Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.78
      1 /*	$NetBSD: localtime.c,v 1.78 2013/09/20 19:06:54 christos Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.17";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.78 2013/09/20 19:06:54 christos Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include <assert.h>
     26 #include "private.h"
     27 #include "tzfile.h"
     28 #include "fcntl.h"
     29 #include "reentrant.h"
     30 
     31 #if defined(__weak_alias)
     32 __weak_alias(daylight,_daylight)
     33 __weak_alias(tzname,_tzname)
     34 #endif
     35 
     36 #ifndef TZ_ABBR_MAX_LEN
     37 #define TZ_ABBR_MAX_LEN	16
     38 #endif /* !defined TZ_ABBR_MAX_LEN */
     39 
     40 #ifndef TZ_ABBR_CHAR_SET
     41 #define TZ_ABBR_CHAR_SET \
     42 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     43 #endif /* !defined TZ_ABBR_CHAR_SET */
     44 
     45 #ifndef TZ_ABBR_ERR_CHAR
     46 #define TZ_ABBR_ERR_CHAR	'_'
     47 #endif /* !defined TZ_ABBR_ERR_CHAR */
     48 
     49 /*
     50 ** SunOS 4.1.1 headers lack O_BINARY.
     51 */
     52 
     53 #ifdef O_BINARY
     54 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     55 #endif /* defined O_BINARY */
     56 #ifndef O_BINARY
     57 #define OPEN_MODE	O_RDONLY
     58 #endif /* !defined O_BINARY */
     59 
     60 #ifndef WILDABBR
     61 /*
     62 ** Someone might make incorrect use of a time zone abbreviation:
     63 **	1.	They might reference tzname[0] before calling tzset (explicitly
     64 **		or implicitly).
     65 **	2.	They might reference tzname[1] before calling tzset (explicitly
     66 **		or implicitly).
     67 **	3.	They might reference tzname[1] after setting to a time zone
     68 **		in which Daylight Saving Time is never observed.
     69 **	4.	They might reference tzname[0] after setting to a time zone
     70 **		in which Standard Time is never observed.
     71 **	5.	They might reference tm.TM_ZONE after calling offtime.
     72 ** What's best to do in the above cases is open to debate;
     73 ** for now, we just set things up so that in any of the five cases
     74 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     75 ** string "tzname[0] used before set", and similarly for the other cases.
     76 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     77 ** manual page of what this "time zone abbreviation" means (doing this so
     78 ** that tzname[0] has the "normal" length of three characters).
     79 */
     80 #define WILDABBR	"   "
     81 #endif /* !defined WILDABBR */
     82 
     83 static const char	wildabbr[] = WILDABBR;
     84 
     85 static const char	gmt[] = "GMT";
     86 
     87 /*
     88 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     89 ** We default to US rules as of 1999-08-17.
     90 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     91 ** implementation dependent; for historical reasons, US rules are a
     92 ** common default.
     93 */
     94 #ifndef TZDEFRULESTRING
     95 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     96 #endif /* !defined TZDEFDST */
     97 
     98 struct ttinfo {				/* time type information */
     99 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
    100 	int		tt_isdst;	/* used to set tm_isdst */
    101 	int		tt_abbrind;	/* abbreviation list index */
    102 	int		tt_ttisstd;	/* TRUE if transition is std time */
    103 	int		tt_ttisgmt;	/* TRUE if transition is UT */
    104 };
    105 
    106 struct lsinfo {				/* leap second information */
    107 	time_t		ls_trans;	/* transition time */
    108 	int_fast64_t	ls_corr;	/* correction to apply */
    109 };
    110 
    111 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    112 
    113 #ifdef TZNAME_MAX
    114 #define MY_TZNAME_MAX	TZNAME_MAX
    115 #endif /* defined TZNAME_MAX */
    116 #ifndef TZNAME_MAX
    117 #define MY_TZNAME_MAX	255
    118 #endif /* !defined TZNAME_MAX */
    119 
    120 struct __state {
    121 	int		leapcnt;
    122 	int		timecnt;
    123 	int		typecnt;
    124 	int		charcnt;
    125 	int		goback;
    126 	int		goahead;
    127 	time_t		ats[TZ_MAX_TIMES];
    128 	unsigned char	types[TZ_MAX_TIMES];
    129 	struct ttinfo	ttis[TZ_MAX_TYPES];
    130 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
    131 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
    132 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    133 	int		defaulttype; /* for early times or if no transitions */
    134 };
    135 
    136 struct rule {
    137 	int		r_type;		/* type of rule--see below */
    138 	int		r_day;		/* day number of rule */
    139 	int		r_week;		/* week number of rule */
    140 	int		r_mon;		/* month number of rule */
    141 	int_fast32_t	r_time;		/* transition time of rule */
    142 };
    143 
    144 #define JULIAN_DAY		0	/* Jn - Julian day */
    145 #define DAY_OF_YEAR		1	/* n - day of year */
    146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    147 
    148 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    149 			       const int_fast32_t offset, struct tm *tmp);
    150 
    151 /*
    152 ** Prototypes for static functions.
