localtime.c revision 1.73 1 /* $NetBSD: localtime.c,v 1.73 2013/03/02 21:24:28 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.73 2013/03/02 21:24:28 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 #endif
34
35 #include "float.h" /* for FLT_MAX and DBL_MAX */
36
37 #ifndef TZ_ABBR_MAX_LEN
38 #define TZ_ABBR_MAX_LEN 16
39 #endif /* !defined TZ_ABBR_MAX_LEN */
40
41 #ifndef TZ_ABBR_CHAR_SET
42 #define TZ_ABBR_CHAR_SET \
43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 #endif /* !defined TZ_ABBR_CHAR_SET */
45
46 #ifndef TZ_ABBR_ERR_CHAR
47 #define TZ_ABBR_ERR_CHAR '_'
48 #endif /* !defined TZ_ABBR_ERR_CHAR */
49
50 /*
51 ** SunOS 4.1.1 headers lack O_BINARY.
52 */
53
54 #ifdef O_BINARY
55 #define OPEN_MODE (O_RDONLY | O_BINARY)
56 #endif /* defined O_BINARY */
57 #ifndef O_BINARY
58 #define OPEN_MODE O_RDONLY
59 #endif /* !defined O_BINARY */
60
61 #ifndef WILDABBR
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 ** 1. They might reference tzname[0] before calling tzset (explicitly
65 ** or implicitly).
66 ** 2. They might reference tzname[1] before calling tzset (explicitly
67 ** or implicitly).
68 ** 3. They might reference tzname[1] after setting to a time zone
69 ** in which Daylight Saving Time is never observed.
70 ** 4. They might reference tzname[0] after setting to a time zone
71 ** in which Standard Time is never observed.
72 ** 5. They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR " "
82 #endif /* !defined WILDABBR */
83
84 static const char wildabbr[] = WILDABBR;
85
86 static const char gmt[] = "GMT";
87
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98
99 struct ttinfo { /* time type information */
100 long tt_gmtoff; /* UTC offset in seconds */
101 int tt_isdst; /* used to set tm_isdst */
102 int tt_abbrind; /* abbreviation list index */
103 int tt_ttisstd; /* TRUE if transition is std time */
104 int tt_ttisgmt; /* TRUE if transition is UTC */
105 };
106
107 struct lsinfo { /* leap second information */
108 time_t ls_trans; /* transition time */
109 long ls_corr; /* correction to apply */
110 };
111
112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX 255
119 #endif /* !defined TZNAME_MAX */
120
121 struct __state {
122 int leapcnt;
123 int timecnt;
124 int typecnt;
125 int charcnt;
126 int goback;
127 int goahead;
128 time_t ats[TZ_MAX_TIMES];
129 unsigned char types[TZ_MAX_TIMES];
130 struct ttinfo ttis[TZ_MAX_TYPES];
131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
132 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
133 struct lsinfo lsis[TZ_MAX_LEAPS];
134 };
135
136 struct rule {
137 int r_type; /* type of rule--see below */
138 int r_day; /* day number of rule */
139 int r_week; /* week number of rule */
140 int r_mon; /* month number of rule */
141 long r_time; /* transition time of rule */
142 };
143
144 #define JULIAN_DAY 0 /* Jn - Julian day */
145 #define DAY_OF_YEAR 1 /* n - day of year */
146 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
147
148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
149 long offset, struct tm *tmp);
150
151 /*
152 ** Prototypes for static functions.
153 */
154
155 static long detzcode(const char * codep);
156 static time_t detzcode64(const char * codep);
157 static int differ_by_repeat(time_t t1, time_t t0);
158 static const char * getzname(const char * strp) __pure;
159 static const char * getqzname(const char * strp, const int delim) __pure;
160 static const char * getnum(const char * strp, int * nump, int min,
161 int max);
162 static const char * getsecs(const char * strp, long * secsp);
163 static const char * getoffset(const char * strp, long * offsetp);
164 static const char * getrule(const char * strp, struct rule * rulep);
165 static void gmtload(timezone_t sp);
166 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
167 long offset, struct tm * tmp);
168 static struct tm * localsub(const timezone_t sp, const time_t *timep,
169 long offset, struct tm *tmp);
170 static int increment_overflow(int * number, int delta);
171 static int leaps_thru_end_of(int y) __pure;
172 static int long_increment_overflow(long * number, int delta);
173 static int long_normalize_overflow(long * tensptr,
174 int * unitsptr, int base);
175 static int normalize_overflow(int * tensptr, int * unitsptr,
176 int base);
177 static void settzname(void);
178 static time_t time1(const timezone_t sp, struct tm * const tmp,
179 subfun_t funcp, const long offset);
180 static time_t time2(const timezone_t sp, struct tm * const tmp,
181 subfun_t funcp,
182 const long offset, int *const okayp);
183 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
184 subfun_t funcp, const long offset,
185 int *const okayp, const int do_norm_secs);
186 static struct tm * timesub(const timezone_t sp, const time_t * timep,
187 long offset, struct tm * tmp);
188 static int tmcomp(const struct tm * atmp,
189 const struct tm * btmp);
190 static time_t transtime(time_t janfirst, int year,
191 const struct rule * rulep, long offset) __pure;
192 static int typesequiv(const timezone_t sp, int a, int b);
193 static int tzload(timezone_t sp, const char * name,
194 int doextend);
195 static int tzparse(timezone_t sp, const char * name,
196 int lastditch);
197 static void tzset_unlocked(void);
198 static void tzsetwall_unlocked(void);
199 static long leapcorr(const timezone_t sp, time_t * timep);
200
201 static timezone_t lclptr;
202 static timezone_t gmtptr;
203
204 #ifndef TZ_STRLEN_MAX
205 #define TZ_STRLEN_MAX 255
206 #endif /* !defined TZ_STRLEN_MAX */
207
208 static char lcl_TZname[TZ_STRLEN_MAX + 1];
209 static int lcl_is_set;
210 static int gmt_is_set;
211
212 #if !defined(__LIBC12_SOURCE__)
213
214 __aconst char * tzname[2] = {
215 (__aconst char *)__UNCONST(wildabbr),
216 (__aconst char *)__UNCONST(wildabbr)
217 };
218
219 #else
220
221 extern __aconst char * tzname[2];
222
223 #endif
224
225 #ifdef _REENTRANT
226 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
227 #endif
228
229 /*
230 ** Section 4.12.3 of X3.159-1989 requires that
231 ** Except for the strftime function, these functions [asctime,
232 ** ctime, gmtime, localtime] return values in one of two static
233 ** objects: a broken-down time structure and an array of char.
234 ** Thanks to Paul Eggert for noting this.
235 */
236
237 static struct tm tm;
238
239 #ifdef USG_COMPAT
240 #if !defined(__LIBC12_SOURCE__)
241 long timezone = 0;
242 int daylight = 0;
243 #else
244 extern int daylight;
245 extern long timezone __RENAME(__timezone13);
246 #endif
247 #endif /* defined USG_COMPAT */
248
249 #ifdef ALTZONE
250 time_t altzone = 0;
251 #endif /* defined ALTZONE */
252
253 static long
254 detzcode(const char *const codep)
255 {
256 long result;
257 int i;
258
259 result = (codep[0] & 0x80) ? ~0L : 0;
260 for (i = 0; i < 4; ++i)
261 result = (result << 8) | (codep[i] & 0xff);
262 return result;
263 }
264
265 static time_t
266 detzcode64(const char *const codep)
267 {
268 time_t result;
269 int i;
270
271 result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
272 for (i = 0; i < 8; ++i)
273 result = result * 256 + (codep[i] & 0xff);
274 return result;
275 }
276
277 const char *
278 tzgetname(const timezone_t sp, int isdst)
279 {
280 int i;
281 for (i = 0; i < sp->timecnt; ++i) {
282 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
283
284 if (ttisp->tt_isdst == isdst)
285 return &sp->chars[ttisp->tt_abbrind];
286 }
287 return NULL;
288 }
289
290 static void
291 settzname_z(timezone_t sp)
292 {
293 int i;
294
295 /*
296 ** Scrub the abbreviations.
297 ** First, replace bogus characters.
298 */
299 for (i = 0; i < sp->charcnt; ++i)
300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
301 sp->chars[i] = TZ_ABBR_ERR_CHAR;
302 /*
303 ** Second, truncate long abbreviations.
