE;
    837 			theiroffset = theirstdoffset;
    838 			/*
    839 			** Now juggle transition times and types
    840 			** tracking offsets as you do.
    841 			*/
    842 			for (i = 0; i < sp->timecnt; ++i) {
    843 				j = sp->types[i];
    844 				sp->types[i] = sp->ttis[j].tt_isdst;
    845 				if (sp->ttis[j].tt_ttisgmt) {
    846 					/* No adjustment to transition time */
    847 				} else {
    848 					/*
    849 					** If summer time is in effect, and the
    850 					** transition time was not specified as
    851 					** standard time, add the summer time
    852 					** offset to the transition time;
    853 					** otherwise, add the standard time
    854 					** offset to the transition time.
    855 					*/
    856 					/*
    857 					** Transitions from DST to DDST
    858 					** will effectively disappear since
    859 					** POSIX provides for only one DST
    860 					** offset.
    861 					*/
    862 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    863 						sp->ats[i] += dstoffset -
    864 							theirdstoffset;
    865 					} else {
    866 						sp->ats[i] += stdoffset -
    867 							theirstdoffset;
    868 					}
    869 				}
    870 				theiroffset = -sp->ttis[j].tt_gmtoff;
    871 				if (sp->ttis[j].tt_isdst)
    872 					theirdstoffset = theiroffset;
    873 				else	theirstdoffset = theiroffset;
    874 			}
    875 			/*
    876 			** Finally, fill in ttis.
    877 			** ttisstd and ttisgmt need not be handled.
    878 			*/
    879 			sp->ttis[0].tt_gmtoff = -stdoffset;
    880 			sp->ttis[0].tt_isdst = FALSE;
    881 			sp->ttis[0].tt_abbrind = 0;
    882 			sp->ttis[1].tt_gmtoff = -dstoffset;
    883 			sp->ttis[1].tt_isdst = TRUE;
    884 			sp->ttis[1].tt_abbrind = stdlen + 1;
    885 		}
    886 	} else {
    887 		dstlen = 0;
    888 		sp->typecnt = 1;		/* only standard time */
    889 		sp->timecnt = 0;
    890 		sp->ttis[0].tt_gmtoff = -stdoffset;
    891 		sp->ttis[0].tt_isdst = 0;
    892 		sp->ttis[0].tt_abbrind = 0;
    893 	}
    894 	sp->charcnt = stdlen + 1;
    895 	if (dstlen != 0)
    896 		sp->charcnt += dstlen + 1;
    897 	if (sp->charcnt > sizeof sp->chars)
    898 		return -1;
    899 	cp = sp->chars;
    900 	(void) strncpy(cp, stdname, stdlen);
    901 	cp += stdlen;
    902 	*cp++ = '\0';
    903 	if (dstlen != 0) {
    904 		(void) strncpy(cp, dstname, dstlen);
    905 		*(cp + dstlen) = '\0';
    906 	}
    907 	return 0;
    908 }
    909 
    910 static void
    911 gmtload(sp)
    912 struct state * const	sp;
    913 {
    914 	if (tzload(gmt, sp) != 0)
    915 		(void) tzparse(gmt, sp, TRUE);
    916 }
    917 
    918 #ifndef STD_INSPIRED
    919 /*
    920 ** A non-static declaration of tzsetwall in a system header file
    921 ** may cause a warning about this upcoming static declaration...
    922 */
    923 static
    924 #endif /* !defined STD_INSPIRED */
    925 void
    926 tzsetwall P((void))
    927 {
    928 	if (lcl_is_set < 0)
    929 		return;
    930 	lcl_is_set = -1;
    931 
    932 #ifdef ALL_STATE
    933 	if (lclptr == NULL) {
    934 		lclptr = (struct state *) malloc(sizeof *lclptr);
    935 		if (lclptr == NULL) {
    936 			settzname();	/* all we can do */
    937 			return;
    938 		}
    939 	}
    940 #endif /* defined ALL_STATE */
    941 	if (tzload((char *) NULL, lclptr) != 0)
    942 		gmtload(lclptr);
    943 	settzname();
    944 }
    945 
    946 void
    947 tzset P((void))
    948 {
    949 	register const char *	name;
    950 
    951 	name = getenv("TZ");
    952 	if (name == NULL) {
    953 		tzsetwall();
    954 		return;
    955 	}
    956 
    957 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    958 		return;
    959 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    960 	if (lcl_is_set)
    961 		(void) strcpy(lcl_TZname, name);
    962 
    963 #ifdef ALL_STATE
    964 	if (lclptr == NULL) {
    965 		lclptr = (struct state *) malloc(sizeof *lclptr);
    966 		if (lclptr == NULL) {
    967 			settzname();	/* all we can do */
    968 			return;
    969 		}
    970 	}
    971 #endif /* defined ALL_STATE */
    972 	if (*name == '\0') {
    973 		/*
    974 		** User wants it fast rather than right.
