Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.74
      1 /*	$NetBSD: localtime.c,v 1.74 2013/07/17 20:13:04 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.17";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.74 2013/07/17 20:13:04 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include "private.h"
     26 #include "tzfile.h"
     27 #include "fcntl.h"
     28 #include "reentrant.h"
     29 
     30 #if defined(__weak_alias)
     31 __weak_alias(daylight,_daylight)
     32 __weak_alias(tzname,_tzname)
     33 #endif
     34 
     35 #include "float.h"	/* for FLT_MAX and DBL_MAX */
     36 
     37 #ifndef TZ_ABBR_MAX_LEN
     38 #define TZ_ABBR_MAX_LEN	16
     39 #endif /* !defined TZ_ABBR_MAX_LEN */
     40 
     41 #ifndef TZ_ABBR_CHAR_SET
     42 #define TZ_ABBR_CHAR_SET \
     43 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     44 #endif /* !defined TZ_ABBR_CHAR_SET */
     45 
     46 #ifndef TZ_ABBR_ERR_CHAR
     47 #define TZ_ABBR_ERR_CHAR	'_'
     48 #endif /* !defined TZ_ABBR_ERR_CHAR */
     49 
     50 /*
     51 ** SunOS 4.1.1 headers lack O_BINARY.
     52 */
     53 
     54 #ifdef O_BINARY
     55 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     56 #endif /* defined O_BINARY */
     57 #ifndef O_BINARY
     58 #define OPEN_MODE	O_RDONLY
     59 #endif /* !defined O_BINARY */
     60 
     61 #ifndef WILDABBR
     62 /*
     63 ** Someone might make incorrect use of a time zone abbreviation:
     64 **	1.	They might reference tzname[0] before calling tzset (explicitly
     65 **		or implicitly).
     66 **	2.	They might reference tzname[1] before calling tzset (explicitly
     67 **		or implicitly).
     68 **	3.	They might reference tzname[1] after setting to a time zone
     69 **		in which Daylight Saving Time is never observed.
     70 **	4.	They might reference tzname[0] after setting to a time zone
     71 **		in which Standard Time is never observed.
     72 **	5.	They might reference tm.TM_ZONE after calling offtime.
     73 ** What's best to do in the above cases is open to debate;
     74 ** for now, we just set things up so that in any of the five cases
     75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     76 ** string "tzname[0] used before set", and similarly for the other cases.
     77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     78 ** manual page of what this "time zone abbreviation" means (doing this so
     79 ** that tzname[0] has the "normal" length of three characters).
     80 */
     81 #define WILDABBR	"   "
     82 #endif /* !defined WILDABBR */
     83 
     84 static const char	wildabbr[] = WILDABBR;
     85 
     86 static const char	gmt[] = "GMT";
     87 
     88 /*
     89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     90 ** We default to US rules as of 1999-08-17.
     91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     92 ** implementation dependent; for historical reasons, US rules are a
     93 ** common default.
     94 */
     95 #ifndef TZDEFRULESTRING
     96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     97 #endif /* !defined TZDEFDST */
     98 
     99 struct ttinfo {				/* time type information */
    100 	int_fast32_t	tt_gmtoff;	/* UTC offset in seconds */
    101 	int		tt_isdst;	/* used to set tm_isdst */
    102 	int		tt_abbrind;	/* abbreviation list index */
    103 	int		tt_ttisstd;	/* TRUE if transition is std time */
    104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    105 };
    106 
    107 struct lsinfo {				/* leap second information */
    108 	time_t		ls_trans;	/* transition time */
    109 	int_fast64_t	ls_corr;	/* correction to apply */
    110 };
    111 
    112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    113 
    114 #ifdef TZNAME_MAX
    115 #define MY_TZNAME_MAX	TZNAME_MAX
    116 #endif /* defined TZNAME_MAX */
    117 #ifndef TZNAME_MAX
    118 #define MY_TZNAME_MAX	255
    119 #endif /* !defined TZNAME_MAX */
    120 
    121 struct __state {
    122 	int		leapcnt;
    123 	int		timecnt;
    124 	int		typecnt;
    125 	int		charcnt;
    126 	int		goback;
    127 	int		goahead;
    128 	time_t		ats[TZ_MAX_TIMES];
    129 	unsigned char	types[TZ_MAX_TIMES];
    130 	struct ttinfo	ttis[TZ_MAX_TYPES];
    131 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
    132 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
    133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    134 	int		defaulttype; /* for early times or if no transitions */
    135 };
    136 
    137 struct rule {
    138 	int		r_type;		/* type of rule--see below */
    139 	int		r_day;		/* day number of rule */
    140 	int		r_week;		/* week number of rule */
    141 	int		r_mon;		/* month number of rule */
    142 	int_fast32_t	r_time;		/* transition time of rule */
    143 };
    144 
    145 #define JULIAN_DAY		0	/* Jn - Julian day */
    146 #define DAY_OF_YEAR		1	/* n - day of year */
    147 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    148 
    149 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    150 			       const int_fast32_t offset, struct tm *tmp);
    151 
    152 /*
    153 ** Prototypes for static functions.
    154 */
    155 
    156 static int_fast32_t	detzcode(const char * codep);
    157 static time_t		detzcode64(const char * codep);
    158 static int		differ_by_repeat(time_t t1, time_t t0);
    159 static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
    160 static const char *	getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
    161 static const char *	getnum(const char * strp, int * nump, int min,
    162 				int max);
    163 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
    164 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
    165 static const char *	getrule(const char * strp, struct rule * rulep);
    166 static void		gmtload(timezone_t sp);
    167 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    168 				const int_fast32_t offset, struct tm * tmp);
    169 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    170 				const int_fast32_t offset, struct tm *tmp);
    171 static int		increment_overflow(int * number, int delta);
    172 static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
    173 static int		increment_overflow(int_fast32_t * number, int delta);
    174 static int		normalize_overflow(int_fast32_t * tensptr,
    175 				int * unitsptr, int base);
    176 static int		normalize_overflow(int * tensptr, int * unitsptr,
    177 				int base);
    178 static void		settzname(void);
    179 static time_t		time1(const timezone_t sp, struct tm * const tmp,
    180 				subfun_t funcp, const int_fast32_t offset);
    181 static time_t		time2(const timezone_t sp, struct tm * const tmp,
    182 				subfun_t funcp,
    183 				const int_fast32_t offset, int *const okayp);
    184 static time_t		time2sub(const timezone_t sp, struct tm * const tmp,
    185 				subfun_t funcp, const int_fast32_t offset,
    186 				int *const okayp, const int do_norm_secs);
    187 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    188 				const int_fast32_t offset, struct tm * tmp);
    189 static int		tmcomp(const struct tm * atmp,
    190 				const struct tm * btmp);
    191 static time_t		transtime(time_t janfirst, int year,
    192 				const struct rule * rulep,
    193 				const int_fast32_t offset) ATTRIBUTE_PURE;
    194 static int		typesequiv(const timezone_t sp, int a, int b);
    195 static int		tzload(timezone_t sp, const char * name,
    196 				int doextend);
    197 static int		tzparse(timezone_t sp, const char * name,
    198 				int lastditch);
    199 static void		tzset_unlocked(void);
    200 static void		tzsetwall_unlocked(void);
    201 static int_fast64_t	leapcorr(const timezone_t sp, time_t * timep);
    202 
    203 static timezone_t lclptr;
    204 static timezone_t gmtptr;
    205 
    206 #ifndef TZ_STRLEN_MAX
    207 #define TZ_STRLEN_MAX 255
    208 #endif /* !defined TZ_STRLEN_MAX */
    209 
    210 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    211 static int		lcl_is_set;
    212 static int		gmt_is_set;
    213 
    214 #if !defined(__LIBC12_SOURCE__)
    215 
    216 __aconst char *		tzname[2] = {
    217 	(__aconst char *)__UNCONST(wildabbr),
    218 	(__aconst char *)__UNCONST(wildabbr)
    219 };
    220 
    221 #else
    222 
    223 extern __aconst char *	tzname[2];
    224 
    225 #endif
    226 
    227 #ifdef _REENTRANT
    228 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    229 #endif
    230 
    231 /*
    232 ** Section 4.12.3 of X3.159-1989 requires that
    233 **	Except for the strftime function, these functions [asctime,
    234 **	ctime, gmtime, localtime] return values in one of two static
    235 **	objects: a broken-down time structure and an array of char.
    236 ** Thanks to Paul Eggert for noting this.
    237 */
    238 
    239 static struct tm	tm;
    240 
    241 #ifdef USG_COMPAT
    242 #if !defined(__LIBC12_SOURCE__)
    243 long 			timezone = 0;
    244 int			daylight = 0;
    245 #else
    246 extern int		daylight;
    247 extern long		timezone __RENAME(__timezone13);
    248 #endif
    249 #endif /* defined USG_COMPAT */
    250 
    251 #ifdef ALTZONE
    252 time_t			altzone = 0;
    253 #endif /* defined ALTZONE */
    254 
    255 static int_fast32_t
    256 detzcode(const char *const codep)
    257 {
    258 	int_fast32_t	result;
    259 	int	i;
    260 
    261 	result = (codep[0] & 0x80) ? -1 : 0;
    262 	for (i = 0; i < 4; ++i)
    263 		result = (result << 8) | (codep[i] & 0xff);
    264 	return result;
    265 }
    266 
    267 static time_t
    268 detzcode64(const char *const codep)
    269 {
    270 	time_t	result;
    271 	int	i;
    272 
    273 	result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
    274 	for (i = 0; i < 8; ++i)
    275 		result = result * 256 + (codep[i] & 0xff);
    276 	return result;
    277 }
    278 
    279 const char *
    280 tzgetname(const timezone_t sp, int isdst)
    281 {
    282 	int i;
    283 	for (i = 0; i < sp->timecnt; ++i) {
    284 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    285 
    286 		if (ttisp->tt_isdst == isdst)
    287 			return &sp->chars[ttisp->tt_abbrind];
    288 	}
    289 	return NULL;
    290 }
    291 
    292 static void
    293 settzname_z(timezone_t sp)
    294 {
    295 	int			i;
    296 
    297 	/*
    298 	** Scrub the abbreviations.