304 */
305 for (i = 0; i < sp->typecnt; ++i) {
306 const struct ttinfo * const ttisp = &sp->ttis[i];
307 char * cp = &sp->chars[ttisp->tt_abbrind];
308
309 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
310 strcmp(cp, GRANDPARENTED) != 0)
311 *(cp + TZ_ABBR_MAX_LEN) = '\0';
312 }
313 }
314
315 static void
316 settzname(void)
317 {
318 timezone_t const sp = lclptr;
319 int i;
320
321 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
322 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
323 #ifdef USG_COMPAT
324 daylight = 0;
325 timezone = 0;
326 #endif /* defined USG_COMPAT */
327 #ifdef ALTZONE
328 altzone = 0;
329 #endif /* defined ALTZONE */
330 if (sp == NULL) {
331 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
332 return;
333 }
334 /*
335 ** And to get the latest zone names into tzname. . .
336 */
337 for (i = 0; i < sp->typecnt; ++i) {
338 const struct ttinfo * const ttisp = &sp->ttis[i];
339
340 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
341 #ifdef USG_COMPAT
342 if (ttisp->tt_isdst)
343 daylight = 1;
344 if (!ttisp->tt_isdst)
345 timezone = -(ttisp->tt_gmtoff);
346 #endif /* defined USG_COMPAT */
347 #ifdef ALTZONE
348 if (ttisp->tt_isdst)
349 altzone = -(ttisp->tt_gmtoff);
350 #endif /* defined ALTZONE */
351 }
352 settzname_z(sp);
353 }
354
355 static int
356 differ_by_repeat(const time_t t1, const time_t t0)
357 {
358 if (TYPE_INTEGRAL(time_t) &&
359 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
360 return 0;
361 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
362 }
363
364 static int
365 tzload(timezone_t sp, const char *name, const int doextend)
366 {
367 const char * p;
368 int i;
369 int fid;
370 int stored;
371 ssize_t nread;
372 typedef union {
373 struct tzhead tzhead;
374 char buf[2 * sizeof(struct tzhead) +
375 2 * sizeof *sp +
376 4 * TZ_MAX_TIMES];
377 } u_t;
378 u_t * up;
379
380 up = calloc(1, sizeof *up);
381 if (up == NULL)
382 return -1;
383
384 sp->goback = sp->goahead = FALSE;
385 if (name == NULL && (name = TZDEFAULT) == NULL)
386 goto oops;
387 {
388 int doaccess;
389 /*
390 ** Section 4.9.1 of the C standard says that
391 ** "FILENAME_MAX expands to an integral constant expression
392 ** that is the size needed for an array of char large enough
393 ** to hold the longest file name string that the implementation
394 ** guarantees can be opened."
395 */
396 char fullname[FILENAME_MAX + 1];
397
398 if (name[0] == ':')
399 ++name;
400 doaccess = name[0] == '/';
401 if (!doaccess) {
402 if ((p = TZDIR) == NULL)
403 goto oops;
404 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
405 goto oops;
406 (void) strcpy(fullname, p); /* XXX strcpy is safe */
407 (void) strcat(fullname, "/"); /* XXX strcat is safe */
408 (void) strcat(fullname, name); /* XXX strcat is safe */
409 /*
410 ** Set doaccess if '.' (as in "../") shows up in name.
411 */
412 if (strchr(name, '.') != NULL)
413 doaccess = TRUE;
414 name = fullname;
415 }
416 if (doaccess && access(name, R_OK) != 0)
417 goto oops;
418 /*
419 * XXX potential security problem here if user of a set-id
420 * program has set TZ (which is passed in as name) here,
421 * and uses a race condition trick to defeat the access(2)
422 * above.
423 */
424 if ((fid = open(name, OPEN_MODE)) == -1)
425 goto oops;
426 }
427 nread = read(fid, up->buf, sizeof up->buf);
428 if (close(fid) < 0 || nread <= 0)
429 goto oops;
430 for (stored = 4; stored <= 8; stored *= 2) {
431 int ttisstdcnt;
432 int ttisgmtcnt;
433
434 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
435 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
436 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
437 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
438 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
439 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
440 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
441 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
442 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
443 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
444 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
445 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
446 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
447 goto oops;
448 if (nread - (p - up->buf) <
449 sp->timecnt * stored + /* ats */
450 sp->timecnt + /* types */
451 sp->typecnt * 6 + /* ttinfos */
452 sp->charcnt + /* chars */
453 sp->leapcnt * (stored + 4) + /* lsinfos */
454 ttisstdcnt + /* ttisstds */
455 ttisgmtcnt) /* ttisgmts */
456 goto oops;
457 for (i = 0; i < sp->timecnt; ++i) {
458 sp->ats[i] = (time_t)((stored == 4) ?
459 detzcode(p) : detzcode64(p));
460 p += stored;
461 }
462 for (i = 0; i < sp->timecnt; ++i) {
463 sp->types[i] = (unsigned char) *p++;
464 if (sp->types[i] >= sp->typecnt)
465 goto oops;
466 }
467 for (i = 0; i < sp->typecnt; ++i) {
468 struct ttinfo * ttisp;
469
470 ttisp = &sp->ttis[i];
471 ttisp->tt_gmtoff = detzcode(p);
472 p += 4;
473 ttisp->tt_isdst = (unsigned char) *p++;
474 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
475 goto oops;
476 ttisp->tt_abbrind = (unsigned char) *p++;
477 if (ttisp->tt_abbrind < 0 ||
478 ttisp->tt_abbrind > sp->charcnt)
479 goto oops;
480 }
481 for (i = 0; i < sp->charcnt; ++i)
482 sp->chars[i] = *p++;
483 sp->chars[i] = '\0'; /* ensure '\0' at end */
484 for (i = 0; i < sp->leapcnt; ++i) {
485 struct lsinfo * lsisp;
486
487 lsisp = &sp->lsis[i];
488 lsisp->ls_trans = (time_t)((stored == 4) ?
489 detzcode(p) : detzcode64(p));
490 p += stored;
491 lsisp->ls_corr = detzcode(p);
492 p += 4;
493 }
494 for (i = 0; i < sp->typecnt; ++i) {
495 struct ttinfo * ttisp;
496
497 ttisp = &sp->ttis[i];
498 if (ttisstdcnt == 0)
499 ttisp->tt_ttisstd = FALSE;
500 else {
501 ttisp->tt_ttisstd = *p++;
502 if (ttisp->tt_ttisstd != TRUE &&
503 ttisp->tt_ttisstd != FALSE)
504 goto oops;
505 }
506 }
507 for (i = 0; i < sp->typecnt; ++i) {
508 struct ttinfo * ttisp;
509
510 ttisp = &sp->ttis[i];
511 if (ttisgmtcnt == 0)
512 ttisp->tt_ttisgmt = FALSE;
513 else {
514 ttisp->tt_ttisgmt = *p++;
515 if (ttisp->tt_ttisgmt != TRUE &&
516 ttisp->tt_ttisgmt != FALSE)
517 goto oops;
518 }
519 }
520 /*
521 ** Out-of-sort ats should mean we're running on a
522 ** signed time_t system but using a data file with
523 ** unsigned values (or vice versa).
524 */
525 for (i = 0; i < sp->timecnt; ++i)
526 if ((i < sp->timecnt - 1 &&
527 sp->ats[i] > sp->ats[i + 1]) ||
528 (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) &&
529 sp->ats[i] >
530 ((stored == 4) ? INT32_MAX : INT64_MAX))) {
531 if (TYPE_SIGNED(time_t)) {
532 /*
533 ** Ignore the end (easy).
534 */
535 sp->timecnt = i + 1;
536 } else {
537 /*
538 ** Ignore the beginning (harder).
539 */
540 int j;
541
542 /*
543 ** Keep the record right before the
544 ** epoch boundary,
545 ** but tweak it so that it starts
546 ** right with the epoch
547 ** (thanks to Doug Bailey).
548 */
549 sp->ats[i] = 0;
550 for (j = 0; j + i < sp->timecnt; ++j) {
551 sp->ats[j] = sp->ats[j + i];
552 sp->types[j] = sp->types[j + i];
553 }
554 sp->timecnt = j;
555 }
556 break;
557 }
558 /*
559 ** If this is an old file, we're done.
560 */
561 if (up->tzhead.tzh_version[0] == '\0')
562 break;
563 nread -= p - up->buf;
564 for (i = 0; i < nread; ++i)
565 up->buf[i] = p[i];
566 /*
567 ** If this is a narrow integer time_t system, we're done.
