Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.69
      1 /*	$NetBSD: localtime.c,v 1.69 2012/10/26 18:31:14 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.17";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.69 2012/10/26 18:31:14 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include "private.h"
     26 #include "tzfile.h"
     27 #include "fcntl.h"
     28 #include "reentrant.h"
     29 
     30 #if defined(__weak_alias)
     31 __weak_alias(daylight,_daylight)
     32 __weak_alias(tzname,_tzname)
     33 #endif
     34 
     35 #include "float.h"	/* for FLT_MAX and DBL_MAX */
     36 
     37 #ifndef TZ_ABBR_MAX_LEN
     38 #define TZ_ABBR_MAX_LEN	16
     39 #endif /* !defined TZ_ABBR_MAX_LEN */
     40 
     41 #ifndef TZ_ABBR_CHAR_SET
     42 #define TZ_ABBR_CHAR_SET \
     43 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     44 #endif /* !defined TZ_ABBR_CHAR_SET */
     45 
     46 #ifndef TZ_ABBR_ERR_CHAR
     47 #define TZ_ABBR_ERR_CHAR	'_'
     48 #endif /* !defined TZ_ABBR_ERR_CHAR */
     49 
     50 /*
     51 ** SunOS 4.1.1 headers lack O_BINARY.
     52 */
     53 
     54 #ifdef O_BINARY
     55 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     56 #endif /* defined O_BINARY */
     57 #ifndef O_BINARY
     58 #define OPEN_MODE	O_RDONLY
     59 #endif /* !defined O_BINARY */
     60 
     61 #ifndef WILDABBR
     62 /*
     63 ** Someone might make incorrect use of a time zone abbreviation:
     64 **	1.	They might reference tzname[0] before calling tzset (explicitly
     65 **		or implicitly).
     66 **	2.	They might reference tzname[1] before calling tzset (explicitly
     67 **		or implicitly).
     68 **	3.	They might reference tzname[1] after setting to a time zone
     69 **		in which Daylight Saving Time is never observed.
     70 **	4.	They might reference tzname[0] after setting to a time zone
     71 **		in which Standard Time is never observed.
     72 **	5.	They might reference tm.TM_ZONE after calling offtime.
     73 ** What's best to do in the above cases is open to debate;
     74 ** for now, we just set things up so that in any of the five cases
     75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     76 ** string "tzname[0] used before set", and similarly for the other cases.
     77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     78 ** manual page of what this "time zone abbreviation" means (doing this so
     79 ** that tzname[0] has the "normal" length of three characters).
     80 */
     81 #define WILDABBR	"   "
     82 #endif /* !defined WILDABBR */
     83 
     84 static const char	wildabbr[] = WILDABBR;
     85 
     86 static char		gmt[] = "GMT";
     87 
     88 /*
     89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     90 ** We default to US rules as of 1999-08-17.
     91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     92 ** implementation dependent; for historical reasons, US rules are a
     93 ** common default.
     94 */
     95 #ifndef TZDEFRULESTRING
     96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     97 #endif /* !defined TZDEFDST */
     98 
     99 struct ttinfo {				/* time type information */
    100 	long		tt_gmtoff;	/* UTC offset in seconds */
    101 	int		tt_isdst;	/* used to set tm_isdst */
    102 	int		tt_abbrind;	/* abbreviation list index */
    103 	int		tt_ttisstd;	/* TRUE if transition is std time */
    104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    105 };
    106 
    107 struct lsinfo {				/* leap second information */
    108 	time_t		ls_trans;	/* transition time */
    109 	long		ls_corr;	/* correction to apply */
    110 };
    111 
    112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    113 
    114 #ifdef TZNAME_MAX
    115 #define MY_TZNAME_MAX	TZNAME_MAX
    116 #endif /* defined TZNAME_MAX */
    117 #ifndef TZNAME_MAX
    118 #define MY_TZNAME_MAX	255
    119 #endif /* !defined TZNAME_MAX */
    120 
    121 struct __state {
    122 	int		leapcnt;
    123 	int		timecnt;
    124 	int		typecnt;
    125 	int		charcnt;
    126 	int		goback;
    127 	int		goahead;
    128 	time_t		ats[TZ_MAX_TIMES];
    129 	unsigned char	types[TZ_MAX_TIMES];
    130 	struct ttinfo	ttis[TZ_MAX_TYPES];
    131 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
    132 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
    133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    134 };
    135 
    136 struct rule {
    137 	int		r_type;		/* type of rule--see below */
    138 	int		r_day;		/* day number of rule */
    139 	int		r_week;		/* week number of rule */
    140 	int		r_mon;		/* month number of rule */
    141 	long		r_time;		/* transition time of rule */
    142 };
    143 
    144 #define JULIAN_DAY		0	/* Jn - Julian day */
    145 #define DAY_OF_YEAR		1	/* n - day of year */
    146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    147 
    148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    149 			       long offset, struct tm *tmp);
    150 
    151 /*
    152 ** Prototypes for static functions.
    153 */
    154 
    155 static long		detzcode(const char * codep);
    156 static time_t		detzcode64(const char * codep);
    157 static int		differ_by_repeat(time_t t1, time_t t0);
    158 static const char *	getzname(const char * strp) __pure;
    159 static const char *	getqzname(const char * strp, const int delim) __pure;
    160 static const char *	getnum(const char * strp, int * nump, int min,
    161 				int max);
    162 static const char *	getsecs(const char * strp, long * secsp);
    163 static const char *	getoffset(const char * strp, long * offsetp);
    164 static const char *	getrule(const char * strp, struct rule * rulep);
    165 static void		gmtload(timezone_t sp);
    166 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    167 				long offset, struct tm * tmp);
    168 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    169 				long offset, struct tm *tmp);
    170 static int		increment_overflow(int * number, int delta);
    171 static int		leaps_thru_end_of(int y) __pure;
    172 static int		long_increment_overflow(long * number, int delta);
    173 static int		long_normalize_overflow(long * tensptr,
    174 				int * unitsptr, int base);
    175 static int		normalize_overflow(int * tensptr, int * unitsptr,
    176 				int base);
    177 static void		settzname(void);
    178 static time_t		time1(const timezone_t sp, struct tm * const tmp,
    179 				subfun_t funcp, const long offset);
    180 static time_t		time2(const timezone_t sp, struct tm * const tmp,
    181 				subfun_t funcp,
    182 				const long offset, int *const okayp);
    183 static time_t		time2sub(const timezone_t sp, struct tm * const tmp,
    184 				subfun_t funcp, const long offset,
    185 				int *const okayp, const int do_norm_secs);
    186 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    187 				long offset, struct tm * tmp);
    188 static int		tmcomp(const struct tm * atmp,
    189 				const struct tm * btmp);
    190 static time_t		transtime(time_t janfirst, int year,
    191 				const struct rule * rulep, long offset) __pure;
    192 static int		typesequiv(const timezone_t sp, int a, int b);
    193 static int		tzload(timezone_t sp, const char * name,
    194 				int doextend);
    195 static int		tzparse(timezone_t sp, const char * name,
    196 				int lastditch);
    197 static void		tzset_unlocked(void);
    198 static void		tzsetwall_unlocked(void);
    199 static long		leapcorr(const timezone_t sp, time_t * timep);
    200 
    201 static timezone_t lclptr;
    202 static timezone_t gmtptr;
    203 
    204 #ifndef TZ_STRLEN_MAX
    205 #define TZ_STRLEN_MAX 255
    206 #endif /* !defined TZ_STRLEN_MAX */
    207 
    208 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    209 static int		lcl_is_set;
    210 static int		gmt_is_set;
    211 
    212 #if !defined(__LIBC12_SOURCE__)
    213 
    214 __aconst char *		tzname[2] = {
    215 	(__aconst char *)__UNCONST(wildabbr),
    216 	(__aconst char *)__UNCONST(wildabbr)
    217 };
    218 
    219 #else
    220 
    221 extern __aconst char *	tzname[2];
    222 
    223 #endif
    224 
    225 #ifdef _REENTRANT
    226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    227 #endif
    228 
    229 /*
    230 ** Section 4.12.3 of X3.159-1989 requires that
    231 **	Except for the strftime function, these functions [asctime,
    232 **	ctime, gmtime, localtime] return values in one of two static
    233 **	objects: a broken-down time structure and an array of char.
    234 ** Thanks to Paul Eggert for noting this.
    235 */
    236 
    237 static struct tm	tm;
    238 
    239 #ifdef USG_COMPAT
    240 #if !defined(__LIBC12_SOURCE__)
    241 long 			timezone = 0;
    242 int			daylight = 0;
    243 #else
    244 extern int		daylight;
    245 extern long		timezone __RENAME(__timezone13);
    246 #endif
    247 #endif /* defined USG_COMPAT */
    248 
    249 #ifdef ALTZONE
    250 time_t			altzone = 0;
    251 #endif /* defined ALTZONE */
    252 
    253 static long
    254 detzcode(const char *const codep)
    255 {
    256 	long	result;
    257 	int	i;
    258 
    259 	result = (codep[0] & 0x80) ? ~0L : 0;
    260 	for (i = 0; i < 4; ++i)
    261 		result = (result << 8) | (codep[i] & 0xff);
    262 	return result;
    263 }
    264 
    265 static time_t
    266 detzcode64(const char *const codep)
    267 {
    268 	time_t	result;
    269 	int	i;
    270 
    271 	result = (codep[0] & 0x80) ? -1 : 0;
    272 	for (i = 0; i < 8; ++i)
    273 		result = result * 256 + (codep[i] & 0xff);
    274 	return result;
    275 }
    276 
    277 const char *
    278 tzgetname(const timezone_t sp, int isdst)
    279 {
    280 	int i;
    281 	for (i = 0; i < sp->timecnt; ++i) {
    282 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    283 
    284 		if (ttisp->tt_isdst == isdst)
    285 			return &sp->chars[ttisp->tt_abbrind];
    286 	}
    287 	return NULL;
    288 }
    289 
    290 static void
    291 settzname_z(timezone_t sp)
    292 {
    293 	int			i;
    294 
    295 	/*
    296 	** Scrub the abbreviations.