    299 	** First, replace bogus characters.
    300 	*/
    301 	for (i = 0; i < sp->charcnt; ++i)
    302 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    303 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    304 	/*
    305 	** Second, truncate long abbreviations.
    306 	*/
    307 	for (i = 0; i < sp->typecnt; ++i) {
    308 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    309 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    310 
    311 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    312 			strcmp(cp, GRANDPARENTED) != 0)
    313 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    314 	}
    315 }
    316 
    317 static void
    318 settzname(void)
    319 {
    320 	timezone_t const	sp = lclptr;
    321 	int			i;
    322 
    323 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    324 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    325 #ifdef USG_COMPAT
    326 	daylight = 0;
    327 	timezone = 0;
    328 #endif /* defined USG_COMPAT */
    329 #ifdef ALTZONE
    330 	altzone = 0;
    331 #endif /* defined ALTZONE */
    332 	if (sp == NULL) {
    333 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    334 		return;
    335 	}
    336 	/*
    337 	** And to get the latest zone names into tzname. . .
    338 	*/
    339 	for (i = 0; i < sp->typecnt; ++i) {
    340 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    341 
    342 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
    343 #ifdef USG_COMPAT
    344 		if (ttisp->tt_isdst)
    345 			daylight = 1;
    346 		if (!ttisp->tt_isdst)
    347 			timezone = -(ttisp->tt_gmtoff);
    348 #endif /* defined USG_COMPAT */
    349 #ifdef ALTZONE
    350 		if (ttisp->tt_isdst)
    351 			altzone = -(ttisp->tt_gmtoff);
    352 #endif /* defined ALTZONE */
    353 	}
    354 	settzname_z(sp);
    355 }
    356 
    357 static int
    358 differ_by_repeat(const time_t t1, const time_t t0)
    359 {
    360 	if (TYPE_INTEGRAL(time_t) &&
    361 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    362 			return 0;
    363 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    364 }
    365 
    366 static int
    367 tzload(timezone_t sp, const char *name, const int doextend)
    368 {
    369 	const char *		p;
    370 	int			i;
    371 	int			fid;
    372 	int			stored;
    373 	ssize_t			nread;
    374 	typedef union {
    375 		struct tzhead	tzhead;
    376 		char		buf[2 * sizeof(struct tzhead) +
    377 					2 * sizeof *sp +
    378 					4 * TZ_MAX_TIMES];
    379 	} u_t;
    380 	u_t *			up;
    381 
    382 	up = calloc(1, sizeof *up);
    383 	if (up == NULL)
    384 		return -1;
    385 
    386 	sp->goback = sp->goahead = FALSE;
    387 	if (name == NULL && (name = TZDEFAULT) == NULL)
    388 		goto oops;
    389 	{
    390 		int	doaccess;
    391 		/*
    392 		** Section 4.9.1 of the C standard says that
    393 		** "FILENAME_MAX expands to an integral constant expression
    394 		** that is the size needed for an array of char large enough
    395 		** to hold the longest file name string that the implementation
    396 		** guarantees can be opened."
    397 		*/
    398 		char		fullname[FILENAME_MAX + 1];
    399 
    400 		if (name[0] == ':')
    401 			++name;
    402 		doaccess = name[0] == '/';
    403 		if (!doaccess) {
    404 			if ((p = TZDIR) == NULL)
    405 				goto oops;
    406 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    407 				goto oops;
    408 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    409 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    410 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    411 			/*
    412 			** Set doaccess if '.' (as in "../") shows up in name.
    413 			*/
    414 			if (strchr(name, '.') != NULL)
    415 				doaccess = TRUE;
    416 			name = fullname;
    417 		}
    418 		if (doaccess && access(name, R_OK) != 0)
    419 			goto oops;
    420 		/*
    421 		 * XXX potential security problem here if user of a set-id
    422 		 * program has set TZ (which is passed in as name) here,
    423 		 * and uses a race condition trick to defeat the access(2)
    424 		 * above.
    425 		 */
    426 		if ((fid = open(name, OPEN_MODE)) == -1)
    427 			goto oops;
    428 	}
    429 	nread = read(fid, up->buf, sizeof up->buf);
    430 	if (close(fid) < 0 || nread <= 0)
    431 		goto oops;
    432 	for (stored = 4; stored <= 8; stored *= 2) {
    433 		int		ttisstdcnt;
    434 		int		ttisgmtcnt;
    435 
    436 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
    437 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
    438 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
    439 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
    440 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
    441 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
    442 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
    443 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    444 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    445 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    446 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    447 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    448 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    449 				goto oops;
    450 		if (nread - (p - up->buf) <
    451 			sp->timecnt * stored +		/* ats */
    452 			sp->timecnt +			/* types */
    453 			sp->typecnt * 6 +		/* ttinfos */
    454 			sp->charcnt +			/* chars */
    455 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    456 			ttisstdcnt +			/* ttisstds */
    457 			ttisgmtcnt)			/* ttisgmts */
    458 				goto oops;
    459 		for (i = 0; i < sp->timecnt; ++i) {
    460 			sp->ats[i] = (time_t)((stored == 4) ?
    461 				detzcode(p) : detzcode64(p));
    462 			p += stored;
    463 		}
    464 		for (i = 0; i < sp->timecnt; ++i) {
    465 			sp->types[i] = (unsigned char) *p++;
    466 			if (sp->types[i] >= sp->typecnt)
    467 				goto oops;
    468 		}
    469 		for (i = 0; i < sp->typecnt; ++i) {
    470 			struct ttinfo *	ttisp;
    471 
    472 			ttisp = &sp->ttis[i];
    473 			ttisp->tt_gmtoff = detzcode(p);
    474 			p += 4;
    475 			ttisp->tt_isdst = (unsigned char) *p++;
    476 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    477 				goto oops;
    478 			ttisp->tt_abbrind = (unsigned char) *p++;
    479 			if (ttisp->tt_abbrind < 0 ||
    480 				ttisp->tt_abbrind > sp->charcnt)
    481 					goto oops;
    482 		}
    483 		for (i = 0; i < sp->charcnt; ++i)
    484 			sp->chars[i] = *p++;
    485 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    486 		for (i = 0; i < sp->leapcnt; ++i) {
    487 			struct lsinfo *	lsisp;
    488 
    489 			lsisp = &sp->lsis[i];
    490 			lsisp->ls_trans = (time_t)((stored == 4) ?
    491 			    detzcode(p) : detzcode64(p));
    492 			p += stored;
    493 			lsisp->ls_corr = detzcode(p);
    494 			p += 4;
    495 		}
    496 		for (i = 0; i < sp->typecnt; ++i) {
    497 			struct ttinfo *	ttisp;
    498 
    499 			ttisp = &sp->ttis[i];
    500 			if (ttisstdcnt == 0)
    501 				ttisp->tt_ttisstd = FALSE;
    502 			else {
    503 				ttisp->tt_ttisstd = *p++;
    504 				if (ttisp->tt_ttisstd != TRUE &&
    505 					ttisp->tt_ttisstd != FALSE)
    506 						goto oops;
    507 			}
    508 		}
    509 		for (i = 0; i < sp->typecnt; ++i) {
    510 			struct ttinfo *	ttisp;
    511 
    512 			ttisp = &sp->ttis[i];
    513 			if (ttisgmtcnt == 0)
    514 				ttisp->tt_ttisgmt = FALSE;
    515 			else {
    516 				ttisp->tt_ttisgmt = *p++;
    517 				if (ttisp->tt_ttisgmt != TRUE &&
    518 					ttisp->tt_ttisgmt != FALSE)
    519 						goto oops;
    520 			}
    521 		}
    522 		/*
    523 		** Out-of-sort ats should mean we're running on a
    524 		** signed time_t system but using a data file with
    525 		** unsigned values (or vice versa).
    526 		*/
    527 		for (i = 0; i < sp->timecnt; ++i)
    528 			if ((i < sp->timecnt - 1 &&
    529 			    sp->ats[i] > sp->ats[i + 1]) ||
    530 			    (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) &&
    531 			    sp->ats[i] >
    532 			    ((stored == 4) ? INT32_MAX : INT64_MAX))) {
    533 				if (TYPE_SIGNED(time_t)) {
    534 					/*
    535 					** Ignore the end (easy).
    536 					*/
    537 					sp->timecnt = i + 1;
    538 				} else {
    539 					/*
    540 					** Ignore the beginning (harder).
    541 					*/
    542 					int	j;
    543 
    544 					/*
    545 					** Keep the record right before the
    546 					** epoch boundary,
    547 					** but tweak it so that it starts
    548 					** right with the epoch
    549 					** (thanks to Doug Bailey).
    550 					*/
    551 					sp->ats[i] = 0;
    552 					for (j = 0; j + i < sp->timecnt; ++j) {
    553 						sp->ats[j] = sp->ats[j + i];
    554 						sp->types[j] = sp->types[j + i];
    555 					}
    556 					sp->timecnt = j;
    557 				}
    558 				break;
    559 			}
    560 		/*
    561 		** If this is an old file, we're done.
