localtime.c revision 1.74 1 /* $NetBSD: localtime.c,v 1.74 2013/07/17 20:13:04 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.74 2013/07/17 20:13:04 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include "private.h"
26 #include "tzfile.h"
27 #include "fcntl.h"
28 #include "reentrant.h"
29
30 #if defined(__weak_alias)
31 __weak_alias(daylight,_daylight)
32 __weak_alias(tzname,_tzname)
33 #endif
34
35 #include "float.h" /* for FLT_MAX and DBL_MAX */
36
37 #ifndef TZ_ABBR_MAX_LEN
38 #define TZ_ABBR_MAX_LEN 16
39 #endif /* !defined TZ_ABBR_MAX_LEN */
40
41 #ifndef TZ_ABBR_CHAR_SET
42 #define TZ_ABBR_CHAR_SET \
43 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
44 #endif /* !defined TZ_ABBR_CHAR_SET */
45
46 #ifndef TZ_ABBR_ERR_CHAR
47 #define TZ_ABBR_ERR_CHAR '_'
48 #endif /* !defined TZ_ABBR_ERR_CHAR */
49
50 /*
51 ** SunOS 4.1.1 headers lack O_BINARY.
52 */
53
54 #ifdef O_BINARY
55 #define OPEN_MODE (O_RDONLY | O_BINARY)
56 #endif /* defined O_BINARY */
57 #ifndef O_BINARY
58 #define OPEN_MODE O_RDONLY
59 #endif /* !defined O_BINARY */
60
61 #ifndef WILDABBR
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 ** 1. They might reference tzname[0] before calling tzset (explicitly
65 ** or implicitly).
66 ** 2. They might reference tzname[1] before calling tzset (explicitly
67 ** or implicitly).
68 ** 3. They might reference tzname[1] after setting to a time zone
69 ** in which Daylight Saving Time is never observed.
70 ** 4. They might reference tzname[0] after setting to a time zone
71 ** in which Standard Time is never observed.
72 ** 5. They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR " "
82 #endif /* !defined WILDABBR */
83
84 static const char wildabbr[] = WILDABBR;
85
86 static const char gmt[] = "GMT";
87
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98
99 struct ttinfo { /* time type information */
100 int_fast32_t tt_gmtoff; /* UTC offset in seconds */
101 int tt_isdst; /* used to set tm_isdst */
102 int tt_abbrind; /* abbreviation list index */
103 int tt_ttisstd; /* TRUE if transition is std time */
104 int tt_ttisgmt; /* TRUE if transition is UTC */
105 };
106
107 struct lsinfo { /* leap second information */
108 time_t ls_trans; /* transition time */
109 int_fast64_t ls_corr; /* correction to apply */
110 };
111
112 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
113
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX 255
119 #endif /* !defined TZNAME_MAX */
120
121 struct __state {
122 int leapcnt;
123 int timecnt;
124 int typecnt;
125 int charcnt;
126 int goback;
127 int goahead;
128 time_t ats[TZ_MAX_TIMES];
129 unsigned char types[TZ_MAX_TIMES];
130 struct ttinfo ttis[TZ_MAX_TYPES];
131 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
132 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
133 struct lsinfo lsis[TZ_MAX_LEAPS];
134 int defaulttype; /* for early times or if no transitions */
135 };
136
137 struct rule {
138 int r_type; /* type of rule--see below */
139 int r_day; /* day number of rule */
140 int r_week; /* week number of rule */
141 int r_mon; /* month number of rule */
142 int_fast32_t r_time; /* transition time of rule */
143 };
144
145 #define JULIAN_DAY 0 /* Jn - Julian day */
146 #define DAY_OF_YEAR 1 /* n - day of year */
147 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
148
149 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
150 const int_fast32_t offset, struct tm *tmp);
151
152 /*
153 ** Prototypes for static functions.
154 */
155
156 static int_fast32_t detzcode(const char * codep);
157 static time_t detzcode64(const char * codep);
158 static int differ_by_repeat(time_t t1, time_t t0);
159 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
160 static const char * getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
161 static const char * getnum(const char * strp, int * nump, int min,
162 int max);
163 static const char * getsecs(const char * strp, int_fast32_t * secsp);
164 static const char * getoffset(const char * strp, int_fast32_t * offsetp);
165 static const char * getrule(const char * strp, struct rule * rulep);
166 static void gmtload(timezone_t sp);
167 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
168 const int_fast32_t offset, struct tm * tmp);
169 static struct tm * localsub(const timezone_t sp, const time_t *timep,
170 const int_fast32_t offset, struct tm *tmp);
171 static int increment_overflow(int * number, int delta);
172 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
173 static int increment_overflow(int_fast32_t * number, int delta);
174 static int normalize_overflow(int_fast32_t * tensptr,
175 int * unitsptr, int base);
176 static int normalize_overflow(int * tensptr, int * unitsptr,
177 int base);
178 static void settzname(void);
179 static time_t time1(const timezone_t sp, struct tm * const tmp,
180 subfun_t funcp, const int_fast32_t offset);
181 static time_t time2(const timezone_t sp, struct tm * const tmp,
182 subfun_t funcp,
183 const int_fast32_t offset, int *const okayp);
184 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
185 subfun_t funcp, const int_fast32_t offset,
186 int *const okayp, const int do_norm_secs);
187 static struct tm * timesub(const timezone_t sp, const time_t * timep,
188 const int_fast32_t offset, struct tm * tmp);
189 static int tmcomp(const struct tm * atmp,
190 const struct tm * btmp);
191 static time_t transtime(time_t janfirst, int year,
192 const struct rule * rulep,
193 const int_fast32_t offset) ATTRIBUTE_PURE;
194 static int typesequiv(const timezone_t sp, int a, int b);
195 static int tzload(timezone_t sp, const char * name,
196 int doextend);
197 static int tzparse(timezone_t sp, const char * name,
198 int lastditch);
199 static void tzset_unlocked(void);
200 static void tzsetwall_unlocked(void);
201 static int_fast64_t leapcorr(const timezone_t sp, time_t * timep);
202
203 static timezone_t lclptr;
204 static timezone_t gmtptr;
205
206 #ifndef TZ_STRLEN_MAX
207 #define TZ_STRLEN_MAX 255
208 #endif /* !defined TZ_STRLEN_MAX */
209
210 static char lcl_TZname[TZ_STRLEN_MAX + 1];
211 static int lcl_is_set;
212 static int gmt_is_set;
213
214 #if !defined(__LIBC12_SOURCE__)
215
216 __aconst char * tzname[2] = {
217 (__aconst char *)__UNCONST(wildabbr),
218 (__aconst char *)__UNCONST(wildabbr)
219 };
220
221 #else
222
223 extern __aconst char * tzname[2];
224
225 #endif
226
227 #ifdef _REENTRANT
228 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
229 #endif
230
231 /*
232 ** Section 4.12.3 of X3.159-1989 requires that
233 ** Except for the strftime function, these functions [asctime,
234 ** ctime, gmtime, localtime] return values in one of two static
235 ** objects: a broken-down time structure and an array of char.
236 ** Thanks to Paul Eggert for noting this.
237 */
238
239 static struct tm tm;
240
241 #ifdef USG_COMPAT
242 #if !defined(__LIBC12_SOURCE__)
243 long timezone = 0;
244 int daylight = 0;
245 #else
246 extern int daylight;
247 extern long timezone __RENAME(__timezone13);
248 #endif
249 #endif /* defined USG_COMPAT */
250
251 #ifdef ALTZONE
252 time_t altzone = 0;
253 #endif /* defined ALTZONE */
254
255 static int_fast32_t
256 detzcode(const char *const codep)
257 {
258 int_fast32_t result;
259 int i;
260
261 result = (codep[0] & 0x80) ? -1 : 0;
262 for (i = 0; i < 4; ++i)
263 result = (result << 8) | (codep[i] & 0xff);
264 return result;
265 }
266
267 static time_t
268 detzcode64(const char *const codep)
269 {
270 time_t result;
271 int i;
272
273 result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
274 for (i = 0; i < 8; ++i)
275 result = result * 256 + (codep[i] & 0xff);
276 return result;
277 }
278
279 const char *
280 tzgetname(const timezone_t sp, int isdst)
281 {
282 int i;
283 for (i = 0; i < sp->timecnt; ++i) {
284 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
285
286 if (ttisp->tt_isdst == isdst)
287 return &sp->chars[ttisp->tt_abbrind];
288 }
289 return NULL;
290 }
291
292 static void
293 settzname_z(timezone_t sp)
294 {
295 int i;
296
297 /*
298 ** Scrub the abbreviations.
299 ** First, replace bogus characters.
300 */
301 for (i = 0; i < sp->charcnt; ++i)
302 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
303 sp->chars[i] = TZ_ABBR_ERR_CHAR;
304 /*
305 ** Second, truncate long abbreviations.