    153 */
    154 
    155 static int_fast32_t	detzcode(const char * codep);
    156 static time_t		detzcode64(const char * codep);
    157 static int		differ_by_repeat(time_t t1, time_t t0);
    158 static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
    159 static const char *	getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
    160 static const char *	getnum(const char * strp, int * nump, int min,
    161 				int max);
    162 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
    163 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
    164 static const char *	getrule(const char * strp, struct rule * rulep);
    165 static void		gmtload(timezone_t sp);
    166 static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    167 				const int_fast32_t offset, struct tm * tmp);
    168 static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    169 				const int_fast32_t offset, struct tm *tmp);
    170 static int		increment_overflow(int * number, int delta);
    171 static int		increment_overflow32(int_fast32_t * number, int delta);
    172 static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
    173 static int		normalize_overflow(int * tensptr, int * unitsptr,
    174 				int base);
    175 static int		normalize_overflow32(int_fast32_t * tensptr,
    176 				int * unitsptr, int base);
    177 static void		settzname(void);
    178 static time_t		time1(const timezone_t sp, struct tm * const tmp,
    179 				subfun_t funcp, const int_fast32_t offset);
    180 static time_t		time2(const timezone_t sp, struct tm * const tmp,
    181 				subfun_t funcp,
    182 				const int_fast32_t offset, int *const okayp);
    183 static time_t		time2sub(const timezone_t sp, struct tm * const tmp,
    184 				subfun_t funcp, const int_fast32_t offset,
    185 				int *const okayp, const int do_norm_secs);
    186 static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    187 				const int_fast32_t offset, struct tm * tmp);
    188 static int		tmcomp(const struct tm * atmp,
    189 				const struct tm * btmp);
    190 static time_t		transtime(time_t janfirst, int year,
    191 				const struct rule * rulep,
    192 				const int_fast32_t offset) ATTRIBUTE_PURE;
    193 static int		typesequiv(const timezone_t sp, int a, int b);
    194 static int		tzload(timezone_t sp, const char * name,
    195 				int doextend);
    196 static int		tzparse(timezone_t sp, const char * name,
    197 				int lastditch);
    198 static void		tzset_unlocked(void);
    199 static void		tzsetwall_unlocked(void);
    200 static int_fast64_t	leapcorr(const timezone_t sp, time_t * timep);
    201 
    202 static timezone_t lclptr;
    203 static timezone_t gmtptr;
    204 
    205 #ifndef TZ_STRLEN_MAX
    206 #define TZ_STRLEN_MAX 255
    207 #endif /* !defined TZ_STRLEN_MAX */
    208 
    209 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    210 static int		lcl_is_set;
    211 static int		gmt_is_set;
    212 
    213 #if !defined(__LIBC12_SOURCE__)
    214 
    215 __aconst char *		tzname[2] = {
    216 	(__aconst char *)__UNCONST(wildabbr),
    217 	(__aconst char *)__UNCONST(wildabbr)
    218 };
    219 
    220 #else
    221 
    222 extern __aconst char *	tzname[2];
    223 
    224 #endif
    225 
    226 #ifdef _REENTRANT
    227 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    228 #endif
    229 
    230 /*
    231 ** Section 4.12.3 of X3.159-1989 requires that
    232 **	Except for the strftime function, these functions [asctime,
    233 **	ctime, gmtime, localtime] return values in one of two static
    234 **	objects: a broken-down time structure and an array of char.
    235 ** Thanks to Paul Eggert for noting this.
    236 */
    237 
    238 static struct tm	tm;
    239 
    240 #ifdef USG_COMPAT
    241 #if !defined(__LIBC12_SOURCE__)
    242 long 			timezone = 0;
    243 int			daylight = 0;
    244 #else
    245 extern int		daylight;
    246 extern long		timezone __RENAME(__timezone13);
    247 #endif
    248 #endif /* defined USG_COMPAT */
    249 
    250 #ifdef ALTZONE
    251 time_t			altzone = 0;
    252 #endif /* defined ALTZONE */
    253 
    254 static int_fast32_t
    255 detzcode(const char *const codep)
    256 {
    257 	int_fast32_t	result;
    258 	int	i;
    259 
    260 	result = (codep[0] & 0x80) ? -1 : 0;
    261 	for (i = 0; i < 4; ++i)
    262 		result = (result << 8) | (codep[i] & 0xff);
    263 	return result;
    264 }
    265 
    266 static time_t
    267 detzcode64(const char *const codep)
    268 {
    269 	time_t	result;
    270 	int	i;
    271 
    272 	result = (time_t)((codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0);
    273 	for (i = 0; i < 8; ++i)
    274 		result = result * 256 + (codep[i] & 0xff);
    275 	return result;
    276 }
    277 
    278 const char *
    279 tzgetname(const timezone_t sp, int isdst)
    280 {
    281 	int i;
    282 	for (i = 0; i < sp->timecnt; ++i) {
    283 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    284 
    285 		if (ttisp->tt_isdst == isdst)
    286 			return &sp->chars[ttisp->tt_abbrind];
    287 	}
    288 	return NULL;
    289 }
    290 
    291 static void
    292 settzname_z(timezone_t sp)
    293 {
    294 	int			i;
    295 
    296 	/*
    297 	** Scrub the abbreviations.
    298 	** First, replace bogus characters.
    299 	*/
    300 	for (i = 0; i < sp->charcnt; ++i)
    301 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    302 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    303 	/*
    304 	** Second, truncate long abbreviations.
    305 	*/
    306 	for (i = 0; i < sp->typecnt; ++i) {
    307 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    308 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    309 
    310 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    311 			strcmp(cp, GRANDPARENTED) != 0)
    312 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    313 	}
    314 }
    315 
    316 static void
    317 settzname(void)
    318 {
    319 	timezone_t const	sp = lclptr;
    320 	int			i;
    321 
    322 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    323 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    324 #ifdef USG_COMPAT
    325 	daylight = 0;
    326 	timezone = 0;
    327 #endif /* defined USG_COMPAT */
    328 #ifdef ALTZONE
    329 	altzone = 0;
    330 #endif /* defined ALTZONE */
    331 	if (sp == NULL) {
    332 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    333 		return;
    334 	}
    335 	/*
    336 	** And to get the latest zone names into tzname. . .