    562 		*/
    563 		if (up->tzhead.tzh_version[0] == '\0')
    564 			break;
    565 		nread -= p - up->buf;
    566 		for (i = 0; i < nread; ++i)
    567 			up->buf[i] = p[i];
    568 		/*
    569 		** If this is a narrow integer time_t system, we're done.
    570 		*/
    571 		if (stored >= (int) sizeof(time_t)
    572 /* CONSTCOND */
    573 				&& TYPE_INTEGRAL(time_t))
    574 			break;
    575 	}
    576 	if (doextend && nread > 2 &&
    577 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    578 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    579 			struct __state ts;
    580 			int	result;
    581 
    582 			up->buf[nread - 1] = '\0';
    583 			result = tzparse(&ts, &up->buf[1], FALSE);
    584 			if (result == 0 && ts.typecnt == 2 &&
    585 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    586 					for (i = 0; i < 2; ++i)
    587 						ts.ttis[i].tt_abbrind +=
    588 							sp->charcnt;
    589 					for (i = 0; i < ts.charcnt; ++i)
    590 						sp->chars[sp->charcnt++] =
    591 							ts.chars[i];
    592 					i = 0;
    593 					while (i < ts.timecnt &&
    594 						ts.ats[i] <=
    595 						sp->ats[sp->timecnt - 1])
    596 							++i;
    597 					while (i < ts.timecnt &&
    598 					    sp->timecnt < TZ_MAX_TIMES) {
    599 						sp->ats[sp->timecnt] =
    600 							ts.ats[i];
    601 						sp->types[sp->timecnt] =
    602 							sp->typecnt +
    603 							ts.types[i];
    604 						++sp->timecnt;
    605 						++i;
    606 					}
    607 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    608 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    609 			}
    610 	}
    611 	if (sp->timecnt > 1) {
    612 		for (i = 1; i < sp->timecnt; ++i)
    613 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    614 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    615 					sp->goback = TRUE;
    616 					break;
    617 				}
    618 		for (i = sp->timecnt - 2; i >= 0; --i)
    619 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    620 				sp->types[i]) &&
    621 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    622 				sp->ats[i])) {
    623 					sp->goahead = TRUE;
    624 					break;
    625 		}
    626 	}
    627 	/*
    628 	** If type 0 is is unused in transitions,
    629 	** it's the type to use for early times.
    630 	*/
    631 	for (i = 0; i < sp->typecnt; ++i)
    632 		if (sp->types[i] == 0)
    633 			break;
    634 	i = (i >= sp->typecnt) ? 0 : -1;
    635 	/*
    636 	** Absent the above,
    637 	** if there are transition times
    638 	** and the first transition is to a daylight time
    639 	** find the standard type less than and closest to
    640 	** the type of the first transition.
    641 	*/
    642 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    643 		i = sp->types[0];
    644 		while (--i >= 0)
    645 			if (!sp->ttis[i].tt_isdst)
    646 				break;
    647 	}
    648 	/*
    649 	** If no result yet, find the first standard type.
    650 	** If there is none, punt to type zero.
    651 	*/
    652 	if (i < 0) {
    653 		i = 0;
    654 		while (sp->ttis[i].tt_isdst)
    655 			if (++i >= sp->typecnt) {
    656 				i = 0;
    657 				break;
    658 			}
    659 	}
    660 	sp->defaulttype = i;
    661 	free(up);
    662 	return 0;
    663 oops:
    664 	free(up);
    665 	return -1;
    666 }
    667 
    668 static int
    669 typesequiv(const timezone_t sp, const int a, const int b)
    670 {
    671 	int	result;
    672 
    673 	if (sp == NULL ||
    674 		a < 0 || a >= sp->typecnt ||
    675 		b < 0 || b >= sp->typecnt)
    676 			result = FALSE;
    677 	else {
    678 		const struct ttinfo *	ap = &sp->ttis[a];
    679 		const struct ttinfo *	bp = &sp->ttis[b];
    680 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    681 			ap->tt_isdst == bp->tt_isdst &&
    682 			ap->tt_ttisstd == bp->tt_ttisstd &&
    683 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    684 			strcmp(&sp->chars[ap->tt_abbrind],
    685 			&sp->chars[bp->tt_abbrind]) == 0;
    686 	}
    687 	return result;
    688 }
    689 
    690 static const int	mon_lengths[2][MONSPERYEAR] = {
    691 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    692 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    693 };
    694 
    695 static const int	year_lengths[2] = {
    696 	DAYSPERNYEAR, DAYSPERLYEAR
    697 };
    698 
    699 /*
    700 ** Given a pointer into a time zone string, scan until a character that is not
    701 ** a valid character in a zone name is found. Return a pointer to that
    702 ** character.
    703 */
    704 
    705 static const char *
    706 getzname(const char *strp)
    707 {
    708 	char	c;
    709 
    710 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    711 		c != '+')
    712 			++strp;
    713 	return strp;
    714 }
    715 
    716 /*
    717 ** Given a pointer into an extended time zone string, scan until the ending
    718 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    719 **
    720 ** As with getzname above, the legal character set is actually quite
    721 ** restricted, with other characters producing undefined results.
    722 ** We don't do any checking here; checking is done later in common-case code.
    723 */
    724 
    725 static const char *
    726 getqzname(const char *strp, const int delim)
    727 {
    728 	int	c;
    729 
    730 	while ((c = *strp) != '\0' && c != delim)
    731 		++strp;
    732 	return strp;
    733 }
    734 
    735 /*
    736 ** Given a pointer into a time zone string, extract a number from that string.
    737 ** Check that the number is within a specified range; if it is not, return
    738 ** NULL.
    739 ** Otherwise, return a pointer to the first character not part of the number.
    740 */
    741 
    742 static const char *
    743 getnum(const char *strp, int *const nump, const int min, const int max)
    744 {
    745 	char	c;
    746 	int	num;
    747 
    748 	if (strp == NULL || !is_digit(c = *strp)) {
    749 		errno = EINVAL;
    750 		return NULL;
    751 	}
    752 	num = 0;
    753 	do {
    754 		num = num * 10 + (c - '0');
    755 		if (num > max) {
    756 			errno = EOVERFLOW;
    757 			return NULL;	/* illegal value */
    758 		}
    759 		c = *++strp;
    760 	} while (is_digit(c));
    761 	if (num < min) {
    762 		errno = EINVAL;
    763 		return NULL;		/* illegal value */
    764 	}
    765 	*nump = num;
    766 	return strp;
    767 }
    768 
    769 /*
    770 ** Given a pointer into a time zone string, extract a number of seconds,
    771 ** in hh[:mm[:ss]] form, from the string.
    772 ** If any error occurs, return NULL.
    773 ** Otherwise, return a pointer to the first character not part of the number
    774 ** of seconds.
    775 */
    776 
    777 static const char *
    778 getsecs(const char *strp, int_fast32_t *const secsp)
    779 {
    780 	int	num;
    781 
    782 	/*
    783 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    784 	** "M10.4.6/26", which does not conform to Posix,
    785 	** but which specifies the equivalent of
    786 	** ``02:00 on the first Sunday on or after 23 Oct''.
    787 	*/
    788 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    789 	if (strp == NULL)
    790 		return NULL;
    791 	*secsp = num * (int_fast32_t) SECSPERHOUR;
    792 	if (*strp == ':') {
    793 		++strp;
    794 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    795 		if (strp == NULL)
    796 			return NULL;
    797 		*secsp += num * SECSPERMIN;
    798 		if (*strp == ':') {
    799 			++strp;
    800 			/* `SECSPERMIN' allows for leap seconds. */
    801 			strp = getnum(strp, &num, 0, SECSPERMIN);
    802 			if (strp == NULL)
    803 				return NULL;
    804 			*secsp += num;
    805 		}
    806 	}
    807 	return strp;
    808 }
    809 
    810 /*
    811 ** Given a pointer into a time zone string, extract an offset, in
    812 ** [+-]hh[:mm[:ss]] form, from the string.
    813 ** If any error occurs, return NULL.
    814 ** Otherwise, return a pointer to the first character not part of the time.
    815 */
    816 
    817 static const char *
    818 getoffset(const char *strp, int_fast32_t *const offsetp)
    819 {
    820 	int	neg = 0;
    821 
    822 	if (*strp == '-') {
    823 		neg = 1;
    824 		++strp;
    825 	} else if (*strp == '+')
    826 		++strp;
    827 	strp = getsecs(strp, offsetp);
    828 	if (strp == NULL)
    829 		return NULL;		/* illegal time */
    830 	if (neg)
    831 		*offsetp = -*offsetp;
    832 	return strp;
    833 }
    834 
    835 /*
    836 ** Given a pointer into a time zone string, extract a rule in the form
    837 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    838 ** If a valid rule is not found, return NULL.
    839 ** Otherwise, return a pointer to the first character not part of the rule.
    840 */
    841 
    842 static const char *
    843 getrule(const char *strp, struct rule *const rulep)
    844 {
    845 	if (*strp == 'J') {
    846 		/*
    847 		** Julian day.
    848 		*/
    849 		rulep->r_type = JULIAN_DAY;
    850 		++strp;
    851 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    852 	} else if (*strp == 'M') {
    853 		/*
    854 		** Month, week, day.
    855 		*/
    856 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    857 		++strp;
    858 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    859 		if (strp == NULL)
    860 			return NULL;
    861 		if (*strp++ != '.')
    862 			return NULL;
    863 		strp = getnum(strp, &rulep->r_week, 1, 5);
    864 		if (strp == NULL)
    865 			return NULL;
    866 		if (*strp++ != '.')
    867 			return NULL;
    868 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    869 	} else if (is_digit(*strp)) {
    870 		/*
    871 		** Day of year.