568 */
569 if (stored >= (int) sizeof(time_t)
570 /* CONSTCOND */
571 && TYPE_INTEGRAL(time_t))
572 break;
573 }
574 if (doextend && nread > 2 &&
575 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
576 sp->typecnt + 2 <= TZ_MAX_TYPES) {
577 struct __state ts;
578 int result;
579
580 up->buf[nread - 1] = '\0';
581 result = tzparse(&ts, &up->buf[1], FALSE);
582 if (result == 0 && ts.typecnt == 2 &&
583 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
584 for (i = 0; i < 2; ++i)
585 ts.ttis[i].tt_abbrind +=
586 sp->charcnt;
587 for (i = 0; i < ts.charcnt; ++i)
588 sp->chars[sp->charcnt++] =
589 ts.chars[i];
590 i = 0;
591 while (i < ts.timecnt &&
592 ts.ats[i] <=
593 sp->ats[sp->timecnt - 1])
594 ++i;
595 while (i < ts.timecnt &&
596 sp->timecnt < TZ_MAX_TIMES) {
597 sp->ats[sp->timecnt] =
598 ts.ats[i];
599 sp->types[sp->timecnt] =
600 sp->typecnt +
601 ts.types[i];
602 ++sp->timecnt;
603 ++i;
604 }
605 sp->ttis[sp->typecnt++] = ts.ttis[0];
606 sp->ttis[sp->typecnt++] = ts.ttis[1];
607 }
608 }
609 if (sp->timecnt > 1) {
610 for (i = 1; i < sp->timecnt; ++i)
611 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
612 differ_by_repeat(sp->ats[i], sp->ats[0])) {
613 sp->goback = TRUE;
614 break;
615 }
616 for (i = sp->timecnt - 2; i >= 0; --i)
617 if (typesequiv(sp, sp->types[sp->timecnt - 1],
618 sp->types[i]) &&
619 differ_by_repeat(sp->ats[sp->timecnt - 1],
620 sp->ats[i])) {
621 sp->goahead = TRUE;
622 break;
623 }
624 }
625 free(up);
626 return 0;
627 oops:
628 free(up);
629 return -1;
630 }
631
632 static int
633 typesequiv(const timezone_t sp, const int a, const int b)
634 {
635 int result;
636
637 if (sp == NULL ||
638 a < 0 || a >= sp->typecnt ||
639 b < 0 || b >= sp->typecnt)
640 result = FALSE;
641 else {
642 const struct ttinfo * ap = &sp->ttis[a];
643 const struct ttinfo * bp = &sp->ttis[b];
644 result = ap->tt_gmtoff == bp->tt_gmtoff &&
645 ap->tt_isdst == bp->tt_isdst &&
646 ap->tt_ttisstd == bp->tt_ttisstd &&
647 ap->tt_ttisgmt == bp->tt_ttisgmt &&
648 strcmp(&sp->chars[ap->tt_abbrind],
649 &sp->chars[bp->tt_abbrind]) == 0;
650 }
651 return result;
652 }
653
654 static const int mon_lengths[2][MONSPERYEAR] = {
655 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
656 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
657 };
658
659 static const int year_lengths[2] = {
660 DAYSPERNYEAR, DAYSPERLYEAR
661 };
662
663 /*
664 ** Given a pointer into a time zone string, scan until a character that is not
665 ** a valid character in a zone name is found. Return a pointer to that
666 ** character.
667 */
668
669 static const char *
670 getzname(const char *strp)
671 {
672 char c;
673
674 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
675 c != '+')
676 ++strp;
677 return strp;
678 }
679
680 /*
681 ** Given a pointer into an extended time zone string, scan until the ending
682 ** delimiter of the zone name is located. Return a pointer to the delimiter.
683 **
684 ** As with getzname above, the legal character set is actually quite
685 ** restricted, with other characters producing undefined results.
686 ** We don't do any checking here; checking is done later in common-case code.
687 */
688
689 static const char *
690 getqzname(const char *strp, const int delim)
691 {
692 int c;
693
694 while ((c = *strp) != '\0' && c != delim)
695 ++strp;
696 return strp;
697 }
698
699 /*
700 ** Given a pointer into a time zone string, extract a number from that string.
701 ** Check that the number is within a specified range; if it is not, return
702 ** NULL.
703 ** Otherwise, return a pointer to the first character not part of the number.
704 */
705
706 static const char *
707 getnum(const char *strp, int *const nump, const int min, const int max)
708 {
709 char c;
710 int num;
711
712 if (strp == NULL || !is_digit(c = *strp)) {
713 errno = EINVAL;
714 return NULL;
715 }
716 num = 0;
717 do {
718 num = num * 10 + (c - '0');
719 if (num > max) {
720 errno = EOVERFLOW;
721 return NULL; /* illegal value */
722 }
723 c = *++strp;
724 } while (is_digit(c));
725 if (num < min) {
726 errno = EINVAL;
727 return NULL; /* illegal value */
728 }
729 *nump = num;
730 return strp;
731 }
732
733 /*
734 ** Given a pointer into a time zone string, extract a number of seconds,
735 ** in hh[:mm[:ss]] form, from the string.
736 ** If any error occurs, return NULL.
737 ** Otherwise, return a pointer to the first character not part of the number
738 ** of seconds.
739 */
740
741 static const char *
742 getsecs(const char *strp, long *const secsp)
743 {
744 int num;
745
746 /*
747 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
748 ** "M10.4.6/26", which does not conform to Posix,
749 ** but which specifies the equivalent of
750 ** ``02:00 on the first Sunday on or after 23 Oct''.
751 */
752 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
753 if (strp == NULL)
754 return NULL;
755 *secsp = num * (long) SECSPERHOUR;
756 if (*strp == ':') {
757 ++strp;
758 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
759 if (strp == NULL)
760 return NULL;
761 *secsp += num * SECSPERMIN;
762 if (*strp == ':') {
763 ++strp;
764 /* `SECSPERMIN' allows for leap seconds. */
765 strp = getnum(strp, &num, 0, SECSPERMIN);
766 if (strp == NULL)
767 return NULL;
768 *secsp += num;
769 }
770 }
771 return strp;
772 }
773
774 /*
775 ** Given a pointer into a time zone string, extract an offset, in
776 ** [+-]hh[:mm[:ss]] form, from the string.
777 ** If any error occurs, return NULL.
778 ** Otherwise, return a pointer to the first character not part of the time.
779 */
780
781 static const char *
782 getoffset(const char *strp, long *const offsetp)
783 {
784 int neg = 0;
785
786 if (*strp == '-') {
787 neg = 1;
788 ++strp;
789 } else if (*strp == '+')
790 ++strp;
791 strp = getsecs(strp, offsetp);
792 if (strp == NULL)
793 return NULL; /* illegal time */
794 if (neg)
795 *offsetp = -*offsetp;
796 return strp;
797 }
798
799 /*
800 ** Given a pointer into a time zone string, extract a rule in the form
801 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
802 ** If a valid rule is not found, return NULL.
803 ** Otherwise, return a pointer to the first character not part of the rule.
804 */
805
806 static const char *
807 getrule(const char *strp, struct rule *const rulep)
808 {
809 if (*strp == 'J') {
810 /*
811 ** Julian day.
812 */
813 rulep->r_type = JULIAN_DAY;
814 ++strp;
815 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
816 } else if (*strp == 'M') {
817 /*
818 ** Month, week, day.
819 */
820 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
821 ++strp;
822 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
823 if (strp == NULL)
824 return NULL;
825 if (*strp++ != '.')
826 return NULL;
827 strp = getnum(strp, &rulep->r_week, 1, 5);
828 if (strp == NULL)
829 return NULL;
830 if (*strp++ != '.')
831 return NULL;
832 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
833 } else if (is_digit(*strp)) {
834 /*
835 ** Day of year.
836 */
837 rulep->r_type = DAY_OF_YEAR;
838 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
839 } else return NULL; /* invalid format */
840 if (strp == NULL)
841 return NULL;
842 if (*strp == '/') {
843 /*
844 ** Time specified.
845 */
846 ++strp;
847 strp = getsecs(strp, &rulep->r_time);
848 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
849 return strp;
850 }
851
852 /*
853 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
854 ** year, a rule, and the offset from UTC at the time that rule takes effect,
855 ** calculate the Epoch-relative time that rule takes effect.
856 */
857
858 static time_t
859 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
860 const long offset)
861 {
862 int leapyear;
863 time_t value;
864 int i;
865 int d, m1, yy0, yy1, yy2, dow;
866
867 INITIALIZE(value);
868 leapyear = isleap(year);
869 switch (rulep->r_type) {
870
871 case JULIAN_DAY:
872 /*
873 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
874 ** years.
875 ** In non-leap years, or if the day number is 59 or less, just
876 ** add SECSPERDAY times the day number-1 to the time of
877 ** January 1, midnight, to get the day.