    337 	*/
    338 	for (i = 0; i < sp->typecnt; ++i) {
    339 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    340 
    341 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
    342 #ifdef USG_COMPAT
    343 		if (ttisp->tt_isdst)
    344 			daylight = 1;
    345 		if (!ttisp->tt_isdst)
    346 			timezone = -(ttisp->tt_gmtoff);
    347 #endif /* defined USG_COMPAT */
    348 #ifdef ALTZONE
    349 		if (ttisp->tt_isdst)
    350 			altzone = -(ttisp->tt_gmtoff);
    351 #endif /* defined ALTZONE */
    352 	}
    353 	settzname_z(sp);
    354 }
    355 
    356 static int
    357 differ_by_repeat(const time_t t1, const time_t t0)
    358 {
    359 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    360 		return 0;
    361 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    362 }
    363 
    364 static int
    365 tzload(timezone_t sp, const char *name, const int doextend)
    366 {
    367 	const char *		p;
    368 	int			i;
    369 	int			fid;
    370 	int			stored;
    371 	ssize_t			nread;
    372 	typedef union {
    373 		struct tzhead	tzhead;
    374 		char		buf[2 * sizeof(struct tzhead) +
    375 					2 * sizeof *sp +
    376 					4 * TZ_MAX_TIMES];
    377 	} u_t;
    378 	u_t *			up;
    379 
    380 	up = calloc(1, sizeof *up);
    381 	if (up == NULL)
    382 		return -1;
    383 
    384 	sp->goback = sp->goahead = FALSE;
    385 	if (name == NULL && (name = TZDEFAULT) == NULL)
    386 		goto oops;
    387 	{
    388 		int	doaccess;
    389 		/*
    390 		** Section 4.9.1 of the C standard says that
    391 		** "FILENAME_MAX expands to an integral constant expression
    392 		** that is the size needed for an array of char large enough
    393 		** to hold the longest file name string that the implementation
    394 		** guarantees can be opened."
    395 		*/
    396 		char		fullname[FILENAME_MAX + 1];
    397 
    398 		if (name[0] == ':')
    399 			++name;
    400 		doaccess = name[0] == '/';
    401 		if (!doaccess) {
    402 			if ((p = TZDIR) == NULL)
    403 				goto oops;
    404 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    405 				goto oops;
    406 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    407 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    408 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    409 			/*
    410 			** Set doaccess if '.' (as in "../") shows up in name.
    411 			*/
    412 			if (strchr(name, '.') != NULL)
    413 				doaccess = TRUE;
    414 			name = fullname;
    415 		}
    416 		if (doaccess && access(name, R_OK) != 0)
    417 			goto oops;
    418 		/*
    419 		 * XXX potential security problem here if user of a set-id
    420 		 * program has set TZ (which is passed in as name) here,
    421 		 * and uses a race condition trick to defeat the access(2)
    422 		 * above.
    423 		 */
    424 		if ((fid = open(name, OPEN_MODE)) == -1)
    425 			goto oops;
    426 	}
    427 	nread = read(fid, up->buf, sizeof up->buf);
    428 	if (close(fid) < 0 || nread <= 0)
    429 		goto oops;
    430 	for (stored = 4; stored <= 8; stored *= 2) {
    431 		int		ttisstdcnt;
    432 		int		ttisgmtcnt;
    433 
    434 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
    435 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
    436 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
    437 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
    438 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
    439 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
    440 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
    441 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    442 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    443 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    444 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    445 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    446 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    447 				goto oops;
    448 		if (nread - (p - up->buf) <
    449 			sp->timecnt * stored +		/* ats */
    450 			sp->timecnt +			/* types */
    451 			sp->typecnt * 6 +		/* ttinfos */
    452 			sp->charcnt +			/* chars */
    453 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    454 			ttisstdcnt +			/* ttisstds */
    455 			ttisgmtcnt)			/* ttisgmts */
    456 				goto oops;
    457 		for (i = 0; i < sp->timecnt; ++i) {
    458 			sp->ats[i] = (time_t)((stored == 4) ?
    459 				detzcode(p) : detzcode64(p));
    460 			p += stored;
    461 		}
    462 		for (i = 0; i < sp->timecnt; ++i) {
    463 			sp->types[i] = (unsigned char) *p++;
    464 			if (sp->types[i] >= sp->typecnt)
    465 				goto oops;
    466 		}
    467 		for (i = 0; i < sp->typecnt; ++i) {
    468 			struct ttinfo *	ttisp;
    469 
    470 			ttisp = &sp->ttis[i];
    471 			ttisp->tt_gmtoff = detzcode(p);
    472 			p += 4;
    473 			ttisp->tt_isdst = (unsigned char) *p++;
    474 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    475 				goto oops;
    476 			ttisp->tt_abbrind = (unsigned char) *p++;
    477 			if (ttisp->tt_abbrind < 0 ||
    478 				ttisp->tt_abbrind > sp->charcnt)
    479 					goto oops;
    480 		}
    481 		for (i = 0; i < sp->charcnt; ++i)
    482 			sp->chars[i] = *p++;
    483 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    484 		for (i = 0; i < sp->leapcnt; ++i) {
    485 			struct lsinfo *	lsisp;
    486 
    487 			lsisp = &sp->lsis[i];
    488 			lsisp->ls_trans = (time_t)((stored == 4) ?
    489 			    detzcode(p) : detzcode64(p));
    490 			p += stored;
    491 			lsisp->ls_corr = detzcode(p);
    492 			p += 4;
    493 		}
    494 		for (i = 0; i < sp->typecnt; ++i) {
    495 			struct ttinfo *	ttisp;
    496 
    497 			ttisp = &sp->ttis[i];
    498 			if (ttisstdcnt == 0)
    499 				ttisp->tt_ttisstd = FALSE;
    500 			else {
    501 				ttisp->tt_ttisstd = *p++;
    502 				if (ttisp->tt_ttisstd != TRUE &&
    503 					ttisp->tt_ttisstd != FALSE)
    504 						goto oops;
    505 			}
    506 		}
    507 		for (i = 0; i < sp->typecnt; ++i) {
    508 			struct ttinfo *	ttisp;
    509 
    510 			ttisp = &sp->ttis[i];
    511 			if (ttisgmtcnt == 0)
    512 				ttisp->tt_ttisgmt = FALSE;
    513 			else {
    514 				ttisp->tt_ttisgmt = *p++;
    515 				if (ttisp->tt_ttisgmt != TRUE &&
    516 					ttisp->tt_ttisgmt != FALSE)
    517 						goto oops;
    518 			}
    519 		}
    520 		/*
    521 		** Out-of-sort ats should mean we're running on a
    522 		** signed time_t system but using a data file with
    523 		** unsigned values (or vice versa).