    872 		*/
    873 		rulep->r_type = DAY_OF_YEAR;
    874 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    875 	} else	return NULL;		/* invalid format */
    876 	if (strp == NULL)
    877 		return NULL;
    878 	if (*strp == '/') {
    879 		/*
    880 		** Time specified.
    881 		*/
    882 		++strp;
    883 		strp = getsecs(strp, &rulep->r_time);
    884 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    885 	return strp;
    886 }
    887 
    888 /*
    889 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    890 ** year, a rule, and the offset from UTC at the time that rule takes effect,
    891 ** calculate the Epoch-relative time that rule takes effect.
    892 */
    893 
    894 static time_t
    895 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    896     const int_fast32_t offset)
    897 {
    898 	int	leapyear;
    899 	time_t	value;
    900 	int	i;
    901 	int		d, m1, yy0, yy1, yy2, dow;
    902 
    903 	INITIALIZE(value);
    904 	leapyear = isleap(year);
    905 	switch (rulep->r_type) {
    906 
    907 	case JULIAN_DAY:
    908 		/*
    909 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    910 		** years.
    911 		** In non-leap years, or if the day number is 59 or less, just
    912 		** add SECSPERDAY times the day number-1 to the time of
    913 		** January 1, midnight, to get the day.
    914 		*/
    915 		value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
    916 		if (leapyear && rulep->r_day >= 60)
    917 			value += SECSPERDAY;
    918 		break;
    919 
    920 	case DAY_OF_YEAR:
    921 		/*
    922 		** n - day of year.
    923 		** Just add SECSPERDAY times the day number to the time of
    924 		** January 1, midnight, to get the day.
    925 		*/
    926 		value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
    927 		break;
    928 
    929 	case MONTH_NTH_DAY_OF_WEEK:
    930 		/*
    931 		** Mm.n.d - nth "dth day" of month m.
    932 		*/
    933 		value = janfirst;
    934 		for (i = 0; i < rulep->r_mon - 1; ++i)
    935 			value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
    936 
    937 		/*
    938 		** Use Zeller's Congruence to get day-of-week of first day of
    939 		** month.
    940 		*/
    941 		m1 = (rulep->r_mon + 9) % 12 + 1;
    942 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    943 		yy1 = yy0 / 100;
    944 		yy2 = yy0 % 100;
    945 		dow = ((26 * m1 - 2) / 10 +
    946 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    947 		if (dow < 0)
    948 			dow += DAYSPERWEEK;
    949 
    950 		/*
    951 		** "dow" is the day-of-week of the first day of the month. Get
    952 		** the day-of-month (zero-origin) of the first "dow" day of the
    953 		** month.
    954 		*/
    955 		d = rulep->r_day - dow;
    956 		if (d < 0)
    957 			d += DAYSPERWEEK;
    958 		for (i = 1; i < rulep->r_week; ++i) {
    959 			if (d + DAYSPERWEEK >=
    960 				mon_lengths[leapyear][rulep->r_mon - 1])
    961 					break;
    962 			d += DAYSPERWEEK;
    963 		}
    964 
    965 		/*
    966 		** "d" is the day-of-month (zero-origin) of the day we want.
    967 		*/
    968 		value += (time_t)(d * SECSPERDAY);
    969 		break;
    970 	}
    971 
    972 	/*
    973 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    974 	** question. To get the Epoch-relative time of the specified local
    975 	** time on that day, add the transition time and the current offset
    976 	** from UTC.
    977 	*/
    978 	return (time_t)(value + rulep->r_time + offset);
    979 }
    980 
    981 /*
    982 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    983 ** appropriate.
    984 */
    985 
    986 static int
    987 tzparse(timezone_t sp, const char *name, const int lastditch)
    988 {
    989 	const char *		stdname;
    990 	const char *		dstname;
    991 	size_t			stdlen;
    992 	size_t			dstlen;
    993 	int_fast32_t		stdoffset;
    994 	int_fast32_t		dstoffset;
    995 	time_t *		atp;
    996 	unsigned char *		typep;
    997 	char *			cp;
    998 	int			load_result;
    999 
   1000 	INITIALIZE(dstname);
   1001 	stdname = name;
   1002 	if (lastditch) {
   1003 		stdlen = strlen(name);	/* length of standard zone name */
   1004 		name += stdlen;
   1005 		if (stdlen >= sizeof sp->chars)
   1006 			stdlen = (sizeof sp->chars) - 1;
   1007 		stdoffset = 0;
   1008 	} else {
   1009 		if (*name == '<') {
   1010 			name++;
   1011 			stdname = name;
   1012 			name = getqzname(name, '>');
   1013 			if (*name != '>')
   1014 				return (-1);
   1015 			stdlen = name - stdname;
   1016 			name++;
   1017 		} else {
   1018 			name = getzname(name);
   1019 			stdlen = name - stdname;
   1020 		}
   1021 		if (*name == '\0')
   1022 			return -1;
   1023 		name = getoffset(name, &stdoffset);
   1024 		if (name == NULL)
   1025 			return -1;
   1026 	}
   1027 	load_result = tzload(sp, TZDEFRULES, FALSE);
   1028 	if (load_result != 0)
   1029 		sp->leapcnt = 0;		/* so, we're off a little */
   1030 	if (*name != '\0') {
   1031 		if (*name == '<') {
   1032 			dstname = ++name;
   1033 			name = getqzname(name, '>');
   1034 			if (*name != '>')
   1035 				return -1;
   1036 			dstlen = name - dstname;
   1037 			name++;
   1038 		} else {
   1039 			dstname = name;
   1040 			name = getzname(name);
   1041 			dstlen = name - dstname; /* length of DST zone name */
   1042 		}
   1043 		if (*name != '\0' && *name != ',' && *name != ';') {
   1044 			name = getoffset(name, &dstoffset);
   1045 			if (name == NULL)
   1046 				return -1;
   1047 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1048 		if (*name == '\0' && load_result != 0)
   1049 			name = TZDEFRULESTRING;
   1050 		if (*name == ',' || *name == ';') {
   1051 			struct rule	start;
   1052 			struct rule	end;
   1053 			int	year;
   1054 			time_t	janfirst;
   1055 			time_t		starttime;
   1056 			time_t		endtime;
   1057 
   1058 			++name;
   1059 			if ((name = getrule(name, &start)) == NULL)
   1060 				return -1;
   1061 			if (*name++ != ',')
   1062 				return -1;
   1063 			if ((name = getrule(name, &end)) == NULL)
   1064 				return -1;
   1065 			if (*name != '\0')
   1066 				return -1;
   1067 			sp->typecnt = 2;	/* standard time and DST */
   1068 			/*
   1069 			** Two transitions per year, from EPOCH_YEAR forward.
   1070 			*/
   1071 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1072 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1073 			sp->ttis[0].tt_isdst = 1;
   1074 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
   1075 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1076 			sp->ttis[1].tt_isdst = 0;
   1077 			sp->ttis[1].tt_abbrind = 0;
   1078 			atp = sp->ats;
   1079 			typep = sp->types;
   1080 			janfirst = 0;
   1081 			sp->timecnt = 0;
   1082 			for (year = EPOCH_YEAR;
   1083 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1084 			    ++year) {
   1085 			    	time_t	newfirst;
   1086 
   1087 				starttime = transtime(janfirst, year, &start,
   1088 					stdoffset);
   1089 				endtime = transtime(janfirst, year, &end,
   1090 					dstoffset);
   1091 				if (starttime > endtime) {
   1092 					*atp++ = endtime;
   1093 					*typep++ = 1;	/* DST ends */
   1094 					*atp++ = starttime;
   1095 					*typep++ = 0;	/* DST begins */
   1096 				} else {
   1097 					*atp++ = starttime;
   1098 					*typep++ = 0;	/* DST begins */
   1099 					*atp++ = endtime;
   1100 					*typep++ = 1;	/* DST ends */
   1101 				}
   1102 				sp->timecnt += 2;
   1103 				newfirst = janfirst;
   1104 				newfirst += (time_t)
   1105 				    (year_lengths[isleap(year)] * SECSPERDAY);
   1106 				if (newfirst <= janfirst)
   1107 					break;
   1108 				janfirst = newfirst;
   1109 			}
   1110 		} else {
   1111 			int_fast32_t	theirstdoffset;
   1112 			int_fast32_t	theirdstoffset;
   1113 			int_fast32_t	theiroffset;
   1114 			int		isdst;
   1115 			int		i;
   1116 			int		j;
   1117 
   1118 			if (*name != '\0')
   1119 				return -1;
   1120 			/*
   1121 			** Initial values of theirstdoffset and theirdstoffset.
   1122 			*/
   1123 			theirstdoffset = 0;
   1124 			for (i = 0; i < sp->timecnt; ++i) {
   1125 				j = sp->types[i];
   1126 				if (!sp->ttis[j].tt_isdst) {
   1127 					theirstdoffset =
   1128 						-sp->ttis[j].tt_gmtoff;
   1129 					break;
   1130 				}
   1131 			}
   1132 			theirdstoffset = 0;
   1133 			for (i = 0; i < sp->timecnt; ++i) {
   1134 				j = sp->types[i];
   1135 				if (sp->ttis[j].tt_isdst) {
   1136 					theirdstoffset =
   1137 						-sp->ttis[j].tt_gmtoff;
   1138 					break;
   1139 				}
   1140 			}
   1141 			/*
   1142 			** Initially we're assumed to be in standard time.
   1143 			*/
   1144 			isdst = FALSE;
   1145 			theiroffset = theirstdoffset;
   1146 			/*
   1147 			** Now juggle transition times and types
   1148 			** tracking offsets as you do.