878 */
879 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
880 if (leapyear && rulep->r_day >= 60)
881 value += SECSPERDAY;
882 break;
883
884 case DAY_OF_YEAR:
885 /*
886 ** n - day of year.
887 ** Just add SECSPERDAY times the day number to the time of
888 ** January 1, midnight, to get the day.
889 */
890 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
891 break;
892
893 case MONTH_NTH_DAY_OF_WEEK:
894 /*
895 ** Mm.n.d - nth "dth day" of month m.
896 */
897 value = janfirst;
898 for (i = 0; i < rulep->r_mon - 1; ++i)
899 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
900
901 /*
902 ** Use Zeller's Congruence to get day-of-week of first day of
903 ** month.
904 */
905 m1 = (rulep->r_mon + 9) % 12 + 1;
906 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
907 yy1 = yy0 / 100;
908 yy2 = yy0 % 100;
909 dow = ((26 * m1 - 2) / 10 +
910 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
911 if (dow < 0)
912 dow += DAYSPERWEEK;
913
914 /*
915 ** "dow" is the day-of-week of the first day of the month. Get
916 ** the day-of-month (zero-origin) of the first "dow" day of the
917 ** month.
918 */
919 d = rulep->r_day - dow;
920 if (d < 0)
921 d += DAYSPERWEEK;
922 for (i = 1; i < rulep->r_week; ++i) {
923 if (d + DAYSPERWEEK >=
924 mon_lengths[leapyear][rulep->r_mon - 1])
925 break;
926 d += DAYSPERWEEK;
927 }
928
929 /*
930 ** "d" is the day-of-month (zero-origin) of the day we want.
931 */
932 value += (time_t)(d * SECSPERDAY);
933 break;
934 }
935
936 /*
937 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
938 ** question. To get the Epoch-relative time of the specified local
939 ** time on that day, add the transition time and the current offset
940 ** from UTC.
941 */
942 return (time_t)(value + rulep->r_time + offset);
943 }
944
945 /*
946 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
947 ** appropriate.
948 */
949
950 static int
951 tzparse(timezone_t sp, const char *name, const int lastditch)
952 {
953 const char * stdname;
954 const char * dstname;
955 size_t stdlen;
956 size_t dstlen;
957 long stdoffset;
958 long dstoffset;
959 time_t * atp;
960 unsigned char * typep;
961 char * cp;
962 int load_result;
963
964 INITIALIZE(dstname);
965 stdname = name;
966 if (lastditch) {
967 stdlen = strlen(name); /* length of standard zone name */
968 name += stdlen;
969 if (stdlen >= sizeof sp->chars)
970 stdlen = (sizeof sp->chars) - 1;
971 stdoffset = 0;
972 } else {
973 if (*name == '<') {
974 name++;
975 stdname = name;
976 name = getqzname(name, '>');
977 if (*name != '>')
978 return (-1);
979 stdlen = name - stdname;
980 name++;
981 } else {
982 name = getzname(name);
983 stdlen = name - stdname;
984 }
985 if (*name == '\0')
986 return -1;
987 name = getoffset(name, &stdoffset);
988 if (name == NULL)
989 return -1;
990 }
991 load_result = tzload(sp, TZDEFRULES, FALSE);
992 if (load_result != 0)
993 sp->leapcnt = 0; /* so, we're off a little */
994 if (*name != '\0') {
995 if (*name == '<') {
996 dstname = ++name;
997 name = getqzname(name, '>');
998 if (*name != '>')
999 return -1;
1000 dstlen = name - dstname;
1001 name++;
1002 } else {
1003 dstname = name;
1004 name = getzname(name);
1005 dstlen = name - dstname; /* length of DST zone name */
1006 }
1007 if (*name != '\0' && *name != ',' && *name != ';') {
1008 name = getoffset(name, &dstoffset);
1009 if (name == NULL)
1010 return -1;
1011 } else dstoffset = stdoffset - SECSPERHOUR;
1012 if (*name == '\0' && load_result != 0)
1013 name = TZDEFRULESTRING;
1014 if (*name == ',' || *name == ';') {
1015 struct rule start;
1016 struct rule end;
1017 int year;
1018 time_t janfirst;
1019 time_t starttime;
1020 time_t endtime;
1021
1022 ++name;
1023 if ((name = getrule(name, &start)) == NULL)
1024 return -1;
1025 if (*name++ != ',')
1026 return -1;
1027 if ((name = getrule(name, &end)) == NULL)
1028 return -1;
1029 if (*name != '\0')
1030 return -1;
1031 sp->typecnt = 2; /* standard time and DST */
1032 /*
1033 ** Two transitions per year, from EPOCH_YEAR forward.
1034 */
1035 memset(sp->ttis, 0, sizeof(sp->ttis));
1036 sp->ttis[0].tt_gmtoff = -dstoffset;
1037 sp->ttis[0].tt_isdst = 1;
1038 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1039 sp->ttis[1].tt_gmtoff = -stdoffset;
1040 sp->ttis[1].tt_isdst = 0;
1041 sp->ttis[1].tt_abbrind = 0;
1042 atp = sp->ats;
1043 typep = sp->types;
1044 janfirst = 0;
1045 sp->timecnt = 0;
1046 for (year = EPOCH_YEAR;
1047 sp->timecnt + 2 <= TZ_MAX_TIMES;
1048 ++year) {
1049 time_t newfirst;
1050
1051 starttime = transtime(janfirst, year, &start,
1052 stdoffset);
1053 endtime = transtime(janfirst, year, &end,
1054 dstoffset);
1055 if (starttime > endtime) {
1056 *atp++ = endtime;
1057 *typep++ = 1; /* DST ends */
1058 *atp++ = starttime;
1059 *typep++ = 0; /* DST begins */
1060 } else {
1061 *atp++ = starttime;
1062 *typep++ = 0; /* DST begins */
1063 *atp++ = endtime;
1064 *typep++ = 1; /* DST ends */
1065 }
1066 sp->timecnt += 2;
1067 newfirst = janfirst;
1068 newfirst += (time_t)
1069 (year_lengths[isleap(year)] * SECSPERDAY);
1070 if (newfirst <= janfirst)
1071 break;
1072 janfirst = newfirst;
1073 }
1074 } else {
1075 long theirstdoffset;
1076 long theirdstoffset;
1077 long theiroffset;
1078 int isdst;
1079 int i;
1080 int j;
1081
1082 if (*name != '\0')
1083 return -1;
1084 /*
1085 ** Initial values of theirstdoffset and theirdstoffset.
1086 */
1087 theirstdoffset = 0;
1088 for (i = 0; i < sp->timecnt; ++i) {
1089 j = sp->types[i];
1090 if (!sp->ttis[j].tt_isdst) {
1091 theirstdoffset =
1092 -sp->ttis[j].tt_gmtoff;
1093 break;
1094 }
1095 }
1096 theirdstoffset = 0;
1097 for (i = 0; i < sp->timecnt; ++i) {
1098 j = sp->types[i];
1099 if (sp->ttis[j].tt_isdst) {
1100 theirdstoffset =
1101 -sp->ttis[j].tt_gmtoff;
1102 break;
1103 }
1104 }
1105 /*
1106 ** Initially we're assumed to be in standard time.
1107 */
1108 isdst = FALSE;
1109 theiroffset = theirstdoffset;
1110 /*
1111 ** Now juggle transition times and types
1112 ** tracking offsets as you do.
1113 */
1114 for (i = 0; i < sp->timecnt; ++i) {
1115 j = sp->types[i];
1116 sp->types[i] = sp->ttis[j].tt_isdst;
1117 if (sp->ttis[j].tt_ttisgmt) {
1118 /* No adjustment to transition time */
1119 } else {
1120 /*
1121 ** If summer time is in effect, and the
1122 ** transition time was not specified as
1123 ** standard time, add the summer time
1124 ** offset to the transition time;
1125 ** otherwise, add the standard time
1126 ** offset to the transition time.
1127 */
1128 /*
1129 ** Transitions from DST to DDST
1130 ** will effectively disappear since
1131 ** POSIX provides for only one DST
1132 ** offset.
1133 */
1134 if (isdst && !sp->ttis[j].tt_ttisstd) {
1135 sp->ats[i] += (time_t)
1136 (dstoffset - theirdstoffset);
1137 } else {
1138 sp->ats[i] += (time_t)
1139 (stdoffset - theirstdoffset);
1140 }
1141 }
1142 theiroffset = -sp->ttis[j].tt_gmtoff;
1143 if (!sp->ttis[j].tt_isdst)
1144 theirstdoffset = theiroffset;
1145 else theirdstoffset = theiroffset;
1146 }
1147 /*
1148 ** Finally, fill in ttis.