    975 		*/
    976 		lclptr->leapcnt = 0;		/* so, we're off a little */
    977 		lclptr->timecnt = 0;
    978 		lclptr->ttis[0].tt_gmtoff = 0;
    979 		lclptr->ttis[0].tt_abbrind = 0;
    980 		(void) strcpy(lclptr->chars, gmt);
    981 	} else if (tzload(name, lclptr) != 0)
    982 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
    983 			(void) gmtload(lclptr);
    984 	settzname();
    985 }
    986 
    987 /*
    988 ** The easy way to behave "as if no library function calls" localtime
    989 ** is to not call it--so we drop its guts into "localsub", which can be
    990 ** freely called.  (And no, the PANS doesn't require the above behavior--
    991 ** but it *is* desirable.)
    992 **
    993 ** The unused offset argument is for the benefit of mktime variants.
    994 */
    995 
    996 /*ARGSUSED*/
    997 static void
    998 localsub(timep, offset, tmp)
    999 const time_t * const	timep;
   1000 const long		offset;
   1001 struct tm * const	tmp;
   1002 {
   1003 	register struct state *		sp;
   1004 	register const struct ttinfo *	ttisp;
   1005 	register int			i;
   1006 	const time_t			t = *timep;
   1007 
   1008 	sp = lclptr;
   1009 #ifdef ALL_STATE
   1010 	if (sp == NULL) {
   1011 		gmtsub(timep, offset, tmp);
   1012 		return;
   1013 	}
   1014 #endif /* defined ALL_STATE */
   1015 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1016 		i = 0;
   1017 		while (sp->ttis[i].tt_isdst)
   1018 			if (++i >= sp->typecnt) {
   1019 				i = 0;
   1020 				break;
   1021 			}
   1022 	} else {
   1023 		for (i = 1; i < sp->timecnt; ++i)
   1024 			if (t < sp->ats[i])
   1025 				break;
   1026 		i = sp->types[i - 1];
   1027 	}
   1028 	ttisp = &sp->ttis[i];
   1029 	/*
   1030 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1031 	** you'd replace the statement below with
   1032 	**	t += ttisp->tt_gmtoff;
   1033 	**	timesub(&t, 0L, sp, tmp);
   1034 	*/
   1035 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1036 	tmp->tm_isdst = ttisp->tt_isdst;
   1037 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1038 #ifdef TM_ZONE
   1039 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1040 #endif /* defined TM_ZONE */
   1041 }
   1042 
   1043 struct tm *
   1044 localtime(timep)
   1045 const time_t * const	timep;
   1046 {
   1047 	tzset();
   1048 	localsub(timep, 0L, &tm);
   1049 	return &tm;
   1050 }
   1051 
   1052 /*
   1053 ** gmtsub is to gmtime as localsub is to localtime.
   1054 */
   1055 
   1056 static void
   1057 gmtsub(timep, offset, tmp)
   1058 const time_t * const	timep;
   1059 const long		offset;
   1060 struct tm * const	tmp;
   1061 {
   1062 	if (!gmt_is_set) {
   1063 		gmt_is_set = TRUE;
   1064 #ifdef ALL_STATE
   1065 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1066 		if (gmtptr != NULL)
   1067 #endif /* defined ALL_STATE */
   1068 			gmtload(gmtptr);
   1069 	}
   1070 	timesub(timep, offset, gmtptr, tmp);
   1071 #ifdef TM_ZONE
   1072 	/*
   1073 	** Could get fancy here and deliver something such as
   1074 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
   1075 	** but this is no time for a treasure hunt.