    297 	** First, replace bogus characters.
    298 	*/
    299 	for (i = 0; i < sp->charcnt; ++i)
    300 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    301 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    302 	/*
    303 	** Second, truncate long abbreviations.
    304 	*/
    305 	for (i = 0; i < sp->typecnt; ++i) {
    306 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    307 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    308 
    309 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    310 			strcmp(cp, GRANDPARENTED) != 0)
    311 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    312 	}
    313 }
    314 
    315 static void
    316 settzname(void)
    317 {
    318 	timezone_t const	sp = lclptr;
    319 	int			i;
    320 
    321 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    322 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    323 #ifdef USG_COMPAT
    324 	daylight = 0;
    325 	timezone = 0;
    326 #endif /* defined USG_COMPAT */
    327 #ifdef ALTZONE
    328 	altzone = 0;
    329 #endif /* defined ALTZONE */
    330 	if (sp == NULL) {
    331 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    332 		return;
    333 	}
    334 	/*
    335 	** And to get the latest zone names into tzname. . .
    336 	*/
    337 	for (i = 0; i < sp->typecnt; ++i) {
    338 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    339 
    340 		tzname[ttisp->tt_isdst] =
    341 			&sp->chars[ttisp->tt_abbrind];
    342 #ifdef USG_COMPAT
    343 		if (ttisp->tt_isdst)
    344 			daylight = 1;
    345 		if (!ttisp->tt_isdst)
    346 			timezone = -(ttisp->tt_gmtoff);
    347 #endif /* defined USG_COMPAT */
    348 #ifdef ALTZONE
    349 		if (i == 0 || ttisp->tt_isdst)
    350 			altzone = -(ttisp->tt_gmtoff);
    351 #endif /* defined ALTZONE */
    352 	}
    353 	settzname_z(sp);
    354 }
    355 
    356 static int
    357 differ_by_repeat(const time_t t1, const time_t t0)
    358 {
    359 /* CONSTCOND */
    360 	if (TYPE_INTEGRAL(time_t) &&
    361 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    362 			return 0;
    363 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    364 }
    365 
    366 static int
    367 tzload(timezone_t sp, const char *name, const int doextend)
    368 {
    369 	const char *		p;
    370 	int			i;
    371 	int			fid;
    372 	int			stored;
    373 	ssize_t			nread;
    374 	typedef union {
    375 		struct tzhead	tzhead;
    376 		char		buf[2 * sizeof(struct tzhead) +
    377 					2 * sizeof *sp +
    378 					4 * TZ_MAX_TIMES];
    379 	} u_t;
    380 	u_t *			up;
    381 
    382 	up = calloc(1, sizeof *up);
    383 	if (up == NULL)
    384 		return -1;
    385 
    386 	sp->goback = sp->goahead = FALSE;
    387 	if (name == NULL && (name = TZDEFAULT) == NULL)
    388 		goto oops;
    389 	{
    390 		int	doaccess;
    391 		/*
    392 		** Section 4.9.1 of the C standard says that
    393 		** "FILENAME_MAX expands to an integral constant expression
    394 		** that is the size needed for an array of char large enough
    395 		** to hold the longest file name string that the implementation
    396 		** guarantees can be opened."
    397 		*/
    398 		char		fullname[FILENAME_MAX + 1];
    399 
    400 		if (name[0] == ':')
    401 			++name;
    402 		doaccess = name[0] == '/';
    403 		if (!doaccess) {
    404 			if ((p = TZDIR) == NULL)
    405 				goto oops;
    406 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    407 				goto oops;
    408 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    409 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    410 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    411 			/*
    412 			** Set doaccess if '.' (as in "../") shows up in name.
    413 			*/
    414 			if (strchr(name, '.') != NULL)
    415 				doaccess = TRUE;
    416 			name = fullname;
    417 		}
    418 		if (doaccess && access(name, R_OK) != 0)
    419 			goto oops;
    420 		/*
    421 		 * XXX potential security problem here if user of a set-id
    422 		 * program has set TZ (which is passed in as name) here,
    423 		 * and uses a race condition trick to defeat the access(2)
    424 		 * above.
    425 		 */
    426 		if ((fid = open(name, OPEN_MODE)) == -1)
    427 			goto oops;
    428 	}
    429 	nread = read(fid, up->buf, sizeof up->buf);
    430 	if (close(fid) < 0 || nread <= 0)
    431 		goto oops;
    432 	for (stored = 4; stored <= 8; stored *= 2) {
    433 		int		ttisstdcnt;
    434 		int		ttisgmtcnt;
    435 
    436 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
    437 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
    438 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
    439 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
    440 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
    441 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
    442 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
    443 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    444 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    445 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    446 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    447 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    448 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    449 				goto oops;
    450 		if (nread - (p - up->buf) <
    451 			sp->timecnt * stored +		/* ats */
    452 			sp->timecnt +			/* types */
    453 			sp->typecnt * 6 +		/* ttinfos */
    454 			sp->charcnt +			/* chars */
    455 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    456 			ttisstdcnt +			/* ttisstds */
    457 			ttisgmtcnt)			/* ttisgmts */
    458 				goto oops;
    459 		for (i = 0; i < sp->timecnt; ++i) {
    460 			sp->ats[i] = (time_t)((stored == 4) ?
    461 				detzcode(p) : detzcode64(p));
    462 			p += stored;
    463 		}
    464 		for (i = 0; i < sp->timecnt; ++i) {
    465 			sp->types[i] = (unsigned char) *p++;
    466 			if (sp->types[i] >= sp->typecnt)
    467 				goto oops;
    468 		}
    469 		for (i = 0; i < sp->typecnt; ++i) {
    470 			struct ttinfo *	ttisp;
    471 
    472 			ttisp = &sp->ttis[i];
    473 			ttisp->tt_gmtoff = detzcode(p);
    474 			p += 4;
    475 			ttisp->tt_isdst = (unsigned char) *p++;
    476 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    477 				goto oops;
    478 			ttisp->tt_abbrind = (unsigned char) *p++;
    479 			if (ttisp->tt_abbrind < 0 ||
    480 				ttisp->tt_abbrind > sp->charcnt)
    481 					goto oops;
    482 		}
    483 		for (i = 0; i < sp->charcnt; ++i)
    484 			sp->chars[i] = *p++;
    485 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    486 		for (i = 0; i < sp->leapcnt; ++i) {
    487 			struct lsinfo *	lsisp;
    488 
    489 			lsisp = &sp->lsis[i];
    490 			lsisp->ls_trans = (time_t)((stored == 4) ?
    491 			    detzcode(p) : detzcode64(p));
    492 			p += stored;
    493 			lsisp->ls_corr = detzcode(p);
    494 			p += 4;
    495 		}
    496 		for (i = 0; i < sp->typecnt; ++i) {
    497 			struct ttinfo *	ttisp;
    498 
    499 			ttisp = &sp->ttis[i];
    500 			if (ttisstdcnt == 0)
    501 				ttisp->tt_ttisstd = FALSE;
    502 			else {
    503 				ttisp->tt_ttisstd = *p++;
    504 				if (ttisp->tt_ttisstd != TRUE &&
    505 					ttisp->tt_ttisstd != FALSE)
    506 						goto oops;
    507 			}
    508 		}
    509 		for (i = 0; i < sp->typecnt; ++i) {
    510 			struct ttinfo *	ttisp;
    511 
    512 			ttisp = &sp->ttis[i];
    513 			if (ttisgmtcnt == 0)
    514 				ttisp->tt_ttisgmt = FALSE;
    515 			else {
    516 				ttisp->tt_ttisgmt = *p++;
    517 				if (ttisp->tt_ttisgmt != TRUE &&
    518 					ttisp->tt_ttisgmt != FALSE)
    519 						goto oops;
    520 			}
    521 		}
    522 		/*
    523 		** Out-of-sort ats should mean we're running on a
    524 		** signed time_t system but using a data file with
    525 		** unsigned values (or vice versa).
    526 		*/
    527 		for (i = 0; i < sp->timecnt - 2; ++i)
    528 			if (sp->ats[i] > sp->ats[i + 1]) {
    529 				++i;
    530 /* CONSTCOND */
    531 				if (TYPE_SIGNED(time_t)) {
    532 					/*
    533 					** Ignore the end (easy).
    534 					*/
    535 					sp->timecnt = i;
    536 				} else {
    537 					/*
    538 					** Ignore the beginning (harder).