1149 ** ttisstd and ttisgmt need not be handled
1150 */
1151 memset(sp->ttis, 0, sizeof(sp->ttis));
1152 sp->ttis[0].tt_gmtoff = -stdoffset;
1153 sp->ttis[0].tt_isdst = FALSE;
1154 sp->ttis[0].tt_abbrind = 0;
1155 sp->ttis[1].tt_gmtoff = -dstoffset;
1156 sp->ttis[1].tt_isdst = TRUE;
1157 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1158 sp->typecnt = 2;
1159 }
1160 } else {
1161 dstlen = 0;
1162 sp->typecnt = 1; /* only standard time */
1163 sp->timecnt = 0;
1164 memset(sp->ttis, 0, sizeof(sp->ttis));
1165 sp->ttis[0].tt_gmtoff = -stdoffset;
1166 sp->ttis[0].tt_isdst = 0;
1167 sp->ttis[0].tt_abbrind = 0;
1168 }
1169 sp->charcnt = (int)(stdlen + 1);
1170 if (dstlen != 0)
1171 sp->charcnt += (int)(dstlen + 1);
1172 if ((size_t) sp->charcnt > sizeof sp->chars)
1173 return -1;
1174 cp = sp->chars;
1175 (void) strncpy(cp, stdname, stdlen);
1176 cp += stdlen;
1177 *cp++ = '\0';
1178 if (dstlen != 0) {
1179 (void) strncpy(cp, dstname, dstlen);
1180 *(cp + dstlen) = '\0';
1181 }
1182 return 0;
1183 }
1184
1185 static void
1186 gmtload(timezone_t sp)
1187 {
1188 if (tzload(sp, gmt, TRUE) != 0)
1189 (void) tzparse(sp, gmt, TRUE);
1190 }
1191
1192 timezone_t
1193 tzalloc(const char *name)
1194 {
1195 timezone_t sp = calloc(1, sizeof *sp);
1196 if (sp == NULL)
1197 return NULL;
1198 if (tzload(sp, name, TRUE) != 0) {
1199 free(sp);
1200 return NULL;
1201 }
1202 settzname_z(sp);
1203 return sp;
1204 }
1205
1206 void
1207 tzfree(const timezone_t sp)
1208 {
1209 free(sp);
1210 }
1211
1212 static void
1213 tzsetwall_unlocked(void)
1214 {
1215 if (lcl_is_set < 0)
1216 return;
1217 lcl_is_set = -1;
1218
1219 if (lclptr == NULL) {
1220 int saveerrno = errno;
1221 lclptr = calloc(1, sizeof *lclptr);
1222 errno = saveerrno;
1223 if (lclptr == NULL) {
1224 settzname(); /* all we can do */
1225 return;
1226 }
1227 }
1228 if (tzload(lclptr, NULL, TRUE) != 0)
1229 gmtload(lclptr);
1230 settzname();
1231 }
1232
1233 #ifndef STD_INSPIRED
1234 /*
1235 ** A non-static declaration of tzsetwall in a system header file
1236 ** may cause a warning about this upcoming static declaration...
1237 */
1238 static
1239 #endif /* !defined STD_INSPIRED */
1240 void
1241 tzsetwall(void)
1242 {
1243 rwlock_wrlock(&lcl_lock);
1244 tzsetwall_unlocked();
1245 rwlock_unlock(&lcl_lock);
1246 }
1247
1248 #ifndef STD_INSPIRED
1249 /*
1250 ** A non-static declaration of tzsetwall in a system header file
1251 ** may cause a warning about this upcoming static declaration...
1252 */
1253 static
1254 #endif /* !defined STD_INSPIRED */
1255 void
1256 tzset_unlocked(void)
1257 {
1258 const char * name;
1259
1260 name = getenv("TZ");
1261 if (name == NULL) {
1262 tzsetwall_unlocked();
1263 return;
1264 }
1265
1266 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1267 return;
1268 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1269 if (lcl_is_set)
1270 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1271
1272 if (lclptr == NULL) {
1273 int saveerrno = errno;
1274 lclptr = calloc(1, sizeof *lclptr);
1275 errno = saveerrno;
1276 if (lclptr == NULL) {
1277 settzname(); /* all we can do */
1278 return;
1279 }
1280 }
1281 if (*name == '\0') {
1282 /*
1283 ** User wants it fast rather than right.
1284 */
1285 lclptr->leapcnt = 0; /* so, we're off a little */
1286 lclptr->timecnt = 0;
1287 lclptr->typecnt = 0;
1288 lclptr->ttis[0].tt_isdst = 0;
1289 lclptr->ttis[0].tt_gmtoff = 0;
1290 lclptr->ttis[0].tt_abbrind = 0;
1291 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1292 } else if (tzload(lclptr, name, TRUE) != 0)
1293 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1294 (void) gmtload(lclptr);
1295 settzname();
1296 }
1297
1298 void
1299 tzset(void)
1300 {
1301 rwlock_wrlock(&lcl_lock);
1302 tzset_unlocked();
1303 rwlock_unlock(&lcl_lock);
1304 }
1305
1306 /*
1307 ** The easy way to behave "as if no library function calls" localtime
1308 ** is to not call it--so we drop its guts into "localsub", which can be
1309 ** freely called. (And no, the PANS doesn't require the above behavior--
1310 ** but it *is* desirable.)
1311 **
1312 ** The unused offset argument is for the benefit of mktime variants.
1313 */
1314
1315 /*ARGSUSED*/
1316 static struct tm *
1317 localsub(const timezone_t sp, const time_t * const timep, const long offset,
1318 struct tm *const tmp)
1319 {
1320 const struct ttinfo * ttisp;
1321 int i;
1322 struct tm * result;
1323 const time_t t = *timep;
1324
1325 if ((sp->goback && t < sp->ats[0]) ||
1326 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1327 time_t newt = t;
1328 time_t seconds;
1329 time_t tcycles;
1330 int_fast64_t icycles;
1331
1332 if (t < sp->ats[0])
1333 seconds = sp->ats[0] - t;
1334 else seconds = t - sp->ats[sp->timecnt - 1];
1335 --seconds;
1336 tcycles = (time_t)
1337 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1338 ++tcycles;
1339 icycles = tcycles;
1340 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1341 return NULL;
1342 seconds = (time_t) icycles;
1343 seconds *= YEARSPERREPEAT;
1344 seconds *= AVGSECSPERYEAR;
1345 if (t < sp->ats[0])
1346 newt += seconds;
1347 else newt -= seconds;
1348 if (newt < sp->ats[0] ||
1349 newt > sp->ats[sp->timecnt - 1])
1350 return NULL; /* "cannot happen" */
1351 result = localsub(sp, &newt, offset, tmp);
1352 if (result == tmp) {
1353 time_t newy;
1354
1355 newy = tmp->tm_year;
1356 if (t < sp->ats[0])
1357 newy -= (time_t)icycles * YEARSPERREPEAT;
1358 else newy += (time_t)icycles * YEARSPERREPEAT;
1359 tmp->tm_year = (int)newy;
1360 if (tmp->tm_year != newy)
1361 return NULL;
1362 }
1363 return result;
1364 }
1365 if (sp->timecnt == 0 || t < sp->ats[0]) {
1366 i = 0;
1367 while (sp->ttis[i].tt_isdst)
1368 if (++i >= sp->typecnt) {
1369 i = 0;
1370 break;
1371 }
1372 } else {
1373 int lo = 1;
1374 int hi = sp->timecnt;
1375
1376 while (lo < hi) {
1377 int mid = (lo + hi) / 2;
1378
1379 if (t < sp->ats[mid])
1380 hi = mid;
1381 else lo = mid + 1;
1382 }
1383 i = (int) sp->types[lo - 1];
1384 }
1385 ttisp = &sp->ttis[i];
1386 /*
1387 ** To get (wrong) behavior that's compatible with System V Release 2.0
1388 ** you'd replace the statement below with
1389 ** t += ttisp->tt_gmtoff;
1390 ** timesub(&t, 0L, sp, tmp);
1391 */
1392 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1393 tmp->tm_isdst = ttisp->tt_isdst;
1394 if (sp == lclptr)
1395 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1396 #ifdef TM_ZONE
1397 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1398 #endif /* defined TM_ZONE */
1399 return result;
1400 }
1401
1402 /*
1403 ** Re-entrant version of localtime.
