localtime.c revision 1.72 1 /* $NetBSD: localtime.c,v 1.72 2012/10/28 19:02:29 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.72 2012/10/28 19:02:29 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 #endif
34
35 #include "float.h" /* for FLT_MAX and DBL_MAX */
36
37 #ifndef TZ_ABBR_MAX_LEN
38 #define TZ_ABBR_MAX_LEN 16
39 #endif /* !defined TZ_ABBR_MAX_LEN */
40
41 #ifndef TZ_ABBR_CHAR_SET
42 #define TZ_ABBR_CHAR_SET \
43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 #endif /* !defined TZ_ABBR_CHAR_SET */
45
46 #ifndef TZ_ABBR_ERR_CHAR
47 #define TZ_ABBR_ERR_CHAR '_'
48 #endif /* !defined TZ_ABBR_ERR_CHAR */
49
50 /*
51 ** SunOS 4.1.1 headers lack O_BINARY.
52 */
53
54 #ifdef O_BINARY
55 #define OPEN_MODE (O_RDONLY | O_BINARY)
56 #endif /* defined O_BINARY */
57 #ifndef O_BINARY
58 #define OPEN_MODE O_RDONLY
59 #endif /* !defined O_BINARY */
60
61 #ifndef WILDABBR
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 ** 1. They might reference tzname[0] before calling tzset (explicitly
65 ** or implicitly).
66 ** 2. They might reference tzname[1] before calling tzset (explicitly
67 ** or implicitly).
68 ** 3. They might reference tzname[1] after setting to a time zone
69 ** in which Daylight Saving Time is never observed.
70 ** 4. They might reference tzname[0] after setting to a time zone
71 ** in which Standard Time is never observed.
72 ** 5. They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR " "
82 #endif /* !defined WILDABBR */
83
84 static const char wildabbr[] = WILDABBR;
85
86 static const char gmt[] = "GMT";
87
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98
99 struct ttinfo { /* time type information */
100 long tt_gmtoff; /* UTC offset in seconds */
101 int tt_isdst; /* used to set tm_isdst */
102 int tt_abbrind; /* abbreviation list index */
103 int tt_ttisstd; /* TRUE if transition is std time */
104 int tt_ttisgmt; /* TRUE if transition is UTC */
105 };
106
107 struct lsinfo { /* leap second information */
108 time_t ls_trans; /* transition time */
109 long ls_corr; /* correction to apply */
110 };
111
112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX 255
119 #endif /* !defined TZNAME_MAX */
120
121 struct __state {
122 int leapcnt;
123 int timecnt;
124 int typecnt;
125 int charcnt;
126 int goback;
127 int goahead;
128 time_t ats[TZ_MAX_TIMES];
129 unsigned char types[TZ_MAX_TIMES];
130 struct ttinfo ttis[TZ_MAX_TYPES];
131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
132 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
133 struct lsinfo lsis[TZ_MAX_LEAPS];
134 };
135
136 struct rule {
137 int r_type; /* type of rule--see below */
138 int r_day; /* day number of rule */
139 int r_week; /* week number of rule */
140 int r_mon; /* month number of rule */
141 long r_time; /* transition time of rule */
142 };
143
144 #define JULIAN_DAY 0 /* Jn - Julian day */
145 #define DAY_OF_YEAR 1 /* n - day of year */
146 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
147
148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 long offset, struct tm *tmp);
150
151 /*
152 ** Prototypes for static functions.
153 */
154
155 static long detzcode(const char * codep);
156 static time_t detzcode64(const char * codep);
157 static int differ_by_repeat(time_t t1, time_t t0);
158 static const char * getzname(const char * strp) __pure;
159 static const char * getqzname(const char * strp, const int delim) __pure;
160 static const char * getnum(const char * strp, int * nump, int min,
161 int max);
162 static const char * getsecs(const char * strp, long * secsp);
163 static const char * getoffset(const char * strp, long * offsetp);
164 static const char * getrule(const char * strp, struct rule * rulep);
165 static void gmtload(timezone_t sp);
166 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
167 long offset, struct tm * tmp);
168 static struct tm * localsub(const timezone_t sp, const time_t *timep,
169 long offset, struct tm *tmp);
170 static int increment_overflow(int * number, int delta);
171 static int leaps_thru_end_of(int y) __pure;
172 static int long_increment_overflow(long * number, int delta);
173 static int long_normalize_overflow(long * tensptr,
174 int * unitsptr, int base);
175 static int normalize_overflow(int * tensptr, int * unitsptr,
176 int base);
177 static void settzname(void);
178 static time_t time1(const timezone_t sp, struct tm * const tmp,
179 subfun_t funcp, const long offset);
180 static time_t time2(const timezone_t sp, struct tm * const tmp,
181 subfun_t funcp,
182 const long offset, int *const okayp);
183 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
184 subfun_t funcp, const long offset,
185 int *const okayp, const int do_norm_secs);
186 static struct tm * timesub(const timezone_t sp, const time_t * timep,
187 long offset, struct tm * tmp);
188 static int tmcomp(const struct tm * atmp,
189 const struct tm * btmp);
190 static time_t transtime(time_t janfirst, int year,
191 const struct rule * rulep, long offset) __pure;
192 static int typesequiv(const timezone_t sp, int a, int b);
193 static int tzload(timezone_t sp, const char * name,
194 int doextend);
195 static int tzparse(timezone_t sp, const char * name,
196 int lastditch);
197 static void tzset_unlocked(void);
198 static void tzsetwall_unlocked(void);
199 static long leapcorr(const timezone_t sp, time_t * timep);
200
201 static timezone_t lclptr;
202 static timezone_t gmtptr;
203
204 #ifndef TZ_STRLEN_MAX
205 #define TZ_STRLEN_MAX 255
206 #endif /* !defined TZ_STRLEN_MAX */
207
208 static char lcl_TZname[TZ_STRLEN_MAX + 1];
209 static int lcl_is_set;
210 static int gmt_is_set;
211
212 #if !defined(__LIBC12_SOURCE__)
213
214 __aconst char * tzname[2] = {
215 (__aconst char *)__UNCONST(wildabbr),
216 (__aconst char *)__UNCONST(wildabbr)
217 };
218
219 #else
220
221 extern __aconst char * tzname[2];
222
223 #endif
224
225 #ifdef _REENTRANT
226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 #endif
228
229 /*
230 ** Section 4.12.3 of X3.159-1989 requires that
231 ** Except for the strftime function, these functions [asctime,
232 ** ctime, gmtime, localtime] return values in one of two static
233 ** objects: a broken-down time structure and an array of char.
234 ** Thanks to Paul Eggert for noting this.
235 */
236
237 static struct tm tm;
238
239 #ifdef USG_COMPAT
240 #if !defined(__LIBC12_SOURCE__)
241 long timezone = 0;
242 int daylight = 0;
243 #else
244 extern int daylight;
245 extern long timezone __RENAME(__timezone13);
246 #endif
247 #endif /* defined USG_COMPAT */
248
249 #ifdef ALTZONE
250 time_t altzone = 0;
251 #endif /* defined ALTZONE */
252
253 static long
254 detzcode(const char *const codep)
255 {
256 long result;
257 int i;
258
259 result = (codep[0] & 0x80) ? ~0L : 0;
260 for (i = 0; i < 4; ++i)
261 result = (result << 8) | (codep[i] & 0xff);
262 return result;
263 }
264
265 static time_t
266 detzcode64(const char *const codep)
267 {
268 time_t result;
269 int i;
270
271 result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
272 for (i = 0; i < 8; ++i)
273 result = result * 256 + (codep[i] & 0xff);
274 return result;
275 }
276
277 const char *
278 tzgetname(const timezone_t sp, int isdst)
279 {
280 int i;
281 for (i = 0; i < sp->timecnt; ++i) {
282 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283
284 if (ttisp->tt_isdst == isdst)
285 return &sp->chars[ttisp->tt_abbrind];
286 }
287 return NULL;
288 }
289
290 static void
291 settzname_z(timezone_t sp)
292 {
293 int i;
294
295 /*
296 ** Scrub the abbreviations.
297 ** First, replace bogus characters.
298 */
299 for (i = 0; i < sp->charcnt; ++i)
300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 /*
303 ** Second, truncate long abbreviations.