   1076 	*/
   1077 	if (offset != 0)
   1078 		tmp->TM_ZONE = wildabbr;
   1079 	else {
   1080 #ifdef ALL_STATE
   1081 		if (gmtptr == NULL)
   1082 			tmp->TM_ZONE = gmt;
   1083 		else	tmp->TM_ZONE = gmtptr->chars;
   1084 #endif /* defined ALL_STATE */
   1085 #ifndef ALL_STATE
   1086 		tmp->TM_ZONE = gmtptr->chars;
   1087 #endif /* State Farm */
   1088 	}
   1089 #endif /* defined TM_ZONE */
   1090 }
   1091 
   1092 struct tm *
   1093 gmtime(timep)
   1094 const time_t * const	timep;
   1095 {
   1096 	gmtsub(timep, 0L, &tm);
   1097 	return &tm;
   1098 }
   1099 
   1100 #ifdef STD_INSPIRED
   1101 
   1102 struct tm *
   1103 offtime(timep, offset)
   1104 const time_t * const	timep;
   1105 const long		offset;
   1106 {
   1107 	gmtsub(timep, offset, &tm);
   1108 	return &tm;
   1109 }
   1110 
   1111 #endif /* defined STD_INSPIRED */
   1112 
   1113 static void
   1114 timesub(timep, offset, sp, tmp)
   1115 const time_t * const			timep;
   1116 const long				offset;
   1117 register const struct state * const	sp;
   1118 register struct tm * const		tmp;
   1119 {
   1120 	register const struct lsinfo *	lp;
   1121 	register long			days;
   1122 	register long			rem;
   1123 	register int			y;
   1124 	register int			yleap;
   1125 	register const int *		ip;
   1126 	register long			corr;
   1127 	register int			hit;
   1128 	register int			i;
   1129 
   1130 	corr = 0;
   1131 	hit = 0;
   1132 #ifdef ALL_STATE
   1133 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1134 #endif /* defined ALL_STATE */
   1135 #ifndef ALL_STATE
   1136 	i = sp->leapcnt;
   1137 #endif /* State Farm */
   1138 	while (--i >= 0) {
   1139 		lp = &sp->lsis[i];
   1140 		if (*timep >= lp->ls_trans) {
   1141 			if (*timep == lp->ls_trans) {
   1142 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1143 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1144 				if (hit)
   1145 					while (i > 0 &&
   1146 						sp->lsis[i].ls_trans ==
   1147 						sp->lsis[i - 1].ls_trans + 1 &&
   1148 						sp->lsis[i].ls_corr ==
   1149 						sp->lsis[i - 1].ls_corr + 1) {
   1150 							++hit;
   1151 							--i;
   1152 					}
   1153 			}
   1154 			corr = lp->ls_corr;
   1155 			break;
   1156 		}
   1157 	}
   1158 	days = *timep / SECSPERDAY;
   1159 	rem = *timep % SECSPERDAY;
   1160 #ifdef mc68k
   1161 	if (*timep == 0x80000000) {
   1162 		/*
   1163 		** A 3B1 muffs the division on the most negative number.
   1164 		*/
   1165 		days = -24855;
   1166 		rem = -11648;
   1167 	}
   1168 #endif /* defined mc68k */
   1169 	rem += (offset - corr);
   1170 	while (rem < 0) {
   1171 		rem += SECSPERDAY;
   1172 		--days;
   1173 	}
   1174 	while (rem >= SECSPERDAY) {
   1175 		rem -= SECSPERDAY;
   1176 		++days;
   1177 	}
   1178 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1179 	rem = rem % SECSPERHOUR;
   1180 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1181 	/*
   1182 	** A positive leap second requires a special
   1183 	** representation.  This uses "... ??:59:60" et seq.
   1184 	*/
   1185 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1186 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1187 	if (tmp->tm_wday < 0)
   1188 		tmp->tm_wday += DAYSPERWEEK;
   1189 	y = EPOCH_YEAR;
   1190 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1191 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1192 		register int	newy;
   1193 
   1194 		newy = y + days / DAYSPERNYEAR;
   1195 		if (days < 0)
   1196 			--newy;
   1197 		days -= (newy - y) * DAYSPERNYEAR +
   1198 			LEAPS_THRU_END_OF(newy - 1) -
   1199 			LEAPS_THRU_END_OF(y - 1);
   1200 		y = newy;
   1201 	}
   1202 	tmp->tm_year = y - TM_YEAR_BASE;
   1203 	tmp->tm_yday = (int) days;
   1204 	ip = mon_lengths[yleap];
   1205 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1206 		days = days - (long) ip[tmp->tm_mon];
   1207 	tmp->tm_mday = (int) (days + 1);
   1208 	tmp->tm_isdst = 0;
   1209 #ifdef TM_GMTOFF
   1210 	tmp->TM_GMTOFF = offset;
   1211 #endif /* defined TM_GMTOFF */
   1212 }
   1213 
   1214 char *
   1215 ctime(timep)
   1216 const time_t * const	timep;
   1217 {
   1218 /*
   1219 ** Section 4.12.3.2 of X3.159-1989 requires that
   1220 **	The ctime funciton converts the calendar time pointed to by timer
   1221 **	to local time in the form of a string.  It is equivalent to
   1222 **		asctime(localtime(timer))
   1223 */
   1224 	return asctime(localtime(timep));
   1225 }
   1226 
   1227 /*
   1228 ** Adapted from code provided by Robert Elz, who writes:
   1229 **	The "best" way to do mktime I think is based on an idea of Bob
   1230 **	Kridle's (so its said...) from a long time ago. (mtxinu!kridle now).