306 */
307 for (i = 0; i < sp->typecnt; ++i) {
308 const struct ttinfo * const ttisp = &sp->ttis[i];
309 char * cp = &sp->chars[ttisp->tt_abbrind];
310
311 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
312 strcmp(cp, GRANDPARENTED) != 0)
313 *(cp + TZ_ABBR_MAX_LEN) = '\0';
314 }
315 }
316
317 static void
318 settzname(void)
319 {
320 timezone_t const sp = lclptr;
321 int i;
322
323 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
324 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
325 #ifdef USG_COMPAT
326 daylight = 0;
327 timezone = 0;
328 #endif /* defined USG_COMPAT */
329 #ifdef ALTZONE
330 altzone = 0;
331 #endif /* defined ALTZONE */
332 if (sp == NULL) {
333 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
334 return;
335 }
336 /*
337 ** And to get the latest zone names into tzname. . .
338 */
339 for (i = 0; i < sp->typecnt; ++i) {
340 const struct ttinfo * const ttisp = &sp->ttis[i];
341
342 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
343 #ifdef USG_COMPAT
344 if (ttisp->tt_isdst)
345 daylight = 1;
346 if (!ttisp->tt_isdst)
347 timezone = -(ttisp->tt_gmtoff);
348 #endif /* defined USG_COMPAT */
349 #ifdef ALTZONE
350 if (ttisp->tt_isdst)
351 altzone = -(ttisp->tt_gmtoff);
352 #endif /* defined ALTZONE */
353 }
354 settzname_z(sp);
355 }
356
357 static int
358 differ_by_repeat(const time_t t1, const time_t t0)
359 {
360 if (TYPE_INTEGRAL(time_t) &&
361 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
362 return 0;
363 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
364 }
365
366 static int
367 tzload(timezone_t sp, const char *name, const int doextend)
368 {
369 const char * p;
370 int i;
371 int fid;
372 int stored;
373 ssize_t nread;
374 typedef union {
375 struct tzhead tzhead;
376 char buf[2 * sizeof(struct tzhead) +
377 2 * sizeof *sp +
378 4 * TZ_MAX_TIMES];
379 } u_t;
380 u_t * up;
381
382 up = calloc(1, sizeof *up);
383 if (up == NULL)
384 return -1;
385
386 sp->goback = sp->goahead = FALSE;
387 if (name == NULL && (name = TZDEFAULT) == NULL)
388 goto oops;
389 {
390 int doaccess;
391 /*
392 ** Section 4.9.1 of the C standard says that
393 ** "FILENAME_MAX expands to an integral constant expression
394 ** that is the size needed for an array of char large enough
395 ** to hold the longest file name string that the implementation
396 ** guarantees can be opened."
397 */
398 char fullname[FILENAME_MAX + 1];
399
400 if (name[0] == ':')
401 ++name;
402 doaccess = name[0] == '/';
403 if (!doaccess) {
404 if ((p = TZDIR) == NULL)
405 goto oops;
406 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
407 goto oops;
408 (void) strcpy(fullname, p); /* XXX strcpy is safe */
409 (void) strcat(fullname, "/"); /* XXX strcat is safe */
410 (void) strcat(fullname, name); /* XXX strcat is safe */
411 /*
412 ** Set doaccess if '.' (as in "../") shows up in name.
413 */
414 if (strchr(name, '.') != NULL)
415 doaccess = TRUE;
416 name = fullname;
417 }
418 if (doaccess && access(name, R_OK) != 0)
419 goto oops;
420 /*
421 * XXX potential security problem here if user of a set-id
422 * program has set TZ (which is passed in as name) here,
423 * and uses a race condition trick to defeat the access(2)
424 * above.
425 */
426 if ((fid = open(name, OPEN_MODE)) == -1)
427 goto oops;
428 }
429 nread = read(fid, up->buf, sizeof up->buf);
430 if (close(fid) < 0 || nread <= 0)
431 goto oops;
432 for (stored = 4; stored <= 8; stored *= 2) {
433 int ttisstdcnt;
434 int ttisgmtcnt;
435
436 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
437 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
438 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
439 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
440 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
441 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
442 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
443 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
444 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
445 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
446 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
447 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
448 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
449 goto oops;
450 if (nread - (p - up->buf) <
451 sp->timecnt * stored + /* ats */
452 sp->timecnt + /* types */
453 sp->typecnt * 6 + /* ttinfos */
454 sp->charcnt + /* chars */
455 sp->leapcnt * (stored + 4) + /* lsinfos */
456 ttisstdcnt + /* ttisstds */
457 ttisgmtcnt) /* ttisgmts */
458 goto oops;
459 for (i = 0; i < sp->timecnt; ++i) {
460 sp->ats[i] = (time_t)((stored == 4) ?
461 detzcode(p) : detzcode64(p));
462 p += stored;
463 }
464 for (i = 0; i < sp->timecnt; ++i) {
465 sp->types[i] = (unsigned char) *p++;
466 if (sp->types[i] >= sp->typecnt)
467 goto oops;
468 }
469 for (i = 0; i < sp->typecnt; ++i) {
470 struct ttinfo * ttisp;
471
472 ttisp = &sp->ttis[i];
473 ttisp->tt_gmtoff = detzcode(p);
474 p += 4;
475 ttisp->tt_isdst = (unsigned char) *p++;
476 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
477 goto oops;
478 ttisp->tt_abbrind = (unsigned char) *p++;
479 if (ttisp->tt_abbrind < 0 ||
480 ttisp->tt_abbrind > sp->charcnt)
481 goto oops;
482 }
483 for (i = 0; i < sp->charcnt; ++i)
484 sp->chars[i] = *p++;
485 sp->chars[i] = '\0'; /* ensure '\0' at end */
486 for (i = 0; i < sp->leapcnt; ++i) {
487 struct lsinfo * lsisp;
488
489 lsisp = &sp->lsis[i];
490 lsisp->ls_trans = (time_t)((stored == 4) ?
491 detzcode(p) : detzcode64(p));
492 p += stored;
493 lsisp->ls_corr = detzcode(p);
494 p += 4;
495 }
496 for (i = 0; i < sp->typecnt; ++i) {
497 struct ttinfo * ttisp;
498
499 ttisp = &sp->ttis[i];
500 if (ttisstdcnt == 0)
501 ttisp->tt_ttisstd = FALSE;
502 else {
503 ttisp->tt_ttisstd = *p++;
504 if (ttisp->tt_ttisstd != TRUE &&
505 ttisp->tt_ttisstd != FALSE)
506 goto oops;
507 }
508 }
509 for (i = 0; i < sp->typecnt; ++i) {
510 struct ttinfo * ttisp;
511
512 ttisp = &sp->ttis[i];
513 if (ttisgmtcnt == 0)
514 ttisp->tt_ttisgmt = FALSE;
515 else {
516 ttisp->tt_ttisgmt = *p++;
517 if (ttisp->tt_ttisgmt != TRUE &&
518 ttisp->tt_ttisgmt != FALSE)
519 goto oops;
520 }
521 }
522 /*
523 ** Out-of-sort ats should mean we're running on a
524 ** signed time_t system but using a data file with
525 ** unsigned values (or vice versa).
526 */
527 for (i = 0; i < sp->timecnt; ++i)
528 if ((i < sp->timecnt - 1 &&
529 sp->ats[i] > sp->ats[i + 1]) ||
530 (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) &&
531 sp->ats[i] >
532 ((stored == 4) ? INT32_MAX : INT64_MAX))) {
533 if (TYPE_SIGNED(time_t)) {
534 /*
535 ** Ignore the end (easy).
536 */
537 sp->timecnt = i + 1;
538 } else {
539 /*
540 ** Ignore the beginning (harder).
541 */
542 int j;
543
544 /*
545 ** Keep the record right before the
546 ** epoch boundary,
547 ** but tweak it so that it starts
548 ** right with the epoch
549 ** (thanks to Doug Bailey).
550 */
551 sp->ats[i] = 0;
552 for (j = 0; j + i < sp->timecnt; ++j) {
553 sp->ats[j] = sp->ats[j + i];
554 sp->types[j] = sp->types[j + i];
555 }
556 sp->timecnt = j;
557 }
558 break;
559 }
560 /*
561 ** If this is an old file, we're done.
562 */
563 if (up->tzhead.tzh_version[0] == '\0')
564 break;
565 nread -= p - up->buf;
566 for (i = 0; i < nread; ++i)
567 up->buf[i] = p[i];
568 /*
569 ** If this is a narrow integer time_t system, we're done.