304 */
305 for (i = 0; i < sp->typecnt; ++i) {
306 const struct ttinfo * const ttisp = &sp->ttis[i];
307 char * cp = &sp->chars[ttisp->tt_abbrind];
308
309 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 strcmp(cp, GRANDPARENTED) != 0)
311 *(cp + TZ_ABBR_MAX_LEN) = '\0';
312 }
313 }
314
315 static void
316 settzname(void)
317 {
318 timezone_t const sp = lclptr;
319 int i;
320
321 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 #ifdef USG_COMPAT
324 daylight = 0;
325 timezone = 0;
326 #endif /* defined USG_COMPAT */
327 #ifdef ALTZONE
328 altzone = 0;
329 #endif /* defined ALTZONE */
330 if (sp == NULL) {
331 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 return;
333 }
334 /*
335 ** And to get the latest zone names into tzname. . .
336 */
337 for (i = 0; i < sp->typecnt; ++i) {
338 const struct ttinfo * const ttisp = &sp->ttis[i];
339
340 tzname[ttisp->tt_isdst] =
341 &sp->chars[ttisp->tt_abbrind];
342 #ifdef USG_COMPAT
343 if (ttisp->tt_isdst)
344 daylight = 1;
345 if (!ttisp->tt_isdst)
346 timezone = -(ttisp->tt_gmtoff);
347 #endif /* defined USG_COMPAT */
348 #ifdef ALTZONE
349 if (ttisp->tt_isdst)
350 altzone = -(ttisp->tt_gmtoff);
351 #endif /* defined ALTZONE */
352 }
353 settzname_z(sp);
354 }
355
356 static int
357 differ_by_repeat(const time_t t1, const time_t t0)
358 {
359 if (TYPE_INTEGRAL(time_t) &&
360 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
361 return 0;
362 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
363 }
364
365 static int
366 tzload(timezone_t sp, const char *name, const int doextend)
367 {
368 const char * p;
369 int i;
370 int fid;
371 int stored;
372 ssize_t nread;
373 typedef union {
374 struct tzhead tzhead;
375 char buf[2 * sizeof(struct tzhead) +
376 2 * sizeof *sp +
377 4 * TZ_MAX_TIMES];
378 } u_t;
379 u_t * up;
380
381 up = calloc(1, sizeof *up);
382 if (up == NULL)
383 return -1;
384
385 sp->goback = sp->goahead = FALSE;
386 if (name == NULL && (name = TZDEFAULT) == NULL)
387 goto oops;
388 {
389 int doaccess;
390 /*
391 ** Section 4.9.1 of the C standard says that
392 ** "FILENAME_MAX expands to an integral constant expression
393 ** that is the size needed for an array of char large enough
394 ** to hold the longest file name string that the implementation
395 ** guarantees can be opened."
396 */
397 char fullname[FILENAME_MAX + 1];
398
399 if (name[0] == ':')
400 ++name;
401 doaccess = name[0] == '/';
402 if (!doaccess) {
403 if ((p = TZDIR) == NULL)
404 goto oops;
405 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
406 goto oops;
407 (void) strcpy(fullname, p); /* XXX strcpy is safe */
408 (void) strcat(fullname, "/"); /* XXX strcat is safe */
409 (void) strcat(fullname, name); /* XXX strcat is safe */
410 /*
411 ** Set doaccess if '.' (as in "../") shows up in name.
412 */
413 if (strchr(name, '.') != NULL)
414 doaccess = TRUE;
415 name = fullname;
416 }
417 if (doaccess && access(name, R_OK) != 0)
418 goto oops;
419 /*
420 * XXX potential security problem here if user of a set-id
421 * program has set TZ (which is passed in as name) here,
422 * and uses a race condition trick to defeat the access(2)
423 * above.
424 */
425 if ((fid = open(name, OPEN_MODE)) == -1)
426 goto oops;
427 }
428 nread = read(fid, up->buf, sizeof up->buf);
429 if (close(fid) < 0 || nread <= 0)
430 goto oops;
431 for (stored = 4; stored <= 8; stored *= 2) {
432 int ttisstdcnt;
433 int ttisgmtcnt;
434
435 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
436 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
437 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
438 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
439 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
440 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
441 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
442 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
443 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
444 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
445 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
446 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
447 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
448 goto oops;
449 if (nread - (p - up->buf) <
450 sp->timecnt * stored + /* ats */
451 sp->timecnt + /* types */
452 sp->typecnt * 6 + /* ttinfos */
453 sp->charcnt + /* chars */
454 sp->leapcnt * (stored + 4) + /* lsinfos */
455 ttisstdcnt + /* ttisstds */
456 ttisgmtcnt) /* ttisgmts */
457 goto oops;
458 for (i = 0; i < sp->timecnt; ++i) {
459 sp->ats[i] = (time_t)((stored == 4) ?
460 detzcode(p) : detzcode64(p));
461 p += stored;
462 }
463 for (i = 0; i < sp->timecnt; ++i) {
464 sp->types[i] = (unsigned char) *p++;
465 if (sp->types[i] >= sp->typecnt)
466 goto oops;
467 }
468 for (i = 0; i < sp->typecnt; ++i) {
469 struct ttinfo * ttisp;
470
471 ttisp = &sp->ttis[i];
472 ttisp->tt_gmtoff = detzcode(p);
473 p += 4;
474 ttisp->tt_isdst = (unsigned char) *p++;
475 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
476 goto oops;
477 ttisp->tt_abbrind = (unsigned char) *p++;
478 if (ttisp->tt_abbrind < 0 ||
479 ttisp->tt_abbrind > sp->charcnt)
480 goto oops;
481 }
482 for (i = 0; i < sp->charcnt; ++i)
483 sp->chars[i] = *p++;
484 sp->chars[i] = '\0'; /* ensure '\0' at end */
485 for (i = 0; i < sp->leapcnt; ++i) {
486 struct lsinfo * lsisp;
487
488 lsisp = &sp->lsis[i];
489 lsisp->ls_trans = (time_t)((stored == 4) ?
490 detzcode(p) : detzcode64(p));
491 p += stored;
492 lsisp->ls_corr = detzcode(p);
493 p += 4;
494 }
495 for (i = 0; i < sp->typecnt; ++i) {
496 struct ttinfo * ttisp;
497
498 ttisp = &sp->ttis[i];
499 if (ttisstdcnt == 0)
500 ttisp->tt_ttisstd = FALSE;
501 else {
502 ttisp->tt_ttisstd = *p++;
503 if (ttisp->tt_ttisstd != TRUE &&
504 ttisp->tt_ttisstd != FALSE)
505 goto oops;
506 }
507 }
508 for (i = 0; i < sp->typecnt; ++i) {
509 struct ttinfo * ttisp;
510
511 ttisp = &sp->ttis[i];
512 if (ttisgmtcnt == 0)
513 ttisp->tt_ttisgmt = FALSE;
514 else {
515 ttisp->tt_ttisgmt = *p++;
516 if (ttisp->tt_ttisgmt != TRUE &&
517 ttisp->tt_ttisgmt != FALSE)
518 goto oops;
519 }
520 }
521 /*
522 ** Out-of-sort ats should mean we're running on a
523 ** signed time_t system but using a data file with
524 ** unsigned values (or vice versa).
525 */
526 for (i = 0; i < sp->timecnt - 2; ++i)
527 if (sp->ats[i] > sp->ats[i + 1]) {
528 ++i;
529 if (TYPE_SIGNED(time_t)) {
530 /*
531 ** Ignore the end (easy).
532 */
533 sp->timecnt = i;
534 } else {
535 /*
536 ** Ignore the beginning (harder).
537 */
538 int j;
539
540 for (j = 0; j + i < sp->timecnt; ++j) {
541 sp->ats[j] = sp->ats[j + i];
542 sp->types[j] = sp->types[j + i];
543 }
544 sp->timecnt = j;
545 }
546 break;
547 }
548 /*
549 ** If this is an old file, we're done.
550 */
551 if (up->tzhead.tzh_version[0] == '\0')
552 break;
553 nread -= p - up->buf;
554 for (i = 0; i < nread; ++i)
555 up->buf[i] = p[i];
556 /*
557 ** If this is a narrow integer time_t system, we're done.
