Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.7.2.1
      1 /*	$NetBSD: localtime.c,v 1.7.2.1 1996/09/17 23:01:55 jtc Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** June 5, 1996 by Arthur David Olson (arthur_david_olson (at) nih.gov).
      6 */
      7 
      8 #ifndef lint
      9 #ifndef NOID
     10 static char	elsieid[] = "@(#)localtime.c	7.58";
     11 #endif /* !defined NOID */
     12 #endif /* !defined lint */
     13 
     14 /*
     15 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
     16 ** POSIX-style TZ environment variable handling from Guy Harris
     17 ** (guy (at) auspex.com).
     18 */
     19 
     20 /*LINTLIBRARY*/
     21 
     22 #include "namespace.h"
     23 #include "private.h"
     24 #include "tzfile.h"
     25 #include "fcntl.h"
     26 
     27 #ifdef __weak_alias
     28 __weak_alias(offtime,_offtime);
     29 __weak_alias(posix2time,_posix2time);
     30 __weak_alias(time2posix,_time2posix);
     31 __weak_alias(timegm,_timegm);
     32 __weak_alias(timelocal,_timelocal);
     33 __weak_alias(timeoff,_timeoff);
     34 __weak_alias(tzset,_tzset);
     35 __weak_alias(tzsetwall,_tzsetwall);
     36 __weak_alias(daylight,_daylight);
     37 __weak_alias(timezone,_timezone);
     38 __weak_alias(tzname,_tzname);
     39 #endif
     40 
     41 /*
     42 ** SunOS 4.1.1 headers lack O_BINARY.
     43 */
     44 
     45 #ifdef O_BINARY
     46 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     47 #endif /* defined O_BINARY */
     48 #ifndef O_BINARY
     49 #define OPEN_MODE	O_RDONLY
     50 #endif /* !defined O_BINARY */
     51 
     52 #ifndef WILDABBR
     53 /*
     54 ** Someone might make incorrect use of a time zone abbreviation:
     55 **	1.	They might reference tzname[0] before calling tzset (explicitly
     56 **		or implicitly).
     57 **	2.	They might reference tzname[1] before calling tzset (explicitly
     58 **		or implicitly).
     59 **	3.	They might reference tzname[1] after setting to a time zone
     60 **		in which Daylight Saving Time is never observed.
     61 **	4.	They might reference tzname[0] after setting to a time zone
     62 **		in which Standard Time is never observed.
     63 **	5.	They might reference tm.TM_ZONE after calling offtime.
     64 ** What's best to do in the above cases is open to debate;
     65 ** for now, we just set things up so that in any of the five cases
     66 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
     67 ** string "tzname[0] used before set", and similarly for the other cases.
     68 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
     69 ** manual page of what this "time zone abbreviation" means (doing this so
     70 ** that tzname[0] has the "normal" length of three characters).
     71 */
     72 #define WILDABBR	"   "
     73 #endif /* !defined WILDABBR */
     74 
     75 static char		wildabbr[] = "WILDABBR";
     76 
     77 static const char	gmt[] = "GMT";
     78 
     79 struct ttinfo {				/* time type information */
     80 	long		tt_gmtoff;	/* GMT offset in seconds */
     81 	int		tt_isdst;	/* used to set tm_isdst */
     82 	int		tt_abbrind;	/* abbreviation list index */
     83 	int		tt_ttisstd;	/* TRUE if transition is std time */
     84 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
     85 };
     86 
     87 struct lsinfo {				/* leap second information */
     88 	time_t		ls_trans;	/* transition time */
     89 	long		ls_corr;	/* correction to apply */
     90 };
     91 
     92 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     93 
     94 #ifdef TZNAME_MAX
     95 #define MY_TZNAME_MAX	TZNAME_MAX
     96 #endif /* defined TZNAME_MAX */
     97 #ifndef TZNAME_MAX
     98 #define MY_TZNAME_MAX	255
     99 #endif /* !defined TZNAME_MAX */
    100 
    101 struct state {
    102 	int		leapcnt;
    103 	int		timecnt;
    104 	int		typecnt;
    105 	int		charcnt;
    106 	time_t		ats[TZ_MAX_TIMES];
    107 	unsigned char	types[TZ_MAX_TIMES];
    108 	struct ttinfo	ttis[TZ_MAX_TYPES];
    109 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    110 				(2 * (MY_TZNAME_MAX + 1)))];
    111 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    112 };
    113 
    114 struct rule {
    115 	int		r_type;		/* type of rule--see below */
    116 	int		r_day;		/* day number of rule */
    117 	int		r_week;		/* week number of rule */
    118 	int		r_mon;		/* month number of rule */
    119 	long		r_time;		/* transition time of rule */
    120 };
    121 
    122 #define JULIAN_DAY		0	/* Jn - Julian day */
    123 #define DAY_OF_YEAR		1	/* n - day of year */
    124 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    125 
    126 /*
    127 ** Prototypes for static functions.
    128 */
    129 
    130 static long		detzcode P((const char * codep));
    131 static const char *	getzname P((const char * strp));
    132 static const char *	getnum P((const char * strp, int * nump, int min,
    133 				int max));
    134 static const char *	getsecs P((const char * strp, long * secsp));
    135 static const char *	getoffset P((const char * strp, long * offsetp));
    136 static const char *	getrule P((const char * strp, struct rule * rulep));
    137 static void		gmtload P((struct state * sp));
    138 static void		gmtsub P((const time_t * timep, long offset,
    139 				struct tm * tmp));
    140 static void		localsub P((const time_t * timep, long offset,
    141 				struct tm * tmp));
    142 static int		increment_overflow P((int * number, int delta));
    143 static int		normalize_overflow P((int * tensptr, int * unitsptr,
    144 				int base));
    145 static void		settzname P((void));
    146 static time_t		time1 P((struct tm * tmp,
    147 				void(*funcp) P((const time_t *,
    148 				long, struct tm *)),
    149 				long offset));
    150 static time_t		time2 P((struct tm *tmp,
    151 				void(*funcp) P((const time_t *,
    152 				long, struct tm*)),
    153 				long offset, int * okayp));
    154 static void		timesub P((const time_t * timep, long offset,
    155 				const struct state * sp, struct tm * tmp));
    156 static int		tmcomp P((const struct tm * atmp,
    157 				const struct tm * btmp));
    158 static time_t		transtime P((time_t janfirst, int year,
    159 				const struct rule * rulep, long offset));
    160 static int		tzload P((const char * name, struct state * sp));
    161 static int		tzparse P((const char * name, struct state * sp,
    162 				int lastditch));
    163 
    164 #ifdef ALL_STATE
    165 static struct state *	lclptr;
    166 static struct state *	gmtptr;
    167 #endif /* defined ALL_STATE */
    168 
    169 #ifndef ALL_STATE
    170 static struct state	lclmem;
    171 static struct state	gmtmem;
    172 #define lclptr		(&lclmem)
    173 #define gmtptr		(&gmtmem)
    174 #endif /* State Farm */
    175 
    176 #ifndef TZ_STRLEN_MAX
    177 #define TZ_STRLEN_MAX 255
    178 #endif /* !defined TZ_STRLEN_MAX */
    179 
    180 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    181 static int		lcl_is_set;
    182 static int		gmt_is_set;
    183 
    184 char *			tzname[2] = {
    185 	wildabbr,
    186 	wildabbr
    187 };
    188 
    189 /*
    190 ** Section 4.12.3 of X3.159-1989 requires that
    191 **	Except for the strftime function, these functions [asctime,
    192 **	ctime, gmtime, localtime] return values in one of two static
    193 **	objects: a broken-down time structure and an array of char.