    539 					*/
    540 					int	j;
    541 
    542 					for (j = 0; j + i < sp->timecnt; ++j) {
    543 						sp->ats[j] = sp->ats[j + i];
    544 						sp->types[j] = sp->types[j + i];
    545 					}
    546 					sp->timecnt = j;
    547 				}
    548 				break;
    549 			}
    550 		/*
    551 		** If this is an old file, we're done.
    552 		*/
    553 		if (up->tzhead.tzh_version[0] == '\0')
    554 			break;
    555 		nread -= p - up->buf;
    556 		for (i = 0; i < nread; ++i)
    557 			up->buf[i] = p[i];
    558 		/*
    559 		** If this is a narrow integer time_t system, we're done.
    560 		*/
    561 		if (stored >= (int) sizeof(time_t)
    562 /* CONSTCOND */
    563 				&& TYPE_INTEGRAL(time_t))
    564 			break;
    565 	}
    566 	if (doextend && nread > 2 &&
    567 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    568 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    569 			struct __state ts;
    570 			int	result;
    571 
    572 			up->buf[nread - 1] = '\0';
    573 			result = tzparse(&ts, &up->buf[1], FALSE);
    574 			if (result == 0 && ts.typecnt == 2 &&
    575 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    576 					for (i = 0; i < 2; ++i)
    577 						ts.ttis[i].tt_abbrind +=
    578 							sp->charcnt;
    579 					for (i = 0; i < ts.charcnt; ++i)
    580 						sp->chars[sp->charcnt++] =
    581 							ts.chars[i];
    582 					i = 0;
    583 					while (i < ts.timecnt &&
    584 						ts.ats[i] <=
    585 						sp->ats[sp->timecnt - 1])
    586 							++i;
    587 					while (i < ts.timecnt &&
    588 					    sp->timecnt < TZ_MAX_TIMES) {
    589 						sp->ats[sp->timecnt] =
    590 							ts.ats[i];
    591 						sp->types[sp->timecnt] =
    592 							sp->typecnt +
    593 							ts.types[i];
    594 						++sp->timecnt;
    595 						++i;
    596 					}
    597 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    598 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    599 			}
    600 	}
    601 	if (sp->timecnt > 1) {
    602 		for (i = 1; i < sp->timecnt; ++i)
    603 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    604 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    605 					sp->goback = TRUE;
    606 					break;
    607 				}
    608 		for (i = sp->timecnt - 2; i >= 0; --i)
    609 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    610 				sp->types[i]) &&
    611 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    612 				sp->ats[i])) {
    613 					sp->goahead = TRUE;
    614 					break;
    615 		}
    616 	}
    617 	free(up);
    618 	return 0;
    619 oops:
    620 	free(up);
    621 	return -1;
    622 }
    623 
    624 static int
    625 typesequiv(const timezone_t sp, const int a, const int b)
    626 {
    627 	int	result;
    628 
    629 	if (sp == NULL ||
    630 		a < 0 || a >= sp->typecnt ||
    631 		b < 0 || b >= sp->typecnt)
    632 			result = FALSE;
    633 	else {
    634 		const struct ttinfo *	ap = &sp->ttis[a];
    635 		const struct ttinfo *	bp = &sp->ttis[b];
    636 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    637 			ap->tt_isdst == bp->tt_isdst &&
    638 			ap->tt_ttisstd == bp->tt_ttisstd &&
    639 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    640 			strcmp(&sp->chars[ap->tt_abbrind],
    641 			&sp->chars[bp->tt_abbrind]) == 0;
    642 	}
    643 	return result;
    644 }
    645 
    646 static const int	mon_lengths[2][MONSPERYEAR] = {
    647 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    648 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    649 };
    650 
    651 static const int	year_lengths[2] = {
    652 	DAYSPERNYEAR, DAYSPERLYEAR
    653 };
    654 
    655 /*
    656 ** Given a pointer into a time zone string, scan until a character that is not
    657 ** a valid character in a zone name is found. Return a pointer to that
    658 ** character.
    659 */
    660 
    661 static const char *
    662 getzname(const char *strp)
    663 {
    664 	char	c;
    665 
    666 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    667 		c != '+')
    668 			++strp;
    669 	return strp;
    670 }
    671 
    672 /*
    673 ** Given a pointer into an extended time zone string, scan until the ending
    674 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    675 **
    676 ** As with getzname above, the legal character set is actually quite
    677 ** restricted, with other characters producing undefined results.
    678 ** We don't do any checking here; checking is done later in common-case code.
    679 */
    680 
    681 static const char *
    682 getqzname(const char *strp, const int delim)
    683 {
    684 	int	c;
    685 
    686 	while ((c = *strp) != '\0' && c != delim)
    687 		++strp;
    688 	return strp;
    689 }
    690 
    691 /*
    692 ** Given a pointer into a time zone string, extract a number from that string.
    693 ** Check that the number is within a specified range; if it is not, return
    694 ** NULL.
    695 ** Otherwise, return a pointer to the first character not part of the number.
    696 */
    697 
    698 static const char *
    699 getnum(const char *strp, int *const nump, const int min, const int max)
    700 {
    701 	char	c;
    702 	int	num;
    703 
    704 	if (strp == NULL || !is_digit(c = *strp)) {
    705 		errno = EINVAL;
    706 		return NULL;
    707 	}
    708 	num = 0;
    709 	do {
    710 		num = num * 10 + (c - '0');
    711 		if (num > max) {
    712 			errno = EOVERFLOW;
    713 			return NULL;	/* illegal value */
    714 		}
    715 		c = *++strp;
    716 	} while (is_digit(c));
    717 	if (num < min) {
    718 		errno = EINVAL;
    719 		return NULL;		/* illegal value */
    720 	}
    721 	*nump = num;
    722 	return strp;
    723 }
    724 
    725 /*
    726 ** Given a pointer into a time zone string, extract a number of seconds,
    727 ** in hh[:mm[:ss]] form, from the string.
    728 ** If any error occurs, return NULL.
    729 ** Otherwise, return a pointer to the first character not part of the number
    730 ** of seconds.
    731 */
    732 
    733 static const char *
    734 getsecs(const char *strp, long *const secsp)
    735 {
    736 	int	num;
    737 
    738 	/*
    739 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    740 	** "M10.4.6/26", which does not conform to Posix,
    741 	** but which specifies the equivalent of
    742 	** ``02:00 on the first Sunday on or after 23 Oct''.
    743 	*/
    744 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    745 	if (strp == NULL)
    746 		return NULL;
    747 	*secsp = num * (long) SECSPERHOUR;
    748 	if (*strp == ':') {
    749 		++strp;
    750 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    751 		if (strp == NULL)
    752 			return NULL;
    753 		*secsp += num * SECSPERMIN;
    754 		if (*strp == ':') {
    755 			++strp;
    756 			/* `SECSPERMIN' allows for leap seconds. */
    757 			strp = getnum(strp, &num, 0, SECSPERMIN);
    758 			if (strp == NULL)
    759 				return NULL;
    760 			*secsp += num;
    761 		}
    762 	}
    763 	return strp;
    764 }
    765 
    766 /*
    767 ** Given a pointer into a time zone string, extract an offset, in
    768 ** [+-]hh[:mm[:ss]] form, from the string.
    769 ** If any error occurs, return NULL.
    770 ** Otherwise, return a pointer to the first character not part of the time.
    771 */
    772 
    773 static const char *
    774 getoffset(const char *strp, long *const offsetp)
    775 {
    776 	int	neg = 0;
    777 
    778 	if (*strp == '-') {
    779 		neg = 1;
    780 		++strp;
    781 	} else if (*strp == '+')
    782 		++strp;
    783 	strp = getsecs(strp, offsetp);
    784 	if (strp == NULL)
    785 		return NULL;		/* illegal time */
    786 	if (neg)
    787 		*offsetp = -*offsetp;
    788 	return strp;
    789 }
    790 
    791 /*
    792 ** Given a pointer into a time zone string, extract a rule in the form
    793 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    794 ** If a valid rule is not found, return NULL.
    795 ** Otherwise, return a pointer to the first character not part of the rule.
    796 */
    797 
    798 static const char *
    799 getrule(const char *strp, struct rule *const rulep)
    800 {
    801 	if (*strp == 'J') {
    802 		/*
    803 		** Julian day.
    804 		*/
    805 		rulep->r_type = JULIAN_DAY;
    806 		++strp;
    807 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    808 	} else if (*strp == 'M') {
    809 		/*
    810 		** Month, week, day.
    811 		*/
    812 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    813 		++strp;
    814 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    815 		if (strp == NULL)
    816 			return NULL;
    817 		if (*strp++ != '.')
    818 			return NULL;
    819 		strp = getnum(strp, &rulep->r_week, 1, 5);
    820 		if (strp == NULL)
    821 			return NULL;
    822 		if (*strp++ != '.')
    823 			return NULL;
    824 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    825 	} else if (is_digit(*strp)) {
    826 		/*
    827 		** Day of year.
    828 		*/
    829 		rulep->r_type = DAY_OF_YEAR;
    830 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    831 	} else	return NULL;		/* invalid format */
    832 	if (strp == NULL)
    833 		return NULL;
    834 	if (*strp == '/') {
    835 		/*
    836 		** Time specified.
    837 		*/
    838 		++strp;
    839 		strp = getsecs(strp, &rulep->r_time);
    840 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    841 	return strp;
    842 }
    843 
    844 /*
    845 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    846 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    847 ** calculate the Epoch-relative time that rule takes effect.