558 */
559 if (stored >= (int) sizeof(time_t)
560 /* CONSTCOND */
561 && TYPE_INTEGRAL(time_t))
562 break;
563 }
564 if (doextend && nread > 2 &&
565 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
566 sp->typecnt + 2 <= TZ_MAX_TYPES) {
567 struct __state ts;
568 int result;
569
570 up->buf[nread - 1] = '\0';
571 result = tzparse(&ts, &up->buf[1], FALSE);
572 if (result == 0 && ts.typecnt == 2 &&
573 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
574 for (i = 0; i < 2; ++i)
575 ts.ttis[i].tt_abbrind +=
576 sp->charcnt;
577 for (i = 0; i < ts.charcnt; ++i)
578 sp->chars[sp->charcnt++] =
579 ts.chars[i];
580 i = 0;
581 while (i < ts.timecnt &&
582 ts.ats[i] <=
583 sp->ats[sp->timecnt - 1])
584 ++i;
585 while (i < ts.timecnt &&
586 sp->timecnt < TZ_MAX_TIMES) {
587 sp->ats[sp->timecnt] =
588 ts.ats[i];
589 sp->types[sp->timecnt] =
590 sp->typecnt +
591 ts.types[i];
592 ++sp->timecnt;
593 ++i;
594 }
595 sp->ttis[sp->typecnt++] = ts.ttis[0];
596 sp->ttis[sp->typecnt++] = ts.ttis[1];
597 }
598 }
599 if (sp->timecnt > 1) {
600 for (i = 1; i < sp->timecnt; ++i)
601 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
602 differ_by_repeat(sp->ats[i], sp->ats[0])) {
603 sp->goback = TRUE;
604 break;
605 }
606 for (i = sp->timecnt - 2; i >= 0; --i)
607 if (typesequiv(sp, sp->types[sp->timecnt - 1],
608 sp->types[i]) &&
609 differ_by_repeat(sp->ats[sp->timecnt - 1],
610 sp->ats[i])) {
611 sp->goahead = TRUE;
612 break;
613 }
614 }
615 free(up);
616 return 0;
617 oops:
618 free(up);
619 return -1;
620 }
621
622 static int
623 typesequiv(const timezone_t sp, const int a, const int b)
624 {
625 int result;
626
627 if (sp == NULL ||
628 a < 0 || a >= sp->typecnt ||
629 b < 0 || b >= sp->typecnt)
630 result = FALSE;
631 else {
632 const struct ttinfo * ap = &sp->ttis[a];
633 const struct ttinfo * bp = &sp->ttis[b];
634 result = ap->tt_gmtoff == bp->tt_gmtoff &&
635 ap->tt_isdst == bp->tt_isdst &&
636 ap->tt_ttisstd == bp->tt_ttisstd &&
637 ap->tt_ttisgmt == bp->tt_ttisgmt &&
638 strcmp(&sp->chars[ap->tt_abbrind],
639 &sp->chars[bp->tt_abbrind]) == 0;
640 }
641 return result;
642 }
643
644 static const int mon_lengths[2][MONSPERYEAR] = {
645 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
646 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
647 };
648
649 static const int year_lengths[2] = {
650 DAYSPERNYEAR, DAYSPERLYEAR
651 };
652
653 /*
654 ** Given a pointer into a time zone string, scan until a character that is not
655 ** a valid character in a zone name is found. Return a pointer to that
656 ** character.
657 */
658
659 static const char *
660 getzname(const char *strp)
661 {
662 char c;
663
664 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
665 c != '+')
666 ++strp;
667 return strp;
668 }
669
670 /*
671 ** Given a pointer into an extended time zone string, scan until the ending
672 ** delimiter of the zone name is located. Return a pointer to the delimiter.
673 **
674 ** As with getzname above, the legal character set is actually quite
675 ** restricted, with other characters producing undefined results.
676 ** We don't do any checking here; checking is done later in common-case code.
677 */
678
679 static const char *
680 getqzname(const char *strp, const int delim)
681 {
682 int c;
683
684 while ((c = *strp) != '\0' && c != delim)
685 ++strp;
686 return strp;
687 }
688
689 /*
690 ** Given a pointer into a time zone string, extract a number from that string.
691 ** Check that the number is within a specified range; if it is not, return
692 ** NULL.
693 ** Otherwise, return a pointer to the first character not part of the number.
694 */
695
696 static const char *
697 getnum(const char *strp, int *const nump, const int min, const int max)
698 {
699 char c;
700 int num;
701
702 if (strp == NULL || !is_digit(c = *strp)) {
703 errno = EINVAL;
704 return NULL;
705 }
706 num = 0;
707 do {
708 num = num * 10 + (c - '0');
709 if (num > max) {
710 errno = EOVERFLOW;
711 return NULL; /* illegal value */
712 }
713 c = *++strp;
714 } while (is_digit(c));
715 if (num < min) {
716 errno = EINVAL;
717 return NULL; /* illegal value */
718 }
719 *nump = num;
720 return strp;
721 }
722
723 /*
724 ** Given a pointer into a time zone string, extract a number of seconds,
725 ** in hh[:mm[:ss]] form, from the string.
726 ** If any error occurs, return NULL.
727 ** Otherwise, return a pointer to the first character not part of the number
728 ** of seconds.
729 */
730
731 static const char *
732 getsecs(const char *strp, long *const secsp)
733 {
734 int num;
735
736 /*
737 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
738 ** "M10.4.6/26", which does not conform to Posix,
739 ** but which specifies the equivalent of
740 ** ``02:00 on the first Sunday on or after 23 Oct''.
741 */
742 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
743 if (strp == NULL)
744 return NULL;
745 *secsp = num * (long) SECSPERHOUR;
746 if (*strp == ':') {
747 ++strp;
748 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
749 if (strp == NULL)
750 return NULL;
751 *secsp += num * SECSPERMIN;
752 if (*strp == ':') {
753 ++strp;
754 /* `SECSPERMIN' allows for leap seconds. */
755 strp = getnum(strp, &num, 0, SECSPERMIN);
756 if (strp == NULL)
757 return NULL;
758 *secsp += num;
759 }
760 }
761 return strp;
762 }
763
764 /*
765 ** Given a pointer into a time zone string, extract an offset, in
766 ** [+-]hh[:mm[:ss]] form, from the string.
767 ** If any error occurs, return NULL.
768 ** Otherwise, return a pointer to the first character not part of the time.
769 */
770
771 static const char *
772 getoffset(const char *strp, long *const offsetp)
773 {
774 int neg = 0;
775
776 if (*strp == '-') {
777 neg = 1;
778 ++strp;
779 } else if (*strp == '+')
780 ++strp;
781 strp = getsecs(strp, offsetp);
782 if (strp == NULL)
783 return NULL; /* illegal time */
784 if (neg)
785 *offsetp = -*offsetp;
786 return strp;
787 }
788
789 /*
790 ** Given a pointer into a time zone string, extract a rule in the form
791 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
792 ** If a valid rule is not found, return NULL.
793 ** Otherwise, return a pointer to the first character not part of the rule.
794 */
795
796 static const char *
797 getrule(const char *strp, struct rule *const rulep)
798 {
799 if (*strp == 'J') {
800 /*
801 ** Julian day.
802 */
803 rulep->r_type = JULIAN_DAY;
804 ++strp;
805 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
806 } else if (*strp == 'M') {
807 /*
808 ** Month, week, day.
809 */
810 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
811 ++strp;
812 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
813 if (strp == NULL)
814 return NULL;
815 if (*strp++ != '.')
816 return NULL;
817 strp = getnum(strp, &rulep->r_week, 1, 5);
818 if (strp == NULL)
819 return NULL;
820 if (*strp++ != '.')
821 return NULL;
822 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
823 } else if (is_digit(*strp)) {
824 /*
825 ** Day of year.
826 */
827 rulep->r_type = DAY_OF_YEAR;
828 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
829 } else return NULL; /* invalid format */
830 if (strp == NULL)
831 return NULL;
832 if (*strp == '/') {
833 /*
834 ** Time specified.
835 */
836 ++strp;
837 strp = getsecs(strp, &rulep->r_time);
838 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
839 return strp;
840 }
841
842 /*
843 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
844 ** year, a rule, and the offset from UTC at the time that rule takes effect,
845 ** calculate the Epoch-relative time that rule takes effect.
846 */
847
848 static time_t
849 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
850 const long offset)
851 {
852 int leapyear;
853 time_t value;
854 int i;
855 int d, m1, yy0, yy1, yy2, dow;
856
857 INITIALIZE(value);
858 leapyear = isleap(year);
859 switch (rulep->r_type) {
860
861 case JULIAN_DAY:
862 /*
863 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
864 ** years.
865 ** In non-leap years, or if the day number is 59 or less, just
866 ** add SECSPERDAY times the day number-1 to the time of
867 ** January 1, midnight, to get the day.
868 */
869 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
870 if (leapyear && rulep->r_day >= 60)
871 value += SECSPERDAY;
872 break;
873
874 case DAY_OF_YEAR:
875 /*
876 ** n - day of year.