    194 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
    195 */
    196 
    197 static struct tm	tm;
    198 
    199 #ifdef USG_COMPAT
    200 time_t			timezone = 0;
    201 int			daylight = 0;
    202 #endif /* defined USG_COMPAT */
    203 
    204 #ifdef ALTZONE
    205 time_t			altzone = 0;
    206 #endif /* defined ALTZONE */
    207 
    208 static long
    209 detzcode(codep)
    210 const char * const	codep;
    211 {
    212 	register long	result;
    213 
    214 	/*
    215         ** The first character must be sign extended on systems with >32bit
    216         ** longs.  This was solved differently in the master tzcode sources
    217         ** (the fix first appeared in tzcode95c.tar.gz).  But I believe
    218 	** that this implementation is superior.
    219         */
    220 
    221 #ifdef __STDC__
    222 #define SIGN_EXTEND_CHAR(x)	((signed char) x)
    223 #else
    224 #define SIGN_EXTEND_CHAR(x)	((x & 0x80) ? ((~0 << 8) | x) : x)
    225 #endif
    226 
    227 	result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
    228 	       | (codep[1] & 0xff) << 16 \
    229 	       | (codep[2] & 0xff) << 8
    230 	       | (codep[3] & 0xff);
    231 	return result;
    232 }
    233 
    234 static void
    235 settzname P((void))
    236 {
    237 	register struct state * const	sp = lclptr;
    238 	register int			i;
    239 
    240 	tzname[0] = wildabbr;
    241 	tzname[1] = wildabbr;
    242 #ifdef USG_COMPAT
    243 	daylight = 0;
    244 	timezone = 0;
    245 #endif /* defined USG_COMPAT */
    246 #ifdef ALTZONE
    247 	altzone = 0;
    248 #endif /* defined ALTZONE */
    249 #ifdef ALL_STATE
    250 	if (sp == NULL) {
    251 		tzname[0] = tzname[1] = gmt;
    252 		return;
    253 	}
    254 #endif /* defined ALL_STATE */
    255 	for (i = 0; i < sp->typecnt; ++i) {
    256 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    257 
    258 		tzname[ttisp->tt_isdst] =
    259 			&sp->chars[ttisp->tt_abbrind];
    260 #ifdef USG_COMPAT
    261 		if (ttisp->tt_isdst)
    262 			daylight = 1;
    263 		if (i == 0 || !ttisp->tt_isdst)
    264 			timezone = -(ttisp->tt_gmtoff);
    265 #endif /* defined USG_COMPAT */
    266 #ifdef ALTZONE
    267 		if (i == 0 || ttisp->tt_isdst)
    268 			altzone = -(ttisp->tt_gmtoff);
    269 #endif /* defined ALTZONE */
    270 	}
    271 	/*
    272 	** And to get the latest zone names into tzname. . .
    273 	*/
    274 	for (i = 0; i < sp->timecnt; ++i) {
    275 		register const struct ttinfo * const	ttisp =
    276 							&sp->ttis[
    277 								sp->types[i]];
    278 
    279 		tzname[ttisp->tt_isdst] =
    280 			&sp->chars[ttisp->tt_abbrind];
    281 	}
    282 }
    283 
    284 static int
    285 tzload(name, sp)
    286 register const char *		name;
    287 register struct state * const	sp;
    288 {
    289 	register const char *	p;
    290 	register int		i;
    291 	register int		fid;
    292 
    293 	if (name == NULL && (name = TZDEFAULT) == NULL)
    294 		return -1;
    295 	{
    296 		register int	doaccess;
    297 		/*
    298 		** Section 4.9.1 of the C standard says that
    299 		** "FILENAME_MAX expands to an integral constant expression
    300 		** that is the sie needed for an array of char large enough
    301 		** to hold the longest file name string that the implementation
    302 		** guarantees can be opened."
    303 		*/
    304 		char		fullname[FILENAME_MAX + 1];
    305 
    306 		if (name[0] == ':')
    307 			++name;
    308 		doaccess = name[0] == '/';
    309 		if (!doaccess) {
    310 			if ((p = TZDIR) == NULL)
    311 				return -1;
    312 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    313 				return -1;
    314 			(void) strcpy(fullname, p);
    315 			(void) strcat(fullname, "/");
    316 			(void) strcat(fullname, name);
    317 			/*
    318 			** Set doaccess if '.' (as in "../") shows up in name.
    319 			*/
    320 			if (strchr(name, '.') != NULL)
    321 				doaccess = TRUE;
    322 			name = fullname;
    323 		}
    324 		if (doaccess && access(name, R_OK) != 0)
    325 			return -1;
    326 		if ((fid = open(name, OPEN_MODE)) == -1)
    327 			return -1;
    328 	}
    329 	{
    330 		struct tzhead *	tzhp;
    331 		char		buf[sizeof *sp + sizeof *tzhp];
    332 		int		ttisstdcnt;
    333 		int		ttisgmtcnt;
    334 
    335 		i = read(fid, buf, sizeof buf);
    336 		if (close(fid) != 0)
    337 			return -1;
    338 		p = buf;
    339 		p += sizeof tzhp->tzh_reserved;
    340 		ttisstdcnt = (int) detzcode(p);
    341 		p += 4;
    342 		ttisgmtcnt = (int) detzcode(p);
    343 		p += 4;
    344 		sp->leapcnt = (int) detzcode(p);
    345 		p += 4;
    346 		sp->timecnt = (int) detzcode(p);
    347 		p += 4;
    348 		sp->typecnt = (int) detzcode(p);
    349 		p += 4;
    350 		sp->charcnt = (int) detzcode(p);
    351 		p += 4;
    352 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    353 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    354 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    355 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    356 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    357 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    358 				return -1;
    359 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
    360 			sp->timecnt +			/* types */
    361 			sp->typecnt * (4 + 2) +		/* ttinfos */
    362 			sp->charcnt +			/* chars */
    363 			sp->leapcnt * (4 + 4) +		/* lsinfos */
    364 			ttisstdcnt +			/* ttisstds */
    365 			ttisgmtcnt)			/* ttisgmts */
    366 				return -1;
    367 		for (i = 0; i < sp->timecnt; ++i) {
    368 			sp->ats[i] = detzcode(p);
    369 			p += 4;
    370 		}
    371 		for (i = 0; i < sp->timecnt; ++i) {
    372 			sp->types[i] = (unsigned char) *p++;
    373 			if (sp->types[i] >= sp->typecnt)
    374 				return -1;
    375 		}
    376 		for (i = 0; i < sp->typecnt; ++i) {
    377 			register struct ttinfo *	ttisp;
    378 
    379 			ttisp = &sp->ttis[i];
    380 			ttisp->tt_gmtoff = detzcode(p);
    381 			p += 4;
    382 			ttisp->tt_isdst = (unsigned char) *p++;
    383 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    384 				return -1;
    385 			ttisp->tt_abbrind = (unsigned char) *p++;
    386 			if (ttisp->tt_abbrind < 0 ||
    387 				ttisp->tt_abbrind > sp->charcnt)
    388 					return -1;
    389 		}