1404 */
1405
1406 struct tm *
1407 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1408 {
1409 rwlock_rdlock(&lcl_lock);
1410 tzset_unlocked();
1411 tmp = localtime_rz(lclptr, timep, tmp);
1412 rwlock_unlock(&lcl_lock);
1413 return tmp;
1414 }
1415
1416 struct tm *
1417 localtime(const time_t *const timep)
1418 {
1419 return localtime_r(timep, &tm);
1420 }
1421
1422 struct tm *
1423 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1424 {
1425 if (sp == NULL)
1426 tmp = gmtsub(NULL, timep, 0L, tmp);
1427 else
1428 tmp = localsub(sp, timep, 0L, tmp);
1429 if (tmp == NULL)
1430 errno = EOVERFLOW;
1431 return tmp;
1432 }
1433
1434 /*
1435 ** gmtsub is to gmtime as localsub is to localtime.
1436 */
1437
1438 static struct tm *
1439 gmtsub(const timezone_t sp, const time_t *const timep, const long offset,
1440 struct tm *const tmp)
1441 {
1442 struct tm * result;
1443 #ifdef _REENTRANT
1444 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1445 #endif
1446
1447 mutex_lock(&gmt_mutex);
1448 if (!gmt_is_set) {
1449 int saveerrno;
1450 gmt_is_set = TRUE;
1451 saveerrno = errno;
1452 gmtptr = calloc(1, sizeof *gmtptr);
1453 errno = saveerrno;
1454 if (gmtptr != NULL)
1455 gmtload(gmtptr);
1456 }
1457 mutex_unlock(&gmt_mutex);
1458 result = timesub(gmtptr, timep, offset, tmp);
1459 #ifdef TM_ZONE
1460 /*
1461 ** Could get fancy here and deliver something such as
1462 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1463 ** but this is no time for a treasure hunt.
1464 */
1465 if (offset != 0)
1466 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1467 else {
1468 if (gmtptr == NULL)
1469 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1470 else tmp->TM_ZONE = gmtptr->chars;
1471 }
1472 #endif /* defined TM_ZONE */
1473 return result;
1474 }
1475
1476 struct tm *
1477 gmtime(const time_t *const timep)
1478 {
1479 struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
1480
1481 if (tmp == NULL)
1482 errno = EOVERFLOW;
1483
1484 return tmp;
1485 }
1486
1487 /*
1488 ** Re-entrant version of gmtime.
1489 */
1490
1491 struct tm *
1492 gmtime_r(const time_t * const timep, struct tm *tmp)
1493 {
1494 tmp = gmtsub(NULL, timep, 0L, tmp);
1495
1496 if (tmp == NULL)
1497 errno = EOVERFLOW;
1498
1499 return tmp;
1500 }
1501
1502 #ifdef STD_INSPIRED
1503
1504 struct tm *
1505 offtime(const time_t *const timep, long offset)
1506 {
1507 struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
1508
1509 if (tmp == NULL)
1510 errno = EOVERFLOW;
1511
1512 return tmp;
1513 }
1514
1515 struct tm *
1516 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1517 {
1518 tmp = gmtsub(NULL, timep, offset, tmp);
1519
1520 if (tmp == NULL)
1521 errno = EOVERFLOW;
1522
1523 return tmp;
1524 }
1525
1526 #endif /* defined STD_INSPIRED */
1527
1528 /*
1529 ** Return the number of leap years through the end of the given year
1530 ** where, to make the math easy, the answer for year zero is defined as zero.
1531 */
1532
1533 static int
1534 leaps_thru_end_of(const int y)
1535 {
1536 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1537 -(leaps_thru_end_of(-(y + 1)) + 1);
1538 }
1539
1540 static struct tm *
1541 timesub(const timezone_t sp, const time_t *const timep, const long offset,
1542 struct tm *const tmp)
1543 {
1544 const struct lsinfo * lp;
1545 time_t tdays;
1546 int idays; /* unsigned would be so 2003 */
1547 long rem;
1548 int y;
1549 const int * ip;
1550 long corr;
1551 int hit;
1552 int i;
1553
1554 corr = 0;
1555 hit = 0;
1556 i = (sp == NULL) ? 0 : sp->leapcnt;
1557 while (--i >= 0) {
1558 lp = &sp->lsis[i];
1559 if (*timep >= lp->ls_trans) {
1560 if (*timep == lp->ls_trans) {
1561 hit = ((i == 0 && lp->ls_corr > 0) ||
1562 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1563 if (hit)
1564 while (i > 0 &&
1565 sp->lsis[i].ls_trans ==
1566 sp->lsis[i - 1].ls_trans + 1 &&
1567 sp->lsis[i].ls_corr ==
1568 sp->lsis[i - 1].ls_corr + 1) {
1569 ++hit;
1570 --i;
1571 }
1572 }
1573 corr = lp->ls_corr;
1574 break;
1575 }
1576 }
1577 y = EPOCH_YEAR;
1578 tdays = (time_t)(*timep / SECSPERDAY);
1579 rem = (long) (*timep - tdays * SECSPERDAY);
1580 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1581 int newy;
1582 time_t tdelta;
1583 int idelta;
1584 int leapdays;
1585
1586 tdelta = tdays / DAYSPERLYEAR;
1587 idelta = (int) tdelta;
1588 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1589 return NULL;
1590 if (idelta == 0)
1591 idelta = (tdays < 0) ? -1 : 1;
1592 newy = y;
1593 if (increment_overflow(&newy, idelta))
1594 return NULL;
1595 leapdays = leaps_thru_end_of(newy - 1) -
1596 leaps_thru_end_of(y - 1);
1597 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1598 tdays -= leapdays;
1599 y = newy;
1600 }
1601 {
1602 long seconds;
1603
1604 seconds = tdays * SECSPERDAY + 0.5;
1605 tdays = (time_t)(seconds / SECSPERDAY);
1606 rem += (long) (seconds - tdays * SECSPERDAY);
1607 }
1608 /*
1609 ** Given the range, we can now fearlessly cast...
1610 */
1611 idays = (int) tdays;
1612 rem += offset - corr;
1613 while (rem < 0) {
1614 rem += SECSPERDAY;
1615 --idays;
1616 }
1617 while (rem >= SECSPERDAY) {
1618 rem -= SECSPERDAY;
1619 ++idays;
1620 }
1621 while (idays < 0) {
1622 if (increment_overflow(&y, -1))
1623 return NULL;
1624 idays += year_lengths[isleap(y)];
1625 }
1626 while (idays >= year_lengths[isleap(y)]) {
1627 idays -= year_lengths[isleap(y)];
1628 if (increment_overflow(&y, 1))
1629 return NULL;
1630 }
1631 tmp->tm_year = y;
1632 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1633 return NULL;
1634 tmp->tm_yday = idays;
1635 /*
1636 ** The "extra" mods below avoid overflow problems.
1637 */
1638 tmp->tm_wday = EPOCH_WDAY +
1639 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1640 (DAYSPERNYEAR % DAYSPERWEEK) +
1641 leaps_thru_end_of(y - 1) -
1642 leaps_thru_end_of(EPOCH_YEAR - 1) +
1643 idays;
1644 tmp->tm_wday %= DAYSPERWEEK;
1645 if (tmp->tm_wday < 0)
1646 tmp->tm_wday += DAYSPERWEEK;
1647 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1648 rem %= SECSPERHOUR;
1649 tmp->tm_min = (int) (rem / SECSPERMIN);
1650 /*
1651 ** A positive leap second requires a special
1652 ** representation. This uses "... ??:59:60" et seq.
1653 */
1654 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1655 ip = mon_lengths[isleap(y)];
1656 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1657 idays -= ip[tmp->tm_mon];
1658 tmp->tm_mday = (int) (idays + 1);
1659 tmp->tm_isdst = 0;
1660 #ifdef TM_GMTOFF
1661 tmp->TM_GMTOFF = offset;
1662 #endif /* defined TM_GMTOFF */
1663 return tmp;
1664 }
1665
1666 char *
1667 ctime(const time_t *const timep)
1668 {
1669 /*
1670 ** Section 4.12.3.2 of X3.159-1989 requires that
1671 ** The ctime function converts the calendar time pointed to by timer
1672 ** to local time in the form of a string. It is equivalent to
1673 ** asctime(localtime(timer))
1674 */
1675 struct tm *rtm = localtime(timep);
1676 if (rtm == NULL)
1677 return NULL;
1678 return asctime(rtm);
1679 }
1680
1681 char *
1682 ctime_r(const time_t *const timep, char *buf)
1683 {
1684 struct tm mytm, *rtm;
1685
1686 rtm = localtime_r(timep, &mytm);
1687 if (rtm == NULL)
1688 return NULL;
1689 return asctime_r(rtm, buf);
1690 }
1691
1692 char *
1693 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1694 {
1695 struct tm mytm, *rtm;
1696
1697 rtm = localtime_rz(sp, timep, &mytm);
1698 if (rtm == NULL)
1699 return NULL;
1700 return asctime_r(rtm, buf);
1701 }
1702
1703 /*
1704 ** Adapted from code provided by Robert Elz, who writes:
1705 ** The "best" way to do mktime I think is based on an idea of Bob
1706 ** Kridle's (so its said...) from a long time ago.