877 ** Just add SECSPERDAY times the day number to the time of
878 ** January 1, midnight, to get the day.
879 */
880 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
881 break;
882
883 case MONTH_NTH_DAY_OF_WEEK:
884 /*
885 ** Mm.n.d - nth "dth day" of month m.
886 */
887 value = janfirst;
888 for (i = 0; i < rulep->r_mon - 1; ++i)
889 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
890
891 /*
892 ** Use Zeller's Congruence to get day-of-week of first day of
893 ** month.
894 */
895 m1 = (rulep->r_mon + 9) % 12 + 1;
896 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
897 yy1 = yy0 / 100;
898 yy2 = yy0 % 100;
899 dow = ((26 * m1 - 2) / 10 +
900 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
901 if (dow < 0)
902 dow += DAYSPERWEEK;
903
904 /*
905 ** "dow" is the day-of-week of the first day of the month. Get
906 ** the day-of-month (zero-origin) of the first "dow" day of the
907 ** month.
908 */
909 d = rulep->r_day - dow;
910 if (d < 0)
911 d += DAYSPERWEEK;
912 for (i = 1; i < rulep->r_week; ++i) {
913 if (d + DAYSPERWEEK >=
914 mon_lengths[leapyear][rulep->r_mon - 1])
915 break;
916 d += DAYSPERWEEK;
917 }
918
919 /*
920 ** "d" is the day-of-month (zero-origin) of the day we want.
921 */
922 value += (time_t)(d * SECSPERDAY);
923 break;
924 }
925
926 /*
927 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
928 ** question. To get the Epoch-relative time of the specified local
929 ** time on that day, add the transition time and the current offset
930 ** from UTC.
931 */
932 return (time_t)(value + rulep->r_time + offset);
933 }
934
935 /*
936 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
937 ** appropriate.
938 */
939
940 static int
941 tzparse(timezone_t sp, const char *name, const int lastditch)
942 {
943 const char * stdname;
944 const char * dstname;
945 size_t stdlen;
946 size_t dstlen;
947 long stdoffset;
948 long dstoffset;
949 time_t * atp;
950 unsigned char * typep;
951 char * cp;
952 int load_result;
953
954 INITIALIZE(dstname);
955 stdname = name;
956 if (lastditch) {
957 stdlen = strlen(name); /* length of standard zone name */
958 name += stdlen;
959 if (stdlen >= sizeof sp->chars)
960 stdlen = (sizeof sp->chars) - 1;
961 stdoffset = 0;
962 } else {
963 if (*name == '<') {
964 name++;
965 stdname = name;
966 name = getqzname(name, '>');
967 if (*name != '>')
968 return (-1);
969 stdlen = name - stdname;
970 name++;
971 } else {
972 name = getzname(name);
973 stdlen = name - stdname;
974 }
975 if (*name == '\0')
976 return -1;
977 name = getoffset(name, &stdoffset);
978 if (name == NULL)
979 return -1;
980 }
981 load_result = tzload(sp, TZDEFRULES, FALSE);
982 if (load_result != 0)
983 sp->leapcnt = 0; /* so, we're off a little */
984 if (*name != '\0') {
985 if (*name == '<') {
986 dstname = ++name;
987 name = getqzname(name, '>');
988 if (*name != '>')
989 return -1;
990 dstlen = name - dstname;
991 name++;
992 } else {
993 dstname = name;
994 name = getzname(name);
995 dstlen = name - dstname; /* length of DST zone name */
996 }
997 if (*name != '\0' && *name != ',' && *name != ';') {
998 name = getoffset(name, &dstoffset);
999 if (name == NULL)
1000 return -1;
1001 } else dstoffset = stdoffset - SECSPERHOUR;
1002 if (*name == '\0' && load_result != 0)
1003 name = TZDEFRULESTRING;
1004 if (*name == ',' || *name == ';') {
1005 struct rule start;
1006 struct rule end;
1007 int year;
1008 time_t janfirst;
1009 time_t starttime;
1010 time_t endtime;
1011
1012 ++name;
1013 if ((name = getrule(name, &start)) == NULL)
1014 return -1;
1015 if (*name++ != ',')
1016 return -1;
1017 if ((name = getrule(name, &end)) == NULL)
1018 return -1;
1019 if (*name != '\0')
1020 return -1;
1021 sp->typecnt = 2; /* standard time and DST */
1022 /*
1023 ** Two transitions per year, from EPOCH_YEAR forward.
1024 */
1025 memset(sp->ttis, 0, sizeof(sp->ttis));
1026 sp->ttis[0].tt_gmtoff = -dstoffset;
1027 sp->ttis[0].tt_isdst = 1;
1028 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1029 sp->ttis[1].tt_gmtoff = -stdoffset;
1030 sp->ttis[1].tt_isdst = 0;
1031 sp->ttis[1].tt_abbrind = 0;
1032 atp = sp->ats;
1033 typep = sp->types;
1034 janfirst = 0;
1035 sp->timecnt = 0;
1036 for (year = EPOCH_YEAR;
1037 sp->timecnt + 2 <= TZ_MAX_TIMES;
1038 ++year) {
1039 time_t newfirst;
1040
1041 starttime = transtime(janfirst, year, &start,
1042 stdoffset);
1043 endtime = transtime(janfirst, year, &end,
1044 dstoffset);
1045 if (starttime > endtime) {
1046 *atp++ = endtime;
1047 *typep++ = 1; /* DST ends */
1048 *atp++ = starttime;
1049 *typep++ = 0; /* DST begins */
1050 } else {
1051 *atp++ = starttime;
1052 *typep++ = 0; /* DST begins */
1053 *atp++ = endtime;
1054 *typep++ = 1; /* DST ends */
1055 }
1056 sp->timecnt += 2;
1057 newfirst = janfirst;
1058 newfirst += (time_t)
1059 (year_lengths[isleap(year)] * SECSPERDAY);
1060 if (newfirst <= janfirst)
1061 break;
1062 janfirst = newfirst;
1063 }
1064 } else {
1065 long theirstdoffset;
1066 long theirdstoffset;
1067 long theiroffset;
1068 int isdst;
1069 int i;
1070 int j;
1071
1072 if (*name != '\0')
1073 return -1;
1074 /*
1075 ** Initial values of theirstdoffset and theirdstoffset.
1076 */
1077 theirstdoffset = 0;
1078 for (i = 0; i < sp->timecnt; ++i) {
1079 j = sp->types[i];
1080 if (!sp->ttis[j].tt_isdst) {
1081 theirstdoffset =
1082 -sp->ttis[j].tt_gmtoff;
1083 break;
1084 }
1085 }
1086 theirdstoffset = 0;
1087 for (i = 0; i < sp->timecnt; ++i) {
1088 j = sp->types[i];
1089 if (sp->ttis[j].tt_isdst) {
1090 theirdstoffset =
1091 -sp->ttis[j].tt_gmtoff;
1092 break;
1093 }
1094 }
1095 /*
1096 ** Initially we're assumed to be in standard time.
1097 */
1098 isdst = FALSE;
1099 theiroffset = theirstdoffset;
1100 /*
1101 ** Now juggle transition times and types
1102 ** tracking offsets as you do.
1103 */
1104 for (i = 0; i < sp->timecnt; ++i) {
1105 j = sp->types[i];
1106 sp->types[i] = sp->ttis[j].tt_isdst;
1107 if (sp->ttis[j].tt_ttisgmt) {
1108 /* No adjustment to transition time */
1109 } else {
1110 /*
1111 ** If summer time is in effect, and the
1112 ** transition time was not specified as
1113 ** standard time, add the summer time
1114 ** offset to the transition time;
1115 ** otherwise, add the standard time
1116 ** offset to the transition time.
1117 */
1118 /*
1119 ** Transitions from DST to DDST
1120 ** will effectively disappear since
1121 ** POSIX provides for only one DST
1122 ** offset.
1123 */
1124 if (isdst && !sp->ttis[j].tt_ttisstd) {
1125 sp->ats[i] += (time_t)
1126 (dstoffset - theirdstoffset);
1127 } else {
1128 sp->ats[i] += (time_t)
1129 (stdoffset - theirstdoffset);
1130 }
1131 }
1132 theiroffset = -sp->ttis[j].tt_gmtoff;
1133 if (!sp->ttis[j].tt_isdst)
1134 theirstdoffset = theiroffset;
1135 else theirdstoffset = theiroffset;
1136 }
1137 /*
1138 ** Finally, fill in ttis.