    390 		for (i = 0; i < sp->charcnt; ++i)
    391 			sp->chars[i] = *p++;
    392 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    393 		for (i = 0; i < sp->leapcnt; ++i) {
    394 			register struct lsinfo *	lsisp;
    395 
    396 			lsisp = &sp->lsis[i];
    397 			lsisp->ls_trans = detzcode(p);
    398 			p += 4;
    399 			lsisp->ls_corr = detzcode(p);
    400 			p += 4;
    401 		}
    402 		for (i = 0; i < sp->typecnt; ++i) {
    403 			register struct ttinfo *	ttisp;
    404 
    405 			ttisp = &sp->ttis[i];
    406 			if (ttisstdcnt == 0)
    407 				ttisp->tt_ttisstd = FALSE;
    408 			else {
    409 				ttisp->tt_ttisstd = *p++;
    410 				if (ttisp->tt_ttisstd != TRUE &&
    411 					ttisp->tt_ttisstd != FALSE)
    412 						return -1;
    413 			}
    414 		}
    415 		for (i = 0; i < sp->typecnt; ++i) {
    416 			register struct ttinfo *	ttisp;
    417 
    418 			ttisp = &sp->ttis[i];
    419 			if (ttisgmtcnt == 0)
    420 				ttisp->tt_ttisgmt = FALSE;
    421 			else {
    422 				ttisp->tt_ttisgmt = *p++;
    423 				if (ttisp->tt_ttisgmt != TRUE &&
    424 					ttisp->tt_ttisgmt != FALSE)
    425 						return -1;
    426 			}
    427 		}
    428 	}
    429 	return 0;
    430 }
    431 
    432 static const int	mon_lengths[2][MONSPERYEAR] = {
    433 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    434 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    435 };
    436 
    437 static const int	year_lengths[2] = {
    438 	DAYSPERNYEAR, DAYSPERLYEAR
    439 };
    440 
    441 /*
    442 ** Given a pointer into a time zone string, scan until a character that is not
    443 ** a valid character in a zone name is found.  Return a pointer to that
    444 ** character.
    445 */
    446 
    447 static const char *
    448 getzname(strp)
    449 register const char *	strp;
    450 {
    451 	register char	c;
    452 
    453 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    454 		c != '+')
    455 			++strp;
    456 	return strp;
    457 }
    458 
    459 /*
    460 ** Given a pointer into a time zone string, extract a number from that string.
    461 ** Check that the number is within a specified range; if it is not, return
    462 ** NULL.
    463 ** Otherwise, return a pointer to the first character not part of the number.
    464 */
    465 
    466 static const char *
    467 getnum(strp, nump, min, max)
    468 register const char *	strp;
    469 int * const		nump;
    470 const int		min;
    471 const int		max;
    472 {
    473 	register char	c;
    474 	register int	num;
    475 
    476 	if (strp == NULL || !is_digit(c = *strp))
    477 		return NULL;
    478 	num = 0;
    479 	do {
    480 		num = num * 10 + (c - '0');
    481 		if (num > max)
    482 			return NULL;	/* illegal value */
    483 		c = *++strp;
    484 	} while (is_digit(c));
    485 	if (num < min)
    486 		return NULL;		/* illegal value */
    487 	*nump = num;
    488 	return strp;
    489 }
    490 
    491 /*
    492 ** Given a pointer into a time zone string, extract a number of seconds,
    493 ** in hh[:mm[:ss]] form, from the string.
    494 ** If any error occurs, return NULL.
    495 ** Otherwise, return a pointer to the first character not part of the number
    496 ** of seconds.
    497 */
    498 
    499 static const char *
    500 getsecs(strp, secsp)
    501 register const char *	strp;
    502 long * const		secsp;
    503 {
    504 	int	num;
    505 
    506 	/*
    507 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    508 	** "M10.4.6/26", which does not conform to Posix,
    509 	** but which specifies the equivalent of
    510 	** ``02:00 on the first Sunday on or after 23 Oct''.
    511 	*/
    512 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    513 	if (strp == NULL)
    514 		return NULL;
    515 	*secsp = num * (long) SECSPERHOUR;
    516 	if (*strp == ':') {
    517 		++strp;
    518 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    519 		if (strp == NULL)
    520 			return NULL;
    521 		*secsp += num * SECSPERMIN;
    522 		if (*strp == ':') {
    523 			++strp;
    524 			/* `SECSPERMIN' allows for leap seconds.  */
    525 			strp = getnum(strp, &num, 0, SECSPERMIN);
    526 			if (strp == NULL)
    527 				return NULL;
    528 			*secsp += num;
    529 		}
    530 	}
    531 	return strp;
    532 }
    533 
    534 /*
    535 ** Given a pointer into a time zone string, extract an offset, in
    536 ** [+-]hh[:mm[:ss]] form, from the string.
    537 ** If any error occurs, return NULL.
    538 ** Otherwise, return a pointer to the first character not part of the time.
    539 */
    540 
    541 static const char *
    542 getoffset(strp, offsetp)
    543 register const char *	strp;
    544 long * const		offsetp;
    545 {
    546 	register int	neg = 0;
    547 
    548 	if (*strp == '-') {
    549 		neg = 1;
    550 		++strp;
    551 	} else if (*strp == '+')
    552 		++strp;
    553 	strp = getsecs(strp, offsetp);
    554 	if (strp == NULL)
    555 		return NULL;		/* illegal time */
    556 	if (neg)
    557 		*offsetp = -*offsetp;
    558 	return strp;
    559 }
    560 
    561 /*
    562 ** Given a pointer into a time zone string, extract a rule in the form
    563 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
    564 ** If a valid rule is not found, return NULL.
    565 ** Otherwise, return a pointer to the first character not part of the rule.
    566 */
    567 
    568 static const char *
    569 getrule(strp, rulep)
    570 const char *			strp;
    571 register struct rule * const	rulep;
    572 {
    573 	if (*strp == 'J') {
    574 		/*
    575 		** Julian day.
    576 		*/
    577 		rulep->r_type = JULIAN_DAY;
    578 		++strp;
    579 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    580 	} else if (*strp == 'M') {
    581 		/*
    582 		** Month, week, day.
    583 		*/
    584 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    585 		++strp;
    586 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    587 		if (strp == NULL)
    588 			return NULL;
    589 		if (*strp++ != '.')
    590 			return NULL;
    591 		strp = getnum(strp, &rulep->r_week, 1, 5);
    592 		if (strp == NULL)
    593 			return NULL;
    594 		if (*strp++ != '.')
    595 			return NULL;
    596 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    597 	} else if (is_digit(*strp)) {
    598 		/*
    599 		** Day of year.