    524 		*/
    525 		for (i = 0; i < sp->timecnt; ++i)
    526 			if ((i < sp->timecnt - 1 &&
    527 			    sp->ats[i] > sp->ats[i + 1]) ||
    528 			    (i == sp->timecnt - 1 && !TYPE_SIGNED(time_t) &&
    529 			    sp->ats[i] >
    530 			    ((stored == 4) ? INT32_MAX : INT64_MAX))) {
    531 				if (TYPE_SIGNED(time_t)) {
    532 					/*
    533 					** Ignore the end (easy).
    534 					*/
    535 					sp->timecnt = i + 1;
    536 				} else {
    537 					/*
    538 					** Ignore the beginning (harder).
    539 					*/
    540 					int	j;
    541 
    542 					/*
    543 					** Keep the record right before the
    544 					** epoch boundary,
    545 					** but tweak it so that it starts
    546 					** right with the epoch
    547 					** (thanks to Doug Bailey).
    548 					*/
    549 					sp->ats[i] = 0;
    550 					for (j = 0; j + i < sp->timecnt; ++j) {
    551 						sp->ats[j] = sp->ats[j + i];
    552 						sp->types[j] = sp->types[j + i];
    553 					}
    554 					sp->timecnt = j;
    555 				}
    556 				break;
    557 			}
    558 		/*
    559 		** If this is an old file, we're done.
    560 		*/
    561 		if (up->tzhead.tzh_version[0] == '\0')
    562 			break;
    563 		nread -= p - up->buf;
    564 		for (i = 0; i < nread; ++i)
    565 			up->buf[i] = p[i];
    566 		/*
    567 		** If this is a narrow time_t system, we're done.
    568 		*/
    569 		if (stored >= (int) sizeof(time_t))
    570 			break;
    571 	}
    572 	if (doextend && nread > 2 &&
    573 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    574 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    575 			struct __state ts;
    576 			int	result;
    577 
    578 			up->buf[nread - 1] = '\0';
    579 			result = tzparse(&ts, &up->buf[1], FALSE);
    580 			if (result == 0 && ts.typecnt == 2 &&
    581 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    582 					for (i = 0; i < 2; ++i)
    583 						ts.ttis[i].tt_abbrind +=
    584 							sp->charcnt;
    585 					for (i = 0; i < ts.charcnt; ++i)
    586 						sp->chars[sp->charcnt++] =
    587 							ts.chars[i];
    588 					i = 0;
    589 					while (i < ts.timecnt &&
    590 						ts.ats[i] <=
    591 						sp->ats[sp->timecnt - 1])
    592 							++i;
    593 					while (i < ts.timecnt &&
    594 					    sp->timecnt < TZ_MAX_TIMES) {
    595 						sp->ats[sp->timecnt] =
    596 							ts.ats[i];
    597 						sp->types[sp->timecnt] =
    598 							sp->typecnt +
    599 							ts.types[i];
    600 						++sp->timecnt;
    601 						++i;
    602 					}
    603 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    604 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    605 			}
    606 	}
    607 	if (sp->timecnt > 1) {
    608 		for (i = 1; i < sp->timecnt; ++i)
    609 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    610 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    611 					sp->goback = TRUE;
    612 					break;
    613 				}
    614 		for (i = sp->timecnt - 2; i >= 0; --i)
    615 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    616 				sp->types[i]) &&
    617 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    618 				sp->ats[i])) {
    619 					sp->goahead = TRUE;
    620 					break;
    621 		}
    622 	}
    623 	/*
    624 	** If type 0 is is unused in transitions,
    625 	** it's the type to use for early times.
    626 	*/
    627 	for (i = 0; i < sp->typecnt; ++i)
    628 		if (sp->types[i] == 0)
    629 			break;
    630 	i = (i >= sp->typecnt) ? 0 : -1;
    631 	/*
    632 	** Absent the above,
    633 	** if there are transition times
    634 	** and the first transition is to a daylight time
    635 	** find the standard type less than and closest to
    636 	** the type of the first transition.
    637 	*/
    638 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    639 		i = sp->types[0];
    640 		while (--i >= 0)
    641 			if (!sp->ttis[i].tt_isdst)
    642 				break;
    643 	}
    644 	/*
    645 	** If no result yet, find the first standard type.
    646 	** If there is none, punt to type zero.
    647 	*/
    648 	if (i < 0) {
    649 		i = 0;
    650 		while (sp->ttis[i].tt_isdst)
    651 			if (++i >= sp->typecnt) {
    652 				i = 0;
    653 				break;
    654 			}
    655 	}
    656 	sp->defaulttype = i;
    657 	free(up);
    658 	return 0;
    659 oops:
    660 	free(up);
    661 	return -1;
    662 }
    663 
    664 static int
    665 typesequiv(const timezone_t sp, const int a, const int b)
    666 {
    667 	int	result;
    668 
    669 	if (sp == NULL ||
    670 		a < 0 || a >= sp->typecnt ||
    671 		b < 0 || b >= sp->typecnt)
    672 			result = FALSE;
    673 	else {
    674 		const struct ttinfo *	ap = &sp->ttis[a];
    675 		const struct ttinfo *	bp = &sp->ttis[b];
    676 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    677 			ap->tt_isdst == bp->tt_isdst &&
    678 			ap->tt_ttisstd == bp->tt_ttisstd &&
    679 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    680 			strcmp(&sp->chars[ap->tt_abbrind],
    681 			&sp->chars[bp->tt_abbrind]) == 0;
    682 	}
    683 	return result;
    684 }
    685 
    686 static const int	mon_lengths[2][MONSPERYEAR] = {
    687 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    688 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    689 };
    690 
    691 static const int	year_lengths[2] = {
    692 	DAYSPERNYEAR, DAYSPERLYEAR
    693 };
    694 
    695 /*
    696 ** Given a pointer into a time zone string, scan until a character that is not
    697 ** a valid character in a zone name is found. Return a pointer to that
    698 ** character.