570 */
571 if (stored >= (int) sizeof(time_t)
572 /* CONSTCOND */
573 && TYPE_INTEGRAL(time_t))
574 break;
575 }
576 if (doextend && nread > 2 &&
577 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
578 sp->typecnt + 2 <= TZ_MAX_TYPES) {
579 struct __state ts;
580 int result;
581
582 up->buf[nread - 1] = '\0';
583 result = tzparse(&ts, &up->buf[1], FALSE);
584 if (result == 0 && ts.typecnt == 2 &&
585 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
586 for (i = 0; i < 2; ++i)
587 ts.ttis[i].tt_abbrind +=
588 sp->charcnt;
589 for (i = 0; i < ts.charcnt; ++i)
590 sp->chars[sp->charcnt++] =
591 ts.chars[i];
592 i = 0;
593 while (i < ts.timecnt &&
594 ts.ats[i] <=
595 sp->ats[sp->timecnt - 1])
596 ++i;
597 while (i < ts.timecnt &&
598 sp->timecnt < TZ_MAX_TIMES) {
599 sp->ats[sp->timecnt] =
600 ts.ats[i];
601 sp->types[sp->timecnt] =
602 sp->typecnt +
603 ts.types[i];
604 ++sp->timecnt;
605 ++i;
606 }
607 sp->ttis[sp->typecnt++] = ts.ttis[0];
608 sp->ttis[sp->typecnt++] = ts.ttis[1];
609 }
610 }
611 if (sp->timecnt > 1) {
612 for (i = 1; i < sp->timecnt; ++i)
613 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
614 differ_by_repeat(sp->ats[i], sp->ats[0])) {
615 sp->goback = TRUE;
616 break;
617 }
618 for (i = sp->timecnt - 2; i >= 0; --i)
619 if (typesequiv(sp, sp->types[sp->timecnt - 1],
620 sp->types[i]) &&
621 differ_by_repeat(sp->ats[sp->timecnt - 1],
622 sp->ats[i])) {
623 sp->goahead = TRUE;
624 break;
625 }
626 }
627 /*
628 ** If type 0 is is unused in transitions,
629 ** it's the type to use for early times.
630 */
631 for (i = 0; i < sp->typecnt; ++i)
632 if (sp->types[i] == 0)
633 break;
634 i = (i >= sp->typecnt) ? 0 : -1;
635 /*
636 ** Absent the above,
637 ** if there are transition times
638 ** and the first transition is to a daylight time
639 ** find the standard type less than and closest to
640 ** the type of the first transition.
641 */
642 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
643 i = sp->types[0];
644 while (--i >= 0)
645 if (!sp->ttis[i].tt_isdst)
646 break;
647 }
648 /*
649 ** If no result yet, find the first standard type.
650 ** If there is none, punt to type zero.
651 */
652 if (i < 0) {
653 i = 0;
654 while (sp->ttis[i].tt_isdst)
655 if (++i >= sp->typecnt) {
656 i = 0;
657 break;
658 }
659 }
660 sp->defaulttype = i;
661 free(up);
662 return 0;
663 oops:
664 free(up);
665 return -1;
666 }
667
668 static int
669 typesequiv(const timezone_t sp, const int a, const int b)
670 {
671 int result;
672
673 if (sp == NULL ||
674 a < 0 || a >= sp->typecnt ||
675 b < 0 || b >= sp->typecnt)
676 result = FALSE;
677 else {
678 const struct ttinfo * ap = &sp->ttis[a];
679 const struct ttinfo * bp = &sp->ttis[b];
680 result = ap->tt_gmtoff == bp->tt_gmtoff &&
681 ap->tt_isdst == bp->tt_isdst &&
682 ap->tt_ttisstd == bp->tt_ttisstd &&
683 ap->tt_ttisgmt == bp->tt_ttisgmt &&
684 strcmp(&sp->chars[ap->tt_abbrind],
685 &sp->chars[bp->tt_abbrind]) == 0;
686 }
687 return result;
688 }
689
690 static const int mon_lengths[2][MONSPERYEAR] = {
691 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
692 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
693 };
694
695 static const int year_lengths[2] = {
696 DAYSPERNYEAR, DAYSPERLYEAR
697 };
698
699 /*
700 ** Given a pointer into a time zone string, scan until a character that is not
701 ** a valid character in a zone name is found. Return a pointer to that
702 ** character.
703 */
704
705 static const char *
706 getzname(const char *strp)
707 {
708 char c;
709
710 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
711 c != '+')
712 ++strp;
713 return strp;
714 }
715
716 /*
717 ** Given a pointer into an extended time zone string, scan until the ending
718 ** delimiter of the zone name is located. Return a pointer to the delimiter.
719 **
720 ** As with getzname above, the legal character set is actually quite
721 ** restricted, with other characters producing undefined results.
722 ** We don't do any checking here; checking is done later in common-case code.
723 */
724
725 static const char *
726 getqzname(const char *strp, const int delim)
727 {
728 int c;
729
730 while ((c = *strp) != '\0' && c != delim)
731 ++strp;
732 return strp;
733 }
734
735 /*
736 ** Given a pointer into a time zone string, extract a number from that string.
737 ** Check that the number is within a specified range; if it is not, return
738 ** NULL.
739 ** Otherwise, return a pointer to the first character not part of the number.
740 */
741
742 static const char *
743 getnum(const char *strp, int *const nump, const int min, const int max)
744 {
745 char c;
746 int num;
747
748 if (strp == NULL || !is_digit(c = *strp)) {
749 errno = EINVAL;
750 return NULL;
751 }
752 num = 0;
753 do {
754 num = num * 10 + (c - '0');
755 if (num > max) {
756 errno = EOVERFLOW;
757 return NULL; /* illegal value */
758 }
759 c = *++strp;
760 } while (is_digit(c));
761 if (num < min) {
762 errno = EINVAL;
763 return NULL; /* illegal value */
764 }
765 *nump = num;
766 return strp;
767 }
768
769 /*
770 ** Given a pointer into a time zone string, extract a number of seconds,
771 ** in hh[:mm[:ss]] form, from the string.
772 ** If any error occurs, return NULL.
773 ** Otherwise, return a pointer to the first character not part of the number
774 ** of seconds.
775 */
776
777 static const char *
778 getsecs(const char *strp, int_fast32_t *const secsp)
779 {
780 int num;
781
782 /*
783 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
784 ** "M10.4.6/26", which does not conform to Posix,
785 ** but which specifies the equivalent of
786 ** ``02:00 on the first Sunday on or after 23 Oct''.
787 */
788 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
789 if (strp == NULL)
790 return NULL;
791 *secsp = num * (int_fast32_t) SECSPERHOUR;
792 if (*strp == ':') {
793 ++strp;
794 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
795 if (strp == NULL)
796 return NULL;
797 *secsp += num * SECSPERMIN;
798 if (*strp == ':') {
799 ++strp;
800 /* `SECSPERMIN' allows for leap seconds. */
801 strp = getnum(strp, &num, 0, SECSPERMIN);
802 if (strp == NULL)
803 return NULL;
804 *secsp += num;
805 }
806 }
807 return strp;
808 }
809
810 /*
811 ** Given a pointer into a time zone string, extract an offset, in
812 ** [+-]hh[:mm[:ss]] form, from the string.
813 ** If any error occurs, return NULL.
814 ** Otherwise, return a pointer to the first character not part of the time.
815 */
816
817 static const char *
818 getoffset(const char *strp, int_fast32_t *const offsetp)
819 {
820 int neg = 0;
821
822 if (*strp == '-') {
823 neg = 1;
824 ++strp;
825 } else if (*strp == '+')
826 ++strp;
827 strp = getsecs(strp, offsetp);
828 if (strp == NULL)
829 return NULL; /* illegal time */
830 if (neg)
831 *offsetp = -*offsetp;
832 return strp;
833 }
834
835 /*
836 ** Given a pointer into a time zone string, extract a rule in the form
837 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
838 ** If a valid rule is not found, return NULL.
839 ** Otherwise, return a pointer to the first character not part of the rule.
840 */
841
842 static const char *
843 getrule(const char *strp, struct rule *const rulep)
844 {
845 if (*strp == 'J') {
846 /*
847 ** Julian day.
848 */
849 rulep->r_type = JULIAN_DAY;
850 ++strp;
851 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
852 } else if (*strp == 'M') {
853 /*
854 ** Month, week, day.
855 */
856 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
857 ++strp;
858 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
859 if (strp == NULL)
860 return NULL;
861 if (*strp++ != '.')
862 return NULL;
863 strp = getnum(strp, &rulep->r_week, 1, 5);
864 if (strp == NULL)
865 return NULL;
866 if (*strp++ != '.')
867 return NULL;
868 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
869 } else if (is_digit(*strp)) {
870 /*
871 ** Day of year.
872 */
873 rulep->r_type = DAY_OF_YEAR;
874 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
875 } else return NULL; /* invalid format */
876 if (strp == NULL)
877 return NULL;
878 if (*strp == '/') {
879 /*
880 ** Time specified.