1139 ** ttisstd and ttisgmt need not be handled
1140 */
1141 memset(sp->ttis, 0, sizeof(sp->ttis));
1142 sp->ttis[0].tt_gmtoff = -stdoffset;
1143 sp->ttis[0].tt_isdst = FALSE;
1144 sp->ttis[0].tt_abbrind = 0;
1145 sp->ttis[1].tt_gmtoff = -dstoffset;
1146 sp->ttis[1].tt_isdst = TRUE;
1147 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1148 sp->typecnt = 2;
1149 }
1150 } else {
1151 dstlen = 0;
1152 sp->typecnt = 1; /* only standard time */
1153 sp->timecnt = 0;
1154 memset(sp->ttis, 0, sizeof(sp->ttis));
1155 sp->ttis[0].tt_gmtoff = -stdoffset;
1156 sp->ttis[0].tt_isdst = 0;
1157 sp->ttis[0].tt_abbrind = 0;
1158 }
1159 sp->charcnt = (int)(stdlen + 1);
1160 if (dstlen != 0)
1161 sp->charcnt += (int)(dstlen + 1);
1162 if ((size_t) sp->charcnt > sizeof sp->chars)
1163 return -1;
1164 cp = sp->chars;
1165 (void) strncpy(cp, stdname, stdlen);
1166 cp += stdlen;
1167 *cp++ = '\0';
1168 if (dstlen != 0) {
1169 (void) strncpy(cp, dstname, dstlen);
1170 *(cp + dstlen) = '\0';
1171 }
1172 return 0;
1173 }
1174
1175 static void
1176 gmtload(timezone_t sp)
1177 {
1178 if (tzload(sp, gmt, TRUE) != 0)
1179 (void) tzparse(sp, gmt, TRUE);
1180 }
1181
1182 timezone_t
1183 tzalloc(const char *name)
1184 {
1185 timezone_t sp = calloc(1, sizeof *sp);
1186 if (sp == NULL)
1187 return NULL;
1188 if (tzload(sp, name, TRUE) != 0) {
1189 free(sp);
1190 return NULL;
1191 }
1192 settzname_z(sp);
1193 return sp;
1194 }
1195
1196 void
1197 tzfree(const timezone_t sp)
1198 {
1199 free(sp);
1200 }
1201
1202 static void
1203 tzsetwall_unlocked(void)
1204 {
1205 if (lcl_is_set < 0)
1206 return;
1207 lcl_is_set = -1;
1208
1209 if (lclptr == NULL) {
1210 int saveerrno = errno;
1211 lclptr = calloc(1, sizeof *lclptr);
1212 errno = saveerrno;
1213 if (lclptr == NULL) {
1214 settzname(); /* all we can do */
1215 return;
1216 }
1217 }
1218 if (tzload(lclptr, NULL, TRUE) != 0)
1219 gmtload(lclptr);
1220 settzname();
1221 }
1222
1223 #ifndef STD_INSPIRED
1224 /*
1225 ** A non-static declaration of tzsetwall in a system header file
1226 ** may cause a warning about this upcoming static declaration...
1227 */
1228 static
1229 #endif /* !defined STD_INSPIRED */
1230 void
1231 tzsetwall(void)
1232 {
1233 rwlock_wrlock(&lcl_lock);
1234 tzsetwall_unlocked();
1235 rwlock_unlock(&lcl_lock);
1236 }
1237
1238 #ifndef STD_INSPIRED
1239 /*
1240 ** A non-static declaration of tzsetwall in a system header file
1241 ** may cause a warning about this upcoming static declaration...
1242 */
1243 static
1244 #endif /* !defined STD_INSPIRED */
1245 void
1246 tzset_unlocked(void)
1247 {
1248 const char * name;
1249
1250 name = getenv("TZ");
1251 if (name == NULL) {
1252 tzsetwall_unlocked();
1253 return;
1254 }
1255
1256 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1257 return;
1258 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1259 if (lcl_is_set)
1260 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1261
1262 if (lclptr == NULL) {
1263 int saveerrno = errno;
1264 lclptr = calloc(1, sizeof *lclptr);
1265 errno = saveerrno;
1266 if (lclptr == NULL) {
1267 settzname(); /* all we can do */
1268 return;
1269 }
1270 }
1271 if (*name == '\0') {
1272 /*
1273 ** User wants it fast rather than right.
1274 */
1275 lclptr->leapcnt = 0; /* so, we're off a little */
1276 lclptr->timecnt = 0;
1277 lclptr->typecnt = 0;
1278 lclptr->ttis[0].tt_isdst = 0;
1279 lclptr->ttis[0].tt_gmtoff = 0;
1280 lclptr->ttis[0].tt_abbrind = 0;
1281 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1282 } else if (tzload(lclptr, name, TRUE) != 0)
1283 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1284 (void) gmtload(lclptr);
1285 settzname();
1286 }
1287
1288 void
1289 tzset(void)
1290 {
1291 rwlock_wrlock(&lcl_lock);
1292 tzset_unlocked();
1293 rwlock_unlock(&lcl_lock);
1294 }
1295
1296 /*
1297 ** The easy way to behave "as if no library function calls" localtime
1298 ** is to not call it--so we drop its guts into "localsub", which can be
1299 ** freely called. (And no, the PANS doesn't require the above behavior--
1300 ** but it *is* desirable.)
1301 **
1302 ** The unused offset argument is for the benefit of mktime variants.
1303 */
1304
1305 /*ARGSUSED*/
1306 static struct tm *
1307 localsub(const timezone_t sp, const time_t * const timep, const long offset,
1308 struct tm *const tmp)
1309 {
1310 const struct ttinfo * ttisp;
1311 int i;
1312 struct tm * result;
1313 const time_t t = *timep;
1314
1315 if ((sp->goback && t < sp->ats[0]) ||
1316 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1317 time_t newt = t;
1318 time_t seconds;
1319 time_t tcycles;
1320 int_fast64_t icycles;
1321
1322 if (t < sp->ats[0])
1323 seconds = sp->ats[0] - t;
1324 else seconds = t - sp->ats[sp->timecnt - 1];
1325 --seconds;
1326 tcycles = (time_t)
1327 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1328 ++tcycles;
1329 icycles = tcycles;
1330 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1331 return NULL;
1332 seconds = (time_t) icycles;
1333 seconds *= YEARSPERREPEAT;
1334 seconds *= AVGSECSPERYEAR;
1335 if (t < sp->ats[0])
1336 newt += seconds;
1337 else newt -= seconds;
1338 if (newt < sp->ats[0] ||
1339 newt > sp->ats[sp->timecnt - 1])
1340 return NULL; /* "cannot happen" */
1341 result = localsub(sp, &newt, offset, tmp);
1342 if (result == tmp) {
1343 time_t newy;
1344
1345 newy = tmp->tm_year;
1346 if (t < sp->ats[0])
1347 newy -= (time_t)icycles * YEARSPERREPEAT;
1348 else newy += (time_t)icycles * YEARSPERREPEAT;
1349 tmp->tm_year = (int)newy;
1350 if (tmp->tm_year != newy)
1351 return NULL;
1352 }
1353 return result;
1354 }
1355 if (sp->timecnt == 0 || t < sp->ats[0]) {
1356 i = 0;
1357 while (sp->ttis[i].tt_isdst)
1358 if (++i >= sp->typecnt) {
1359 i = 0;
1360 break;
1361 }
1362 } else {
1363 int lo = 1;
1364 int hi = sp->timecnt;
1365
1366 while (lo < hi) {
1367 int mid = (lo + hi) / 2;
1368
1369 if (t < sp->ats[mid])
1370 hi = mid;
1371 else lo = mid + 1;
1372 }
1373 i = (int) sp->types[lo - 1];
1374 }
1375 ttisp = &sp->ttis[i];
1376 /*
1377 ** To get (wrong) behavior that's compatible with System V Release 2.0
1378 ** you'd replace the statement below with
1379 ** t += ttisp->tt_gmtoff;
1380 ** timesub(&t, 0L, sp, tmp);
1381 */
1382 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1383 tmp->tm_isdst = ttisp->tt_isdst;
1384 if (sp == lclptr)
1385 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1386 #ifdef TM_ZONE
1387 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1388 #endif /* defined TM_ZONE */
1389 return result;
1390 }
1391
1392 /*
1393 ** Re-entrant version of localtime.