    699 */
    700 
    701 static const char *
    702 getzname(const char *strp)
    703 {
    704 	char	c;
    705 
    706 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    707 		c != '+')
    708 			++strp;
    709 	return strp;
    710 }
    711 
    712 /*
    713 ** Given a pointer into an extended time zone string, scan until the ending
    714 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    715 **
    716 ** As with getzname above, the legal character set is actually quite
    717 ** restricted, with other characters producing undefined results.
    718 ** We don't do any checking here; checking is done later in common-case code.
    719 */
    720 
    721 static const char *
    722 getqzname(const char *strp, const int delim)
    723 {
    724 	int	c;
    725 
    726 	while ((c = *strp) != '\0' && c != delim)
    727 		++strp;
    728 	return strp;
    729 }
    730 
    731 /*
    732 ** Given a pointer into a time zone string, extract a number from that string.
    733 ** Check that the number is within a specified range; if it is not, return
    734 ** NULL.
    735 ** Otherwise, return a pointer to the first character not part of the number.
    736 */
    737 
    738 static const char *
    739 getnum(const char *strp, int *const nump, const int min, const int max)
    740 {
    741 	char	c;
    742 	int	num;
    743 
    744 	if (strp == NULL || !is_digit(c = *strp)) {
    745 		errno = EINVAL;
    746 		return NULL;
    747 	}
    748 	num = 0;
    749 	do {
    750 		num = num * 10 + (c - '0');
    751 		if (num > max) {
    752 			errno = EOVERFLOW;
    753 			return NULL;	/* illegal value */
    754 		}
    755 		c = *++strp;
    756 	} while (is_digit(c));
    757 	if (num < min) {
    758 		errno = EINVAL;
    759 		return NULL;		/* illegal value */
    760 	}
    761 	*nump = num;
    762 	return strp;
    763 }
    764 
    765 /*
    766 ** Given a pointer into a time zone string, extract a number of seconds,
    767 ** in hh[:mm[:ss]] form, from the string.
    768 ** If any error occurs, return NULL.
    769 ** Otherwise, return a pointer to the first character not part of the number
    770 ** of seconds.
    771 */
    772 
    773 static const char *
    774 getsecs(const char *strp, int_fast32_t *const secsp)
    775 {
    776 	int	num;
    777 
    778 	/*
    779 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    780 	** "M10.4.6/26", which does not conform to Posix,
    781 	** but which specifies the equivalent of
    782 	** ``02:00 on the first Sunday on or after 23 Oct''.
    783 	*/
    784 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    785 	if (strp == NULL)
    786 		return NULL;
    787 	*secsp = num * (int_fast32_t) SECSPERHOUR;
    788 	if (*strp == ':') {
    789 		++strp;
    790 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    791 		if (strp == NULL)
    792 			return NULL;
    793 		*secsp += num * SECSPERMIN;
    794 		if (*strp == ':') {
    795 			++strp;
    796 			/* `SECSPERMIN' allows for leap seconds. */
    797 			strp = getnum(strp, &num, 0, SECSPERMIN);
    798 			if (strp == NULL)
    799 				return NULL;
    800 			*secsp += num;
    801 		}
    802 	}
    803 	return strp;
    804 }
    805 
    806 /*
    807 ** Given a pointer into a time zone string, extract an offset, in
    808 ** [+-]hh[:mm[:ss]] form, from the string.
    809 ** If any error occurs, return NULL.
    810 ** Otherwise, return a pointer to the first character not part of the time.
    811 */
    812 
    813 static const char *
    814 getoffset(const char *strp, int_fast32_t *const offsetp)
    815 {
    816 	int	neg = 0;
    817 
    818 	if (*strp == '-') {
    819 		neg = 1;
    820 		++strp;
    821 	} else if (*strp == '+')
    822 		++strp;
    823 	strp = getsecs(strp, offsetp);
    824 	if (strp == NULL)
    825 		return NULL;		/* illegal time */
    826 	if (neg)
    827 		*offsetp = -*offsetp;
    828 	return strp;
    829 }
    830 
    831 /*
    832 ** Given a pointer into a time zone string, extract a rule in the form
    833 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    834 ** If a valid rule is not found, return NULL.
    835 ** Otherwise, return a pointer to the first character not part of the rule.
    836 */
    837 
    838 static const char *
    839 getrule(const char *strp, struct rule *const rulep)
    840 {
    841 	if (*strp == 'J') {
    842 		/*
    843 		** Julian day.
    844 		*/
    845 		rulep->r_type = JULIAN_DAY;
    846 		++strp;
    847 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    848 	} else if (*strp == 'M') {
    849 		/*
    850 		** Month, week, day.
    851 		*/
    852 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    853 		++strp;
    854 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    855 		if (strp == NULL)
    856 			return NULL;
    857 		if (*strp++ != '.')
    858 			return NULL;
    859 		strp = getnum(strp, &rulep->r_week, 1, 5);
    860 		if (strp == NULL)
    861 			return NULL;
    862 		if (*strp++ != '.')