    848 */
    849 
    850 static time_t
    851 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    852     const long offset)
    853 {
    854 	int	leapyear;
    855 	time_t	value;
    856 	int	i;
    857 	int		d, m1, yy0, yy1, yy2, dow;
    858 
    859 	INITIALIZE(value);
    860 	leapyear = isleap(year);
    861 	switch (rulep->r_type) {
    862 
    863 	case JULIAN_DAY:
    864 		/*
    865 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    866 		** years.
    867 		** In non-leap years, or if the day number is 59 or less, just
    868 		** add SECSPERDAY times the day number-1 to the time of
    869 		** January 1, midnight, to get the day.
    870 		*/
    871 		value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
    872 		if (leapyear && rulep->r_day >= 60)
    873 			value += SECSPERDAY;
    874 		break;
    875 
    876 	case DAY_OF_YEAR:
    877 		/*
    878 		** n - day of year.
    879 		** Just add SECSPERDAY times the day number to the time of
    880 		** January 1, midnight, to get the day.
    881 		*/
    882 		value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
    883 		break;
    884 
    885 	case MONTH_NTH_DAY_OF_WEEK:
    886 		/*
    887 		** Mm.n.d - nth "dth day" of month m.
    888 		*/
    889 		value = janfirst;
    890 		for (i = 0; i < rulep->r_mon - 1; ++i)
    891 			value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
    892 
    893 		/*
    894 		** Use Zeller's Congruence to get day-of-week of first day of
    895 		** month.
    896 		*/
    897 		m1 = (rulep->r_mon + 9) % 12 + 1;
    898 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    899 		yy1 = yy0 / 100;
    900 		yy2 = yy0 % 100;
    901 		dow = ((26 * m1 - 2) / 10 +
    902 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    903 		if (dow < 0)
    904 			dow += DAYSPERWEEK;
    905 
    906 		/*
    907 		** "dow" is the day-of-week of the first day of the month. Get
    908 		** the day-of-month (zero-origin) of the first "dow" day of the
    909 		** month.
    910 		*/
    911 		d = rulep->r_day - dow;
    912 		if (d < 0)
    913 			d += DAYSPERWEEK;
    914 		for (i = 1; i < rulep->r_week; ++i) {
    915 			if (d + DAYSPERWEEK >=
    916 				mon_lengths[leapyear][rulep->r_mon - 1])
    917 					break;
    918 			d += DAYSPERWEEK;
    919 		}
    920 
    921 		/*
    922 		** "d" is the day-of-month (zero-origin) of the day we want.
    923 		*/
    924 		value += (time_t)(d * SECSPERDAY);
    925 		break;
    926 	}
    927 
    928 	/*
    929 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    930 	** question. To get the Epoch-relative time of the specified local
    931 	** time on that day, add the transition time and the current offset
    932 	** from UTC.
    933 	*/
    934 	return (time_t)(value + rulep->r_time + offset);
    935 }
    936 
    937 /*
    938 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    939 ** appropriate.
    940 */
    941 
    942 static int
    943 tzparse(timezone_t sp, const char *name, const int lastditch)
    944 {
    945 	const char *			stdname;
    946 	const char *			dstname;
    947 	size_t				stdlen;
    948 	size_t				dstlen;
    949 	long				stdoffset;
    950 	long				dstoffset;
    951 	time_t *		atp;
    952 	unsigned char *	typep;
    953 	char *			cp;
    954 	int			load_result;
    955 
    956 	INITIALIZE(dstname);
    957 	stdname = name;
    958 	if (lastditch) {
    959 		stdlen = strlen(name);	/* length of standard zone name */
    960 		name += stdlen;
    961 		if (stdlen >= sizeof sp->chars)
    962 			stdlen = (sizeof sp->chars) - 1;
    963 		stdoffset = 0;
    964 	} else {
    965 		if (*name == '<') {
    966 			name++;
    967 			stdname = name;
    968 			name = getqzname(name, '>');
    969 			if (*name != '>')
    970 				return (-1);
    971 			stdlen = name - stdname;
    972 			name++;
    973 		} else {
    974 			name = getzname(name);
    975 			stdlen = name - stdname;
    976 		}
    977 		if (*name == '\0')
    978 			return -1;
    979 		name = getoffset(name, &stdoffset);
    980 		if (name == NULL)
    981 			return -1;
    982 	}
    983 	load_result = tzload(sp, TZDEFRULES, FALSE);
    984 	if (load_result != 0)
    985 		sp->leapcnt = 0;		/* so, we're off a little */
    986 	if (*name != '\0') {
    987 		if (*name == '<') {
    988 			dstname = ++name;
    989 			name = getqzname(name, '>');
    990 			if (*name != '>')
    991 				return -1;
    992 			dstlen = name - dstname;
    993 			name++;
    994 		} else {
    995 			dstname = name;
    996 			name = getzname(name);
    997 			dstlen = name - dstname; /* length of DST zone name */
    998 		}
    999 		if (*name != '\0' && *name != ',' && *name != ';') {
   1000 			name = getoffset(name, &dstoffset);
   1001 			if (name == NULL)
   1002 				return -1;
   1003 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1004 		if (*name == '\0' && load_result != 0)
   1005 			name = TZDEFRULESTRING;
   1006 		if (*name == ',' || *name == ';') {
   1007 			struct rule	start;
   1008 			struct rule	end;
   1009 			int	year;
   1010 			time_t	janfirst;
   1011 			time_t		starttime;
   1012 			time_t		endtime;
   1013 
   1014 			++name;
   1015 			if ((name = getrule(name, &start)) == NULL)
   1016 				return -1;
   1017 			if (*name++ != ',')
   1018 				return -1;
   1019 			if ((name = getrule(name, &end)) == NULL)
   1020 				return -1;
   1021 			if (*name != '\0')
   1022 				return -1;
   1023 			sp->typecnt = 2;	/* standard time and DST */
   1024 			/*
   1025 			** Two transitions per year, from EPOCH_YEAR forward.
   1026 			*/
   1027 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1028 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1029 			sp->ttis[0].tt_isdst = 1;
   1030 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
   1031 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1032 			sp->ttis[1].tt_isdst = 0;
   1033 			sp->ttis[1].tt_abbrind = 0;
   1034 			atp = sp->ats;
   1035 			typep = sp->types;
   1036 			janfirst = 0;
   1037 			sp->timecnt = 0;
   1038 			for (year = EPOCH_YEAR;
   1039 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1040 			    ++year) {
   1041 			    	time_t	newfirst;
   1042 
   1043 				starttime = transtime(janfirst, year, &start,
   1044 					stdoffset);
   1045 				endtime = transtime(janfirst, year, &end,
   1046 					dstoffset);
   1047 				if (starttime > endtime) {
   1048 					*atp++ = endtime;
   1049 					*typep++ = 1;	/* DST ends */
   1050 					*atp++ = starttime;
   1051 					*typep++ = 0;	/* DST begins */
   1052 				} else {
   1053 					*atp++ = starttime;
   1054 					*typep++ = 0;	/* DST begins */
   1055 					*atp++ = endtime;
   1056 					*typep++ = 1;	/* DST ends */
   1057 				}
   1058 				sp->timecnt += 2;
   1059 				newfirst = janfirst;
   1060 				newfirst += (time_t)
   1061 				    (year_lengths[isleap(year)] * SECSPERDAY);
   1062 				if (newfirst <= janfirst)
   1063 					break;
   1064 				janfirst = newfirst;
   1065 			}
   1066 		} else {
   1067 			long	theirstdoffset;
   1068 			long	theirdstoffset;
   1069 			long	theiroffset;
   1070 			int	isdst;
   1071 			int	i;
   1072 			int	j;
   1073 
   1074 			if (*name != '\0')
   1075 				return -1;
   1076 			/*
   1077 			** Initial values of theirstdoffset and theirdstoffset.
   1078 			*/
   1079 			theirstdoffset = 0;
   1080 			for (i = 0; i < sp->timecnt; ++i) {
   1081 				j = sp->types[i];
   1082 				if (!sp->ttis[j].tt_isdst) {
   1083 					theirstdoffset =
   1084 						-sp->ttis[j].tt_gmtoff;
   1085 					break;
   1086 				}
   1087 			}
   1088 			theirdstoffset = 0;
   1089 			for (i = 0; i < sp->timecnt; ++i) {
   1090 				j = sp->types[i];
   1091 				if (sp->ttis[j].tt_isdst) {
   1092 					theirdstoffset =
   1093 						-sp->ttis[j].tt_gmtoff;
   1094 					break;
   1095 				}
   1096 			}
   1097 			/*
   1098 			** Initially we're assumed to be in standard time.
   1099 			*/
   1100 			isdst = FALSE;
   1101 			theiroffset = theirstdoffset;
   1102 			/*
   1103 			** Now juggle transition times and types
   1104 			** tracking offsets as you do.
   1105 			*/
   1106 			for (i = 0; i < sp->timecnt; ++i) {
   1107 				j = sp->types[i];
   1108 				sp->types[i] = sp->ttis[j].tt_isdst;
   1109 				if (sp->ttis[j].tt_ttisgmt) {
   1110 					/* No adjustment to transition time */
   1111 				} else {
   1112 					/*
   1113 					** If summer time is in effect, and the
   1114 					** transition time was not specified as
   1115 					** standard time, add the summer time
   1116 					** offset to the transition time;
   1117 					** otherwise, add the standard time
   1118 					** offset to the transition time.