881 */
882 ++strp;
883 strp = getsecs(strp, &rulep->r_time);
884 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
885 return strp;
886 }
887
888 /*
889 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
890 ** year, a rule, and the offset from UTC at the time that rule takes effect,
891 ** calculate the Epoch-relative time that rule takes effect.
892 */
893
894 static time_t
895 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
896 const int_fast32_t offset)
897 {
898 int leapyear;
899 time_t value;
900 int i;
901 int d, m1, yy0, yy1, yy2, dow;
902
903 INITIALIZE(value);
904 leapyear = isleap(year);
905 switch (rulep->r_type) {
906
907 case JULIAN_DAY:
908 /*
909 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
910 ** years.
911 ** In non-leap years, or if the day number is 59 or less, just
912 ** add SECSPERDAY times the day number-1 to the time of
913 ** January 1, midnight, to get the day.
914 */
915 value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
916 if (leapyear && rulep->r_day >= 60)
917 value += SECSPERDAY;
918 break;
919
920 case DAY_OF_YEAR:
921 /*
922 ** n - day of year.
923 ** Just add SECSPERDAY times the day number to the time of
924 ** January 1, midnight, to get the day.
925 */
926 value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
927 break;
928
929 case MONTH_NTH_DAY_OF_WEEK:
930 /*
931 ** Mm.n.d - nth "dth day" of month m.
932 */
933 value = janfirst;
934 for (i = 0; i < rulep->r_mon - 1; ++i)
935 value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
936
937 /*
938 ** Use Zeller's Congruence to get day-of-week of first day of
939 ** month.
940 */
941 m1 = (rulep->r_mon + 9) % 12 + 1;
942 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
943 yy1 = yy0 / 100;
944 yy2 = yy0 % 100;
945 dow = ((26 * m1 - 2) / 10 +
946 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
947 if (dow < 0)
948 dow += DAYSPERWEEK;
949
950 /*
951 ** "dow" is the day-of-week of the first day of the month. Get
952 ** the day-of-month (zero-origin) of the first "dow" day of the
953 ** month.
954 */
955 d = rulep->r_day - dow;
956 if (d < 0)
957 d += DAYSPERWEEK;
958 for (i = 1; i < rulep->r_week; ++i) {
959 if (d + DAYSPERWEEK >=
960 mon_lengths[leapyear][rulep->r_mon - 1])
961 break;
962 d += DAYSPERWEEK;
963 }
964
965 /*
966 ** "d" is the day-of-month (zero-origin) of the day we want.
967 */
968 value += (time_t)(d * SECSPERDAY);
969 break;
970 }
971
972 /*
973 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
974 ** question. To get the Epoch-relative time of the specified local
975 ** time on that day, add the transition time and the current offset
976 ** from UTC.
977 */
978 return (time_t)(value + rulep->r_time + offset);
979 }
980
981 /*
982 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
983 ** appropriate.
984 */
985
986 static int
987 tzparse(timezone_t sp, const char *name, const int lastditch)
988 {
989 const char * stdname;
990 const char * dstname;
991 size_t stdlen;
992 size_t dstlen;
993 int_fast32_t stdoffset;
994 int_fast32_t dstoffset;
995 time_t * atp;
996 unsigned char * typep;
997 char * cp;
998 int load_result;
999
1000 INITIALIZE(dstname);
1001 stdname = name;
1002 if (lastditch) {
1003 stdlen = strlen(name); /* length of standard zone name */
1004 name += stdlen;
1005 if (stdlen >= sizeof sp->chars)
1006 stdlen = (sizeof sp->chars) - 1;
1007 stdoffset = 0;
1008 } else {
1009 if (*name == '<') {
1010 name++;
1011 stdname = name;
1012 name = getqzname(name, '>');
1013 if (*name != '>')
1014 return (-1);
1015 stdlen = name - stdname;
1016 name++;
1017 } else {
1018 name = getzname(name);
1019 stdlen = name - stdname;
1020 }
1021 if (*name == '\0')
1022 return -1;
1023 name = getoffset(name, &stdoffset);
1024 if (name == NULL)
1025 return -1;
1026 }
1027 load_result = tzload(sp, TZDEFRULES, FALSE);
1028 if (load_result != 0)
1029 sp->leapcnt = 0; /* so, we're off a little */
1030 if (*name != '\0') {
1031 if (*name == '<') {
1032 dstname = ++name;
1033 name = getqzname(name, '>');
1034 if (*name != '>')
1035 return -1;
1036 dstlen = name - dstname;
1037 name++;
1038 } else {
1039 dstname = name;
1040 name = getzname(name);
1041 dstlen = name - dstname; /* length of DST zone name */
1042 }
1043 if (*name != '\0' && *name != ',' && *name != ';') {
1044 name = getoffset(name, &dstoffset);
1045 if (name == NULL)
1046 return -1;
1047 } else dstoffset = stdoffset - SECSPERHOUR;
1048 if (*name == '\0' && load_result != 0)
1049 name = TZDEFRULESTRING;
1050 if (*name == ',' || *name == ';') {
1051 struct rule start;
1052 struct rule end;
1053 int year;
1054 time_t janfirst;
1055 time_t starttime;
1056 time_t endtime;
1057
1058 ++name;
1059 if ((name = getrule(name, &start)) == NULL)
1060 return -1;
1061 if (*name++ != ',')
1062 return -1;
1063 if ((name = getrule(name, &end)) == NULL)
1064 return -1;
1065 if (*name != '\0')
1066 return -1;
1067 sp->typecnt = 2; /* standard time and DST */
1068 /*
1069 ** Two transitions per year, from EPOCH_YEAR forward.
1070 */
1071 memset(sp->ttis, 0, sizeof(sp->ttis));
1072 sp->ttis[0].tt_gmtoff = -dstoffset;
1073 sp->ttis[0].tt_isdst = 1;
1074 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1075 sp->ttis[1].tt_gmtoff = -stdoffset;
1076 sp->ttis[1].tt_isdst = 0;
1077 sp->ttis[1].tt_abbrind = 0;
1078 atp = sp->ats;
1079 typep = sp->types;
1080 janfirst = 0;
1081 sp->timecnt = 0;
1082 for (year = EPOCH_YEAR;
1083 sp->timecnt + 2 <= TZ_MAX_TIMES;
1084 ++year) {
1085 time_t newfirst;
1086
1087 starttime = transtime(janfirst, year, &start,
1088 stdoffset);
1089 endtime = transtime(janfirst, year, &end,
1090 dstoffset);
1091 if (starttime > endtime) {
1092 *atp++ = endtime;
1093 *typep++ = 1; /* DST ends */
1094 *atp++ = starttime;
1095 *typep++ = 0; /* DST begins */
1096 } else {
1097 *atp++ = starttime;
1098 *typep++ = 0; /* DST begins */
1099 *atp++ = endtime;
1100 *typep++ = 1; /* DST ends */
1101 }
1102 sp->timecnt += 2;
1103 newfirst = janfirst;
1104 newfirst += (time_t)
1105 (year_lengths[isleap(year)] * SECSPERDAY);
1106 if (newfirst <= janfirst)
1107 break;
1108 janfirst = newfirst;
1109 }
1110 } else {
1111 int_fast32_t theirstdoffset;
1112 int_fast32_t theirdstoffset;
1113 int_fast32_t theiroffset;
1114 int isdst;
1115 int i;
1116 int j;
1117
1118 if (*name != '\0')
1119 return -1;
1120 /*
1121 ** Initial values of theirstdoffset and theirdstoffset.
1122 */
1123 theirstdoffset = 0;
1124 for (i = 0; i < sp->timecnt; ++i) {
1125 j = sp->types[i];
1126 if (!sp->ttis[j].tt_isdst) {
1127 theirstdoffset =
1128 -sp->ttis[j].tt_gmtoff;
1129 break;
1130 }
1131 }
1132 theirdstoffset = 0;
1133 for (i = 0; i < sp->timecnt; ++i) {
1134 j = sp->types[i];
1135 if (sp->ttis[j].tt_isdst) {
1136 theirdstoffset =
1137 -sp->ttis[j].tt_gmtoff;
1138 break;
1139 }
1140 }
1141 /*
1142 ** Initially we're assumed to be in standard time.
1143 */
1144 isdst = FALSE;
1145 theiroffset = theirstdoffset;
1146 /*
1147 ** Now juggle transition times and types
1148 ** tracking offsets as you do.
1149 */
1150 for (i = 0; i < sp->timecnt; ++i) {
1151 j = sp->types[i];
1152 sp->types[i] = sp->ttis[j].tt_isdst;
1153 if (sp->ttis[j].tt_ttisgmt) {
1154 /* No adjustment to transition time */
1155 } else {
1156 /*
1157 ** If summer time is in effect, and the
1158 ** transition time was not specified as
1159 ** standard time, add the summer time
1160 ** offset to the transition time;
1161 ** otherwise, add the standard time
1162 ** offset to the transition time.