   1231 **	It does a binary search of the time_t space.  Since time_t's are
   1232 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1233 **	would still be very reasonable).
   1234 */
   1235 
   1236 #ifndef WRONG
   1237 #define WRONG	(-1)
   1238 #endif /* !defined WRONG */
   1239 
   1240 /*
   1241 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1242 */
   1243 
   1244 static int
   1245 increment_overflow(number, delta)
   1246 int *	number;
   1247 int	delta;
   1248 {
   1249 	int	number0;
   1250 
   1251 	number0 = *number;
   1252 	*number += delta;
   1253 	return (*number < number0) != (delta < 0);
   1254 }
   1255 
   1256 static int
   1257 normalize_overflow(tensptr, unitsptr, base)
   1258 int * const	tensptr;
   1259 int * const	unitsptr;
   1260 const int	base;
   1261 {
   1262 	register int	tensdelta;
   1263 
   1264 	tensdelta = (*unitsptr >= 0) ?
   1265 		(*unitsptr / base) :
   1266 		(-1 - (-1 - *unitsptr) / base);
   1267 	*unitsptr -= tensdelta * base;
   1268 	return increment_overflow(tensptr, tensdelta);
   1269 }
   1270 
   1271 static int
   1272 tmcomp(atmp, btmp)
   1273 register const struct tm * const atmp;
   1274 register const struct tm * const btmp;
   1275 {
   1276 	register int	result;
   1277 
   1278 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1279 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1280 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1281 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1282 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1283 			result = atmp->tm_sec - btmp->tm_sec;
   1284 	return result;
   1285 }
   1286 
   1287 static time_t
   1288 time2(tmp, funcp, offset, okayp)
   1289 struct tm * const	tmp;
   1290 void (* const		funcp) P((const time_t*, long, struct tm*));
   1291 const long		offset;
   1292 int * const		okayp;
   1293 {
   1294 	register const struct state *	sp;
   1295 	register int			dir;
   1296 	register int			bits;
   1297 	register int			i, j ;
   1298 	register int			saved_seconds;
   1299 	time_t				newt;
   1300 	time_t				t;
   1301 	struct tm			yourtm, mytm;
   1302 
   1303 	*okayp = FALSE;
   1304 	yourtm = *tmp;
   1305 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1306 		return WRONG;
   1307 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1308 		return WRONG;
   1309 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1310 		return WRONG;
   1311 	/*
   1312 	** Turn yourtm.tm_year into an actual year number for now.
   1313 	** It is converted back to an offset from TM_YEAR_BASE later.
   1314 	*/
   1315 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1316 		return WRONG;
   1317 	while (yourtm.tm_mday <= 0) {
   1318 		if (increment_overflow(&yourtm.tm_year, -1))
   1319 			return WRONG;
   1320 		yourtm.tm_mday += year_lengths[isleap(yourtm.tm_year)];
   1321 	}
   1322 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1323 		yourtm.tm_mday -= year_lengths[isleap(yourtm.tm_year)];
   1324 		if (increment_overflow(&yourtm.tm_year, 1))
   1325 			return WRONG;
   1326 	}
   1327 	for ( ; ; ) {
   1328 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1329 		if (yourtm.tm_mday <= i)
   1330 			break;
   1331 		yourtm.tm_mday -= i;
   1332 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1333 			yourtm.tm_mon = 0;
   1334 			if (increment_overflow(&yourtm.tm_year, 1))
   1335 				return WRONG;
   1336 		}
   1337 	}
   1338 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1339 		return WRONG;
   1340 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1341 		/*
   1342 		** We can't set tm_sec to 0, because that might push the
   1343 		** time below the minimum representable time.
   1344 		** Set tm_sec to 59 instead.