    863 			return NULL;
    864 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    865 	} else if (is_digit(*strp)) {
    866 		/*
    867 		** Day of year.
    868 		*/
    869 		rulep->r_type = DAY_OF_YEAR;
    870 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    871 	} else	return NULL;		/* invalid format */
    872 	if (strp == NULL)
    873 		return NULL;
    874 	if (*strp == '/') {
    875 		/*
    876 		** Time specified.
    877 		*/
    878 		++strp;
    879 		strp = getoffset(strp, &rulep->r_time);
    880 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    881 	return strp;
    882 }
    883 
    884 /*
    885 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    886 ** year, a rule, and the offset from UT at the time that rule takes effect,
    887 ** calculate the Epoch-relative time that rule takes effect.
    888 */
    889 
    890 static time_t
    891 transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    892     const int_fast32_t offset)
    893 {
    894 	int	leapyear;
    895 	time_t	value;
    896 	int	i;
    897 	int		d, m1, yy0, yy1, yy2, dow;
    898 
    899 	INITIALIZE(value);
    900 	leapyear = isleap(year);
    901 	switch (rulep->r_type) {
    902 
    903 	case JULIAN_DAY:
    904 		/*
    905 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    906 		** years.
    907 		** In non-leap years, or if the day number is 59 or less, just
    908 		** add SECSPERDAY times the day number-1 to the time of
    909 		** January 1, midnight, to get the day.
    910 		*/
    911 		value = (time_t)(janfirst + (rulep->r_day - 1) * SECSPERDAY);
    912 		if (leapyear && rulep->r_day >= 60)
    913 			value += SECSPERDAY;
    914 		break;
    915 
    916 	case DAY_OF_YEAR:
    917 		/*
    918 		** n - day of year.
    919 		** Just add SECSPERDAY times the day number to the time of
    920 		** January 1, midnight, to get the day.
    921 		*/
    922 		value = (time_t)(janfirst + rulep->r_day * SECSPERDAY);
    923 		break;
    924 
    925 	case MONTH_NTH_DAY_OF_WEEK:
    926 		/*
    927 		** Mm.n.d - nth "dth day" of month m.
    928 		*/
    929 		value = janfirst;
    930 		for (i = 0; i < rulep->r_mon - 1; ++i)
    931 			value += (time_t)(mon_lengths[leapyear][i] * SECSPERDAY);
    932 
    933 		/*
    934 		** Use Zeller's Congruence to get day-of-week of first day of
    935 		** month.
    936 		*/
    937 		m1 = (rulep->r_mon + 9) % 12 + 1;
    938 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    939 		yy1 = yy0 / 100;
    940 		yy2 = yy0 % 100;
    941 		dow = ((26 * m1 - 2) / 10 +
    942 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    943 		if (dow < 0)
    944 			dow += DAYSPERWEEK;
    945 
    946 		/*
    947 		** "dow" is the day-of-week of the first day of the month. Get
    948 		** the day-of-month (zero-origin) of the first "dow" day of the
    949 		** month.
    950 		*/
    951 		d = rulep->r_day - dow;
    952 		if (d < 0)
    953 			d += DAYSPERWEEK;
    954 		for (i = 1; i < rulep->r_week; ++i) {
    955 			if (d + DAYSPERWEEK >=
    956 				mon_lengths[leapyear][rulep->r_mon - 1])
    957 					break;
    958 			d += DAYSPERWEEK;
    959 		}
    960 
    961 		/*
    962 		** "d" is the day-of-month (zero-origin) of the day we want.
    963 		*/
    964 		value += (time_t)(d * SECSPERDAY);
    965 		break;
    966 	}
    967 
    968 	/*
    969 	** "value" is the Epoch-relative time of 00:00:00 UT on the day in
    970 	** question. To get the Epoch-relative time of the specified local
    971 	** time on that day, add the transition time and the current offset
    972 	** from UT.
    973 	*/
    974 	return (time_t)(value + rulep->r_time + offset);
    975 }
    976 
    977 /*
    978 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    979 ** appropriate.
    980 */
    981 
    982 static int
    983 tzparse(timezone_t sp, const char *name, const int lastditch)
    984 {
    985 	const char *		stdname;
    986 	const char *		dstname;
    987 	size_t			stdlen;
    988 	size_t			dstlen;
    989 	int_fast32_t		stdoffset;
    990 	int_fast32_t		dstoffset;
    991 	time_t *		atp;
    992 	unsigned char *		typep;
    993 	char *			cp;
    994 	int			load_result;
    995 
    996 	INITIALIZE(dstname);
    997 	stdname = name;
    998 	if (lastditch) {
    999 		stdlen = strlen(name);	/* length of standard zone name */
   1000 		name += stdlen;
   1001 		if (stdlen >= sizeof sp->chars)
   1002 			stdlen = (sizeof sp->chars) - 1;
   1003 		stdoffset = 0;
   1004 	} else {
   1005 		if (*name == '<') {
   1006 			name++;
   1007 			stdname = name;
   1008 			name = getqzname(name, '>');
   1009 			if (*name != '>')
   1010 				return (-1);
   1011 			stdlen = name - stdname;
   1012 			name++;
   1013 		} else {
   1014 			name = getzname(name);
   1015 			stdlen = name - stdname;
   1016 		}
   1017 		if (*name == '\0')
   1018 			return -1;
   1019 		name = getoffset(name, &stdoffset);
   1020 		if (name == NULL)
   1021 			return -1;
   1022 	}
   1023 	load_result = tzload(sp, TZDEFRULES, FALSE);
   1024 	if (load_result != 0)
   1025 		sp->leapcnt = 0;		/* so, we're off a little */
   1026 	if (*name != '\0') {
   1027 		if (*name == '<') {
   1028 			dstname = ++name;
   1029 			name = getqzname(name, '>');
   1030 			if (*name != '>')
   1031 				return -1;
   1032 			dstlen = name - dstname;
   1033 			name++;
   1034 		} else {
   1035 			dstname = name;
   1036 			name = getzname(name);
   1037 			dstlen = name - dstname; /* length of DST zone name */
   1038 		}
   1039 		if (*name != '\0' && *name != ',' && *name != ';') {
   1040 			name = getoffset(name, &dstoffset);
   1041 			if (name == NULL)
   1042 				return -1;
   1043 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1044 		if (*name == '\0' && load_result != 0)
   1045 			name = TZDEFRULESTRING;
   1046 		if (*name == ',' || *name == ';') {
   1047 			struct rule	start;
   1048 			struct rule	end;
   1049 			int		year;
   1050 			int		yearlim;
   1051 			time_t		janfirst;
   1052 			time_t		starttime;
   1053 			time_t		endtime;
   1054 
   1055 			++name;
   1056 			if ((name = getrule(name, &start)) == NULL)
   1057 				return -1;
   1058 			if (*name++ != ',')
   1059 				return -1;
   1060 			if ((name = getrule(name, &end)) == NULL)
   1061 				return -1;
   1062 			if (*name != '\0')
   1063 				return -1;
   1064 			sp->typecnt = 2;	/* standard time and DST */
   1065 			/*
   1066 			** Two transitions per year, from EPOCH_YEAR forward.