    600 		*/
    601 		rulep->r_type = DAY_OF_YEAR;
    602 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    603 	} else	return NULL;		/* invalid format */
    604 	if (strp == NULL)
    605 		return NULL;
    606 	if (*strp == '/') {
    607 		/*
    608 		** Time specified.
    609 		*/
    610 		++strp;
    611 		strp = getsecs(strp, &rulep->r_time);
    612 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    613 	return strp;
    614 }
    615 
    616 /*
    617 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
    618 ** year, a rule, and the offset from GMT at the time that rule takes effect,
    619 ** calculate the Epoch-relative time that rule takes effect.
    620 */
    621 
    622 static time_t
    623 transtime(janfirst, year, rulep, offset)
    624 const time_t				janfirst;
    625 const int				year;
    626 register const struct rule * const	rulep;
    627 const long				offset;
    628 {
    629 	register int	leapyear;
    630 	register time_t	value;
    631 	register int	i;
    632 	int		d, m1, yy0, yy1, yy2, dow;
    633 
    634 	INITIALIZE(value);
    635 	leapyear = isleap(year);
    636 	switch (rulep->r_type) {
    637 
    638 	case JULIAN_DAY:
    639 		/*
    640 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    641 		** years.
    642 		** In non-leap years, or if the day number is 59 or less, just
    643 		** add SECSPERDAY times the day number-1 to the time of
    644 		** January 1, midnight, to get the day.
    645 		*/
    646 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    647 		if (leapyear && rulep->r_day >= 60)
    648 			value += SECSPERDAY;
    649 		break;
    650 
    651 	case DAY_OF_YEAR:
    652 		/*
    653 		** n - day of year.
    654 		** Just add SECSPERDAY times the day number to the time of
    655 		** January 1, midnight, to get the day.
    656 		*/
    657 		value = janfirst + rulep->r_day * SECSPERDAY;
    658 		break;
    659 
    660 	case MONTH_NTH_DAY_OF_WEEK:
    661 		/*
    662 		** Mm.n.d - nth "dth day" of month m.
    663 		*/
    664 		value = janfirst;
    665 		for (i = 0; i < rulep->r_mon - 1; ++i)
    666 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    667 
    668 		/*
    669 		** Use Zeller's Congruence to get day-of-week of first day of
    670 		** month.
    671 		*/
    672 		m1 = (rulep->r_mon + 9) % 12 + 1;
    673 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    674 		yy1 = yy0 / 100;
    675 		yy2 = yy0 % 100;
    676 		dow = ((26 * m1 - 2) / 10 +
    677 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    678 		if (dow < 0)
    679 			dow += DAYSPERWEEK;
    680 
    681 		/*
    682 		** "dow" is the day-of-week of the first day of the month.  Get
    683 		** the day-of-month (zero-origin) of the first "dow" day of the
    684 		** month.
    685 		*/
    686 		d = rulep->r_day - dow;
    687 		if (d < 0)
    688 			d += DAYSPERWEEK;
    689 		for (i = 1; i < rulep->r_week; ++i) {
    690 			if (d + DAYSPERWEEK >=
    691 				mon_lengths[leapyear][rulep->r_mon - 1])
    692 					break;
    693 			d += DAYSPERWEEK;
    694 		}
    695 
    696 		/*
    697 		** "d" is the day-of-month (zero-origin) of the day we want.
    698 		*/
    699 		value += d * SECSPERDAY;
    700 		break;
    701 	}
    702 
    703 	/*
    704 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
    705 	** question.  To get the Epoch-relative time of the specified local
    706 	** time on that day, add the transition time and the current offset
    707 	** from GMT.
    708 	*/
    709 	return value + rulep->r_time + offset;
    710 }
    711 
    712 /*
    713 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    714 ** appropriate.
    715 */
    716 
    717 static int
    718 tzparse(name, sp, lastditch)
    719 const char *			name;
    720 register struct state * const	sp;
    721 const int			lastditch;
    722 {
    723 	const char *			stdname;
    724 	const char *			dstname;
    725 	size_t				stdlen;
    726 	size_t				dstlen;
    727 	long				stdoffset;
    728 	long				dstoffset;
    729 	register time_t *		atp;
    730 	register unsigned char *	typep;
    731 	register char *			cp;
    732 	register int			load_result;
    733 
    734 	INITIALIZE(dstname);
    735 	stdname = name;
    736 	if (lastditch) {
    737 		stdlen = strlen(name);	/* length of standard zone name */
    738 		name += stdlen;
    739 		if (stdlen >= sizeof sp->chars)
    740 			stdlen = (sizeof sp->chars) - 1;
    741 	} else {
    742 		name = getzname(name);
    743 		stdlen = name - stdname;
    744 		if (stdlen < 3)
    745 			return -1;
    746 	}
    747 	if (*name == '\0')
    748 		return -1;	/* was "stdoffset = 0;" */
    749 	else {
    750 		name = getoffset(name, &stdoffset);
    751 		if (name == NULL)
    752 			return -1;
    753 	}
    754 	load_result = tzload(TZDEFRULES, sp);
    755 	if (load_result != 0)
    756 		sp->leapcnt = 0;		/* so, we're off a little */
    757 	if (*name != '\0') {
    758 		dstname = name;
    759 		name = getzname(name);
    760 		dstlen = name - dstname;	/* length of DST zone name */
    761 		if (dstlen < 3)
    762 			return -1;
    763 		if (*name != '\0' && *name != ',' && *name != ';') {
    764 			name = getoffset(name, &dstoffset);
    765 			if (name == NULL)
    766 				return -1;
    767 		} else	dstoffset = stdoffset - SECSPERHOUR;
    768 		if (*name == ',' || *name == ';') {
    769 			struct rule	start;
    770 			struct rule	end;
    771 			register int	year;
    772 			register time_t	janfirst;
    773 			time_t		starttime;
    774 			time_t		endtime;
    775 
    776 			++name;
    777 			if ((name = getrule(name, &start)) == NULL)
    778 				return -1;
    779 			if (*name++ != ',')
    780 				return -1;
    781 			if ((name = getrule(name, &end)) == NULL)
    782 				return -1;
    783 			if (*name != '\0')
    784 				return -1;
    785 			sp->typecnt = 2;	/* standard time and DST */
    786 			/*
    787 			** Two transitions per year, from EPOCH_YEAR to 2037.