   1345 		** This assumes that the minimum representable time is
   1346 		** not in the same minute that a leap second was deleted from,
   1347 		** which is a safer assumption than using 58 would be.
   1348 		*/
   1349 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1350 			return WRONG;
   1351 		saved_seconds = yourtm.tm_sec;
   1352 		yourtm.tm_sec = SECSPERMIN - 1;
   1353 	} else {
   1354 		saved_seconds = yourtm.tm_sec;
   1355 		yourtm.tm_sec = 0;
   1356 	}
   1357 	/*
   1358 	** Divide the search space in half
   1359 	** (this works whether time_t is signed or unsigned).
   1360 	*/
   1361 	bits = TYPE_BIT(time_t) - 1;
   1362 	/*
   1363 	** If time_t is signed, then 0 is just above the median,
   1364 	** assuming two's complement arithmetic.
   1365 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1366 	*/
   1367 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1368 	for ( ; ; ) {
   1369 		(*funcp)(&t, offset, &mytm);
   1370 		dir = tmcomp(&mytm, &yourtm);
   1371 		if (dir != 0) {
   1372 			if (bits-- < 0)
   1373 				return WRONG;
   1374 			if (bits < 0)
   1375 				--t; /* may be needed if new t is minimal */
   1376 			else if (dir > 0)
   1377 				t -= ((time_t) 1) << bits;
   1378 			else	t += ((time_t) 1) << bits;
   1379 			continue;
   1380 		}
   1381 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1382 			break;
   1383 		/*
   1384 		** Right time, wrong type.
   1385 		** Hunt for right time, right type.
   1386 		** It's okay to guess wrong since the guess
   1387 		** gets checked.
   1388 		*/
   1389 		/*
   1390 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1391 		*/
   1392 		sp = (const struct state *)
   1393 			(((void *) funcp == (void *) localsub) ?
   1394 			lclptr : gmtptr);
   1395 #ifdef ALL_STATE
   1396 		if (sp == NULL)
   1397 			return WRONG;
   1398 #endif /* defined ALL_STATE */
   1399 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1400 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1401 				continue;
   1402 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1403 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1404 					continue;
   1405 				newt = t + sp->ttis[j].tt_gmtoff -
   1406 					sp->ttis[i].tt_gmtoff;
   1407 				(*funcp)(&newt, offset, &mytm);
   1408 				if (tmcomp(&mytm, &yourtm) != 0)
   1409 					continue;
   1410 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1411 					continue;
   1412 				/*
   1413 				** We have a match.
   1414 				*/
   1415 				t = newt;
   1416 				goto label;
   1417 			}
   1418 		}
   1419 		return WRONG;
   1420 	}
   1421 label:
   1422 	newt = t + saved_seconds;
   1423 	if ((newt < t) != (saved_seconds < 0))
   1424 		return WRONG;
   1425 	t = newt;
   1426 	(*funcp)(&t, offset, tmp);
   1427 	*okayp = TRUE;
   1428 	return t;
   1429 }
   1430 
   1431 static time_t
   1432 time1(tmp, funcp, offset)
   1433 struct tm * const	tmp;
   1434 void (* const		funcp) P((const time_t *, long, struct tm *));
   1435 const long		offset;
   1436 {
   1437 	register time_t			t;
   1438 	register const struct state *	sp;
   1439 	register int			samei, otheri;
   1440 	int				okay;
   1441 
   1442 	if (tmp->tm_isdst > 1)
   1443 		tmp->tm_isdst = 1;
   1444 	t = time2(tmp, funcp, offset, &okay);
   1445 #ifdef PCTS
   1446 	/*
   1447 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1448 	*/
   1449 	if (okay)
   1450 		return t;
   1451 	if (tmp->tm_isdst < 0)
   1452 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1453 #endif /* defined PCTS */
   1454 #ifndef PCTS
   1455 	if (okay || tmp->tm_isdst < 0)
   1456 		return t;
   1457 #endif /* !defined PCTS */
   1458 	/*
   1459 	** We're supposed to assume that somebody took a time of one type
   1460 	** and did some math on it that yielded a "struct tm" that's bad.
   1461 	** We try to divine the type they started from and adjust to the
   1462 	** type they need.