   1119 					*/
   1120 					/*
   1121 					** Transitions from DST to DDST
   1122 					** will effectively disappear since
   1123 					** POSIX provides for only one DST
   1124 					** offset.
   1125 					*/
   1126 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1127 						sp->ats[i] += (time_t)
   1128 						    (dstoffset - theirdstoffset);
   1129 					} else {
   1130 						sp->ats[i] += (time_t)
   1131 						    (stdoffset - theirstdoffset);
   1132 					}
   1133 				}
   1134 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1135 				if (!sp->ttis[j].tt_isdst)
   1136 					theirstdoffset = theiroffset;
   1137 				else	theirdstoffset = theiroffset;
   1138 			}
   1139 			/*
   1140 			** Finally, fill in ttis.
   1141 			** ttisstd and ttisgmt need not be handled
   1142 			*/
   1143 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1144 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1145 			sp->ttis[0].tt_isdst = FALSE;
   1146 			sp->ttis[0].tt_abbrind = 0;
   1147 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1148 			sp->ttis[1].tt_isdst = TRUE;
   1149 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
   1150 			sp->typecnt = 2;
   1151 		}
   1152 	} else {
   1153 		dstlen = 0;
   1154 		sp->typecnt = 1;		/* only standard time */
   1155 		sp->timecnt = 0;
   1156 		memset(sp->ttis, 0, sizeof(sp->ttis));
   1157 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1158 		sp->ttis[0].tt_isdst = 0;
   1159 		sp->ttis[0].tt_abbrind = 0;
   1160 	}
   1161 	sp->charcnt = (int)(stdlen + 1);
   1162 	if (dstlen != 0)
   1163 		sp->charcnt += (int)(dstlen + 1);
   1164 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1165 		return -1;
   1166 	cp = sp->chars;
   1167 	(void) strncpy(cp, stdname, stdlen);
   1168 	cp += stdlen;
   1169 	*cp++ = '\0';
   1170 	if (dstlen != 0) {
   1171 		(void) strncpy(cp, dstname, dstlen);
   1172 		*(cp + dstlen) = '\0';
   1173 	}
   1174 	return 0;
   1175 }
   1176 
   1177 static void
   1178 gmtload(timezone_t sp)
   1179 {
   1180 	if (tzload(sp, gmt, TRUE) != 0)
   1181 		(void) tzparse(sp, gmt, TRUE);
   1182 }
   1183 
   1184 timezone_t
   1185 tzalloc(const char *name)
   1186 {
   1187 	timezone_t sp = calloc(1, sizeof *sp);
   1188 	if (sp == NULL)
   1189 		return NULL;
   1190 	if (tzload(sp, name, TRUE) != 0) {
   1191 		free(sp);
   1192 		return NULL;
   1193 	}
   1194 	settzname_z(sp);
   1195 	return sp;
   1196 }
   1197 
   1198 void
   1199 tzfree(const timezone_t sp)
   1200 {
   1201 	free(sp);
   1202 }
   1203 
   1204 static void
   1205 tzsetwall_unlocked(void)
   1206 {
   1207 	if (lcl_is_set < 0)
   1208 		return;
   1209 	lcl_is_set = -1;
   1210 
   1211 	if (lclptr == NULL) {
   1212 		int saveerrno = errno;
   1213 		lclptr = calloc(1, sizeof *lclptr);
   1214 		errno = saveerrno;
   1215 		if (lclptr == NULL) {
   1216 			settzname();	/* all we can do */
   1217 			return;
   1218 		}
   1219 	}
   1220 	if (tzload(lclptr, NULL, TRUE) != 0)
   1221 		gmtload(lclptr);
   1222 	settzname();
   1223 }
   1224 
   1225 #ifndef STD_INSPIRED
   1226 /*
   1227 ** A non-static declaration of tzsetwall in a system header file
   1228 ** may cause a warning about this upcoming static declaration...
   1229 */
   1230 static
   1231 #endif /* !defined STD_INSPIRED */
   1232 void
   1233 tzsetwall(void)
   1234 {
   1235 	rwlock_wrlock(&lcl_lock);
   1236 	tzsetwall_unlocked();
   1237 	rwlock_unlock(&lcl_lock);
   1238 }
   1239 
   1240 #ifndef STD_INSPIRED
   1241 /*
   1242 ** A non-static declaration of tzsetwall in a system header file
   1243 ** may cause a warning about this upcoming static declaration...
   1244 */
   1245 static
   1246 #endif /* !defined STD_INSPIRED */
   1247 void
   1248 tzset_unlocked(void)
   1249 {
   1250 	const char *	name;
   1251 
   1252 	name = getenv("TZ");
   1253 	if (name == NULL) {
   1254 		tzsetwall_unlocked();
   1255 		return;
   1256 	}
   1257 
   1258 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1259 		return;
   1260 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1261 	if (lcl_is_set)
   1262 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1263 
   1264 	if (lclptr == NULL) {
   1265 		int saveerrno = errno;
   1266 		lclptr = calloc(1, sizeof *lclptr);
   1267 		errno = saveerrno;
   1268 		if (lclptr == NULL) {
   1269 			settzname();	/* all we can do */
   1270 			return;
   1271 		}
   1272 	}
   1273 	if (*name == '\0') {
   1274 		/*
   1275 		** User wants it fast rather than right.
   1276 		*/
   1277 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1278 		lclptr->timecnt = 0;
   1279 		lclptr->typecnt = 0;
   1280 		lclptr->ttis[0].tt_isdst = 0;
   1281 		lclptr->ttis[0].tt_gmtoff = 0;
   1282 		lclptr->ttis[0].tt_abbrind = 0;
   1283 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1284 	} else if (tzload(lclptr, name, TRUE) != 0)
   1285 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1286 			(void) gmtload(lclptr);
   1287 	settzname();
   1288 }
   1289 
   1290 void
   1291 tzset(void)
   1292 {
   1293 	rwlock_wrlock(&lcl_lock);
   1294 	tzset_unlocked();
   1295 	rwlock_unlock(&lcl_lock);
   1296 }
   1297 
   1298 /*
   1299 ** The easy way to behave "as if no library function calls" localtime
   1300 ** is to not call it--so we drop its guts into "localsub", which can be
   1301 ** freely called. (And no, the PANS doesn't require the above behavior--
   1302 ** but it *is* desirable.)
   1303 **
   1304 ** The unused offset argument is for the benefit of mktime variants.
   1305 */
   1306 
   1307 /*ARGSUSED*/
   1308 static struct tm *
   1309 localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1310     struct tm *const tmp)
   1311 {
   1312 	const struct ttinfo *	ttisp;
   1313 	int			i;
   1314 	struct tm *		result;
   1315 	const time_t			t = *timep;
   1316 
   1317 	if ((sp->goback && t < sp->ats[0]) ||
   1318 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1319 			time_t			newt = t;
   1320 			time_t		seconds;
   1321 			time_t		tcycles;
   1322 			int_fast64_t	icycles;
   1323 
   1324 			if (t < sp->ats[0])
   1325 				seconds = sp->ats[0] - t;
   1326 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1327 			--seconds;
   1328 			tcycles = (time_t)
   1329 			    (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
   1330 			++tcycles;
   1331 			icycles = tcycles;
   1332 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1333 				return NULL;
   1334 			seconds = (time_t) icycles;
   1335 			seconds *= YEARSPERREPEAT;
   1336 			seconds *= AVGSECSPERYEAR;
   1337 			if (t < sp->ats[0])
   1338 				newt += seconds;
   1339 			else	newt -= seconds;
   1340 			if (newt < sp->ats[0] ||
   1341 				newt > sp->ats[sp->timecnt - 1])
   1342 					return NULL;	/* "cannot happen" */
   1343 			result = localsub(sp, &newt, offset, tmp);
   1344 			if (result == tmp) {
   1345 				time_t	newy;
   1346 
   1347 				newy = tmp->tm_year;
   1348 				if (t < sp->ats[0])
   1349 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1350 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1351 				tmp->tm_year = (int)newy;
   1352 				if (tmp->tm_year != newy)
   1353 					return NULL;
   1354 			}
   1355 			return result;
   1356 	}
   1357 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1358 		i = 0;
   1359 		while (sp->ttis[i].tt_isdst)
   1360 			if (++i >= sp->typecnt) {
   1361 				i = 0;
   1362 				break;
   1363 			}
   1364 	} else {
   1365 		int	lo = 1;
   1366 		int	hi = sp->timecnt;
   1367 
   1368 		while (lo < hi) {
   1369 			int	mid = (lo + hi) / 2;
   1370 
   1371 			if (t < sp->ats[mid])
   1372 				hi = mid;
   1373 			else	lo = mid + 1;
   1374 		}
   1375 		i = (int) sp->types[lo - 1];
   1376 	}
   1377 	ttisp = &sp->ttis[i];
   1378 	/*
   1379 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1380 	** you'd replace the statement below with
   1381 	**	t += ttisp->tt_gmtoff;
   1382 	**	timesub(&t, 0L, sp, tmp);
   1383 	*/
   1384 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1385 	tmp->tm_isdst = ttisp->tt_isdst;
   1386 	if (sp == lclptr)
   1387 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1388 #ifdef TM_ZONE
   1389 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1390 #endif /* defined TM_ZONE */
   1391 	return result;
   1392 }
   1393 
   1394 /*
   1395 ** Re-entrant version of localtime.