    788 			*/
    789 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
    790 			if (sp->timecnt > TZ_MAX_TIMES)
    791 				return -1;
    792 			sp->ttis[0].tt_gmtoff = -dstoffset;
    793 			sp->ttis[0].tt_isdst = 1;
    794 			sp->ttis[0].tt_abbrind = stdlen + 1;
    795 			sp->ttis[1].tt_gmtoff = -stdoffset;
    796 			sp->ttis[1].tt_isdst = 0;
    797 			sp->ttis[1].tt_abbrind = 0;
    798 			atp = sp->ats;
    799 			typep = sp->types;
    800 			janfirst = 0;
    801 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
    802 				starttime = transtime(janfirst, year, &start,
    803 					stdoffset);
    804 				endtime = transtime(janfirst, year, &end,
    805 					dstoffset);
    806 				if (starttime > endtime) {
    807 					*atp++ = endtime;
    808 					*typep++ = 1;	/* DST ends */
    809 					*atp++ = starttime;
    810 					*typep++ = 0;	/* DST begins */
    811 				} else {
    812 					*atp++ = starttime;
    813 					*typep++ = 0;	/* DST begins */
    814 					*atp++ = endtime;
    815 					*typep++ = 1;	/* DST ends */
    816 				}
    817 				janfirst += year_lengths[isleap(year)] *
    818 					SECSPERDAY;
    819 			}
    820 		} else {
    821 			register long	theirstdoffset;
    822 			register long	theirdstoffset;
    823 			register long	theiroffset;
    824 			register int	isdst;
    825 			register int	i;
    826 			register int	j;
    827 
    828 			if (*name != '\0')
    829 				return -1;
    830 			if (load_result != 0)
    831 				return -1;
    832 			/*
    833 			** Initial values of theirstdoffset and theirdstoffset.
    834 			*/
    835 			theirstdoffset = 0;
    836 			for (i = 0; i < sp->timecnt; ++i) {
    837 				j = sp->types[i];
    838 				if (!sp->ttis[j].tt_isdst) {
    839 					theirstdoffset =
    840 						-sp->ttis[j].tt_gmtoff;
    841 					break;
    842 				}
    843 			}
    844 			theirdstoffset = 0;
    845 			for (i = 0; i < sp->timecnt; ++i) {
    846 				j = sp->types[i];
    847 				if (sp->ttis[j].tt_isdst) {
    848 					theirdstoffset =
    849 						-sp->ttis[j].tt_gmtoff;
    850 					break;
    851 				}
    852 			}
    853 			/*
    854 			** Initially we're assumed to be in standard time.
    855 			*/
    856 			isdst = FALSE;
    857 			theiroffset = theirstdoffset;
    858 			/*
    859 			** Now juggle transition times and types
    860 			** tracking offsets as you do.
    861 			*/
    862 			for (i = 0; i < sp->timecnt; ++i) {
    863 				j = sp->types[i];
    864 				sp->types[i] = sp->ttis[j].tt_isdst;
    865 				if (sp->ttis[j].tt_ttisgmt) {
    866 					/* No adjustment to transition time */
    867 				} else {
    868 					/*
    869 					** If summer time is in effect, and the
    870 					** transition time was not specified as
    871 					** standard time, add the summer time
    872 					** offset to the transition time;
    873 					** otherwise, add the standard time
    874 					** offset to the transition time.
    875 					*/
    876 					/*
    877 					** Transitions from DST to DDST
    878 					** will effectively disappear since
    879 					** POSIX provides for only one DST
    880 					** offset.
    881 					*/
    882 					if (isdst && !sp->ttis[j].tt_ttisstd) {
    883 						sp->ats[i] += dstoffset -
    884 							theirdstoffset;
    885 					} else {
    886 						sp->ats[i] += stdoffset -
    887 							theirstdoffset;
    888 					}
    889 				}
    890 				theiroffset = -sp->ttis[j].tt_gmtoff;
    891 				if (sp->ttis[j].tt_isdst)
    892 					theirdstoffset = theiroffset;
    893 				else	theirstdoffset = theiroffset;
    894 			}
    895 			/*
    896 			** Finally, fill in ttis.
    897 			** ttisstd and ttisgmt need not be handled.
    898 			*/
    899 			sp->ttis[0].tt_gmtoff = -stdoffset;
    900 			sp->ttis[0].tt_isdst = FALSE;
    901 			sp->ttis[0].tt_abbrind = 0;
    902 			sp->ttis[1].tt_gmtoff = -dstoffset;
    903 			sp->ttis[1].tt_isdst = TRUE;
    904 			sp->ttis[1].tt_abbrind = stdlen + 1;
    905 			sp->typecnt = 2;
    906 		}
    907 	} else {
    908 		dstlen = 0;
    909 		sp->typecnt = 1;		/* only standard time */
    910 		sp->timecnt = 0;
    911 		sp->ttis[0].tt_gmtoff = -stdoffset;
    912 		sp->ttis[0].tt_isdst = 0;
    913 		sp->ttis[0].tt_abbrind = 0;
    914 	}
    915 	sp->charcnt = stdlen + 1;
    916 	if (dstlen != 0)
    917 		sp->charcnt += dstlen + 1;
    918 	if (sp->charcnt > sizeof sp->chars)
    919 		return -1;
    920 	cp = sp->chars;
    921 	(void) strncpy(cp, stdname, stdlen);
    922 	cp += stdlen;
    923 	*cp++ = '\0';
    924 	if (dstlen != 0) {
    925 		(void) strncpy(cp, dstname, dstlen);
    926 		*(cp + dstlen) = '\0';
    927 	}
    928 	return 0;
    929 }
    930 
    931 static void
    932 gmtload(sp)
    933 struct state * const	sp;
    934 {
    935 	if (tzload(gmt, sp) != 0)
    936 		(void) tzparse(gmt, sp, TRUE);
    937 }
    938 
    939 #ifndef STD_INSPIRED
    940 /*
    941 ** A non-static declaration of tzsetwall in a system header file
    942 ** may cause a warning about this upcoming static declaration...
    943 */
    944 static
    945 #endif /* !defined STD_INSPIRED */
    946 void
    947 tzsetwall P((void))
    948 {
    949 	if (lcl_is_set < 0)
    950 		return;
    951 	lcl_is_set = -1;
    952 
    953 #ifdef ALL_STATE
    954 	if (lclptr == NULL) {
    955 		lclptr = (struct state *) malloc(sizeof *lclptr);
    956 		if (lclptr == NULL) {
    957 			settzname();	/* all we can do */
    958 			return;
    959 		}
    960 	}
    961 #endif /* defined ALL_STATE */
    962 	if (tzload((char *) NULL, lclptr) != 0)
    963 		gmtload(lclptr);
    964 	settzname();
    965 }
    966 
    967 void
    968 tzset P((void))
    969 {
    970 	register const char *	name;
    971 
    972 	name = getenv("TZ");
    973 	if (name == NULL) {
    974 		tzsetwall();
    975 		return;
    976 	}
    977 
    978 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
    979 		return;
    980 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
    981 	if (lcl_is_set)
    982 		(void) strcpy(lcl_TZname, name);
    983 
    984 #ifdef ALL_STATE
    985 	if (lclptr == NULL) {
    986 		lclptr = (struct state *) malloc(sizeof *lclptr);
    987 		if (lclptr == NULL) {
    988 			settzname();	/* all we can do */
    989 			return;
    990 		}
    991 	}
    992 #endif /* defined ALL_STATE */
    993 	if (*name == '\0') {
    994 		/*
    995 		** User wants it fast rather than right.
    996 		*/
    997 		lclptr->leapcnt = 0;		/* so, we're off a little */
    998 		lclptr->timecnt = 0;
    999 		lclptr->ttis[0].tt_gmtoff = 0;
   1000 		lclptr->ttis[0].tt_abbrind = 0;
   1001 		(void) strcpy(lclptr->chars, gmt);
   1002 	} else if (tzload(name, lclptr) != 0)
   1003 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1004 			(void) gmtload(lclptr);
   1005 	settzname();
   1006 }
   1007 
   1008 /*
   1009 ** The easy way to behave "as if no library function calls" localtime
   1010 ** is to not call it--so we drop its guts into "localsub", which can be
   1011 ** freely called.  (And no, the PANS doesn't require the above behavior--
   1012 ** but it *is* desirable.)