   1463 	*/
   1464 	/*
   1465 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1466 	*/
   1467 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1468 		lclptr : gmtptr);
   1469 #ifdef ALL_STATE
   1470 	if (sp == NULL)
   1471 		return WRONG;
   1472 #endif /* defined ALL_STATE */
   1473 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1474 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1475 			continue;
   1476 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1477 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1478 				continue;
   1479 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1480 					sp->ttis[samei].tt_gmtoff;
   1481 			tmp->tm_isdst = !tmp->tm_isdst;
   1482 			t = time2(tmp, funcp, offset, &okay);
   1483 			if (okay)
   1484 				return t;
   1485 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1486 					sp->ttis[samei].tt_gmtoff;
   1487 			tmp->tm_isdst = !tmp->tm_isdst;
   1488 		}
   1489 	}
   1490 	return WRONG;
   1491 }
   1492 
   1493 time_t
   1494 mktime(tmp)
   1495 struct tm * const	tmp;
   1496 {
   1497 	tzset();
   1498 	return time1(tmp, localsub, 0L);
   1499 }
   1500 
   1501 #ifdef STD_INSPIRED
   1502 
   1503 time_t
   1504 timelocal(tmp)
   1505 struct tm * const	tmp;
   1506 {
   1507 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1508 	return mktime(tmp);
   1509 }
   1510 
   1511 time_t
   1512 timegm(tmp)
   1513 struct tm * const	tmp;
   1514 {
   1515 	tmp->tm_isdst = 0;
   1516 	return time1(tmp, gmtsub, 0L);
   1517 }
   1518 
   1519 time_t
   1520 timeoff(tmp, offset)
   1521 struct tm * const	tmp;
   1522 const long		offset;
   1523 {
   1524 	tmp->tm_isdst = 0;
   1525 	return time1(tmp, gmtsub, offset);
   1526 }
   1527 
   1528 #endif /* defined STD_INSPIRED */
   1529 
   1530 #ifdef CMUCS
   1531 
   1532 /*
   1533 ** The following is supplied for compatibility with
   1534 ** previous versions of the CMUCS runtime library.
   1535 */
   1536 
   1537 long
   1538 gtime(tmp)
   1539 struct tm * const	tmp;
   1540 {
   1541 	const time_t	t = mktime(tmp);
   1542 
   1543 	if (t == WRONG)
   1544 		return -1;
   1545 	return t;
   1546 }
   1547 
   1548 #endif /* defined CMUCS */
   1549 
   1550 /*
   1551 ** XXX--is the below the right way to conditionalize??
   1552 */
   1553 
   1554 #ifdef STD_INSPIRED
   1555 
   1556 /*
   1557 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1558 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
   1559 ** is not the case if we are accounting for leap seconds.
   1560 ** So, we provide the following conversion routines for use
   1561 ** when exchanging timestamps with POSIX conforming systems.
   1562 */
   1563 
   1564 static long
   1565 leapcorr(timep)
   1566 time_t *	timep;
   1567 {
   1568 	register struct state *		sp;
   1569 	register struct lsinfo *	lp;
   1570 	register int			i;
   1571 
   1572 	sp = lclptr;
   1573 	i = sp->leapcnt;
   1574 	while (--i >= 0) {
   1575 		lp = &sp->lsis[i];
   1576 		if (*timep >= lp->ls_trans)
   1577 			return lp->ls_corr;
   1578 	}
   1579 	return 0;
   1580 }
   1581 
   1582 time_t
   1583 time2posix(t)
   1584 time_t	t;
   1585 {
   1586 	tzset();
   1587 	return t - leapcorr(&t);
   1588 }
   1589 
   1590 time_t
   1591 posix2time(t)
   1592 time_t	t;
   1593 {
   1594 	time_t	x;
   1595 	time_t	y;
   1596 
   1597 	tzset();
   1598 	/*
   1599 	** For a positive leap second hit, the result
   1600 	** is not unique.  For a negative leap second
   1601 	** hit, the corresponding time doesn't exist,
   1602 	** so we return an adjacent second.
   1603 	*/
   1604 	x = t + leapcorr(&t);
   1605 	y = x - leapcorr(&x);
   1606 	if (y < t) {
   1607 		do {
   1608 			x++;
   1609 			y = x - leapcorr(&x);
   1610 		} while (y < t);
   1611 		if (t != y)
   1612 			return x - 1;
   1613 	} else if (y > t) {
   1614 		do {
   1615 			--x;
   1616 			y = x - leapcorr(&x);
   1617 		} while (y > t);
   1618 		if (t != y)
   1619 			return x + 1;
   1620 	}
   1621 	return x;
   1622 }
   1623 
   1624 #endif /* defined STD_INSPIRED */
   1625