1163 */
1164 /*
1165 ** Transitions from DST to DDST
1166 ** will effectively disappear since
1167 ** POSIX provides for only one DST
1168 ** offset.
1169 */
1170 if (isdst && !sp->ttis[j].tt_ttisstd) {
1171 sp->ats[i] += (time_t)
1172 (dstoffset - theirdstoffset);
1173 } else {
1174 sp->ats[i] += (time_t)
1175 (stdoffset - theirstdoffset);
1176 }
1177 }
1178 theiroffset = -sp->ttis[j].tt_gmtoff;
1179 if (!sp->ttis[j].tt_isdst)
1180 theirstdoffset = theiroffset;
1181 else theirdstoffset = theiroffset;
1182 }
1183 /*
1184 ** Finally, fill in ttis.
1185 ** ttisstd and ttisgmt need not be handled
1186 */
1187 memset(sp->ttis, 0, sizeof(sp->ttis));
1188 sp->ttis[0].tt_gmtoff = -stdoffset;
1189 sp->ttis[0].tt_isdst = FALSE;
1190 sp->ttis[0].tt_abbrind = 0;
1191 sp->ttis[1].tt_gmtoff = -dstoffset;
1192 sp->ttis[1].tt_isdst = TRUE;
1193 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1194 sp->typecnt = 2;
1195 }
1196 } else {
1197 dstlen = 0;
1198 sp->typecnt = 1; /* only standard time */
1199 sp->timecnt = 0;
1200 memset(sp->ttis, 0, sizeof(sp->ttis));
1201 sp->ttis[0].tt_gmtoff = -stdoffset;
1202 sp->ttis[0].tt_isdst = 0;
1203 sp->ttis[0].tt_abbrind = 0;
1204 }
1205 sp->charcnt = (int)(stdlen + 1);
1206 if (dstlen != 0)
1207 sp->charcnt += (int)(dstlen + 1);
1208 if ((size_t) sp->charcnt > sizeof sp->chars)
1209 return -1;
1210 cp = sp->chars;
1211 (void) strncpy(cp, stdname, stdlen);
1212 cp += stdlen;
1213 *cp++ = '\0';
1214 if (dstlen != 0) {
1215 (void) strncpy(cp, dstname, dstlen);
1216 *(cp + dstlen) = '\0';
1217 }
1218 return 0;
1219 }
1220
1221 static void
1222 gmtload(timezone_t sp)
1223 {
1224 if (tzload(sp, gmt, TRUE) != 0)
1225 (void) tzparse(sp, gmt, TRUE);
1226 }
1227
1228 timezone_t
1229 tzalloc(const char *name)
1230 {
1231 timezone_t sp = calloc(1, sizeof *sp);
1232 if (sp == NULL)
1233 return NULL;
1234 if (tzload(sp, name, TRUE) != 0) {
1235 free(sp);
1236 return NULL;
1237 }
1238 settzname_z(sp);
1239 return sp;
1240 }
1241
1242 void
1243 tzfree(const timezone_t sp)
1244 {
1245 free(sp);
1246 }
1247
1248 static void
1249 tzsetwall_unlocked(void)
1250 {
1251 if (lcl_is_set < 0)
1252 return;
1253 lcl_is_set = -1;
1254
1255 if (lclptr == NULL) {
1256 int saveerrno = errno;
1257 lclptr = calloc(1, sizeof *lclptr);
1258 errno = saveerrno;
1259 if (lclptr == NULL) {
1260 settzname(); /* all we can do */
1261 return;
1262 }
1263 }
1264 if (tzload(lclptr, NULL, TRUE) != 0)
1265 gmtload(lclptr);
1266 settzname();
1267 }
1268
1269 #ifndef STD_INSPIRED
1270 /*
1271 ** A non-static declaration of tzsetwall in a system header file
1272 ** may cause a warning about this upcoming static declaration...
1273 */
1274 static
1275 #endif /* !defined STD_INSPIRED */
1276 void
1277 tzsetwall(void)
1278 {
1279 rwlock_wrlock(&lcl_lock);
1280 tzsetwall_unlocked();
1281 rwlock_unlock(&lcl_lock);
1282 }
1283
1284 #ifndef STD_INSPIRED
1285 /*
1286 ** A non-static declaration of tzsetwall in a system header file
1287 ** may cause a warning about this upcoming static declaration...
1288 */
1289 static
1290 #endif /* !defined STD_INSPIRED */
1291 void
1292 tzset_unlocked(void)
1293 {
1294 const char * name;
1295
1296 name = getenv("TZ");
1297 if (name == NULL) {
1298 tzsetwall_unlocked();
1299 return;
1300 }
1301
1302 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1303 return;
1304 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1305 if (lcl_is_set)
1306 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1307
1308 if (lclptr == NULL) {
1309 int saveerrno = errno;
1310 lclptr = calloc(1, sizeof *lclptr);
1311 errno = saveerrno;
1312 if (lclptr == NULL) {
1313 settzname(); /* all we can do */
1314 return;
1315 }
1316 }
1317 if (*name == '\0') {
1318 /*
1319 ** User wants it fast rather than right.
1320 */
1321 lclptr->leapcnt = 0; /* so, we're off a little */
1322 lclptr->timecnt = 0;
1323 lclptr->typecnt = 0;
1324 lclptr->ttis[0].tt_isdst = 0;
1325 lclptr->ttis[0].tt_gmtoff = 0;
1326 lclptr->ttis[0].tt_abbrind = 0;
1327 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1328 } else if (tzload(lclptr, name, TRUE) != 0)
1329 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1330 (void) gmtload(lclptr);
1331 settzname();
1332 }
1333
1334 void
1335 tzset(void)
1336 {
1337 rwlock_wrlock(&lcl_lock);
1338 tzset_unlocked();
1339 rwlock_unlock(&lcl_lock);
1340 }
1341
1342 /*
1343 ** The easy way to behave "as if no library function calls" localtime
1344 ** is to not call it--so we drop its guts into "localsub", which can be
1345 ** freely called. (And no, the PANS doesn't require the above behavior--
1346 ** but it *is* desirable.)
1347 **
1348 ** The unused offset argument is for the benefit of mktime variants.
1349 */
1350
1351 /*ARGSUSED*/
1352 static struct tm *
1353 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
1354 struct tm *const tmp)
1355 {
1356 const struct ttinfo * ttisp;
1357 int i;
1358 struct tm * result;
1359 const time_t t = *timep;
1360
1361 if ((sp->goback && t < sp->ats[0]) ||
1362 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1363 time_t newt = t;
1364 time_t seconds;
1365 time_t tcycles;
1366 int_fast64_t icycles;
1367
1368 if (t < sp->ats[0])
1369 seconds = sp->ats[0] - t;
1370 else seconds = t - sp->ats[sp->timecnt - 1];
1371 --seconds;
1372 tcycles = (time_t)
1373 (seconds / YEARSPERREPEAT / AVGSECSPERYEAR);
1374 ++tcycles;
1375 icycles = tcycles;
1376 if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1377 return NULL;
1378 seconds = (time_t) icycles;
1379 seconds *= YEARSPERREPEAT;
1380 seconds *= AVGSECSPERYEAR;
1381 if (t < sp->ats[0])
1382 newt += seconds;
1383 else newt -= seconds;
1384 if (newt < sp->ats[0] ||
1385 newt > sp->ats[sp->timecnt - 1])
1386 return NULL; /* "cannot happen" */
1387 result = localsub(sp, &newt, offset, tmp);
1388 if (result == tmp) {
1389 time_t newy;
1390
1391 newy = tmp->tm_year;
1392 if (t < sp->ats[0])
1393 newy -= (time_t)icycles * YEARSPERREPEAT;
1394 else newy += (time_t)icycles * YEARSPERREPEAT;
1395 tmp->tm_year = (int)newy;
1396 if (tmp->tm_year != newy)
1397 return NULL;
1398 }
1399 return result;
1400 }
1401 if (sp->timecnt == 0 || t < sp->ats[0]) {
1402 i = sp->defaulttype;
1403 } else {
1404 int lo = 1;
1405 int hi = sp->timecnt;
1406
1407 while (lo < hi) {
1408 int mid = (lo + hi) / 2;
1409
1410 if (t < sp->ats[mid])
1411 hi = mid;
1412 else lo = mid + 1;
1413 }
1414 i = (int) sp->types[lo - 1];
1415 }
1416 ttisp = &sp->ttis[i];
1417 /*
1418 ** To get (wrong) behavior that's compatible with System V Release 2.0
1419 ** you'd replace the statement below with
1420 ** t += ttisp->tt_gmtoff;
1421 ** timesub(&t, 0L, sp, tmp);
1422 */
1423 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1424 tmp->tm_isdst = ttisp->tt_isdst;
1425 if (sp == lclptr)
1426 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1427 #ifdef TM_ZONE
1428 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1429 #endif /* defined TM_ZONE */
1430 return result;
1431 }
1432
1433 /*
1434 ** Re-entrant version of localtime.