   1067 			*/
   1068 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1069 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1070 			sp->ttis[0].tt_isdst = 1;
   1071 			sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
   1072 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1073 			sp->ttis[1].tt_isdst = 0;
   1074 			sp->ttis[1].tt_abbrind = 0;
   1075 			atp = sp->ats;
   1076 			typep = sp->types;
   1077 			janfirst = 0;
   1078 			sp->timecnt = 0;
   1079 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
   1080 			for (year = EPOCH_YEAR; year < yearlim; year++) {
   1081 				int_fast32_t yearsecs;
   1082 
   1083 				starttime = transtime(janfirst, year, &start,
   1084 					stdoffset);
   1085 				endtime = transtime(janfirst, year, &end,
   1086 					dstoffset);
   1087 				yearsecs = (year_lengths[isleap(year)]
   1088 					    * SECSPERDAY);
   1089 				if (starttime > endtime
   1090 				    || (starttime < endtime
   1091 					&& (endtime - starttime
   1092 					    < (yearsecs
   1093 					       + (stdoffset - dstoffset))))) {
   1094 					if (&sp->ats[TZ_MAX_TIMES - 2] < atp)
   1095 						break;
   1096 					yearlim = year + YEARSPERREPEAT + 1;
   1097 					if (starttime > endtime) {
   1098 						*atp++ = endtime;
   1099 						*typep++ = 1;	/* DST ends */
   1100 						*atp++ = starttime;
   1101 						*typep++ = 0;	/* DST begins */
   1102 					} else {
   1103 						*atp++ = starttime;
   1104 						*typep++ = 0;	/* DST begins */
   1105 						*atp++ = endtime;
   1106 						*typep++ = 1;	/* DST ends */
   1107 					}
   1108 				}
   1109 				if (time_t_max - janfirst < yearsecs)
   1110 					break;
   1111 				janfirst += yearsecs;
   1112 			}
   1113 			_DIAGASSERT(__type_fit(int, atp - sp->ats));
   1114 			sp->timecnt = (int)(atp - sp->ats);
   1115 			if (!sp->timecnt)
   1116 				sp->typecnt = 1;	/* Perpetual DST.  */
   1117 		} else {
   1118 			int_fast32_t	theirstdoffset;
   1119 			int_fast32_t	theirdstoffset;
   1120 			int_fast32_t	theiroffset;
   1121 			int		isdst;
   1122 			int		i;
   1123 			int		j;
   1124 
   1125 			if (*name != '\0')
   1126 				return -1;
   1127 			/*
   1128 			** Initial values of theirstdoffset and theirdstoffset.
   1129 			*/
   1130 			theirstdoffset = 0;
   1131 			for (i = 0; i < sp->timecnt; ++i) {
   1132 				j = sp->types[i];
   1133 				if (!sp->ttis[j].tt_isdst) {
   1134 					theirstdoffset =
   1135 						-sp->ttis[j].tt_gmtoff;
   1136 					break;
   1137 				}
   1138 			}
   1139 			theirdstoffset = 0;
   1140 			for (i = 0; i < sp->timecnt; ++i) {
   1141 				j = sp->types[i];
   1142 				if (sp->ttis[j].tt_isdst) {
   1143 					theirdstoffset =
   1144 						-sp->ttis[j].tt_gmtoff;
   1145 					break;
   1146 				}
   1147 			}
   1148 			/*
   1149 			** Initially we're assumed to be in standard time.
   1150 			*/
   1151 			isdst = FALSE;
   1152 			theiroffset = theirstdoffset;
   1153 			/*
   1154 			** Now juggle transition times and types
   1155 			** tracking offsets as you do.
   1156 			*/
   1157 			for (i = 0; i < sp->timecnt; ++i) {
   1158 				j = sp->types[i];
   1159 				sp->types[i] = sp->ttis[j].tt_isdst;
   1160 				if (sp->ttis[j].tt_ttisgmt) {
   1161 					/* No adjustment to transition time */
   1162 				} else {
   1163 					/*
   1164 					** If summer time is in effect, and the
   1165 					** transition time was not specified as
   1166 					** standard time, add the summer time
   1167 					** offset to the transition time;
   1168 					** otherwise, add the standard time
   1169 					** offset to the transition time.
   1170 					*/
   1171 					/*
   1172 					** Transitions from DST to DDST
   1173 					** will effectively disappear since
   1174 					** POSIX provides for only one DST
   1175 					** offset.