   1013 **
   1014 ** The unused offset argument is for the benefit of mktime variants.
   1015 */
   1016 
   1017 /*ARGSUSED*/
   1018 static void
   1019 localsub(timep, offset, tmp)
   1020 const time_t * const	timep;
   1021 const long		offset;
   1022 struct tm * const	tmp;
   1023 {
   1024 	register struct state *		sp;
   1025 	register const struct ttinfo *	ttisp;
   1026 	register int			i;
   1027 	const time_t			t = *timep;
   1028 
   1029 	sp = lclptr;
   1030 #ifdef ALL_STATE
   1031 	if (sp == NULL) {
   1032 		gmtsub(timep, offset, tmp);
   1033 		return;
   1034 	}
   1035 #endif /* defined ALL_STATE */
   1036 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1037 		i = 0;
   1038 		while (sp->ttis[i].tt_isdst)
   1039 			if (++i >= sp->typecnt) {
   1040 				i = 0;
   1041 				break;
   1042 			}
   1043 	} else {
   1044 		for (i = 1; i < sp->timecnt; ++i)
   1045 			if (t < sp->ats[i])
   1046 				break;
   1047 		i = sp->types[i - 1];
   1048 	}
   1049 	ttisp = &sp->ttis[i];
   1050 	/*
   1051 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1052 	** you'd replace the statement below with
   1053 	**	t += ttisp->tt_gmtoff;
   1054 	**	timesub(&t, 0L, sp, tmp);
   1055 	*/
   1056 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1057 	tmp->tm_isdst = ttisp->tt_isdst;
   1058 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1059 #ifdef TM_ZONE
   1060 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1061 #endif /* defined TM_ZONE */
   1062 }
   1063 
   1064 struct tm *
   1065 localtime(timep)
   1066 const time_t * const	timep;
   1067 {
   1068 	tzset();
   1069 	localsub(timep, 0L, &tm);
   1070 	return &tm;
   1071 }
   1072 
   1073 /*
   1074 ** gmtsub is to gmtime as localsub is to localtime.
   1075 */
   1076 
   1077 static void
   1078 gmtsub(timep, offset, tmp)
   1079 const time_t * const	timep;
   1080 const long		offset;
   1081 struct tm * const	tmp;
   1082 {
   1083 	if (!gmt_is_set) {
   1084 		gmt_is_set = TRUE;
   1085 #ifdef ALL_STATE
   1086 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1087 		if (gmtptr != NULL)
   1088 #endif /* defined ALL_STATE */
   1089 			gmtload(gmtptr);
   1090 	}
   1091 	timesub(timep, offset, gmtptr, tmp);
   1092 #ifdef TM_ZONE
   1093 	/*
   1094 	** Could get fancy here and deliver something such as
   1095 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
   1096 	** but this is no time for a treasure hunt.
   1097 	*/
   1098 	if (offset != 0)
   1099 		tmp->TM_ZONE = wildabbr;
   1100 	else {
   1101 #ifdef ALL_STATE
   1102 		if (gmtptr == NULL)
   1103 			tmp->TM_ZONE = gmt;
   1104 		else	tmp->TM_ZONE = gmtptr->chars;
   1105 #endif /* defined ALL_STATE */
   1106 #ifndef ALL_STATE
   1107 		tmp->TM_ZONE = gmtptr->chars;
   1108 #endif /* State Farm */
   1109 	}
   1110 #endif /* defined TM_ZONE */
   1111 }
   1112 
   1113 struct tm *
   1114 gmtime(timep)
   1115 const time_t * const	timep;
   1116 {
   1117 	gmtsub(timep, 0L, &tm);
   1118 	return &tm;
   1119 }
   1120 
   1121 #ifdef STD_INSPIRED
   1122 
   1123 struct tm *
   1124 offtime(timep, offset)
   1125 const time_t * const	timep;
   1126 const long		offset;
   1127 {
   1128 	gmtsub(timep, offset, &tm);
   1129 	return &tm;
   1130 }
   1131 
   1132 #endif /* defined STD_INSPIRED */
   1133 
   1134 static void
   1135 timesub(timep, offset, sp, tmp)
   1136 const time_t * const			timep;
   1137 const long				offset;
   1138 register const struct state * const	sp;
   1139 register struct tm * const		tmp;
   1140 {
   1141 	register const struct lsinfo *	lp;
   1142 	register long			days;
   1143 	register long			rem;
   1144 	register int			y;
   1145 	register int			yleap;
   1146 	register const int *		ip;
   1147 	register long			corr;
   1148 	register int			hit;
   1149 	register int			i;
   1150 
   1151 	corr = 0;
   1152 	hit = 0;
   1153 #ifdef ALL_STATE
   1154 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1155 #endif /* defined ALL_STATE */
   1156 #ifndef ALL_STATE
   1157 	i = sp->leapcnt;
   1158 #endif /* State Farm */
   1159 	while (--i >= 0) {
   1160 		lp = &sp->lsis[i];
   1161 		if (*timep >= lp->ls_trans) {
   1162 			if (*timep == lp->ls_trans) {
   1163 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1164 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1165 				if (hit)
   1166 					while (i > 0 &&
   1167 						sp->lsis[i].ls_trans ==
   1168 						sp->lsis[i - 1].ls_trans + 1 &&
   1169 						sp->lsis[i].ls_corr ==
   1170 						sp->lsis[i - 1].ls_corr + 1) {
   1171 							++hit;
   1172 							--i;
   1173 					}
   1174 			}
   1175 			corr = lp->ls_corr;
   1176 			break;
   1177 		}
   1178 	}
   1179 	days = *timep / SECSPERDAY;
   1180 	rem = *timep % SECSPERDAY;
   1181 #ifdef mc68k
   1182 	if (*timep == 0x80000000) {
   1183 		/*
   1184 		** A 3B1 muffs the division on the most negative number.
   1185 		*/
   1186 		days = -24855;
   1187 		rem = -11648;
   1188 	}
   1189 #endif /* defined mc68k */
   1190 	rem += (offset - corr);
   1191 	while (rem < 0) {
   1192 		rem += SECSPERDAY;
   1193 		--days;
   1194 	}
   1195 	while (rem >= SECSPERDAY) {
   1196 		rem -= SECSPERDAY;
   1197 		++days;
   1198 	}
   1199 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1200 	rem = rem % SECSPERHOUR;
   1201 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1202 	/*
   1203 	** A positive leap second requires a special
   1204 	** representation.  This uses "... ??:59:60" et seq.