1394 */
1395
1396 struct tm *
1397 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1398 {
1399 rwlock_rdlock(&lcl_lock);
1400 tzset_unlocked();
1401 tmp = localtime_rz(lclptr, timep, tmp);
1402 rwlock_unlock(&lcl_lock);
1403 return tmp;
1404 }
1405
1406 struct tm *
1407 localtime(const time_t *const timep)
1408 {
1409 return localtime_r(timep, &tm);
1410 }
1411
1412 struct tm *
1413 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1414 {
1415 if (sp == NULL)
1416 tmp = gmtsub(NULL, timep, 0L, tmp);
1417 else
1418 tmp = localsub(sp, timep, 0L, tmp);
1419 if (tmp == NULL)
1420 errno = EOVERFLOW;
1421 return tmp;
1422 }
1423
1424 /*
1425 ** gmtsub is to gmtime as localsub is to localtime.
1426 */
1427
1428 static struct tm *
1429 gmtsub(const timezone_t sp, const time_t *const timep, const long offset,
1430 struct tm *const tmp)
1431 {
1432 struct tm * result;
1433 #ifdef _REENTRANT
1434 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1435 #endif
1436
1437 mutex_lock(&gmt_mutex);
1438 if (!gmt_is_set) {
1439 int saveerrno;
1440 gmt_is_set = TRUE;
1441 saveerrno = errno;
1442 gmtptr = calloc(1, sizeof *gmtptr);
1443 errno = saveerrno;
1444 if (gmtptr != NULL)
1445 gmtload(gmtptr);
1446 }
1447 mutex_unlock(&gmt_mutex);
1448 result = timesub(gmtptr, timep, offset, tmp);
1449 #ifdef TM_ZONE
1450 /*
1451 ** Could get fancy here and deliver something such as
1452 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1453 ** but this is no time for a treasure hunt.
1454 */
1455 if (offset != 0)
1456 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1457 else {
1458 if (gmtptr == NULL)
1459 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1460 else tmp->TM_ZONE = gmtptr->chars;
1461 }
1462 #endif /* defined TM_ZONE */
1463 return result;
1464 }
1465
1466 struct tm *
1467 gmtime(const time_t *const timep)
1468 {
1469 struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1470
1471 if (tmp == NULL)
1472 errno = EOVERFLOW;
1473
1474 return tmp;
1475 }
1476
1477 /*
1478 ** Re-entrant version of gmtime.
1479 */
1480
1481 struct tm *
1482 gmtime_r(const time_t * const timep, struct tm *tmp)
1483 {
1484 tmp = gmtsub(NULL, timep, 0L, tmp);
1485
1486 if (tmp == NULL)
1487 errno = EOVERFLOW;
1488
1489 return tmp;
1490 }
1491
1492 #ifdef STD_INSPIRED
1493
1494 struct tm *
1495 offtime(const time_t *const timep, long offset)
1496 {
1497 struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1498
1499 if (tmp == NULL)
1500 errno = EOVERFLOW;
1501
1502 return tmp;
1503 }
1504
1505 struct tm *
1506 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1507 {
1508 tmp = gmtsub(NULL, timep, offset, tmp);
1509
1510 if (tmp == NULL)
1511 errno = EOVERFLOW;
1512
1513 return tmp;
1514 }
1515
1516 #endif /* defined STD_INSPIRED */
1517
1518 /*
1519 ** Return the number of leap years through the end of the given year
1520 ** where, to make the math easy, the answer for year zero is defined as zero.
1521 */
1522
1523 static int
1524 leaps_thru_end_of(const int y)
1525 {
1526 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1527 -(leaps_thru_end_of(-(y + 1)) + 1);
1528 }
1529
1530 static struct tm *
1531 timesub(const timezone_t sp, const time_t *const timep, const long offset,
1532 struct tm *const tmp)
1533 {
1534 const struct lsinfo * lp;
1535 time_t tdays;
1536 int idays; /* unsigned would be so 2003 */
1537 long rem;
1538 int y;
1539 const int * ip;
1540 long corr;
1541 int hit;
1542 int i;
1543
1544 corr = 0;
1545 hit = 0;
1546 i = (sp == NULL) ? 0 : sp->leapcnt;
1547 while (--i >= 0) {
1548 lp = &sp->lsis[i];
1549 if (*timep >= lp->ls_trans) {
1550 if (*timep == lp->ls_trans) {
1551 hit = ((i == 0 && lp->ls_corr > 0) ||
1552 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1553 if (hit)
1554 while (i > 0 &&
1555 sp->lsis[i].ls_trans ==
1556 sp->lsis[i - 1].ls_trans + 1 &&
1557 sp->lsis[i].ls_corr ==
1558 sp->lsis[i - 1].ls_corr + 1) {
1559 ++hit;
1560 --i;
1561 }
1562 }
1563 corr = lp->ls_corr;
1564 break;
1565 }
1566 }
1567 y = EPOCH_YEAR;
1568 tdays = (time_t)(*timep / SECSPERDAY);
1569 rem = (long) (*timep - tdays * SECSPERDAY);
1570 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1571 int newy;
1572 time_t tdelta;
1573 int idelta;
1574 int leapdays;
1575
1576 tdelta = tdays / DAYSPERLYEAR;
1577 idelta = (int) tdelta;
1578 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1579 return NULL;
1580 if (idelta == 0)
1581 idelta = (tdays < 0) ? -1 : 1;
1582 newy = y;
1583 if (increment_overflow(&newy, idelta))
1584 return NULL;
1585 leapdays = leaps_thru_end_of(newy - 1) -
1586 leaps_thru_end_of(y - 1);
1587 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1588 tdays -= leapdays;
1589 y = newy;
1590 }
1591 {
1592 long seconds;
1593
1594 seconds = tdays * SECSPERDAY + 0.5;
1595 tdays = (time_t)(seconds / SECSPERDAY);
1596 rem += (long) (seconds - tdays * SECSPERDAY);
1597 }
1598 /*
1599 ** Given the range, we can now fearlessly cast...
1600 */
1601 idays = (int) tdays;
1602 rem += offset - corr;
1603 while (rem < 0) {
1604 rem += SECSPERDAY;
1605 --idays;
1606 }
1607 while (rem >= SECSPERDAY) {
1608 rem -= SECSPERDAY;
1609 ++idays;
1610 }
1611 while (idays < 0) {
1612 if (increment_overflow(&y, -1))
1613 return NULL;
1614 idays += year_lengths[isleap(y)];
1615 }
1616 while (idays >= year_lengths[isleap(y)]) {
1617 idays -= year_lengths[isleap(y)];
1618 if (increment_overflow(&y, 1))
1619 return NULL;
1620 }
1621 tmp->tm_year = y;
1622 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1623 return NULL;
1624 tmp->tm_yday = idays;
1625 /*
1626 ** The "extra" mods below avoid overflow problems.
1627 */
1628 tmp->tm_wday = EPOCH_WDAY +
1629 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1630 (DAYSPERNYEAR % DAYSPERWEEK) +
1631 leaps_thru_end_of(y - 1) -
1632 leaps_thru_end_of(EPOCH_YEAR - 1) +
1633 idays;
1634 tmp->tm_wday %= DAYSPERWEEK;
1635 if (tmp->tm_wday < 0)
1636 tmp->tm_wday += DAYSPERWEEK;
1637 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1638 rem %= SECSPERHOUR;
1639 tmp->tm_min = (int) (rem / SECSPERMIN);
1640 /*
1641 ** A positive leap second requires a special
1642 ** representation. This uses "... ??:59:60" et seq.
1643 */
1644 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1645 ip = mon_lengths[isleap(y)];
1646 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1647 idays -= ip[tmp->tm_mon];
1648 tmp->tm_mday = (int) (idays + 1);
1649 tmp->tm_isdst = 0;
1650 #ifdef TM_GMTOFF
1651 tmp->TM_GMTOFF = offset;
1652 #endif /* defined TM_GMTOFF */
1653 return tmp;
1654 }
1655
1656 char *
1657 ctime(const time_t *const timep)
1658 {
1659 /*
1660 ** Section 4.12.3.2 of X3.159-1989 requires that
1661 ** The ctime function converts the calendar time pointed to by timer
1662 ** to local time in the form of a string. It is equivalent to
1663 ** asctime(localtime(timer))
1664 */
1665 struct tm *rtm = localtime(timep);
1666 if (rtm == NULL)
1667 return NULL;
1668 return asctime(rtm);
1669 }
1670
1671 char *
1672 ctime_r(const time_t *const timep, char *buf)
1673 {
1674 struct tm mytm, *rtm;
1675
1676 rtm = localtime_r(timep, &mytm);
1677 if (rtm == NULL)
1678 return NULL;
1679 return asctime_r(rtm, buf);
1680 }
1681
1682 char *
1683 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1684 {
1685 struct tm mytm, *rtm;
1686
1687 rtm = localtime_rz(sp, timep, &mytm);
1688 if (rtm == NULL)
1689 return NULL;
1690 return asctime_r(rtm, buf);
1691 }
1692
1693 /*
1694 ** Adapted from code provided by Robert Elz, who writes:
1695 ** The "best" way to do mktime I think is based on an idea of Bob
1696 ** Kridle's (so its said...) from a long time ago.