   1149 			*/
   1150 			for (i = 0; i < sp->timecnt; ++i) {
   1151 				j = sp->types[i];
   1152 				sp->types[i] = sp->ttis[j].tt_isdst;
   1153 				if (sp->ttis[j].tt_ttisgmt) {
   1154 					/* No adjustment to transition time */
   1155 				} else {
   1156 					/*
   1157 					** If summer time is in effect, and the
   1158 					** transition time was not specified as
   1159 					** standard time, add the summer time
   1160 					** offset to the transition time;
   1161 					** otherwise, add the standard time
   1162 					** offset to the transition time.
   1163 					*/
   1164 					/*
   1165 					** Transitions from DST to DDST
   1166 					** will effectively disappear since
   1167 					** POSIX provides for only one DST
   1168 					** offset.
   1169 					*/
   1170 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1171 						sp->ats[i] += (time_t)
   1172 						    (dstoffset - theirdstoffset);
   1173 					} else {
   1174 						sp->ats[i] += (time_t)
   1175 						    (stdoffset - theirstdoffset);
   1176 					}
   1177 				}
   1178 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1179 				if (!sp->ttis[j].tt_isdst)
   1180 					theirstdoffset = theiroffset;
   1181 				else	theirdstoffset = theiroffset;
   1182 			}
   1183 			/*
   1184 			** Finally, fill in ttis.
   1185 			** ttisstd and ttisgmt need not be handled
   1186 			*/
   1187 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1188 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1189 			sp->ttis[0].tt_isdst = FALSE;
   1190 			sp->ttis[0].tt_abbrind = 0;
   1191 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1192 			sp->ttis[1].tt_isdst = TRUE;
   1193 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
   1194 			sp->typecnt = 2;
   1195 		}
   1196 	} else {
   1197 		dstlen = 0;
   1198 		sp->typecnt = 1;		/* only standard time */
   1199 		sp->timecnt = 0;
   1200 		memset(sp->ttis, 0, sizeof(sp->ttis));
   1201 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1202 		sp->ttis[0].tt_isdst = 0;
   1203 		sp->ttis[0].tt_abbrind = 0;
   1204 	}
   1205 	sp->charcnt = (int)(stdlen + 1);
   1206 	if (dstlen != 0)
   1207 		sp->charcnt += (int)(dstlen + 1);
   1208 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1209 		return -1;
   1210 	cp = sp->chars;
   1211 	(void) strncpy(cp, stdname, stdlen);
   1212 	cp += stdlen;
   1213 	*cp++ = '\0';
   1214 	if (dstlen != 0) {
   1215 		(void) strncpy(cp, dstname, dstlen);
   1216 		*(cp + dstlen) = '\0';
   1217 	}
   1218 	return 0;
   1219 }
   1220 
   1221 static void
   1222 gmtload(timezone_t sp)
   1223 {
   1224 	if (tzload(sp, gmt, TRUE) != 0)
   1225 		(void) tzparse(sp, gmt, TRUE);
   1226 }
   1227 
   1228 timezone_t
   1229 tzalloc(const char *name)
   1230 {
   1231 	timezone_t sp = calloc(1, sizeof *sp);
   1232 	if (sp == NULL)
   1233 		return NULL;
   1234 	if (tzload(sp, name, TRUE) != 0) {
   1235 		free(sp);
   1236 		return NULL;
   1237 	}
   1238 	settzname_z(sp);
   1239 	return sp;
   1240 }
   1241 
   1242 void
   1243 tzfree(const timezone_t sp)
   1244 {
   1245 	free(sp);
   1246 }
   1247 
   1248 static void
   1249 tzsetwall_unlocked(void)
   1250 {
   1251 	if (lcl_is_set < 0)
   1252 		return;
   1253 	lcl_is_set = -1;
   1254 
   1255 	if (lclptr == NULL) {
   1256 		int saveerrno = errno;
   1257 		lclptr = calloc(1, sizeof *lclptr);
   1258 		errno = saveerrno;
   1259 		if (lclptr == NULL) {
   1260 			settzname();	/* all we can do */
   1261 			return;
   1262 		}
   1263 	}
   1264 	if (tzload(lclptr, NULL, TRUE) != 0)
   1265 		gmtload(lclptr);
   1266 	settzname();
   1267 }
   1268 
   1269 #ifndef STD_INSPIRED
   1270 /*
   1271 ** A non-static declaration of tzsetwall in a system header file
   1272 ** may cause a warning about this upcoming static declaration...
   1273 */
   1274 static
   1275 #endif /* !defined STD_INSPIRED */
   1276 void
   1277 tzsetwall(void)
   1278 {
   1279 	rwlock_wrlock(&lcl_lock);
   1280 	tzsetwall_unlocked();
   1281 	rwlock_unlock(&lcl_lock);
   1282 }
   1283 
   1284 #ifndef STD_INSPIRED
   1285 /*
   1286 ** A non-static declaration of tzsetwall in a system header file
   1287 ** may cause a warning about this upcoming static declaration...
   1288 */
   1289 static
   1290 #endif /* !defined STD_INSPIRED */
   1291 void
   1292 tzset_unlocked(void)
   1293 {
   1294 	const char *	name;
   1295 
   1296 	name = getenv("TZ");
   1297 	if (name == NULL) {
   1298 		tzsetwall_unlocked();
   1299 		return;
   1300 	}
   1301 
   1302 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1303 		return;
   1304 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1305 	if (lcl_is_set)
   1306 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1307 
   1308 	if (lclptr == NULL) {
   1309 		int saveerrno = errno;
   1310 		lclptr = calloc(1, sizeof *lclptr);
   1311 		errno = saveerrno;
   1312 		if (lclptr == NULL) {
   1313 			settzname();	/* all we can do */
   1314 			return;
   1315 		}
   1316 	}
   1317 	if (*name == '\0') {
   1318 		/*
   1319 		** User wants it fast rather than right.
   1320 		*/
   1321 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1322 		lclptr->timecnt = 0;
   1323 		lclptr->typecnt = 0;
   1324 		lclptr->ttis[0].tt_isdst = 0;
   1325 		lclptr->ttis[0].tt_gmtoff = 0;
   1326 		lclptr->ttis[0].tt_abbrind = 0;
   1327 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1328 	} else if (tzload(lclptr, name, TRUE) != 0)
   1329 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1330 			(void) gmtload(lclptr);
   1331 	settzname();
   1332 }
   1333 
   1334 void
   1335 tzset(void)
   1336 {
   1337 	rwlock_wrlock(&lcl_lock);
   1338 	tzset_unlocked();
   1339 	rwlock_unlock(&lcl_lock);
   1340 }
   1341 
   1342 /*
   1343 ** The easy way to behave "as if no library function calls" localtime
   1344 ** is to not call it--so we drop its guts into "localsub", which can be
   1345 ** freely called. (And no, the PANS doesn't require the above behavior--
   1346 ** but it *is* desirable.)
   1347 **
   1348 ** The unused offset argument is for the benefit of mktime variants.
   1349 */
   1350 
   1351 /*ARGSUSED*/
   1352 static struct tm *
   1353 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
   1354     struct tm *const tmp)
   1355 {
   1356 	const struct ttinfo *	ttisp;
   1357 	int			i;
   1358 	struct tm *		result;
   1359 	const time_t			t = *timep;
   1360 
   1361 	if ((sp->goback && t < sp->ats[0]) ||
   1362 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1363 			time_t			newt = t;
   1364 			time_t		seconds;
   1365 			time_t		tcycles;
   1366 			int_fast64_t	icycles;
   1367 
   1368 			if (t < sp->ats[0])
   1369 				seconds = sp->ats[0] - t;
   1370 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1371 			--seconds;
   1372 			tcycles = (time_t)
   1373 			    (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
   1374 			++tcycles;
   1375 			icycles = tcycles;
   1376 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1377 				return NULL;
   1378 			seconds = (time_t) icycles;
   1379 			seconds *= YEARSPERREPEAT;
   1380 			seconds *= AVGSECSPERYEAR;
   1381 			if (t < sp->ats[0])
   1382 				newt += seconds;
   1383 			else	newt -= seconds;
   1384 			if (newt < sp->ats[0] ||
   1385 				newt > sp->ats[sp->timecnt - 1])
   1386 					return NULL;	/* "cannot happen" */
   1387 			result = localsub(sp, &newt, offset, tmp);
   1388 			if (result == tmp) {
   1389 				time_t	newy;
   1390 
   1391 				newy = tmp->tm_year;
   1392 				if (t < sp->ats[0])
   1393 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1394 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1395 				tmp->tm_year = (int)newy;
   1396 				if (tmp->tm_year != newy)
   1397 					return NULL;
   1398 			}
   1399 			return result;
   1400 	}
   1401 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1402 		i = sp->defaulttype;
   1403 	} else {
   1404 		int	lo = 1;
   1405 		int	hi = sp->timecnt;
   1406 
   1407 		while (lo < hi) {
   1408 			int	mid = (lo + hi) / 2;
   1409 
   1410 			if (t < sp->ats[mid])
   1411 				hi = mid;
   1412 			else	lo = mid + 1;
   1413 		}
   1414 		i = (int) sp->types[lo - 1];
   1415 	}
   1416 	ttisp = &sp->ttis[i];
   1417 	/*
   1418 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1419 	** you'd replace the statement below with
   1420 	**	t += ttisp->tt_gmtoff;
   1421 	**	timesub(&t, 0L, sp, tmp);
   1422 	*/
   1423 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1424 	tmp->tm_isdst = ttisp->tt_isdst;
   1425 	if (sp == lclptr)
   1426 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1427 #ifdef TM_ZONE
   1428 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1429 #endif /* defined TM_ZONE */
   1430 	return result;
   1431 }
   1432 
   1433 /*
   1434 ** Re-entrant version of localtime.