1707 ** It does a binary search of the time_t space. Since time_t's are
1708 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1709 ** would still be very reasonable).
1710 */
1711
1712 #ifndef WRONG
1713 #define WRONG ((time_t)-1)
1714 #endif /* !defined WRONG */
1715
1716 /*
1717 ** Simplified normalize logic courtesy Paul Eggert.
1718 */
1719
1720 static int
1721 increment_overflow(int *const ip, int j)
1722 {
1723 int i = *ip;
1724
1725 /*
1726 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1727 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1728 ** If i < 0 there can only be overflow if i + j < INT_MIN
1729 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1730 */
1731 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1732 return TRUE;
1733 *ip += j;
1734 return FALSE;
1735 }
1736
1737 static int
1738 long_increment_overflow(long *const lp, int m)
1739 {
1740 long l = *lp;
1741
1742 if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1743 return TRUE;
1744 *lp += m;
1745 return FALSE;
1746 }
1747
1748 static int
1749 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1750 {
1751 int tensdelta;
1752
1753 tensdelta = (*unitsptr >= 0) ?
1754 (*unitsptr / base) :
1755 (-1 - (-1 - *unitsptr) / base);
1756 *unitsptr -= tensdelta * base;
1757 return increment_overflow(tensptr, tensdelta);
1758 }
1759
1760 static int
1761 long_normalize_overflow(long *const tensptr, int *const unitsptr,
1762 const int base)
1763 {
1764 int tensdelta;
1765
1766 tensdelta = (*unitsptr >= 0) ?
1767 (*unitsptr / base) :
1768 (-1 - (-1 - *unitsptr) / base);
1769 *unitsptr -= tensdelta * base;
1770 return long_increment_overflow(tensptr, tensdelta);
1771 }
1772
1773 static int
1774 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1775 {
1776 int result;
1777
1778 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1779 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1780 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1781 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1782 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1783 result = atmp->tm_sec - btmp->tm_sec;
1784 return result;
1785 }
1786
1787 static time_t
1788 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1789 const long offset, int *const okayp, const int do_norm_secs)
1790 {
1791 int dir;
1792 int i, j;
1793 int saved_seconds;
1794 long li;
1795 time_t lo;
1796 time_t hi;
1797 #ifdef NO_ERROR_IN_DST_GAP
1798 time_t ilo;
1799 #endif
1800 long y;
1801 time_t newt;
1802 time_t t;
1803 struct tm yourtm, mytm;
1804
1805 *okayp = FALSE;
1806 yourtm = *tmp;
1807 #ifdef NO_ERROR_IN_DST_GAP
1808 again:
1809 #endif
1810 if (do_norm_secs) {
1811 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1812 SECSPERMIN))
1813 goto overflow;
1814 }
1815 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1816 goto overflow;
1817 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1818 goto overflow;
1819 y = yourtm.tm_year;
1820 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1821 goto overflow;
1822 /*
1823 ** Turn y into an actual year number for now.
1824 ** It is converted back to an offset from TM_YEAR_BASE later.
1825 */
1826 if (long_increment_overflow(&y, TM_YEAR_BASE))
1827 goto overflow;
1828 while (yourtm.tm_mday <= 0) {
1829 if (long_increment_overflow(&y, -1))
1830 goto overflow;
1831 li = y + (1 < yourtm.tm_mon);
1832 yourtm.tm_mday += year_lengths[isleap(li)];
1833 }
1834 while (yourtm.tm_mday > DAYSPERLYEAR) {
1835 li = y + (1 < yourtm.tm_mon);
1836 yourtm.tm_mday -= year_lengths[isleap(li)];
1837 if (long_increment_overflow(&y, 1))
1838 goto overflow;
1839 }
1840 for ( ; ; ) {
1841 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1842 if (yourtm.tm_mday <= i)
1843 break;
1844 yourtm.tm_mday -= i;
1845 if (++yourtm.tm_mon >= MONSPERYEAR) {
1846 yourtm.tm_mon = 0;
1847 if (long_increment_overflow(&y, 1))
1848 goto overflow;
1849 }
1850 }
1851 if (long_increment_overflow(&y, -TM_YEAR_BASE))
1852 goto overflow;
1853 yourtm.tm_year = (int)y;
1854 if (yourtm.tm_year != y)
1855 goto overflow;
1856 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1857 saved_seconds = 0;
1858 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1859 /*
1860 ** We can't set tm_sec to 0, because that might push the
1861 ** time below the minimum representable time.
1862 ** Set tm_sec to 59 instead.
1863 ** This assumes that the minimum representable time is
1864 ** not in the same minute that a leap second was deleted from,
1865 ** which is a safer assumption than using 58 would be.
1866 */
1867 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1868 goto overflow;
1869 saved_seconds = yourtm.tm_sec;
1870 yourtm.tm_sec = SECSPERMIN - 1;
1871 } else {
1872 saved_seconds = yourtm.tm_sec;
1873 yourtm.tm_sec = 0;
1874 }
1875 /*
1876 ** Do a binary search (this works whatever time_t's type is).
1877 */
1878 /* LINTED const not */
1879 if (!TYPE_SIGNED(time_t)) {
1880 lo = 0;
1881 hi = lo - 1;
1882 /* LINTED const not */
1883 } else if (!TYPE_INTEGRAL(time_t)) {
1884 /* CONSTCOND */
1885 if (sizeof(time_t) > sizeof(float))
1886 /* LINTED assumed double */
1887 hi = (time_t) DBL_MAX;
1888 /* LINTED assumed float */
1889 else hi = (time_t) FLT_MAX;
1890 lo = -hi;
1891 } else {
1892 lo = 1;
1893 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1894 lo *= 2;
1895 hi = -(lo + 1);
1896 }
1897 #ifdef NO_ERROR_IN_DST_GAP
1898 ilo = lo;
1899 #endif
1900 for ( ; ; ) {
1901 t = lo / 2 + hi / 2;
1902 if (t < lo)
1903 t = lo;
1904 else if (t > hi)
1905 t = hi;
1906 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1907 /*
1908 ** Assume that t is too extreme to be represented in
1909 ** a struct tm; arrange things so that it is less
1910 ** extreme on the next pass.
1911 */
1912 dir = (t > 0) ? 1 : -1;
1913 } else dir = tmcomp(&mytm, &yourtm);
1914 if (dir != 0) {
1915 if (t == lo) {
1916 ++t;
1917 if (t <= lo)
1918 goto overflow;
1919 ++lo;
1920 } else if (t == hi) {
1921 --t;
1922 if (t >= hi)
1923 goto overflow;
1924 --hi;
1925 }
1926 #ifdef NO_ERROR_IN_DST_GAP
1927 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1928 do_norm_secs) {
1929 for (i = sp->typecnt - 1; i >= 0; --i) {
1930 for (j = sp->typecnt - 1; j >= 0; --j) {
1931 time_t off;
1932 if (sp->ttis[j].tt_isdst ==
1933 sp->ttis[i].tt_isdst)
1934 continue;
1935 off = sp->ttis[j].tt_gmtoff -
1936 sp->ttis[i].tt_gmtoff;
1937 yourtm.tm_sec += off < 0 ?
1938 -off : off;
1939 goto again;
1940 }
1941 }
1942 }
1943 #endif
1944 if (lo > hi)
1945 goto invalid;
1946 if (dir > 0)
1947 hi = t;
1948 else lo = t;
1949 continue;
1950 }
1951 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1952 break;
1953 /*
1954 ** Right time, wrong type.
1955 ** Hunt for right time, right type.
1956 ** It's okay to guess wrong since the guess
1957 ** gets checked.