1697 ** It does a binary search of the time_t space. Since time_t's are
1698 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1699 ** would still be very reasonable).
1700 */
1701
1702 #ifndef WRONG
1703 #define WRONG ((time_t)-1)
1704 #endif /* !defined WRONG */
1705
1706 /*
1707 ** Simplified normalize logic courtesy Paul Eggert.
1708 */
1709
1710 static int
1711 increment_overflow(int *const ip, int j)
1712 {
1713 int i = *ip;
1714
1715 /*
1716 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1717 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1718 ** If i < 0 there can only be overflow if i + j < INT_MIN
1719 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1720 */
1721 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1722 return TRUE;
1723 *ip += j;
1724 return FALSE;
1725 }
1726
1727 static int
1728 long_increment_overflow(long *const lp, int m)
1729 {
1730 long l = *lp;
1731
1732 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1733 return TRUE;
1734 *lp += m;
1735 return FALSE;
1736 }
1737
1738 static int
1739 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1740 {
1741 int tensdelta;
1742
1743 tensdelta = (*unitsptr >= 0) ?
1744 (*unitsptr / base) :
1745 (-1 - (-1 - *unitsptr) / base);
1746 *unitsptr -= tensdelta * base;
1747 return increment_overflow(tensptr, tensdelta);
1748 }
1749
1750 static int
1751 long_normalize_overflow(long *const tensptr, int *const unitsptr,
1752 const int base)
1753 {
1754 int tensdelta;
1755
1756 tensdelta = (*unitsptr >= 0) ?
1757 (*unitsptr / base) :
1758 (-1 - (-1 - *unitsptr) / base);
1759 *unitsptr -= tensdelta * base;
1760 return long_increment_overflow(tensptr, tensdelta);
1761 }
1762
1763 static int
1764 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1765 {
1766 int result;
1767
1768 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1769 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1770 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1771 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1772 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1773 result = atmp->tm_sec - btmp->tm_sec;
1774 return result;
1775 }
1776
1777 static time_t
1778 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1779 const long offset, int *const okayp, const int do_norm_secs)
1780 {
1781 int dir;
1782 int i, j;
1783 int saved_seconds;
1784 long li;
1785 time_t lo;
1786 time_t hi;
1787 #ifdef NO_ERROR_IN_DST_GAP
1788 time_t ilo;
1789 #endif
1790 long y;
1791 time_t newt;
1792 time_t t;
1793 struct tm yourtm, mytm;
1794
1795 *okayp = FALSE;
1796 yourtm = *tmp;
1797 #ifdef NO_ERROR_IN_DST_GAP
1798 again:
1799 #endif
1800 if (do_norm_secs) {
1801 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1802 SECSPERMIN))
1803 goto overflow;
1804 }
1805 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1806 goto overflow;
1807 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1808 goto overflow;
1809 y = yourtm.tm_year;
1810 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1811 goto overflow;
1812 /*
1813 ** Turn y into an actual year number for now.
1814 ** It is converted back to an offset from TM_YEAR_BASE later.
1815 */
1816 if (long_increment_overflow(&y, TM_YEAR_BASE))
1817 goto overflow;
1818 while (yourtm.tm_mday <= 0) {
1819 if (long_increment_overflow(&y, -1))
1820 goto overflow;
1821 li = y + (1 < yourtm.tm_mon);
1822 yourtm.tm_mday += year_lengths[isleap(li)];
1823 }
1824 while (yourtm.tm_mday > DAYSPERLYEAR) {
1825 li = y + (1 < yourtm.tm_mon);
1826 yourtm.tm_mday -= year_lengths[isleap(li)];
1827 if (long_increment_overflow(&y, 1))
1828 goto overflow;
1829 }
1830 for ( ; ; ) {
1831 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1832 if (yourtm.tm_mday <= i)
1833 break;
1834 yourtm.tm_mday -= i;
1835 if (++yourtm.tm_mon >= MONSPERYEAR) {
1836 yourtm.tm_mon = 0;
1837 if (long_increment_overflow(&y, 1))
1838 goto overflow;
1839 }
1840 }
1841 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1842 goto overflow;
1843 yourtm.tm_year = (int)y;
1844 if (yourtm.tm_year != y)
1845 goto overflow;
1846 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1847 saved_seconds = 0;
1848 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1849 /*
1850 ** We can't set tm_sec to 0, because that might push the
1851 ** time below the minimum representable time.
1852 ** Set tm_sec to 59 instead.
1853 ** This assumes that the minimum representable time is
1854 ** not in the same minute that a leap second was deleted from,
1855 ** which is a safer assumption than using 58 would be.
1856 */
1857 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1858 goto overflow;
1859 saved_seconds = yourtm.tm_sec;
1860 yourtm.tm_sec = SECSPERMIN - 1;
1861 } else {
1862 saved_seconds = yourtm.tm_sec;
1863 yourtm.tm_sec = 0;
1864 }
1865 /*
1866 ** Do a binary search (this works whatever time_t's type is).
1867 */
1868 /* LINTED const not */
1869 if (!TYPE_SIGNED(time_t)) {
1870 lo = 0;
1871 hi = lo - 1;
1872 /* LINTED const not */
1873 } else if (!TYPE_INTEGRAL(time_t)) {
1874 /* CONSTCOND */
1875 if (sizeof(time_t) > sizeof(float))
1876 /* LINTED assumed double */
1877 hi = (time_t) DBL_MAX;
1878 /* LINTED assumed float */
1879 else hi = (time_t) FLT_MAX;
1880 lo = -hi;
1881 } else {
1882 lo = 1;
1883 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1884 lo *= 2;
1885 hi = -(lo + 1);
1886 }
1887 #ifdef NO_ERROR_IN_DST_GAP
1888 ilo = lo;
1889 #endif
1890 for ( ; ; ) {
1891 t = lo / 2 + hi / 2;
1892 if (t < lo)
1893 t = lo;
1894 else if (t > hi)
1895 t = hi;
1896 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1897 /*
1898 ** Assume that t is too extreme to be represented in
1899 ** a struct tm; arrange things so that it is less
1900 ** extreme on the next pass.
1901 */
1902 dir = (t > 0) ? 1 : -1;
1903 } else dir = tmcomp(&mytm, &yourtm);
1904 if (dir != 0) {
1905 if (t == lo) {
1906 ++t;
1907 if (t <= lo)
1908 goto overflow;
1909 ++lo;
1910 } else if (t == hi) {
1911 --t;
1912 if (t >= hi)
1913 goto overflow;
1914 --hi;
1915 }
1916 #ifdef NO_ERROR_IN_DST_GAP
1917 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1918 do_norm_secs) {
1919 for (i = sp->typecnt - 1; i >= 0; --i) {
1920 for (j = sp->typecnt - 1; j >= 0; --j) {
1921 time_t off;
1922 if (sp->ttis[j].tt_isdst ==
1923 sp->ttis[i].tt_isdst)
1924 continue;
1925 off = sp->ttis[j].tt_gmtoff -
1926 sp->ttis[i].tt_gmtoff;
1927 yourtm.tm_sec += off < 0 ?
1928 -off : off;
1929 goto again;
1930 }
1931 }
1932 }
1933 #endif
1934 if (lo > hi)
1935 goto invalid;
1936 if (dir > 0)
1937 hi = t;
1938 else lo = t;
1939 continue;
1940 }
1941 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1942 break;
1943 /*
1944 ** Right time, wrong type.
1945 ** Hunt for right time, right type.
1946 ** It's okay to guess wrong since the guess
1947 ** gets checked.
1948 */
1949 if (sp == NULL)
1950 goto invalid;
1951 for (i = sp->typecnt - 1; i >= 0; --i) {
1952 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1953 continue;
1954 for (j = sp->typecnt - 1; j >= 0; --j) {
1955 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1956 continue;
1957 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
1958 sp->ttis[i].tt_gmtoff);
1959 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1960 continue;
1961 if (tmcomp(&mytm, &yourtm) != 0)
1962 continue;
1963 if (mytm.tm_isdst != yourtm.tm_isdst)
1964 continue;
1965 /*
1966 ** We have a match.