1435 */
1436
1437 struct tm *
1438 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1439 {
1440 rwlock_rdlock(&lcl_lock);
1441 tzset_unlocked();
1442 tmp = localtime_rz(lclptr, timep, tmp);
1443 rwlock_unlock(&lcl_lock);
1444 return tmp;
1445 }
1446
1447 struct tm *
1448 localtime(const time_t *const timep)
1449 {
1450 return localtime_r(timep, &tm);
1451 }
1452
1453 struct tm *
1454 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1455 {
1456 if (sp == NULL)
1457 tmp = gmtsub(NULL, timep, 0, tmp);
1458 else
1459 tmp = localsub(sp, timep, 0, tmp);
1460 if (tmp == NULL)
1461 errno = EOVERFLOW;
1462 return tmp;
1463 }
1464
1465 /*
1466 ** gmtsub is to gmtime as localsub is to localtime.
1467 */
1468
1469 static struct tm *
1470 gmtsub(const timezone_t sp, const time_t *const timep,
1471 const int_fast32_t offset, struct tm *const tmp)
1472 {
1473 struct tm * result;
1474 #ifdef _REENTRANT
1475 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1476 #endif
1477
1478 mutex_lock(&gmt_mutex);
1479 if (!gmt_is_set) {
1480 int saveerrno;
1481 gmt_is_set = TRUE;
1482 saveerrno = errno;
1483 gmtptr = calloc(1, sizeof *gmtptr);
1484 errno = saveerrno;
1485 if (gmtptr != NULL)
1486 gmtload(gmtptr);
1487 }
1488 mutex_unlock(&gmt_mutex);
1489 result = timesub(gmtptr, timep, offset, tmp);
1490 #ifdef TM_ZONE
1491 /*
1492 ** Could get fancy here and deliver something such as
1493 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1494 ** but this is no time for a treasure hunt.
1495 */
1496 if (offset != 0)
1497 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1498 else {
1499 if (gmtptr == NULL)
1500 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1501 else tmp->TM_ZONE = gmtptr->chars;
1502 }
1503 #endif /* defined TM_ZONE */
1504 return result;
1505 }
1506
1507 struct tm *
1508 gmtime(const time_t *const timep)
1509 {
1510 struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
1511
1512 if (tmp == NULL)
1513 errno = EOVERFLOW;
1514
1515 return tmp;
1516 }
1517
1518 /*
1519 ** Re-entrant version of gmtime.
1520 */
1521
1522 struct tm *
1523 gmtime_r(const time_t * const timep, struct tm *tmp)
1524 {
1525 tmp = gmtsub(NULL, timep, 0, tmp);
1526
1527 if (tmp == NULL)
1528 errno = EOVERFLOW;
1529
1530 return tmp;
1531 }
1532
1533 #ifdef STD_INSPIRED
1534
1535 struct tm *
1536 offtime(const time_t *const timep, long offset)
1537 {
1538 struct tm *tmp;
1539
1540 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1541 (offset < 0 && offset > INT_FAST32_MIN)) {
1542 errno = EOVERFLOW;
1543 return NULL;
1544 }
1545 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
1546
1547 if (tmp == NULL)
1548 errno = EOVERFLOW;
1549
1550 return tmp;
1551 }
1552
1553 struct tm *
1554 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1555 {
1556 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1557 (offset < 0 && offset > INT_FAST32_MIN)) {
1558 errno = EOVERFLOW;
1559 return NULL;
1560 }
1561 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1562
1563 if (tmp == NULL)
1564 errno = EOVERFLOW;
1565
1566 return tmp;
1567 }
1568
1569 #endif /* defined STD_INSPIRED */
1570
1571 /*
1572 ** Return the number of leap years through the end of the given year
1573 ** where, to make the math easy, the answer for year zero is defined as zero.
1574 */
1575
1576 static int
1577 leaps_thru_end_of(const int y)
1578 {
1579 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1580 -(leaps_thru_end_of(-(y + 1)) + 1);
1581 }
1582
1583 static struct tm *
1584 timesub(const timezone_t sp, const time_t *const timep,
1585 const int_fast32_t offset, struct tm *const tmp)
1586 {
1587 const struct lsinfo * lp;
1588 time_t tdays;
1589 int idays; /* unsigned would be so 2003 */
1590 int_fast64_t rem;
1591 int y;
1592 const int * ip;
1593 int_fast64_t corr;
1594 int hit;
1595 int i;
1596
1597 corr = 0;
1598 hit = 0;
1599 i = (sp == NULL) ? 0 : sp->leapcnt;
1600 while (--i >= 0) {
1601 lp = &sp->lsis[i];
1602 if (*timep >= lp->ls_trans) {
1603 if (*timep == lp->ls_trans) {
1604 hit = ((i == 0 && lp->ls_corr > 0) ||
1605 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1606 if (hit)
1607 while (i > 0 &&
1608 sp->lsis[i].ls_trans ==
1609 sp->lsis[i - 1].ls_trans + 1 &&
1610 sp->lsis[i].ls_corr ==
1611 sp->lsis[i - 1].ls_corr + 1) {
1612 ++hit;
1613 --i;
1614 }
1615 }
1616 corr = lp->ls_corr;
1617 break;
1618 }
1619 }
1620 y = EPOCH_YEAR;
1621 tdays = (time_t)(*timep / SECSPERDAY);
1622 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1623 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1624 int newy;
1625 time_t tdelta;
1626 int idelta;
1627 int leapdays;
1628
1629 tdelta = tdays / DAYSPERLYEAR;
1630 idelta = (int) tdelta;
1631 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1632 return NULL;
1633 if (idelta == 0)
1634 idelta = (tdays < 0) ? -1 : 1;
1635 newy = y;
1636 if (increment_overflow(&newy, idelta))
1637 return NULL;
1638 leapdays = leaps_thru_end_of(newy - 1) -
1639 leaps_thru_end_of(y - 1);
1640 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1641 tdays -= leapdays;
1642 y = newy;
1643 }
1644 {
1645 int_fast32_t seconds;
1646 const time_t half_second = 0.5;
1647
1648 seconds = (int_fast32_t)(tdays * SECSPERDAY + half_second);
1649 tdays = (time_t)(seconds / SECSPERDAY);
1650 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1651 }
1652 /*
1653 ** Given the range, we can now fearlessly cast...
1654 */
1655 idays = (int) tdays;
1656 rem += offset - corr;
1657 while (rem < 0) {
1658 rem += SECSPERDAY;
1659 --idays;
1660 }
1661 while (rem >= SECSPERDAY) {
1662 rem -= SECSPERDAY;
1663 ++idays;
1664 }
1665 while (idays < 0) {
1666 if (increment_overflow(&y, -1))
1667 return NULL;
1668 idays += year_lengths[isleap(y)];
1669 }
1670 while (idays >= year_lengths[isleap(y)]) {
1671 idays -= year_lengths[isleap(y)];
1672 if (increment_overflow(&y, 1))
1673 return NULL;
1674 }
1675 tmp->tm_year = y;
1676 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1677 return NULL;
1678 tmp->tm_yday = idays;
1679 /*
1680 ** The "extra" mods below avoid overflow problems.
1681 */
1682 tmp->tm_wday = EPOCH_WDAY +
1683 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1684 (DAYSPERNYEAR % DAYSPERWEEK) +
1685 leaps_thru_end_of(y - 1) -
1686 leaps_thru_end_of(EPOCH_YEAR - 1) +
1687 idays;
1688 tmp->tm_wday %= DAYSPERWEEK;
1689 if (tmp->tm_wday < 0)
1690 tmp->tm_wday += DAYSPERWEEK;
1691 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1692 rem %= SECSPERHOUR;
1693 tmp->tm_min = (int) (rem / SECSPERMIN);
1694 /*
1695 ** A positive leap second requires a special
1696 ** representation. This uses "... ??:59:60" et seq.