   1396 */
   1397 
   1398 struct tm *
   1399 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1400 {
   1401 	rwlock_rdlock(&lcl_lock);
   1402 	tzset_unlocked();
   1403 	tmp = localtime_rz(lclptr, timep, tmp);
   1404 	rwlock_unlock(&lcl_lock);
   1405 	return tmp;
   1406 }
   1407 
   1408 struct tm *
   1409 localtime(const time_t *const timep)
   1410 {
   1411 	return localtime_r(timep, &tm);
   1412 }
   1413 
   1414 struct tm *
   1415 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1416 {
   1417 	if (sp == NULL)
   1418 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1419 	else
   1420 		tmp = localsub(sp, timep, 0L, tmp);
   1421 	if (tmp == NULL)
   1422 		errno = EOVERFLOW;
   1423 	return tmp;
   1424 }
   1425 
   1426 /*
   1427 ** gmtsub is to gmtime as localsub is to localtime.
   1428 */
   1429 
   1430 static struct tm *
   1431 gmtsub(const timezone_t sp, const time_t *const timep, const long offset,
   1432     struct tm *const tmp)
   1433 {
   1434 	struct tm *	result;
   1435 #ifdef _REENTRANT
   1436 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1437 #endif
   1438 
   1439 	mutex_lock(&gmt_mutex);
   1440 	if (!gmt_is_set) {
   1441 		int saveerrno;
   1442 		gmt_is_set = TRUE;
   1443 		saveerrno = errno;
   1444 		gmtptr = calloc(1, sizeof *gmtptr);
   1445 		errno = saveerrno;
   1446 		if (gmtptr != NULL)
   1447 			gmtload(gmtptr);
   1448 	}
   1449 	mutex_unlock(&gmt_mutex);
   1450 	result = timesub(gmtptr, timep, offset, tmp);
   1451 #ifdef TM_ZONE
   1452 	/*
   1453 	** Could get fancy here and deliver something such as
   1454 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1455 	** but this is no time for a treasure hunt.
   1456 	*/
   1457 	if (offset != 0)
   1458 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1459 	else {
   1460 		if (gmtptr == NULL)
   1461 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1462 		else	tmp->TM_ZONE = gmtptr->chars;
   1463 	}
   1464 #endif /* defined TM_ZONE */
   1465 	return result;
   1466 }
   1467 
   1468 struct tm *
   1469 gmtime(const time_t *const timep)
   1470 {
   1471 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
   1472 
   1473 	if (tmp == NULL)
   1474 		errno = EOVERFLOW;
   1475 
   1476 	return tmp;
   1477 }
   1478 
   1479 /*
   1480 ** Re-entrant version of gmtime.
   1481 */
   1482 
   1483 struct tm *
   1484 gmtime_r(const time_t * const timep, struct tm *tmp)
   1485 {
   1486 	tmp = gmtsub(NULL, timep, 0L, tmp);
   1487 
   1488 	if (tmp == NULL)
   1489 		errno = EOVERFLOW;
   1490 
   1491 	return tmp;
   1492 }
   1493 
   1494 #ifdef STD_INSPIRED
   1495 
   1496 struct tm *
   1497 offtime(const time_t *const timep, long offset)
   1498 {
   1499 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
   1500 
   1501 	if (tmp == NULL)
   1502 		errno = EOVERFLOW;
   1503 
   1504 	return tmp;
   1505 }
   1506 
   1507 struct tm *
   1508 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1509 {
   1510 	tmp = gmtsub(NULL, timep, offset, tmp);
   1511 
   1512 	if (tmp == NULL)
   1513 		errno = EOVERFLOW;
   1514 
   1515 	return tmp;
   1516 }
   1517 
   1518 #endif /* defined STD_INSPIRED */
   1519 
   1520 /*
   1521 ** Return the number of leap years through the end of the given year
   1522 ** where, to make the math easy, the answer for year zero is defined as zero.
   1523 */
   1524 
   1525 static int
   1526 leaps_thru_end_of(const int y)
   1527 {
   1528 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1529 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1530 }
   1531 
   1532 static struct tm *
   1533 timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1534     struct tm *const tmp)
   1535 {
   1536 	const struct lsinfo *	lp;
   1537 	time_t			tdays;
   1538 	int			idays;	/* unsigned would be so 2003 */
   1539 	long			rem;
   1540 	int			y;
   1541 	const int *		ip;
   1542 	long			corr;
   1543 	int			hit;
   1544 	int			i;
   1545 
   1546 	corr = 0;
   1547 	hit = 0;
   1548 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1549 	while (--i >= 0) {
   1550 		lp = &sp->lsis[i];
   1551 		if (*timep >= lp->ls_trans) {
   1552 			if (*timep == lp->ls_trans) {
   1553 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1554 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1555 				if (hit)
   1556 					while (i > 0 &&
   1557 						sp->lsis[i].ls_trans ==
   1558 						sp->lsis[i - 1].ls_trans + 1 &&
   1559 						sp->lsis[i].ls_corr ==
   1560 						sp->lsis[i - 1].ls_corr + 1) {
   1561 							++hit;
   1562 							--i;
   1563 					}
   1564 			}
   1565 			corr = lp->ls_corr;
   1566 			break;
   1567 		}
   1568 	}
   1569 	y = EPOCH_YEAR;
   1570 	tdays = (time_t)(*timep / SECSPERDAY);
   1571 	rem = (long) (*timep - tdays * SECSPERDAY);
   1572 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1573 		int		newy;
   1574 		time_t	tdelta;
   1575 		int	idelta;
   1576 		int	leapdays;
   1577 
   1578 		tdelta = tdays / DAYSPERLYEAR;
   1579 		idelta = (int) tdelta;
   1580 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1581 			return NULL;
   1582 		if (idelta == 0)
   1583 			idelta = (tdays < 0) ? -1 : 1;
   1584 		newy = y;
   1585 		if (increment_overflow(&newy, idelta))
   1586 			return NULL;
   1587 		leapdays = leaps_thru_end_of(newy - 1) -
   1588 			leaps_thru_end_of(y - 1);
   1589 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1590 		tdays -= leapdays;
   1591 		y = newy;
   1592 	}
   1593 	{
   1594 		long	seconds;
   1595 
   1596 		seconds = tdays * SECSPERDAY + 0.5;
   1597 		tdays = (time_t)(seconds / SECSPERDAY);
   1598 		rem += (long) (seconds - tdays * SECSPERDAY);
   1599 	}
   1600 	/*
   1601 	** Given the range, we can now fearlessly cast...
   1602 	*/
   1603 	idays = (int) tdays;
   1604 	rem += offset - corr;
   1605 	while (rem < 0) {
   1606 		rem += SECSPERDAY;
   1607 		--idays;
   1608 	}
   1609 	while (rem >= SECSPERDAY) {
   1610 		rem -= SECSPERDAY;
   1611 		++idays;
   1612 	}
   1613 	while (idays < 0) {
   1614 		if (increment_overflow(&y, -1))
   1615 			return NULL;
   1616 		idays += year_lengths[isleap(y)];
   1617 	}
   1618 	while (idays >= year_lengths[isleap(y)]) {
   1619 		idays -= year_lengths[isleap(y)];
   1620 		if (increment_overflow(&y, 1))
   1621 			return NULL;
   1622 	}
   1623 	tmp->tm_year = y;
   1624 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1625 		return NULL;
   1626 	tmp->tm_yday = idays;
   1627 	/*
   1628 	** The "extra" mods below avoid overflow problems.
   1629 	*/
   1630 	tmp->tm_wday = EPOCH_WDAY +
   1631 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1632 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1633 		leaps_thru_end_of(y - 1) -
   1634 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1635 		idays;
   1636 	tmp->tm_wday %= DAYSPERWEEK;
   1637 	if (tmp->tm_wday < 0)
   1638 		tmp->tm_wday += DAYSPERWEEK;
   1639 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1640 	rem %= SECSPERHOUR;
   1641 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1642 	/*
   1643 	** A positive leap second requires a special
   1644 	** representation. This uses "... ??:59:60" et seq.
   1645 	*/
   1646 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1647 	ip = mon_lengths[isleap(y)];
   1648 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1649 		idays -= ip[tmp->tm_mon];
   1650 	tmp->tm_mday = (int) (idays + 1);
   1651 	tmp->tm_isdst = 0;
   1652 #ifdef TM_GMTOFF
   1653 	tmp->TM_GMTOFF = offset;
   1654 #endif /* defined TM_GMTOFF */
   1655 	return tmp;
   1656 }
   1657 
   1658 char *
   1659 ctime(const time_t *const timep)
   1660 {
   1661 /*
   1662 ** Section 4.12.3.2 of X3.159-1989 requires that
   1663 **	The ctime function converts the calendar time pointed to by timer
   1664 **	to local time in the form of a string. It is equivalent to
   1665 **		asctime(localtime(timer))
   1666 */
   1667 	struct tm *rtm = localtime(timep);
   1668 	if (rtm == NULL)
   1669 		return NULL;
   1670 	return asctime(rtm);
   1671 }
   1672 
   1673 char *
   1674 ctime_r(const time_t *const timep, char *buf)
   1675 {
   1676 	struct tm	mytm, *rtm;
   1677 
   1678 	rtm = localtime_r(timep, &mytm);
   1679 	if (rtm == NULL)
   1680 		return NULL;
   1681 	return asctime_r(rtm, buf);
   1682 }
   1683 
   1684 char *
   1685 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1686 {
   1687 	struct tm	mytm, *rtm;
   1688 
   1689 	rtm = localtime_rz(sp, timep, &mytm);
   1690 	if (rtm == NULL)
   1691 		return NULL;
   1692 	return asctime_r(rtm, buf);
   1693 }
   1694 
   1695 /*
   1696 ** Adapted from code provided by Robert Elz, who writes:
   1697 **	The "best" way to do mktime I think is based on an idea of Bob
   1698 **	Kridle's (so its said...) from a long time ago.