   1205 	*/
   1206 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1207 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
   1208 	if (tmp->tm_wday < 0)
   1209 		tmp->tm_wday += DAYSPERWEEK;
   1210 	y = EPOCH_YEAR;
   1211 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
   1212 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
   1213 		register int	newy;
   1214 
   1215 		newy = y + days / DAYSPERNYEAR;
   1216 		if (days < 0)
   1217 			--newy;
   1218 		days -= (newy - y) * DAYSPERNYEAR +
   1219 			LEAPS_THRU_END_OF(newy - 1) -
   1220 			LEAPS_THRU_END_OF(y - 1);
   1221 		y = newy;
   1222 	}
   1223 	tmp->tm_year = y - TM_YEAR_BASE;
   1224 	tmp->tm_yday = (int) days;
   1225 	ip = mon_lengths[yleap];
   1226 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1227 		days = days - (long) ip[tmp->tm_mon];
   1228 	tmp->tm_mday = (int) (days + 1);
   1229 	tmp->tm_isdst = 0;
   1230 #ifdef TM_GMTOFF
   1231 	tmp->TM_GMTOFF = offset;
   1232 #endif /* defined TM_GMTOFF */
   1233 }
   1234 
   1235 char *
   1236 ctime(timep)
   1237 const time_t * const	timep;
   1238 {
   1239 /*
   1240 ** Section 4.12.3.2 of X3.159-1989 requires that
   1241 **	The ctime funciton converts the calendar time pointed to by timer
   1242 **	to local time in the form of a string.  It is equivalent to
   1243 **		asctime(localtime(timer))
   1244 */
   1245 	return asctime(localtime(timep));
   1246 }
   1247 
   1248 /*
   1249 ** Adapted from code provided by Robert Elz, who writes:
   1250 **	The "best" way to do mktime I think is based on an idea of Bob
   1251 **	Kridle's (so its said...) from a long time ago.
   1252 **	[kridle (at) xinet.com as of 1996-01-16.]
   1253 **	It does a binary search of the time_t space.  Since time_t's are
   1254 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1255 **	would still be very reasonable).
   1256 */
   1257 
   1258 #ifndef WRONG
   1259 #define WRONG	(-1)
   1260 #endif /* !defined WRONG */
   1261 
   1262 /*
   1263 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
   1264 */
   1265 
   1266 static int
   1267 increment_overflow(number, delta)
   1268 int *	number;
   1269 int	delta;
   1270 {
   1271 	int	number0;
   1272 
   1273 	number0 = *number;
   1274 	*number += delta;
   1275 	return (*number < number0) != (delta < 0);
   1276 }
   1277 
   1278 static int
   1279 normalize_overflow(tensptr, unitsptr, base)
   1280 int * const	tensptr;
   1281 int * const	unitsptr;
   1282 const int	base;
   1283 {
   1284 	register int	tensdelta;
   1285 
   1286 	tensdelta = (*unitsptr >= 0) ?
   1287 		(*unitsptr / base) :
   1288 		(-1 - (-1 - *unitsptr) / base);
   1289 	*unitsptr -= tensdelta * base;
   1290 	return increment_overflow(tensptr, tensdelta);
   1291 }
   1292 
   1293 static int
   1294 tmcomp(atmp, btmp)
   1295 register const struct tm * const atmp;
   1296 register const struct tm * const btmp;
   1297 {
   1298 	register int	result;
   1299 
   1300 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1301 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1302 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1303 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1304 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1305 			result = atmp->tm_sec - btmp->tm_sec;
   1306 	return result;
   1307 }
   1308 
   1309 static time_t
   1310 time2(tmp, funcp, offset, okayp)
   1311 struct tm * const	tmp;
   1312 void (* const		funcp) P((const time_t*, long, struct tm*));
   1313 const long		offset;
   1314 int * const		okayp;
   1315 {
   1316 	register const struct state *	sp;
   1317 	register int			dir;
   1318 	register int			bits;
   1319 	register int			i, j ;
   1320 	register int			saved_seconds;
   1321 	time_t				newt;
   1322 	time_t				t;
   1323 	struct tm			yourtm, mytm;
   1324 
   1325 	*okayp = FALSE;
   1326 	yourtm = *tmp;
   1327 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1328 		return WRONG;
   1329 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1330 		return WRONG;
   1331 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
   1332 		return WRONG;
   1333 	/*
   1334 	** Turn yourtm.tm_year into an actual year number for now.
   1335 	** It is converted back to an offset from TM_YEAR_BASE later.
   1336 	*/
   1337 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
   1338 		return WRONG;
   1339 	while (yourtm.tm_mday <= 0) {
   1340 		if (increment_overflow(&yourtm.tm_year, -1))
   1341 			return WRONG;
   1342 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1343 		yourtm.tm_mday += year_lengths[isleap(i)];
   1344 	}
   1345 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1346 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
   1347 		yourtm.tm_mday -= year_lengths[isleap(i)];
   1348 		if (increment_overflow(&yourtm.tm_year, 1))
   1349 			return WRONG;
   1350 	}
   1351 	for ( ; ; ) {
   1352 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
   1353 		if (yourtm.tm_mday <= i)
   1354 			break;
   1355 		yourtm.tm_mday -= i;
   1356 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1357 			yourtm.tm_mon = 0;
   1358 			if (increment_overflow(&yourtm.tm_year, 1))
   1359 				return WRONG;
   1360 		}
   1361 	}
   1362 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
   1363 		return WRONG;
   1364 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
   1365 		/*
   1366 		** We can't set tm_sec to 0, because that might push the
   1367 		** time below the minimum representable time.
   1368 		** Set tm_sec to 59 instead.
   1369 		** This assumes that the minimum representable time is
   1370 		** not in the same minute that a leap second was deleted from,
   1371 		** which is a safer assumption than using 58 would be.
   1372 		*/
   1373 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1374 			return WRONG;
   1375 		saved_seconds = yourtm.tm_sec;
   1376 		yourtm.tm_sec = SECSPERMIN - 1;
   1377 	} else {
   1378 		saved_seconds = yourtm.tm_sec;
   1379 		yourtm.tm_sec = 0;
   1380 	}
   1381 	/*
   1382 	** Divide the search space in half
   1383 	** (this works whether time_t is signed or unsigned).
   1384 	*/
   1385 	bits = TYPE_BIT(time_t) - 1;
   1386 	/*
   1387 	** If time_t is signed, then 0 is just above the median,
   1388 	** assuming two's complement arithmetic.
   1389 	** If time_t is unsigned, then (1 << bits) is just above the median.
   1390 	*/
   1391 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
   1392 	for ( ; ; ) {
   1393 		(*funcp)(&t, offset, &mytm);
   1394 		dir = tmcomp(&mytm, &yourtm);
   1395 		if (dir != 0) {
   1396 			if (bits-- < 0)
   1397 				return WRONG;
   1398 			if (bits < 0)
   1399 				--t; /* may be needed if new t is minimal */
   1400 			else if (dir > 0)
   1401 				t -= ((time_t) 1) << bits;
   1402 			else	t += ((time_t) 1) << bits;
   1403 			continue;
   1404 		}
   1405 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1406 			break;
   1407 		/*
   1408 		** Right time, wrong type.
   1409 		** Hunt for right time, right type.
   1410 		** It's okay to guess wrong since the guess
   1411 		** gets checked.