1697 */
1698 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1699 ip = mon_lengths[isleap(y)];
1700 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1701 idays -= ip[tmp->tm_mon];
1702 tmp->tm_mday = (int) (idays + 1);
1703 tmp->tm_isdst = 0;
1704 #ifdef TM_GMTOFF
1705 tmp->TM_GMTOFF = offset;
1706 #endif /* defined TM_GMTOFF */
1707 return tmp;
1708 }
1709
1710 char *
1711 ctime(const time_t *const timep)
1712 {
1713 /*
1714 ** Section 4.12.3.2 of X3.159-1989 requires that
1715 ** The ctime function converts the calendar time pointed to by timer
1716 ** to local time in the form of a string. It is equivalent to
1717 ** asctime(localtime(timer))
1718 */
1719 struct tm *rtm = localtime(timep);
1720 if (rtm == NULL)
1721 return NULL;
1722 return asctime(rtm);
1723 }
1724
1725 char *
1726 ctime_r(const time_t *const timep, char *buf)
1727 {
1728 struct tm mytm, *rtm;
1729
1730 rtm = localtime_r(timep, &mytm);
1731 if (rtm == NULL)
1732 return NULL;
1733 return asctime_r(rtm, buf);
1734 }
1735
1736 char *
1737 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1738 {
1739 struct tm mytm, *rtm;
1740
1741 rtm = localtime_rz(sp, timep, &mytm);
1742 if (rtm == NULL)
1743 return NULL;
1744 return asctime_r(rtm, buf);
1745 }
1746
1747 /*
1748 ** Adapted from code provided by Robert Elz, who writes:
1749 ** The "best" way to do mktime I think is based on an idea of Bob
1750 ** Kridle's (so its said...) from a long time ago.
1751 ** It does a binary search of the time_t space. Since time_t's are
1752 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1753 ** would still be very reasonable).
1754 */
1755
1756 #ifndef WRONG
1757 #define WRONG ((time_t)-1)
1758 #endif /* !defined WRONG */
1759
1760 /*
1761 ** Simplified normalize logic courtesy Paul Eggert.
1762 */
1763
1764 static int
1765 increment_overflow(int *const ip, int j)
1766 {
1767 int i = *ip;
1768
1769 /*
1770 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1771 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1772 ** If i < 0 there can only be overflow if i + j < INT_MIN
1773 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1774 */
1775 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1776 return TRUE;
1777 *ip += j;
1778 return FALSE;
1779 }
1780
1781 static int
1782 increment_overflow32(int_fast32_t *const lp, int const m)
1783 {
1784 int_fast32_t l = *lp;
1785
1786 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1787 return TRUE;
1788 *lp += m;
1789 return FALSE;
1790 }
1791
1792 static int
1793 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1794 {
1795 int tensdelta;
1796
1797 tensdelta = (*unitsptr >= 0) ?
1798 (*unitsptr / base) :
1799 (-1 - (-1 - *unitsptr) / base);
1800 *unitsptr -= tensdelta * base;
1801 return increment_overflow(tensptr, tensdelta);
1802 }
1803
1804 static int
1805 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1806 const int base)
1807 {
1808 int tensdelta;
1809
1810 tensdelta = (*unitsptr >= 0) ?
1811 (*unitsptr / base) :
1812 (-1 - (-1 - *unitsptr) / base);
1813 *unitsptr -= tensdelta * base;
1814 return increment_overflow32(tensptr, tensdelta);
1815 }
1816
1817 static int
1818 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1819 {
1820 int result;
1821
1822 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1823 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1824 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1825 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1826 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1827 result = atmp->tm_sec - btmp->tm_sec;
1828 return result;
1829 }
1830
1831 static time_t
1832 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1833 const int_fast32_t offset, int *const okayp, const int do_norm_secs)
1834 {
1835 int dir;
1836 int i, j;
1837 int saved_seconds;
1838 int_fast32_t li;
1839 time_t lo;
1840 time_t hi;
1841 #ifdef NO_ERROR_IN_DST_GAP
1842 time_t ilo;
1843 #endif
1844 int_fast32_t y;
1845 time_t newt;
1846 time_t t;
1847 struct tm yourtm, mytm;
1848
1849 *okayp = FALSE;
1850 yourtm = *tmp;
1851 #ifdef NO_ERROR_IN_DST_GAP
1852 again:
1853 #endif
1854 if (do_norm_secs) {
1855 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1856 SECSPERMIN))
1857 goto overflow;
1858 }
1859 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1860 goto overflow;
1861 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1862 goto overflow;
1863 y = yourtm.tm_year;
1864 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1865 goto overflow;
1866 /*
1867 ** Turn y into an actual year number for now.
1868 ** It is converted back to an offset from TM_YEAR_BASE later.
1869 */
1870 if (increment_overflow32(&y, TM_YEAR_BASE))
1871 goto overflow;
1872 while (yourtm.tm_mday <= 0) {
1873 if (increment_overflow32(&y, -1))
1874 goto overflow;
1875 li = y + (1 < yourtm.tm_mon);
1876 yourtm.tm_mday += year_lengths[isleap(li)];
1877 }
1878 while (yourtm.tm_mday > DAYSPERLYEAR) {
1879 li = y + (1 < yourtm.tm_mon);
1880 yourtm.tm_mday -= year_lengths[isleap(li)];
1881 if (increment_overflow32(&y, 1))
1882 goto overflow;
1883 }
1884 for ( ; ; ) {
1885 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1886 if (yourtm.tm_mday <= i)
1887 break;
1888 yourtm.tm_mday -= i;
1889 if (++yourtm.tm_mon >= MONSPERYEAR) {
1890 yourtm.tm_mon = 0;
1891 if (increment_overflow32(&y, 1))
1892 goto overflow;
1893 }
1894 }
1895 if (increment_overflow32(&y, -TM_YEAR_BASE))
1896 goto overflow;
1897 yourtm.tm_year = (int)y;
1898 if (yourtm.tm_year != y)
1899 goto overflow;
1900 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1901 saved_seconds = 0;
1902 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1903 /*
1904 ** We can't set tm_sec to 0, because that might push the
1905 ** time below the minimum representable time.
1906 ** Set tm_sec to 59 instead.
1907 ** This assumes that the minimum representable time is
1908 ** not in the same minute that a leap second was deleted from,
1909 ** which is a safer assumption than using 58 would be.
1910 */
1911 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1912 goto overflow;
1913 saved_seconds = yourtm.tm_sec;
1914 yourtm.tm_sec = SECSPERMIN - 1;
1915 } else {
1916 saved_seconds = yourtm.tm_sec;
1917 yourtm.tm_sec = 0;
1918 }
1919 /*
1920 ** Do a binary search (this works whatever time_t's type is).
1921 */
1922 /* LINTED const not */
1923 if (!TYPE_SIGNED(time_t)) {
1924 lo = 0;
1925 hi = lo - 1;
1926 /* LINTED const not */
1927 } else if (!TYPE_INTEGRAL(time_t)) {
1928 /* CONSTCOND */
1929 if (sizeof(time_t) > sizeof(float))
1930 /* LINTED assumed double */
1931 hi = (time_t) DBL_MAX;
1932 /* LINTED assumed float */
1933 else hi = (time_t) FLT_MAX;
1934 lo = -hi;
1935 } else {
1936 lo = 1;
1937 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1938 lo *= 2;
1939 hi = -(lo + 1);
1940 }
1941 #ifdef NO_ERROR_IN_DST_GAP
1942 ilo = lo;
1943 #endif
1944 for ( ; ; ) {
1945 t = lo / 2 + hi / 2;
1946 if (t < lo)
1947 t = lo;
1948 else if (t > hi)
1949 t = hi;
1950 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1951 /*
1952 ** Assume that t is too extreme to be represented in
1953 ** a struct tm; arrange things so that it is less
1954 ** extreme on the next pass.
1955 */
1956 dir = (t > 0) ? 1 : -1;
1957 } else dir = tmcomp(&mytm, &yourtm);
1958 if (dir != 0) {
1959 if (t == lo) {
1960 ++t;
1961 if (t <= lo)
1962 goto overflow;
1963 ++lo;
1964 } else if (t == hi) {
1965 --t;
1966 if (t >= hi)
1967 goto overflow;
1968 --hi;
1969 }
1970 #ifdef NO_ERROR_IN_DST_GAP
1971 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1972 do_norm_secs) {
1973 for (i = sp->typecnt - 1; i >= 0; --i) {
1974 for (j = sp->typecnt - 1; j >= 0; --j) {
1975 time_t off;
1976 if (sp->ttis[j].tt_isdst ==
1977 sp->ttis[i].tt_isdst)
1978 continue;
1979 off = sp->ttis[j].tt_gmtoff -
1980 sp->ttis[i].tt_gmtoff;
1981 yourtm.tm_sec += off < 0 ?
1982 -off : off;
1983 goto again;
1984 }
1985 }
1986 }
1987 #endif
1988 if (lo > hi)
1989 goto invalid;
1990 if (dir > 0)
1991 hi = t;
1992 else lo = t;
1993 continue;
1994 }
1995 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1996 break;
1997 /*
1998 ** Right time, wrong type.
1999 ** Hunt for right time, right type.
2000 ** It's okay to guess wrong since the guess
2001 ** gets checked.