   1435 */
   1436 
   1437 struct tm *
   1438 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1439 {
   1440 	rwlock_rdlock(&lcl_lock);
   1441 	tzset_unlocked();
   1442 	tmp = localtime_rz(lclptr, timep, tmp);
   1443 	rwlock_unlock(&lcl_lock);
   1444 	return tmp;
   1445 }
   1446 
   1447 struct tm *
   1448 localtime(const time_t *const timep)
   1449 {
   1450 	return localtime_r(timep, &tm);
   1451 }
   1452 
   1453 struct tm *
   1454 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1455 {
   1456 	if (sp == NULL)
   1457 		tmp = gmtsub(NULL, timep, 0, tmp);
   1458 	else
   1459 		tmp = localsub(sp, timep, 0, tmp);
   1460 	if (tmp == NULL)
   1461 		errno = EOVERFLOW;
   1462 	return tmp;
   1463 }
   1464 
   1465 /*
   1466 ** gmtsub is to gmtime as localsub is to localtime.
   1467 */
   1468 
   1469 static struct tm *
   1470 gmtsub(const timezone_t sp, const time_t *const timep,
   1471     const int_fast32_t offset, struct tm *const tmp)
   1472 {
   1473 	struct tm *	result;
   1474 #ifdef _REENTRANT
   1475 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1476 #endif
   1477 
   1478 	mutex_lock(&gmt_mutex);
   1479 	if (!gmt_is_set) {
   1480 		int saveerrno;
   1481 		gmt_is_set = TRUE;
   1482 		saveerrno = errno;
   1483 		gmtptr = calloc(1, sizeof *gmtptr);
   1484 		errno = saveerrno;
   1485 		if (gmtptr != NULL)
   1486 			gmtload(gmtptr);
   1487 	}
   1488 	mutex_unlock(&gmt_mutex);
   1489 	result = timesub(gmtptr, timep, offset, tmp);
   1490 #ifdef TM_ZONE
   1491 	/*
   1492 	** Could get fancy here and deliver something such as
   1493 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1494 	** but this is no time for a treasure hunt.
   1495 	*/
   1496 	if (offset != 0)
   1497 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1498 	else {
   1499 		if (gmtptr == NULL)
   1500 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1501 		else	tmp->TM_ZONE = gmtptr->chars;
   1502 	}
   1503 #endif /* defined TM_ZONE */
   1504 	return result;
   1505 }
   1506 
   1507 struct tm *
   1508 gmtime(const time_t *const timep)
   1509 {
   1510 	struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
   1511 
   1512 	if (tmp == NULL)
   1513 		errno = EOVERFLOW;
   1514 
   1515 	return tmp;
   1516 }
   1517 
   1518 /*
   1519 ** Re-entrant version of gmtime.
   1520 */
   1521 
   1522 struct tm *
   1523 gmtime_r(const time_t * const timep, struct tm *tmp)
   1524 {
   1525 	tmp = gmtsub(NULL, timep, 0, tmp);
   1526 
   1527 	if (tmp == NULL)
   1528 		errno = EOVERFLOW;
   1529 
   1530 	return tmp;
   1531 }
   1532 
   1533 #ifdef STD_INSPIRED
   1534 
   1535 struct tm *
   1536 offtime(const time_t *const timep, long offset)
   1537 {
   1538 	struct tm *tmp;
   1539 
   1540 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1541 	    (offset < 0 && offset > INT_FAST32_MIN)) {
   1542 		errno = EOVERFLOW;
   1543 		return NULL;
   1544 	}
   1545 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
   1546 
   1547 	if (tmp == NULL)
   1548 		errno = EOVERFLOW;
   1549 
   1550 	return tmp;
   1551 }
   1552 
   1553 struct tm *
   1554 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1555 {
   1556 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1557 	    (offset < 0 && offset > INT_FAST32_MIN)) {
   1558 		errno = EOVERFLOW;
   1559 		return NULL;
   1560 	}
   1561 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
   1562 
   1563 	if (tmp == NULL)
   1564 		errno = EOVERFLOW;
   1565 
   1566 	return tmp;
   1567 }
   1568 
   1569 #endif /* defined STD_INSPIRED */
   1570 
   1571 /*
   1572 ** Return the number of leap years through the end of the given year
   1573 ** where, to make the math easy, the answer for year zero is defined as zero.
   1574 */
   1575 
   1576 static int
   1577 leaps_thru_end_of(const int y)
   1578 {
   1579 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1580 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1581 }
   1582 
   1583 static struct tm *
   1584 timesub(const timezone_t sp, const time_t *const timep,
   1585     const int_fast32_t offset, struct tm *const tmp)
   1586 {
   1587 	const struct lsinfo *	lp;
   1588 	time_t			tdays;
   1589 	int			idays;	/* unsigned would be so 2003 */
   1590 	int_fast64_t		rem;
   1591 	int			y;
   1592 	const int *		ip;
   1593 	int_fast64_t		corr;
   1594 	int			hit;
   1595 	int			i;
   1596 
   1597 	corr = 0;
   1598 	hit = 0;
   1599 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1600 	while (--i >= 0) {
   1601 		lp = &sp->lsis[i];
   1602 		if (*timep >= lp->ls_trans) {
   1603 			if (*timep == lp->ls_trans) {
   1604 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1605 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1606 				if (hit)
   1607 					while (i > 0 &&
   1608 						sp->lsis[i].ls_trans ==
   1609 						sp->lsis[i - 1].ls_trans + 1 &&
   1610 						sp->lsis[i].ls_corr ==
   1611 						sp->lsis[i - 1].ls_corr + 1) {
   1612 							++hit;
   1613 							--i;
   1614 					}
   1615 			}
   1616 			corr = lp->ls_corr;
   1617 			break;
   1618 		}
   1619 	}
   1620 	y = EPOCH_YEAR;
   1621 	tdays = (time_t)(*timep / SECSPERDAY);
   1622 	rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
   1623 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1624 		int		newy;
   1625 		time_t	tdelta;
   1626 		int	idelta;
   1627 		int	leapdays;
   1628 
   1629 		tdelta = tdays / DAYSPERLYEAR;
   1630 		idelta = (int) tdelta;
   1631 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1632 			return NULL;
   1633 		if (idelta == 0)
   1634 			idelta = (tdays < 0) ? -1 : 1;
   1635 		newy = y;
   1636 		if (increment_overflow(&newy, idelta))
   1637 			return NULL;
   1638 		leapdays = leaps_thru_end_of(newy - 1) -
   1639 			leaps_thru_end_of(y - 1);
   1640 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1641 		tdays -= leapdays;
   1642 		y = newy;
   1643 	}
   1644 	{
   1645 		int_fast32_t seconds;
   1646 		const time_t half_second = 0.5;
   1647 
   1648 		seconds = (int_fast32_t)(tdays * SECSPERDAY + half_second);
   1649 		tdays = (time_t)(seconds / SECSPERDAY);
   1650 		rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
   1651 	}
   1652 	/*
   1653 	** Given the range, we can now fearlessly cast...
   1654 	*/
   1655 	idays = (int) tdays;
   1656 	rem += offset - corr;
   1657 	while (rem < 0) {
   1658 		rem += SECSPERDAY;
   1659 		--idays;
   1660 	}
   1661 	while (rem >= SECSPERDAY) {
   1662 		rem -= SECSPERDAY;
   1663 		++idays;
   1664 	}
   1665 	while (idays < 0) {
   1666 		if (increment_overflow(&y, -1))
   1667 			return NULL;
   1668 		idays += year_lengths[isleap(y)];
   1669 	}
   1670 	while (idays >= year_lengths[isleap(y)]) {
   1671 		idays -= year_lengths[isleap(y)];
   1672 		if (increment_overflow(&y, 1))
   1673 			return NULL;
   1674 	}
   1675 	tmp->tm_year = y;
   1676 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1677 		return NULL;
   1678 	tmp->tm_yday = idays;
   1679 	/*
   1680 	** The "extra" mods below avoid overflow problems.
   1681 	*/
   1682 	tmp->tm_wday = EPOCH_WDAY +
   1683 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1684 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1685 		leaps_thru_end_of(y - 1) -
   1686 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1687 		idays;
   1688 	tmp->tm_wday %= DAYSPERWEEK;
   1689 	if (tmp->tm_wday < 0)
   1690 		tmp->tm_wday += DAYSPERWEEK;
   1691 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1692 	rem %= SECSPERHOUR;
   1693 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1694 	/*
   1695 	** A positive leap second requires a special
   1696 	** representation. This uses "... ??:59:60" et seq.
   1697 	*/
   1698 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1699 	ip = mon_lengths[isleap(y)];
   1700 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1701 		idays -= ip[tmp->tm_mon];
   1702 	tmp->tm_mday = (int) (idays + 1);
   1703 	tmp->tm_isdst = 0;
   1704 #ifdef TM_GMTOFF
   1705 	tmp->TM_GMTOFF = offset;
   1706 #endif /* defined TM_GMTOFF */
   1707 	return tmp;
   1708 }
   1709 
   1710 char *
   1711 ctime(const time_t *const timep)
   1712 {
   1713 /*
   1714 ** Section 4.12.3.2 of X3.159-1989 requires that
   1715 **	The ctime function converts the calendar time pointed to by timer
   1716 **	to local time in the form of a string. It is equivalent to
   1717 **		asctime(localtime(timer))
   1718 */
   1719 	struct tm *rtm = localtime(timep);
   1720 	if (rtm == NULL)
   1721 		return NULL;
   1722 	return asctime(rtm);
   1723 }
   1724 
   1725 char *
   1726 ctime_r(const time_t *const timep, char *buf)
   1727 {
   1728 	struct tm	mytm, *rtm;
   1729 
   1730 	rtm = localtime_r(timep, &mytm);
   1731 	if (rtm == NULL)
   1732 		return NULL;
   1733 	return asctime_r(rtm, buf);
   1734 }
   1735 
   1736 char *
   1737 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1738 {
   1739 	struct tm	mytm, *rtm;
   1740 
   1741 	rtm = localtime_rz(sp, timep, &mytm);
   1742 	if (rtm == NULL)
   1743 		return NULL;
   1744 	return asctime_r(rtm, buf);
   1745 }
   1746 
   1747 /*
   1748 ** Adapted from code provided by Robert Elz, who writes:
   1749 **	The "best" way to do mktime I think is based on an idea of Bob
   1750 **	Kridle's (so its said...) from a long time ago.