1958 */
1959 if (sp == NULL)
1960 goto invalid;
1961 for (i = sp->typecnt - 1; i >= 0; --i) {
1962 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1963 continue;
1964 for (j = sp->typecnt - 1; j >= 0; --j) {
1965 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1966 continue;
1967 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
1968 sp->ttis[i].tt_gmtoff);
1969 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
1970 continue;
1971 if (tmcomp(&mytm, &yourtm) != 0)
1972 continue;
1973 if (mytm.tm_isdst != yourtm.tm_isdst)
1974 continue;
1975 /*
1976 ** We have a match.
1977 */
1978 t = newt;
1979 goto label;
1980 }
1981 }
1982 goto invalid;
1983 }
1984 label:
1985 newt = t + saved_seconds;
1986 if ((newt < t) != (saved_seconds < 0))
1987 goto overflow;
1988 t = newt;
1989 if ((*funcp)(sp, &t, offset, tmp)) {
1990 *okayp = TRUE;
1991 return t;
1992 }
1993 overflow:
1994 errno = EOVERFLOW;
1995 return WRONG;
1996 invalid:
1997 errno = EINVAL;
1998 return WRONG;
1999 }
2000
2001 static time_t
2002 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2003 const long offset, int *const okayp)
2004 {
2005 time_t t;
2006
2007 /*
2008 ** First try without normalization of seconds
2009 ** (in case tm_sec contains a value associated with a leap second).
2010 ** If that fails, try with normalization of seconds.
2011 */
2012 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2013 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2014 }
2015
2016 static time_t
2017 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2018 const long offset)
2019 {
2020 time_t t;
2021 int samei, otheri;
2022 int sameind, otherind;
2023 int i;
2024 int nseen;
2025 int seen[TZ_MAX_TYPES];
2026 int types[TZ_MAX_TYPES];
2027 int okay;
2028
2029 if (tmp == NULL) {
2030 errno = EINVAL;
2031 return WRONG;
2032 }
2033 if (tmp->tm_isdst > 1)
2034 tmp->tm_isdst = 1;
2035 t = time2(sp, tmp, funcp, offset, &okay);
2036 #ifdef PCTS
2037 /*
2038 ** PCTS code courtesy Grant Sullivan.
2039 */
2040 if (okay)
2041 return t;
2042 if (tmp->tm_isdst < 0)
2043 tmp->tm_isdst = 0; /* reset to std and try again */
2044 #endif /* defined PCTS */
2045 #ifndef PCTS
2046 if (okay || tmp->tm_isdst < 0)
2047 return t;
2048 #endif /* !defined PCTS */
2049 /*
2050 ** We're supposed to assume that somebody took a time of one type
2051 ** and did some math on it that yielded a "struct tm" that's bad.
2052 ** We try to divine the type they started from and adjust to the
2053 ** type they need.
2054 */
2055 if (sp == NULL) {
2056 errno = EINVAL;
2057 return WRONG;
2058 }
2059 for (i = 0; i < sp->typecnt; ++i)
2060 seen[i] = FALSE;
2061 nseen = 0;
2062 for (i = sp->timecnt - 1; i >= 0; --i)
2063 if (!seen[sp->types[i]]) {
2064 seen[sp->types[i]] = TRUE;
2065 types[nseen++] = sp->types[i];
2066 }
2067 for (sameind = 0; sameind < nseen; ++sameind) {
2068 samei = types[sameind];
2069 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2070 continue;
2071 for (otherind = 0; otherind < nseen; ++otherind) {
2072 otheri = types[otherind];
2073 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2074 continue;
2075 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2076 sp->ttis[samei].tt_gmtoff);
2077 tmp->tm_isdst = !tmp->tm_isdst;
2078 t = time2(sp, tmp, funcp, offset, &okay);
2079 if (okay)
2080 return t;
2081 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2082 sp->ttis[samei].tt_gmtoff);
2083 tmp->tm_isdst = !tmp->tm_isdst;
2084 }
2085 }
2086 errno = EOVERFLOW;
2087 return WRONG;
2088 }
2089
2090 time_t
2091 mktime_z(const timezone_t sp, struct tm *const tmp)
2092 {
2093 time_t t;
2094 if (sp == NULL)
2095 t = time1(NULL, tmp, gmtsub, 0L);
2096 else
2097 t = time1(sp, tmp, localsub, 0L);
2098 return t;
2099 }
2100
2101 time_t
2102 mktime(struct tm *const tmp)
2103 {
2104 time_t result;
2105
2106 rwlock_wrlock(&lcl_lock);
2107 tzset_unlocked();
2108 result = mktime_z(lclptr, tmp);
2109 rwlock_unlock(&lcl_lock);
2110 return result;
2111 }
2112
2113 #ifdef STD_INSPIRED
2114
2115 time_t
2116 timelocal_z(const timezone_t sp, struct tm *const tmp)
2117 {
2118 if (tmp != NULL)
2119 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2120 return mktime_z(sp, tmp);
2121 }
2122
2123 time_t
2124 timelocal(struct tm *const tmp)
2125 {
2126 if (tmp != NULL)
2127 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2128 return mktime(tmp);
2129 }
2130
2131 time_t
2132 timegm(struct tm *const tmp)
2133 {
2134 time_t t;
2135
2136 if (tmp != NULL)
2137 tmp->tm_isdst = 0;
2138 t = time1(gmtptr, tmp, gmtsub, 0L);
2139 return t;
2140 }
2141
2142 time_t
2143 timeoff(struct tm *const tmp, const long offset)
2144 {
2145 time_t t;
2146
2147 if (tmp != NULL)
2148 tmp->tm_isdst = 0;
2149 t = time1(gmtptr, tmp, gmtsub, offset);
2150 return t;
2151 }
2152
2153 #endif /* defined STD_INSPIRED */
2154
2155 #ifdef CMUCS
2156
2157 /*
2158 ** The following is supplied for compatibility with
2159 ** previous versions of the CMUCS runtime library.
2160 */
2161
2162 long
2163 gtime(struct tm *const tmp)
2164 {
2165 const time_t t = mktime(tmp);
2166
2167 if (t == WRONG)
2168 return -1;
2169 return t;
2170 }
2171
2172 #endif /* defined CMUCS */
2173
2174 /*
2175 ** XXX--is the below the right way to conditionalize??
2176 */
2177
2178 #ifdef STD_INSPIRED
2179
2180 /*
2181 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2182 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2183 ** is not the case if we are accounting for leap seconds.
2184 ** So, we provide the following conversion routines for use
2185 ** when exchanging timestamps with POSIX conforming systems.
2186 */
2187
2188 static long
2189 leapcorr(const timezone_t sp, time_t *timep)
2190 {
2191 struct lsinfo * lp;
2192 int i;
2193
2194 i = sp->leapcnt;
2195 while (--i >= 0) {
2196 lp = &sp->lsis[i];
2197 if (*timep >= lp->ls_trans)
2198 return lp->ls_corr;
2199 }
2200 return 0;
2201 }
2202
2203 time_t
2204 time2posix_z(const timezone_t sp, time_t t)
2205 {
2206 return (time_t)(t - leapcorr(sp, &t));
2207 }
2208
2209 time_t
2210 time2posix(time_t t)
2211 {
2212 time_t result;
2213 rwlock_wrlock(&lcl_lock);
2214 tzset_unlocked();
2215 result = (time_t)(t - leapcorr(lclptr, &t));
2216 rwlock_unlock(&lcl_lock);
2217 return (result);
2218 }
2219
2220 time_t
2221 posix2time_z(const timezone_t sp, time_t t)
2222 {
2223 time_t x;
2224 time_t y;
2225
2226 /*
2227 ** For a positive leap second hit, the result
2228 ** is not unique. For a negative leap second
2229 ** hit, the corresponding time doesn't exist,
2230 ** so we return an adjacent second.
2231 */
2232 x = (time_t)(t + leapcorr(sp, &t));
2233 y = (time_t)(x - leapcorr(sp, &x));
2234 if (y < t) {
2235 do {
2236 x++;
2237 y = (time_t)(x - leapcorr(sp, &x));
2238 } while (y < t);
2239 if (t != y) {
2240 return x - 1;
2241 }
2242 } else if (y > t) {
2243 do {
2244 --x;
2245 y = (time_t)(x - leapcorr(sp, &x));
2246 } while (y > t);
2247 if (t != y) {
2248 return x + 1;
2249 }
2250 }
2251 return x;
2252 }
2253
2254
2255
2256 time_t
2257 posix2time(time_t t)
2258 {
2259 time_t result;
2260
2261 rwlock_wrlock(&lcl_lock);
2262 tzset_unlocked();
2263 result = posix2time_z(lclptr, t);
2264 rwlock_unlock(&lcl_lock);
2265 return result;
2266 }
2267
2268 #endif /* defined STD_INSPIRED */
2269