1967 */
1968 t = newt;
1969 goto label;
1970 }
1971 }
1972 goto invalid;
1973 }
1974 label:
1975 newt = t + saved_seconds;
1976 if ((newt < t) != (saved_seconds < 0))
1977 goto overflow;
1978 t = newt;
1979 if ((*funcp)(sp, &t, offset, tmp)) {
1980 *okayp = TRUE;
1981 return t;
1982 }
1983 overflow:
1984 errno = EOVERFLOW;
1985 return WRONG;
1986 invalid:
1987 errno = EINVAL;
1988 return WRONG;
1989 }
1990
1991 static time_t
1992 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1993 const long offset, int *const okayp)
1994 {
1995 time_t t;
1996
1997 /*
1998 ** First try without normalization of seconds
1999 ** (in case tm_sec contains a value associated with a leap second).
2000 ** If that fails, try with normalization of seconds.
2001 */
2002 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2003 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2004 }
2005
2006 static time_t
2007 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2008 const long offset)
2009 {
2010 time_t t;
2011 int samei, otheri;
2012 int sameind, otherind;
2013 int i;
2014 int nseen;
2015 int seen[TZ_MAX_TYPES];
2016 int types[TZ_MAX_TYPES];
2017 int okay;
2018
2019 if (tmp == NULL) {
2020 errno = EINVAL;
2021 return WRONG;
2022 }
2023 if (tmp->tm_isdst > 1)
2024 tmp->tm_isdst = 1;
2025 t = time2(sp, tmp, funcp, offset, &okay);
2026 #ifdef PCTS
2027 /*
2028 ** PCTS code courtesy Grant Sullivan.
2029 */
2030 if (okay)
2031 return t;
2032 if (tmp->tm_isdst < 0)
2033 tmp->tm_isdst = 0; /* reset to std and try again */
2034 #endif /* defined PCTS */
2035 #ifndef PCTS
2036 if (okay || tmp->tm_isdst < 0)
2037 return t;
2038 #endif /* !defined PCTS */
2039 /*
2040 ** We're supposed to assume that somebody took a time of one type
2041 ** and did some math on it that yielded a "struct tm" that's bad.
2042 ** We try to divine the type they started from and adjust to the
2043 ** type they need.
2044 */
2045 if (sp == NULL) {
2046 errno = EINVAL;
2047 return WRONG;
2048 }
2049 for (i = 0; i < sp->typecnt; ++i)
2050 seen[i] = FALSE;
2051 nseen = 0;
2052 for (i = sp->timecnt - 1; i >= 0; --i)
2053 if (!seen[sp->types[i]]) {
2054 seen[sp->types[i]] = TRUE;
2055 types[nseen++] = sp->types[i];
2056 }
2057 for (sameind = 0; sameind < nseen; ++sameind) {
2058 samei = types[sameind];
2059 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2060 continue;
2061 for (otherind = 0; otherind < nseen; ++otherind) {
2062 otheri = types[otherind];
2063 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2064 continue;
2065 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2066 sp->ttis[samei].tt_gmtoff);
2067 tmp->tm_isdst = !tmp->tm_isdst;
2068 t = time2(sp, tmp, funcp, offset, &okay);
2069 if (okay)
2070 return t;
2071 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2072 sp->ttis[samei].tt_gmtoff);
2073 tmp->tm_isdst = !tmp->tm_isdst;
2074 }
2075 }
2076 errno = EOVERFLOW;
2077 return WRONG;
2078 }
2079
2080 time_t
2081 mktime_z(const timezone_t sp, struct tm *const tmp)
2082 {
2083 time_t t;
2084 if (sp == NULL)
2085 t = time1(NULL, tmp, gmtsub, 0L);
2086 else
2087 t = time1(sp, tmp, localsub, 0L);
2088 return t;
2089 }
2090
2091 time_t
2092 mktime(struct tm *const tmp)
2093 {
2094 time_t result;
2095
2096 rwlock_wrlock(&lcl_lock);
2097 tzset_unlocked();
2098 result = mktime_z(lclptr, tmp);
2099 rwlock_unlock(&lcl_lock);
2100 return result;
2101 }
2102
2103 #ifdef STD_INSPIRED
2104
2105 time_t
2106 timelocal_z(const timezone_t sp, struct tm *const tmp)
2107 {
2108 if (tmp != NULL)
2109 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2110 return mktime_z(sp, tmp);
2111 }
2112
2113 time_t
2114 timelocal(struct tm *const tmp)
2115 {
2116 if (tmp != NULL)
2117 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2118 return mktime(tmp);
2119 }
2120
2121 time_t
2122 timegm(struct tm *const tmp)
2123 {
2124 time_t t;
2125
2126 if (tmp != NULL)
2127 tmp->tm_isdst = 0;
2128 t = time1(gmtptr, tmp, gmtsub, 0L);
2129 return t;
2130 }
2131
2132 time_t
2133 timeoff(struct tm *const tmp, const long offset)
2134 {
2135 time_t t;
2136
2137 if (tmp != NULL)
2138 tmp->tm_isdst = 0;
2139 t = time1(gmtptr, tmp, gmtsub, offset);
2140 return t;
2141 }
2142
2143 #endif /* defined STD_INSPIRED */
2144
2145 #ifdef CMUCS
2146
2147 /*
2148 ** The following is supplied for compatibility with
2149 ** previous versions of the CMUCS runtime library.
2150 */
2151
2152 long
2153 gtime(struct tm *const tmp)
2154 {
2155 const time_t t = mktime(tmp);
2156
2157 if (t == WRONG)
2158 return -1;
2159 return t;
2160 }
2161
2162 #endif /* defined CMUCS */
2163
2164 /*
2165 ** XXX--is the below the right way to conditionalize??
2166 */
2167
2168 #ifdef STD_INSPIRED
2169
2170 /*
2171 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2172 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2173 ** is not the case if we are accounting for leap seconds.
2174 ** So, we provide the following conversion routines for use
2175 ** when exchanging timestamps with POSIX conforming systems.
2176 */
2177
2178 static long
2179 leapcorr(const timezone_t sp, time_t *timep)
2180 {
2181 struct lsinfo * lp;
2182 int i;
2183
2184 i = sp->leapcnt;
2185 while (--i >= 0) {
2186 lp = &sp->lsis[i];
2187 if (*timep >= lp->ls_trans)
2188 return lp->ls_corr;
2189 }
2190 return 0;
2191 }
2192
2193 time_t
2194 time2posix_z(const timezone_t sp, time_t t)
2195 {
2196 return (time_t)(t - leapcorr(sp, &t));
2197 }
2198
2199 time_t
2200 time2posix(time_t t)
2201 {
2202 time_t result;
2203 rwlock_wrlock(&lcl_lock);
2204 tzset_unlocked();
2205 result = (time_t)(t - leapcorr(lclptr, &t));
2206 rwlock_unlock(&lcl_lock);
2207 return (result);
2208 }
2209
2210 time_t
2211 posix2time_z(const timezone_t sp, time_t t)
2212 {
2213 time_t x;
2214 time_t y;
2215
2216 /*
2217 ** For a positive leap second hit, the result
2218 ** is not unique. For a negative leap second
2219 ** hit, the corresponding time doesn't exist,
2220 ** so we return an adjacent second.
2221 */
2222 x = (time_t)(t + leapcorr(sp, &t));
2223 y = (time_t)(x - leapcorr(sp, &x));
2224 if (y < t) {
2225 do {
2226 x++;
2227 y = (time_t)(x - leapcorr(sp, &x));
2228 } while (y < t);
2229 if (t != y) {
2230 return x - 1;
2231 }
2232 } else if (y > t) {
2233 do {
2234 --x;
2235 y = (time_t)(x - leapcorr(sp, &x));
2236 } while (y > t);
2237 if (t != y) {
2238 return x + 1;
2239 }
2240 }
2241 return x;
2242 }
2243
2244
2245
2246 time_t
2247 posix2time(time_t t)
2248 {
2249 time_t result;
2250
2251 rwlock_wrlock(&lcl_lock);
2252 tzset_unlocked();
2253 result = posix2time_z(lclptr, t);
2254 rwlock_unlock(&lcl_lock);
2255 return result;
2256 }
2257
2258 #endif /* defined STD_INSPIRED */
2259