   1751 **	It does a binary search of the time_t space. Since time_t's are
   1752 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1753 **	would still be very reasonable).
   1754 */
   1755 
   1756 #ifndef WRONG
   1757 #define WRONG	((time_t)-1)
   1758 #endif /* !defined WRONG */
   1759 
   1760 /*
   1761 ** Simplified normalize logic courtesy Paul Eggert.
   1762 */
   1763 
   1764 static int
   1765 increment_overflow(int *const ip, int j)
   1766 {
   1767 	int	i = *ip;
   1768 
   1769 	/*
   1770 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1771 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1772 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1773 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1774 	*/
   1775 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1776 		return TRUE;
   1777 	*ip += j;
   1778 	return FALSE;
   1779 }
   1780 
   1781 static int
   1782 increment_overflow32(int_fast32_t *const lp, int const m)
   1783 {
   1784 	int_fast32_t l = *lp;
   1785 
   1786 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   1787 		return TRUE;
   1788 	*lp += m;
   1789 	return FALSE;
   1790 }
   1791 
   1792 static int
   1793 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1794 {
   1795 	int	tensdelta;
   1796 
   1797 	tensdelta = (*unitsptr >= 0) ?
   1798 		(*unitsptr / base) :
   1799 		(-1 - (-1 - *unitsptr) / base);
   1800 	*unitsptr -= tensdelta * base;
   1801 	return increment_overflow(tensptr, tensdelta);
   1802 }
   1803 
   1804 static int
   1805 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
   1806     const int base)
   1807 {
   1808 	int	tensdelta;
   1809 
   1810 	tensdelta = (*unitsptr >= 0) ?
   1811 		(*unitsptr / base) :
   1812 		(-1 - (-1 - *unitsptr) / base);
   1813 	*unitsptr -= tensdelta * base;
   1814 	return increment_overflow32(tensptr, tensdelta);
   1815 }
   1816 
   1817 static int
   1818 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1819 {
   1820 	int	result;
   1821 
   1822 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1823 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1824 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1825 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1826 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1827 			result = atmp->tm_sec - btmp->tm_sec;
   1828 	return result;
   1829 }
   1830 
   1831 static time_t
   1832 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1833     const int_fast32_t offset, int *const okayp, const int do_norm_secs)
   1834 {
   1835 	int			dir;
   1836 	int			i, j;
   1837 	int			saved_seconds;
   1838 	int_fast32_t		li;
   1839 	time_t			lo;
   1840 	time_t			hi;
   1841 #ifdef NO_ERROR_IN_DST_GAP
   1842 	time_t			ilo;
   1843 #endif
   1844 	int_fast32_t		y;
   1845 	time_t			newt;
   1846 	time_t			t;
   1847 	struct tm		yourtm, mytm;
   1848 
   1849 	*okayp = FALSE;
   1850 	yourtm = *tmp;
   1851 #ifdef NO_ERROR_IN_DST_GAP
   1852 again:
   1853 #endif
   1854 	if (do_norm_secs) {
   1855 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1856 		    SECSPERMIN))
   1857 			goto overflow;
   1858 	}
   1859 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1860 		goto overflow;
   1861 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1862 		goto overflow;
   1863 	y = yourtm.tm_year;
   1864 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   1865 		goto overflow;
   1866 	/*
   1867 	** Turn y into an actual year number for now.
   1868 	** It is converted back to an offset from TM_YEAR_BASE later.
   1869 	*/
   1870 	if (increment_overflow32(&y, TM_YEAR_BASE))
   1871 		goto overflow;
   1872 	while (yourtm.tm_mday <= 0) {
   1873 		if (increment_overflow32(&y, -1))
   1874 			goto overflow;
   1875 		li = y + (1 < yourtm.tm_mon);
   1876 		yourtm.tm_mday += year_lengths[isleap(li)];
   1877 	}
   1878 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1879 		li = y + (1 < yourtm.tm_mon);
   1880 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1881 		if (increment_overflow32(&y, 1))
   1882 			goto overflow;
   1883 	}
   1884 	for ( ; ; ) {
   1885 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1886 		if (yourtm.tm_mday <= i)
   1887 			break;
   1888 		yourtm.tm_mday -= i;
   1889 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1890 			yourtm.tm_mon = 0;
   1891 			if (increment_overflow32(&y, 1))
   1892 				goto overflow;
   1893 		}
   1894 	}
   1895 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   1896 		goto overflow;
   1897 	yourtm.tm_year = (int)y;
   1898 	if (yourtm.tm_year != y)
   1899 		goto overflow;
   1900 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1901 		saved_seconds = 0;
   1902 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1903 		/*
   1904 		** We can't set tm_sec to 0, because that might push the
   1905 		** time below the minimum representable time.
   1906 		** Set tm_sec to 59 instead.
   1907 		** This assumes that the minimum representable time is
   1908 		** not in the same minute that a leap second was deleted from,
   1909 		** which is a safer assumption than using 58 would be.
   1910 		*/
   1911 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1912 			goto overflow;
   1913 		saved_seconds = yourtm.tm_sec;
   1914 		yourtm.tm_sec = SECSPERMIN - 1;
   1915 	} else {
   1916 		saved_seconds = yourtm.tm_sec;
   1917 		yourtm.tm_sec = 0;
   1918 	}
   1919 	/*
   1920 	** Do a binary search (this works whatever time_t's type is).
   1921 	*/
   1922 	/* LINTED const not */
   1923 	if (!TYPE_SIGNED(time_t)) {
   1924 		lo = 0;
   1925 		hi = lo - 1;
   1926 	/* LINTED const not */
   1927 	} else if (!TYPE_INTEGRAL(time_t)) {
   1928 		/* CONSTCOND */
   1929 		if (sizeof(time_t) > sizeof(float))
   1930 			/* LINTED assumed double */
   1931 			hi = (time_t) DBL_MAX;
   1932 			/* LINTED assumed float */
   1933 		else	hi = (time_t) FLT_MAX;
   1934 		lo = -hi;
   1935 	} else {
   1936 		lo = 1;
   1937 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1938 			lo *= 2;
   1939 		hi = -(lo + 1);
   1940 	}
   1941 #ifdef NO_ERROR_IN_DST_GAP
   1942 	ilo = lo;
   1943 #endif
   1944 	for ( ; ; ) {
   1945 		t = lo / 2 + hi / 2;
   1946 		if (t < lo)
   1947 			t = lo;
   1948 		else if (t > hi)
   1949 			t = hi;
   1950 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1951 			/*
   1952 			** Assume that t is too extreme to be represented in
   1953 			** a struct tm; arrange things so that it is less
   1954 			** extreme on the next pass.
   1955 			*/
   1956 			dir = (t > 0) ? 1 : -1;
   1957 		} else	dir = tmcomp(&mytm, &yourtm);
   1958 		if (dir != 0) {
   1959 			if (t == lo) {
   1960 				++t;
   1961 				if (t <= lo)
   1962 					goto overflow;
   1963 				++lo;
   1964 			} else if (t == hi) {
   1965 				--t;
   1966 				if (t >= hi)
   1967 					goto overflow;
   1968 				--hi;
   1969 			}
   1970 #ifdef NO_ERROR_IN_DST_GAP
   1971 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   1972 			    do_norm_secs) {
   1973 				for (i = sp->typecnt - 1; i >= 0; --i) {
   1974 					for (j = sp->typecnt - 1; j >= 0; --j) {
   1975 						time_t off;
   1976 						if (sp->ttis[j].tt_isdst ==
   1977 						    sp->ttis[i].tt_isdst)
   1978 							continue;
   1979 						off = sp->ttis[j].tt_gmtoff -
   1980 						    sp->ttis[i].tt_gmtoff;
   1981 						yourtm.tm_sec += off < 0 ?
   1982 						    -off : off;
   1983 						goto again;
   1984 					}
   1985 				}
   1986 			}
   1987 #endif
   1988 			if (lo > hi)
   1989 				goto invalid;
   1990 			if (dir > 0)
   1991 				hi = t;
   1992 			else	lo = t;
   1993 			continue;
   1994 		}
   1995 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1996 			break;
   1997 		/*
   1998 		** Right time, wrong type.
   1999 		** Hunt for right time, right type.
   2000 		** It's okay to guess wrong since the guess
   2001 		** gets checked.
   2002 		*/
   2003 		if (sp == NULL)
   2004 			goto invalid;
   2005 		for (i = sp->typecnt - 1; i >= 0; --i) {
   2006 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   2007 				continue;
   2008 			for (j = sp->typecnt - 1; j >= 0; --j) {
   2009 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   2010 					continue;
   2011 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
   2012 				    sp->ttis[i].tt_gmtoff);
   2013 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   2014 					continue;
   2015 				if (tmcomp(&mytm, &yourtm) != 0)
   2016 					continue;
   2017 				if (mytm.tm_isdst != yourtm.tm_isdst)
   2018 					continue;
   2019 				/*
   2020 				** We have a match.