   1699 **	It does a binary search of the time_t space. Since time_t's are
   1700 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1701 **	would still be very reasonable).
   1702 */
   1703 
   1704 #ifndef WRONG
   1705 #define WRONG	((time_t)-1)
   1706 #endif /* !defined WRONG */
   1707 
   1708 /*
   1709 ** Simplified normalize logic courtesy Paul Eggert.
   1710 */
   1711 
   1712 static int
   1713 increment_overflow(int *const ip, int j)
   1714 {
   1715 	int	i = *ip;
   1716 
   1717 	/*
   1718 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1719 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1720 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1721 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1722 	*/
   1723 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1724 		return TRUE;
   1725 	*ip += j;
   1726 	return FALSE;
   1727 }
   1728 
   1729 static int
   1730 long_increment_overflow(long *const lp, int m)
   1731 {
   1732 	long l = *lp;
   1733 
   1734 	if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
   1735 		return TRUE;
   1736 	*lp += m;
   1737 	return FALSE;
   1738 }
   1739 
   1740 static int
   1741 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1742 {
   1743 	int	tensdelta;
   1744 
   1745 	tensdelta = (*unitsptr >= 0) ?
   1746 		(*unitsptr / base) :
   1747 		(-1 - (-1 - *unitsptr) / base);
   1748 	*unitsptr -= tensdelta * base;
   1749 	return increment_overflow(tensptr, tensdelta);
   1750 }
   1751 
   1752 static int
   1753 long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1754     const int base)
   1755 {
   1756 	int	tensdelta;
   1757 
   1758 	tensdelta = (*unitsptr >= 0) ?
   1759 		(*unitsptr / base) :
   1760 		(-1 - (-1 - *unitsptr) / base);
   1761 	*unitsptr -= tensdelta * base;
   1762 	return long_increment_overflow(tensptr, tensdelta);
   1763 }
   1764 
   1765 static int
   1766 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1767 {
   1768 	int	result;
   1769 
   1770 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1771 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1772 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1773 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1774 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1775 			result = atmp->tm_sec - btmp->tm_sec;
   1776 	return result;
   1777 }
   1778 
   1779 static time_t
   1780 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1781     const long offset, int *const okayp, const int do_norm_secs)
   1782 {
   1783 	int			dir;
   1784 	int			i, j;
   1785 	int			saved_seconds;
   1786 	long			li;
   1787 	time_t			lo;
   1788 	time_t			hi;
   1789 #ifdef NO_ERROR_IN_DST_GAP
   1790 	time_t			ilo;
   1791 #endif
   1792 	long				y;
   1793 	time_t				newt;
   1794 	time_t				t;
   1795 	struct tm			yourtm, mytm;
   1796 
   1797 	*okayp = FALSE;
   1798 	yourtm = *tmp;
   1799 #ifdef NO_ERROR_IN_DST_GAP
   1800 again:
   1801 #endif
   1802 	if (do_norm_secs) {
   1803 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1804 		    SECSPERMIN))
   1805 			goto overflow;
   1806 	}
   1807 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1808 		goto overflow;
   1809 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1810 		goto overflow;
   1811 	y = yourtm.tm_year;
   1812 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1813 		goto overflow;
   1814 	/*
   1815 	** Turn y into an actual year number for now.
   1816 	** It is converted back to an offset from TM_YEAR_BASE later.
   1817 	*/
   1818 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1819 		goto overflow;
   1820 	while (yourtm.tm_mday <= 0) {
   1821 		if (long_increment_overflow(&y, -1))
   1822 			goto overflow;
   1823 		li = y + (1 < yourtm.tm_mon);
   1824 		yourtm.tm_mday += year_lengths[isleap(li)];
   1825 	}
   1826 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1827 		li = y + (1 < yourtm.tm_mon);
   1828 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1829 		if (long_increment_overflow(&y, 1))
   1830 			goto overflow;
   1831 	}
   1832 	for ( ; ; ) {
   1833 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1834 		if (yourtm.tm_mday <= i)
   1835 			break;
   1836 		yourtm.tm_mday -= i;
   1837 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1838 			yourtm.tm_mon = 0;
   1839 			if (long_increment_overflow(&y, 1))
   1840 				goto overflow;
   1841 		}
   1842 	}
   1843 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1844 		goto overflow;
   1845 	yourtm.tm_year = (int)y;
   1846 	if (yourtm.tm_year != y)
   1847 		goto overflow;
   1848 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1849 		saved_seconds = 0;
   1850 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1851 		/*
   1852 		** We can't set tm_sec to 0, because that might push the
   1853 		** time below the minimum representable time.
   1854 		** Set tm_sec to 59 instead.
   1855 		** This assumes that the minimum representable time is
   1856 		** not in the same minute that a leap second was deleted from,
   1857 		** which is a safer assumption than using 58 would be.
   1858 		*/
   1859 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1860 			goto overflow;
   1861 		saved_seconds = yourtm.tm_sec;
   1862 		yourtm.tm_sec = SECSPERMIN - 1;
   1863 	} else {
   1864 		saved_seconds = yourtm.tm_sec;
   1865 		yourtm.tm_sec = 0;
   1866 	}
   1867 	/*
   1868 	** Do a binary search (this works whatever time_t's type is).
   1869 	*/
   1870 	/* CONSTCOND */
   1871 	if (!TYPE_SIGNED(time_t)) {
   1872 		lo = 0;
   1873 		hi = lo - 1;
   1874 	/* CONSTCOND */
   1875 	} else if (!TYPE_INTEGRAL(time_t)) {
   1876 		/* CONSTCOND */
   1877 		if (sizeof(time_t) > sizeof(float))
   1878 			/* LINTED assumed double */
   1879 			hi = (time_t) DBL_MAX;
   1880 			/* LINTED assumed float */
   1881 		else	hi = (time_t) FLT_MAX;
   1882 		lo = -hi;
   1883 	} else {
   1884 		lo = 1;
   1885 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1886 			lo *= 2;
   1887 		hi = -(lo + 1);
   1888 	}
   1889 #ifdef NO_ERROR_IN_DST_GAP
   1890 	ilo = lo;
   1891 #endif
   1892 	for ( ; ; ) {
   1893 		t = lo / 2 + hi / 2;
   1894 		if (t < lo)
   1895 			t = lo;
   1896 		else if (t > hi)
   1897 			t = hi;
   1898 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1899 			/*
   1900 			** Assume that t is too extreme to be represented in
   1901 			** a struct tm; arrange things so that it is less
   1902 			** extreme on the next pass.
   1903 			*/
   1904 			dir = (t > 0) ? 1 : -1;
   1905 		} else	dir = tmcomp(&mytm, &yourtm);
   1906 		if (dir != 0) {
   1907 			if (t == lo) {
   1908 				++t;
   1909 				if (t <= lo)
   1910 					goto overflow;
   1911 				++lo;
   1912 			} else if (t == hi) {
   1913 				--t;
   1914 				if (t >= hi)
   1915 					goto overflow;
   1916 				--hi;
   1917 			}
   1918 #ifdef NO_ERROR_IN_DST_GAP
   1919 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   1920 			    do_norm_secs) {
   1921 				for (i = sp->typecnt - 1; i >= 0; --i) {
   1922 					for (j = sp->typecnt - 1; j >= 0; --j) {
   1923 						time_t off;
   1924 						if (sp->ttis[j].tt_isdst ==
   1925 						    sp->ttis[i].tt_isdst)
   1926 							continue;
   1927 						off = sp->ttis[j].tt_gmtoff -
   1928 						    sp->ttis[i].tt_gmtoff;
   1929 						yourtm.tm_sec += off < 0 ?
   1930 						    -off : off;
   1931 						goto again;
   1932 					}
   1933 				}
   1934 			}
   1935 #endif
   1936 			if (lo > hi)
   1937 				goto invalid;
   1938 			if (dir > 0)
   1939 				hi = t;
   1940 			else	lo = t;
   1941 			continue;
   1942 		}
   1943 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1944 			break;
   1945 		/*
   1946 		** Right time, wrong type.
   1947 		** Hunt for right time, right type.
   1948 		** It's okay to guess wrong since the guess
   1949 		** gets checked.
   1950 		*/
   1951 		if (sp == NULL)
   1952 			goto invalid;
   1953 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1954 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1955 				continue;
   1956 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1957 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1958 					continue;
   1959 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
   1960 				    sp->ttis[i].tt_gmtoff);
   1961 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1962 					continue;
   1963 				if (tmcomp(&mytm, &yourtm) != 0)
   1964 					continue;
   1965 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1966 					continue;
   1967 				/*
   1968 				** We have a match.