2002 */
2003 if (sp == NULL)
2004 goto invalid;
2005 for (i = sp->typecnt - 1; i >= 0; --i) {
2006 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2007 continue;
2008 for (j = sp->typecnt - 1; j >= 0; --j) {
2009 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2010 continue;
2011 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2012 sp->ttis[i].tt_gmtoff);
2013 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
2014 continue;
2015 if (tmcomp(&mytm, &yourtm) != 0)
2016 continue;
2017 if (mytm.tm_isdst != yourtm.tm_isdst)
2018 continue;
2019 /*
2020 ** We have a match.
2021 */
2022 t = newt;
2023 goto label;
2024 }
2025 }
2026 goto invalid;
2027 }
2028 label:
2029 newt = t + saved_seconds;
2030 if ((newt < t) != (saved_seconds < 0))
2031 goto overflow;
2032 t = newt;
2033 if ((*funcp)(sp, &t, offset, tmp)) {
2034 *okayp = TRUE;
2035 return t;
2036 }
2037 overflow:
2038 errno = EOVERFLOW;
2039 return WRONG;
2040 invalid:
2041 errno = EINVAL;
2042 return WRONG;
2043 }
2044
2045 static time_t
2046 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2047 const int_fast32_t offset, int *const okayp)
2048 {
2049 time_t t;
2050
2051 /*
2052 ** First try without normalization of seconds
2053 ** (in case tm_sec contains a value associated with a leap second).
2054 ** If that fails, try with normalization of seconds.
2055 */
2056 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2057 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2058 }
2059
2060 static time_t
2061 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2062 const int_fast32_t offset)
2063 {
2064 time_t t;
2065 int samei, otheri;
2066 int sameind, otherind;
2067 int i;
2068 int nseen;
2069 int seen[TZ_MAX_TYPES];
2070 int types[TZ_MAX_TYPES];
2071 int okay;
2072
2073 if (tmp == NULL) {
2074 errno = EINVAL;
2075 return WRONG;
2076 }
2077 if (tmp->tm_isdst > 1)
2078 tmp->tm_isdst = 1;
2079 t = time2(sp, tmp, funcp, offset, &okay);
2080 #ifdef PCTS
2081 /*
2082 ** PCTS code courtesy Grant Sullivan.
2083 */
2084 if (okay)
2085 return t;
2086 if (tmp->tm_isdst < 0)
2087 tmp->tm_isdst = 0; /* reset to std and try again */
2088 #endif /* defined PCTS */
2089 #ifndef PCTS
2090 if (okay || tmp->tm_isdst < 0)
2091 return t;
2092 #endif /* !defined PCTS */
2093 /*
2094 ** We're supposed to assume that somebody took a time of one type
2095 ** and did some math on it that yielded a "struct tm" that's bad.
2096 ** We try to divine the type they started from and adjust to the
2097 ** type they need.
2098 */
2099 if (sp == NULL) {
2100 errno = EINVAL;
2101 return WRONG;
2102 }
2103 for (i = 0; i < sp->typecnt; ++i)
2104 seen[i] = FALSE;
2105 nseen = 0;
2106 for (i = sp->timecnt - 1; i >= 0; --i)
2107 if (!seen[sp->types[i]]) {
2108 seen[sp->types[i]] = TRUE;
2109 types[nseen++] = sp->types[i];
2110 }
2111 for (sameind = 0; sameind < nseen; ++sameind) {
2112 samei = types[sameind];
2113 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2114 continue;
2115 for (otherind = 0; otherind < nseen; ++otherind) {
2116 otheri = types[otherind];
2117 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2118 continue;
2119 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2120 sp->ttis[samei].tt_gmtoff);
2121 tmp->tm_isdst = !tmp->tm_isdst;
2122 t = time2(sp, tmp, funcp, offset, &okay);
2123 if (okay)
2124 return t;
2125 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2126 sp->ttis[samei].tt_gmtoff);
2127 tmp->tm_isdst = !tmp->tm_isdst;
2128 }
2129 }
2130 errno = EOVERFLOW;
2131 return WRONG;
2132 }
2133
2134 time_t
2135 mktime_z(const timezone_t sp, struct tm *const tmp)
2136 {
2137 time_t t;
2138 if (sp == NULL)
2139 t = time1(NULL, tmp, gmtsub, 0);
2140 else
2141 t = time1(sp, tmp, localsub, 0);
2142 return t;
2143 }
2144
2145 time_t
2146 mktime(struct tm *const tmp)
2147 {
2148 time_t result;
2149
2150 rwlock_wrlock(&lcl_lock);
2151 tzset_unlocked();
2152 result = mktime_z(lclptr, tmp);
2153 rwlock_unlock(&lcl_lock);
2154 return result;
2155 }
2156
2157 #ifdef STD_INSPIRED
2158
2159 time_t
2160 timelocal_z(const timezone_t sp, struct tm *const tmp)
2161 {
2162 if (tmp != NULL)
2163 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2164 return mktime_z(sp, tmp);
2165 }
2166
2167 time_t
2168 timelocal(struct tm *const tmp)
2169 {
2170 if (tmp != NULL)
2171 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2172 return mktime(tmp);
2173 }
2174
2175 time_t
2176 timegm(struct tm *const tmp)
2177 {
2178 time_t t;
2179
2180 if (tmp != NULL)
2181 tmp->tm_isdst = 0;
2182 t = time1(gmtptr, tmp, gmtsub, 0);
2183 return t;
2184 }
2185
2186 time_t
2187 timeoff(struct tm *const tmp, long offset)
2188 {
2189 time_t t;
2190
2191 if ((offset > 0 && offset > INT_FAST32_MAX) ||
2192 (offset < 0 && offset > INT_FAST32_MIN)) {
2193 errno = EOVERFLOW;
2194 return -1;
2195 }
2196 if (tmp != NULL)
2197 tmp->tm_isdst = 0;
2198 t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
2199 return t;
2200 }
2201
2202 #endif /* defined STD_INSPIRED */
2203
2204 #ifdef CMUCS
2205
2206 /*
2207 ** The following is supplied for compatibility with
2208 ** previous versions of the CMUCS runtime library.
2209 */
2210
2211 int_fast32_t
2212 gtime(struct tm *const tmp)
2213 {
2214 const time_t t = mktime(tmp);
2215
2216 if (t == WRONG)
2217 return -1;
2218 return t;
2219 }
2220
2221 #endif /* defined CMUCS */
2222
2223 /*
2224 ** XXX--is the below the right way to conditionalize??
2225 */
2226
2227 #ifdef STD_INSPIRED
2228
2229 /*
2230 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2231 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2232 ** is not the case if we are accounting for leap seconds.
2233 ** So, we provide the following conversion routines for use
2234 ** when exchanging timestamps with POSIX conforming systems.
2235 */
2236
2237 static int_fast64_t
2238 leapcorr(const timezone_t sp, time_t *timep)
2239 {
2240 struct lsinfo * lp;
2241 int i;
2242
2243 i = sp->leapcnt;
2244 while (--i >= 0) {
2245 lp = &sp->lsis[i];
2246 if (*timep >= lp->ls_trans)
2247 return lp->ls_corr;
2248 }
2249 return 0;
2250 }
2251
2252 time_t
2253 time2posix_z(const timezone_t sp, time_t t)
2254 {
2255 return (time_t)(t - leapcorr(sp, &t));
2256 }
2257
2258 time_t
2259 time2posix(time_t t)
2260 {
2261 time_t result;
2262 rwlock_wrlock(&lcl_lock);
2263 tzset_unlocked();
2264 result = (time_t)(t - leapcorr(lclptr, &t));
2265 rwlock_unlock(&lcl_lock);
2266 return (result);
2267 }
2268
2269 time_t
2270 posix2time_z(const timezone_t sp, time_t t)
2271 {
2272 time_t x;
2273 time_t y;
2274
2275 /*
2276 ** For a positive leap second hit, the result
2277 ** is not unique. For a negative leap second
2278 ** hit, the corresponding time doesn't exist,
2279 ** so we return an adjacent second.
2280 */
2281 x = (time_t)(t + leapcorr(sp, &t));
2282 y = (time_t)(x - leapcorr(sp, &x));
2283 if (y < t) {
2284 do {
2285 x++;
2286 y = (time_t)(x - leapcorr(sp, &x));
2287 } while (y < t);
2288 if (t != y) {
2289 return x - 1;
2290 }
2291 } else if (y > t) {
2292 do {
2293 --x;
2294 y = (time_t)(x - leapcorr(sp, &x));
2295 } while (y > t);
2296 if (t != y) {
2297 return x + 1;
2298 }
2299 }
2300 return x;
2301 }
2302
2303
2304
2305 time_t
2306 posix2time(time_t t)
2307 {
2308 time_t result;
2309
2310 rwlock_wrlock(&lcl_lock);
2311 tzset_unlocked();
2312 result = posix2time_z(lclptr, t);
2313 rwlock_unlock(&lcl_lock);
2314 return result;
2315 }
2316
2317 #endif /* defined STD_INSPIRED */
2318