   2021 				*/
   2022 				t = newt;
   2023 				goto label;
   2024 			}
   2025 		}
   2026 		goto invalid;
   2027 	}
   2028 label:
   2029 	newt = t + saved_seconds;
   2030 	if ((newt < t) != (saved_seconds < 0))
   2031 		goto overflow;
   2032 	t = newt;
   2033 	if ((*funcp)(sp, &t, offset, tmp)) {
   2034 		*okayp = TRUE;
   2035 		return t;
   2036 	}
   2037 overflow:
   2038 	errno = EOVERFLOW;
   2039 	return WRONG;
   2040 invalid:
   2041 	errno = EINVAL;
   2042 	return WRONG;
   2043 }
   2044 
   2045 static time_t
   2046 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2047     const int_fast32_t offset, int *const okayp)
   2048 {
   2049 	time_t	t;
   2050 
   2051 	/*
   2052 	** First try without normalization of seconds
   2053 	** (in case tm_sec contains a value associated with a leap second).
   2054 	** If that fails, try with normalization of seconds.
   2055 	*/
   2056 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   2057 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   2058 }
   2059 
   2060 static time_t
   2061 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2062     const int_fast32_t offset)
   2063 {
   2064 	time_t			t;
   2065 	int			samei, otheri;
   2066 	int			sameind, otherind;
   2067 	int			i;
   2068 	int			nseen;
   2069 	int				seen[TZ_MAX_TYPES];
   2070 	int				types[TZ_MAX_TYPES];
   2071 	int				okay;
   2072 
   2073 	if (tmp == NULL) {
   2074 		errno = EINVAL;
   2075 		return WRONG;
   2076 	}
   2077 	if (tmp->tm_isdst > 1)
   2078 		tmp->tm_isdst = 1;
   2079 	t = time2(sp, tmp, funcp, offset, &okay);
   2080 #ifdef PCTS
   2081 	/*
   2082 	** PCTS code courtesy Grant Sullivan.
   2083 	*/
   2084 	if (okay)
   2085 		return t;
   2086 	if (tmp->tm_isdst < 0)
   2087 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2088 #endif /* defined PCTS */
   2089 #ifndef PCTS
   2090 	if (okay || tmp->tm_isdst < 0)
   2091 		return t;
   2092 #endif /* !defined PCTS */
   2093 	/*
   2094 	** We're supposed to assume that somebody took a time of one type
   2095 	** and did some math on it that yielded a "struct tm" that's bad.
   2096 	** We try to divine the type they started from and adjust to the
   2097 	** type they need.
   2098 	*/
   2099 	if (sp == NULL) {
   2100 		errno = EINVAL;
   2101 		return WRONG;
   2102 	}
   2103 	for (i = 0; i < sp->typecnt; ++i)
   2104 		seen[i] = FALSE;
   2105 	nseen = 0;
   2106 	for (i = sp->timecnt - 1; i >= 0; --i)
   2107 		if (!seen[sp->types[i]]) {
   2108 			seen[sp->types[i]] = TRUE;
   2109 			types[nseen++] = sp->types[i];
   2110 		}
   2111 	for (sameind = 0; sameind < nseen; ++sameind) {
   2112 		samei = types[sameind];
   2113 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2114 			continue;
   2115 		for (otherind = 0; otherind < nseen; ++otherind) {
   2116 			otheri = types[otherind];
   2117 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2118 				continue;
   2119 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2120 					sp->ttis[samei].tt_gmtoff);
   2121 			tmp->tm_isdst = !tmp->tm_isdst;
   2122 			t = time2(sp, tmp, funcp, offset, &okay);
   2123 			if (okay)
   2124 				return t;
   2125 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2126 					sp->ttis[samei].tt_gmtoff);
   2127 			tmp->tm_isdst = !tmp->tm_isdst;
   2128 		}
   2129 	}
   2130 	errno = EOVERFLOW;
   2131 	return WRONG;
   2132 }
   2133 
   2134 time_t
   2135 mktime_z(const timezone_t sp, struct tm *const tmp)
   2136 {
   2137 	time_t t;
   2138 	if (sp == NULL)
   2139 		t = time1(NULL, tmp, gmtsub, 0);
   2140 	else
   2141 		t = time1(sp, tmp, localsub, 0);
   2142 	return t;
   2143 }
   2144 
   2145 time_t
   2146 mktime(struct tm *const tmp)
   2147 {
   2148 	time_t result;
   2149 
   2150 	rwlock_wrlock(&lcl_lock);
   2151 	tzset_unlocked();
   2152 	result = mktime_z(lclptr, tmp);
   2153 	rwlock_unlock(&lcl_lock);
   2154 	return result;
   2155 }
   2156 
   2157 #ifdef STD_INSPIRED
   2158 
   2159 time_t
   2160 timelocal_z(const timezone_t sp, struct tm *const tmp)
   2161 {
   2162 	if (tmp != NULL)
   2163 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2164 	return mktime_z(sp, tmp);
   2165 }
   2166 
   2167 time_t
   2168 timelocal(struct tm *const tmp)
   2169 {
   2170 	if (tmp != NULL)
   2171 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2172 	return mktime(tmp);
   2173 }
   2174 
   2175 time_t
   2176 timegm(struct tm *const tmp)
   2177 {
   2178 	time_t t;
   2179 
   2180 	if (tmp != NULL)
   2181 		tmp->tm_isdst = 0;
   2182 	t = time1(gmtptr, tmp, gmtsub, 0);
   2183 	return t;
   2184 }
   2185 
   2186 time_t
   2187 timeoff(struct tm *const tmp, long offset)
   2188 {
   2189 	time_t t;
   2190 
   2191 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   2192 	    (offset < 0 && offset > INT_FAST32_MIN)) {
   2193 		errno = EOVERFLOW;
   2194 		return -1;
   2195 	}
   2196 	if (tmp != NULL)
   2197 		tmp->tm_isdst = 0;
   2198 	t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
   2199 	return t;
   2200 }
   2201 
   2202 #endif /* defined STD_INSPIRED */
   2203 
   2204 #ifdef CMUCS
   2205 
   2206 /*
   2207 ** The following is supplied for compatibility with
   2208 ** previous versions of the CMUCS runtime library.
   2209 */
   2210 
   2211 int_fast32_t
   2212 gtime(struct tm *const tmp)
   2213 {
   2214 	const time_t t = mktime(tmp);
   2215 
   2216 	if (t == WRONG)
   2217 		return -1;
   2218 	return t;
   2219 }
   2220 
   2221 #endif /* defined CMUCS */
   2222 
   2223 /*
   2224 ** XXX--is the below the right way to conditionalize??
   2225 */
   2226 
   2227 #ifdef STD_INSPIRED
   2228 
   2229 /*
   2230 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2231 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2232 ** is not the case if we are accounting for leap seconds.
   2233 ** So, we provide the following conversion routines for use
   2234 ** when exchanging timestamps with POSIX conforming systems.
   2235 */
   2236 
   2237 static int_fast64_t
   2238 leapcorr(const timezone_t sp, time_t *timep)
   2239 {
   2240 	struct lsinfo * lp;
   2241 	int		i;
   2242 
   2243 	i = sp->leapcnt;
   2244 	while (--i >= 0) {
   2245 		lp = &sp->lsis[i];
   2246 		if (*timep >= lp->ls_trans)
   2247 			return lp->ls_corr;
   2248 	}
   2249 	return 0;
   2250 }
   2251 
   2252 time_t
   2253 time2posix_z(const timezone_t sp, time_t t)
   2254 {
   2255 	return (time_t)(t - leapcorr(sp, &t));
   2256 }
   2257 
   2258 time_t
   2259 time2posix(time_t t)
   2260 {
   2261 	time_t result;
   2262 	rwlock_wrlock(&lcl_lock);
   2263 	tzset_unlocked();
   2264 	result = (time_t)(t - leapcorr(lclptr, &t));
   2265 	rwlock_unlock(&lcl_lock);
   2266 	return (result);
   2267 }
   2268 
   2269 time_t
   2270 posix2time_z(const timezone_t sp, time_t t)
   2271 {
   2272 	time_t	x;
   2273 	time_t	y;
   2274 
   2275 	/*
   2276 	** For a positive leap second hit, the result
   2277 	** is not unique. For a negative leap second
   2278 	** hit, the corresponding time doesn't exist,
   2279 	** so we return an adjacent second.
   2280 	*/
   2281 	x = (time_t)(t + leapcorr(sp, &t));
   2282 	y = (time_t)(x - leapcorr(sp, &x));
   2283 	if (y < t) {
   2284 		do {
   2285 			x++;
   2286 			y = (time_t)(x - leapcorr(sp, &x));
   2287 		} while (y < t);
   2288 		if (t != y) {
   2289 			return x - 1;
   2290 		}
   2291 	} else if (y > t) {
   2292 		do {
   2293 			--x;
   2294 			y = (time_t)(x - leapcorr(sp, &x));
   2295 		} while (y > t);
   2296 		if (t != y) {
   2297 			return x + 1;
   2298 		}
   2299 	}
   2300 	return x;
   2301 }
   2302 
   2303 
   2304 
   2305 time_t
   2306 posix2time(time_t t)
   2307 {
   2308 	time_t result;
   2309 
   2310 	rwlock_wrlock(&lcl_lock);
   2311 	tzset_unlocked();
   2312 	result = posix2time_z(lclptr, t);
   2313 	rwlock_unlock(&lcl_lock);
   2314 	return result;
   2315 }
   2316 
   2317 #endif /* defined STD_INSPIRED */
   2318