   1969 				*/
   1970 				t = newt;
   1971 				goto label;
   1972 			}
   1973 		}
   1974 		goto invalid;
   1975 	}
   1976 label:
   1977 	newt = t + saved_seconds;
   1978 	if ((newt < t) != (saved_seconds < 0))
   1979 		goto overflow;
   1980 	t = newt;
   1981 	if ((*funcp)(sp, &t, offset, tmp)) {
   1982 		*okayp = TRUE;
   1983 		return t;
   1984 	}
   1985 overflow:
   1986 	errno = EOVERFLOW;
   1987 	return WRONG;
   1988 invalid:
   1989 	errno = EINVAL;
   1990 	return WRONG;
   1991 }
   1992 
   1993 static time_t
   1994 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1995     const long offset, int *const okayp)
   1996 {
   1997 	time_t	t;
   1998 
   1999 	/*
   2000 	** First try without normalization of seconds
   2001 	** (in case tm_sec contains a value associated with a leap second).
   2002 	** If that fails, try with normalization of seconds.
   2003 	*/
   2004 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   2005 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   2006 }
   2007 
   2008 static time_t
   2009 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2010     const long offset)
   2011 {
   2012 	time_t			t;
   2013 	int			samei, otheri;
   2014 	int			sameind, otherind;
   2015 	int			i;
   2016 	int			nseen;
   2017 	int				seen[TZ_MAX_TYPES];
   2018 	int				types[TZ_MAX_TYPES];
   2019 	int				okay;
   2020 
   2021 	if (tmp == NULL) {
   2022 		errno = EINVAL;
   2023 		return WRONG;
   2024 	}
   2025 	if (tmp->tm_isdst > 1)
   2026 		tmp->tm_isdst = 1;
   2027 	t = time2(sp, tmp, funcp, offset, &okay);
   2028 #ifdef PCTS
   2029 	/*
   2030 	** PCTS code courtesy Grant Sullivan.
   2031 	*/
   2032 	if (okay)
   2033 		return t;
   2034 	if (tmp->tm_isdst < 0)
   2035 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2036 #endif /* defined PCTS */
   2037 #ifndef PCTS
   2038 	if (okay || tmp->tm_isdst < 0)
   2039 		return t;
   2040 #endif /* !defined PCTS */
   2041 	/*
   2042 	** We're supposed to assume that somebody took a time of one type
   2043 	** and did some math on it that yielded a "struct tm" that's bad.
   2044 	** We try to divine the type they started from and adjust to the
   2045 	** type they need.
   2046 	*/
   2047 	if (sp == NULL) {
   2048 		errno = EINVAL;
   2049 		return WRONG;
   2050 	}
   2051 	for (i = 0; i < sp->typecnt; ++i)
   2052 		seen[i] = FALSE;
   2053 	nseen = 0;
   2054 	for (i = sp->timecnt - 1; i >= 0; --i)
   2055 		if (!seen[sp->types[i]]) {
   2056 			seen[sp->types[i]] = TRUE;
   2057 			types[nseen++] = sp->types[i];
   2058 		}
   2059 	for (sameind = 0; sameind < nseen; ++sameind) {
   2060 		samei = types[sameind];
   2061 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2062 			continue;
   2063 		for (otherind = 0; otherind < nseen; ++otherind) {
   2064 			otheri = types[otherind];
   2065 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2066 				continue;
   2067 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2068 					sp->ttis[samei].tt_gmtoff);
   2069 			tmp->tm_isdst = !tmp->tm_isdst;
   2070 			t = time2(sp, tmp, funcp, offset, &okay);
   2071 			if (okay)
   2072 				return t;
   2073 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2074 					sp->ttis[samei].tt_gmtoff);
   2075 			tmp->tm_isdst = !tmp->tm_isdst;
   2076 		}
   2077 	}
   2078 	errno = EOVERFLOW;
   2079 	return WRONG;
   2080 }
   2081 
   2082 time_t
   2083 mktime_z(const timezone_t sp, struct tm *const tmp)
   2084 {
   2085 	time_t t;
   2086 	if (sp == NULL)
   2087 		t = time1(NULL, tmp, gmtsub, 0L);
   2088 	else
   2089 		t = time1(sp, tmp, localsub, 0L);
   2090 	return t;
   2091 }
   2092 
   2093 time_t
   2094 mktime(struct tm *const tmp)
   2095 {
   2096 	time_t result;
   2097 
   2098 	rwlock_wrlock(&lcl_lock);
   2099 	tzset_unlocked();
   2100 	result = mktime_z(lclptr, tmp);
   2101 	rwlock_unlock(&lcl_lock);
   2102 	return result;
   2103 }
   2104 
   2105 #ifdef STD_INSPIRED
   2106 
   2107 time_t
   2108 timelocal_z(const timezone_t sp, struct tm *const tmp)
   2109 {
   2110 	if (tmp != NULL)
   2111 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2112 	return mktime_z(sp, tmp);
   2113 }
   2114 
   2115 time_t
   2116 timelocal(struct tm *const tmp)
   2117 {
   2118 	if (tmp != NULL)
   2119 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2120 	return mktime(tmp);
   2121 }
   2122 
   2123 time_t
   2124 timegm(struct tm *const tmp)
   2125 {
   2126 	time_t t;
   2127 
   2128 	if (tmp != NULL)
   2129 		tmp->tm_isdst = 0;
   2130 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2131 	return t;
   2132 }
   2133 
   2134 time_t
   2135 timeoff(struct tm *const tmp, const long offset)
   2136 {
   2137 	time_t t;
   2138 
   2139 	if (tmp != NULL)
   2140 		tmp->tm_isdst = 0;
   2141 	t = time1(gmtptr, tmp, gmtsub, offset);
   2142 	return t;
   2143 }
   2144 
   2145 #endif /* defined STD_INSPIRED */
   2146 
   2147 #ifdef CMUCS
   2148 
   2149 /*
   2150 ** The following is supplied for compatibility with
   2151 ** previous versions of the CMUCS runtime library.
   2152 */
   2153 
   2154 long
   2155 gtime(struct tm *const tmp)
   2156 {
   2157 	const time_t t = mktime(tmp);
   2158 
   2159 	if (t == WRONG)
   2160 		return -1;
   2161 	return t;
   2162 }
   2163 
   2164 #endif /* defined CMUCS */
   2165 
   2166 /*
   2167 ** XXX--is the below the right way to conditionalize??
   2168 */
   2169 
   2170 #ifdef STD_INSPIRED
   2171 
   2172 /*
   2173 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2174 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2175 ** is not the case if we are accounting for leap seconds.
   2176 ** So, we provide the following conversion routines for use
   2177 ** when exchanging timestamps with POSIX conforming systems.
   2178 */
   2179 
   2180 static long
   2181 leapcorr(const timezone_t sp, time_t *timep)
   2182 {
   2183 	struct lsinfo * lp;
   2184 	int		i;
   2185 
   2186 	i = sp->leapcnt;
   2187 	while (--i >= 0) {
   2188 		lp = &sp->lsis[i];
   2189 		if (*timep >= lp->ls_trans)
   2190 			return lp->ls_corr;
   2191 	}
   2192 	return 0;
   2193 }
   2194 
   2195 time_t
   2196 time2posix_z(const timezone_t sp, time_t t)
   2197 {
   2198 	return (time_t)(t - leapcorr(sp, &t));
   2199 }
   2200 
   2201 time_t
   2202 time2posix(time_t t)
   2203 {
   2204 	time_t result;
   2205 	rwlock_wrlock(&lcl_lock);
   2206 	tzset_unlocked();
   2207 	result = (time_t)(t - leapcorr(lclptr, &t));
   2208 	rwlock_unlock(&lcl_lock);
   2209 	return (result);
   2210 }
   2211 
   2212 time_t
   2213 posix2time_z(const timezone_t sp, time_t t)
   2214 {
   2215 	time_t	x;
   2216 	time_t	y;
   2217 
   2218 	/*
   2219 	** For a positive leap second hit, the result
   2220 	** is not unique. For a negative leap second
   2221 	** hit, the corresponding time doesn't exist,
   2222 	** so we return an adjacent second.
   2223 	*/
   2224 	x = (time_t)(t + leapcorr(sp, &t));
   2225 	y = (time_t)(x - leapcorr(sp, &x));
   2226 	if (y < t) {
   2227 		do {
   2228 			x++;
   2229 			y = (time_t)(x - leapcorr(sp, &x));
   2230 		} while (y < t);
   2231 		if (t != y) {
   2232 			return x - 1;
   2233 		}
   2234 	} else if (y > t) {
   2235 		do {
   2236 			--x;
   2237 			y = (time_t)(x - leapcorr(sp, &x));
   2238 		} while (y > t);
   2239 		if (t != y) {
   2240 			return x + 1;
   2241 		}
   2242 	}
   2243 	return x;
   2244 }
   2245 
   2246 
   2247 
   2248 time_t
   2249 posix2time(time_t t)
   2250 {
   2251 	time_t result;
   2252 
   2253 	rwlock_wrlock(&lcl_lock);
   2254 	tzset_unlocked();
   2255 	result = posix2time_z(lclptr, t);
   2256 	rwlock_unlock(&lcl_lock);
   2257 	return result;
   2258 }
   2259 
   2260 #endif /* defined STD_INSPIRED */
   2261