   1412 		*/
   1413 		/*
   1414 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1415 		*/
   1416 		sp = (const struct state *)
   1417 			(((void *) funcp == (void *) localsub) ?
   1418 			lclptr : gmtptr);
   1419 #ifdef ALL_STATE
   1420 		if (sp == NULL)
   1421 			return WRONG;
   1422 #endif /* defined ALL_STATE */
   1423 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1424 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1425 				continue;
   1426 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1427 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1428 					continue;
   1429 				newt = t + sp->ttis[j].tt_gmtoff -
   1430 					sp->ttis[i].tt_gmtoff;
   1431 				(*funcp)(&newt, offset, &mytm);
   1432 				if (tmcomp(&mytm, &yourtm) != 0)
   1433 					continue;
   1434 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1435 					continue;
   1436 				/*
   1437 				** We have a match.
   1438 				*/
   1439 				t = newt;
   1440 				goto label;
   1441 			}
   1442 		}
   1443 		return WRONG;
   1444 	}
   1445 label:
   1446 	newt = t + saved_seconds;
   1447 	if ((newt < t) != (saved_seconds < 0))
   1448 		return WRONG;
   1449 	t = newt;
   1450 	(*funcp)(&t, offset, tmp);
   1451 	*okayp = TRUE;
   1452 	return t;
   1453 }
   1454 
   1455 static time_t
   1456 time1(tmp, funcp, offset)
   1457 struct tm * const	tmp;
   1458 void (* const		funcp) P((const time_t *, long, struct tm *));
   1459 const long		offset;
   1460 {
   1461 	register time_t			t;
   1462 	register const struct state *	sp;
   1463 	register int			samei, otheri;
   1464 	int				okay;
   1465 
   1466 	if (tmp->tm_isdst > 1)
   1467 		tmp->tm_isdst = 1;
   1468 	t = time2(tmp, funcp, offset, &okay);
   1469 #ifdef PCTS
   1470 	/*
   1471 	** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
   1472 	*/
   1473 	if (okay)
   1474 		return t;
   1475 	if (tmp->tm_isdst < 0)
   1476 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1477 #endif /* defined PCTS */
   1478 #ifndef PCTS
   1479 	if (okay || tmp->tm_isdst < 0)
   1480 		return t;
   1481 #endif /* !defined PCTS */
   1482 	/*
   1483 	** We're supposed to assume that somebody took a time of one type
   1484 	** and did some math on it that yielded a "struct tm" that's bad.
   1485 	** We try to divine the type they started from and adjust to the
   1486 	** type they need.
   1487 	*/
   1488 	/*
   1489 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
   1490 	*/
   1491 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
   1492 		lclptr : gmtptr);
   1493 #ifdef ALL_STATE
   1494 	if (sp == NULL)
   1495 		return WRONG;
   1496 #endif /* defined ALL_STATE */
   1497 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
   1498 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1499 			continue;
   1500 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
   1501 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1502 				continue;
   1503 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1504 					sp->ttis[samei].tt_gmtoff;
   1505 			tmp->tm_isdst = !tmp->tm_isdst;
   1506 			t = time2(tmp, funcp, offset, &okay);
   1507 			if (okay)
   1508 				return t;
   1509 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1510 					sp->ttis[samei].tt_gmtoff;
   1511 			tmp->tm_isdst = !tmp->tm_isdst;
   1512 		}
   1513 	}
   1514 	return WRONG;
   1515 }
   1516 
   1517 time_t
   1518 mktime(tmp)
   1519 struct tm * const	tmp;
   1520 {
   1521 	tzset();
   1522 	return time1(tmp, localsub, 0L);
   1523 }
   1524 
   1525 #ifdef STD_INSPIRED
   1526 
   1527 time_t
   1528 timelocal(tmp)
   1529 struct tm * const	tmp;
   1530 {
   1531 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1532 	return mktime(tmp);
   1533 }
   1534 
   1535 time_t
   1536 timegm(tmp)
   1537 struct tm * const	tmp;
   1538 {
   1539 	tmp->tm_isdst = 0;
   1540 	return time1(tmp, gmtsub, 0L);
   1541 }
   1542 
   1543 time_t
   1544 timeoff(tmp, offset)
   1545 struct tm * const	tmp;
   1546 const long		offset;
   1547 {
   1548 	tmp->tm_isdst = 0;
   1549 	return time1(tmp, gmtsub, offset);
   1550 }
   1551 
   1552 #endif /* defined STD_INSPIRED */
   1553 
   1554 #ifdef CMUCS
   1555 
   1556 /*
   1557 ** The following is supplied for compatibility with
   1558 ** previous versions of the CMUCS runtime library.
   1559 */
   1560 
   1561 long
   1562 gtime(tmp)
   1563 struct tm * const	tmp;
   1564 {
   1565 	const time_t	t = mktime(tmp);
   1566 
   1567 	if (t == WRONG)
   1568 		return -1;
   1569 	return t;
   1570 }
   1571 
   1572 #endif /* defined CMUCS */
   1573 
   1574 /*
   1575 ** XXX--is the below the right way to conditionalize??
   1576 */
   1577 
   1578 #ifdef STD_INSPIRED
   1579 
   1580 /*
   1581 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1582 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
   1583 ** is not the case if we are accounting for leap seconds.
   1584 ** So, we provide the following conversion routines for use
   1585 ** when exchanging timestamps with POSIX conforming systems.
   1586 */
   1587 
   1588 static long
   1589 leapcorr(timep)
   1590 time_t *	timep;
   1591 {
   1592 	register struct state *		sp;
   1593 	register struct lsinfo *	lp;
   1594 	register int			i;
   1595 
   1596 	sp = lclptr;
   1597 	i = sp->leapcnt;
   1598 	while (--i >= 0) {
   1599 		lp = &sp->lsis[i];
   1600 		if (*timep >= lp->ls_trans)
   1601 			return lp->ls_corr;
   1602 	}
   1603 	return 0;
   1604 }
   1605 
   1606 time_t
   1607 time2posix(t)
   1608 time_t	t;
   1609 {
   1610 	tzset();
   1611 	return t - leapcorr(&t);
   1612 }
   1613 
   1614 time_t
   1615 posix2time(t)
   1616 time_t	t;
   1617 {
   1618 	time_t	x;
   1619 	time_t	y;
   1620 
   1621 	tzset();
   1622 	/*
   1623 	** For a positive leap second hit, the result
   1624 	** is not unique.  For a negative leap second
   1625 	** hit, the corresponding time doesn't exist,
   1626 	** so we return an adjacent second.
   1627 	*/
   1628 	x = t + leapcorr(&t);
   1629 	y = x - leapcorr(&x);
   1630 	if (y < t) {
   1631 		do {
   1632 			x++;
   1633 			y = x - leapcorr(&x);
   1634 		} while (y < t);
   1635 		if (t != y)
   1636 			return x - 1;
   1637 	} else if (y > t) {
   1638 		do {
   1639 			--x;
   1640 			y = x - leapcorr(&x);
   1641 		} while (y > t);
   1642 		if (t != y)
   1643 			return x + 1;
   1644 	}
   1645 	return x;
   1646 }
   1647 
   1648 #endif /* defined STD_INSPIRED */
   1649