   1176 					*/
   1177 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1178 						sp->ats[i] += (time_t)
   1179 						    (dstoffset - theirdstoffset);
   1180 					} else {
   1181 						sp->ats[i] += (time_t)
   1182 						    (stdoffset - theirstdoffset);
   1183 					}
   1184 				}
   1185 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1186 				if (!sp->ttis[j].tt_isdst)
   1187 					theirstdoffset = theiroffset;
   1188 				else	theirdstoffset = theiroffset;
   1189 			}
   1190 			/*
   1191 			** Finally, fill in ttis.
   1192 			** ttisstd and ttisgmt need not be handled
   1193 			*/
   1194 			memset(sp->ttis, 0, sizeof(sp->ttis));
   1195 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1196 			sp->ttis[0].tt_isdst = FALSE;
   1197 			sp->ttis[0].tt_abbrind = 0;
   1198 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1199 			sp->ttis[1].tt_isdst = TRUE;
   1200 			sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
   1201 			sp->typecnt = 2;
   1202 		}
   1203 	} else {
   1204 		dstlen = 0;
   1205 		sp->typecnt = 1;		/* only standard time */
   1206 		sp->timecnt = 0;
   1207 		memset(sp->ttis, 0, sizeof(sp->ttis));
   1208 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1209 		sp->ttis[0].tt_isdst = 0;
   1210 		sp->ttis[0].tt_abbrind = 0;
   1211 	}
   1212 	sp->charcnt = (int)(stdlen + 1);
   1213 	if (dstlen != 0)
   1214 		sp->charcnt += (int)(dstlen + 1);
   1215 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1216 		return -1;
   1217 	cp = sp->chars;
   1218 	(void) strncpy(cp, stdname, stdlen);
   1219 	cp += stdlen;
   1220 	*cp++ = '\0';
   1221 	if (dstlen != 0) {
   1222 		(void) strncpy(cp, dstname, dstlen);
   1223 		*(cp + dstlen) = '\0';
   1224 	}
   1225 	return 0;
   1226 }
   1227 
   1228 static void
   1229 gmtload(timezone_t sp)
   1230 {
   1231 	if (tzload(sp, gmt, TRUE) != 0)
   1232 		(void) tzparse(sp, gmt, TRUE);
   1233 }
   1234 
   1235 timezone_t
   1236 tzalloc(const char *name)
   1237 {
   1238 	timezone_t sp = calloc(1, sizeof *sp);
   1239 	if (sp == NULL)
   1240 		return NULL;
   1241 	if (tzload(sp, name, TRUE) != 0) {
   1242 		free(sp);
   1243 		return NULL;
   1244 	}
   1245 	settzname_z(sp);
   1246 	return sp;
   1247 }
   1248 
   1249 void
   1250 tzfree(const timezone_t sp)
   1251 {
   1252 	free(sp);
   1253 }
   1254 
   1255 static void
   1256 tzsetwall_unlocked(void)
   1257 {
   1258 	if (lcl_is_set < 0)
   1259 		return;
   1260 	lcl_is_set = -1;
   1261 
   1262 	if (lclptr == NULL) {
   1263 		int saveerrno = errno;
   1264 		lclptr = calloc(1, sizeof *lclptr);
   1265 		errno = saveerrno;
   1266 		if (lclptr == NULL) {
   1267 			settzname();	/* all we can do */
   1268 			return;
   1269 		}
   1270 	}
   1271 	if (tzload(lclptr, NULL, TRUE) != 0)
   1272 		gmtload(lclptr);
   1273 	settzname();
   1274 }
   1275 
   1276 #ifndef STD_INSPIRED
   1277 /*
   1278 ** A non-static declaration of tzsetwall in a system header file
   1279 ** may cause a warning about this upcoming static declaration...
   1280 */
   1281 static
   1282 #endif /* !defined STD_INSPIRED */
   1283 void
   1284 tzsetwall(void)
   1285 {
   1286 	rwlock_wrlock(&lcl_lock);
   1287 	tzsetwall_unlocked();
   1288 	rwlock_unlock(&lcl_lock);
   1289 }
   1290 
   1291 #ifndef STD_INSPIRED
   1292 /*
   1293 ** A non-static declaration of tzsetwall in a system header file
   1294 ** may cause a warning about this upcoming static declaration...
   1295 */
   1296 static
   1297 #endif /* !defined STD_INSPIRED */
   1298 void
   1299 tzset_unlocked(void)
   1300 {
   1301 	const char *	name;
   1302 
   1303 	name = getenv("TZ");
   1304 	if (name == NULL) {
   1305 		tzsetwall_unlocked();
   1306 		return;
   1307 	}
   1308 
   1309 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1310 		return;
   1311 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1312 	if (lcl_is_set)
   1313 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1314 
   1315 	if (lclptr == NULL) {
   1316 		int saveerrno = errno;
   1317 		lclptr = calloc(1, sizeof *lclptr);
   1318 		errno = saveerrno;
   1319 		if (lclptr == NULL) {
   1320 			settzname();	/* all we can do */
   1321 			return;
   1322 		}
   1323 	}
   1324 	if (*name == '\0') {
   1325 		/*
   1326 		** User wants it fast rather than right.
   1327 		*/
   1328 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1329 		lclptr->timecnt = 0;
   1330 		lclptr->typecnt = 0;
   1331 		lclptr->ttis[0].tt_isdst = 0;
   1332 		lclptr->ttis[0].tt_gmtoff = 0;
   1333 		lclptr->ttis[0].tt_abbrind = 0;
   1334 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1335 	} else if (tzload(lclptr, name, TRUE) != 0)
   1336 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1337 			(void) gmtload(lclptr);
   1338 	settzname();
   1339 }
   1340 
   1341 void
   1342 tzset(void)
   1343 {
   1344 	rwlock_wrlock(&lcl_lock);
   1345 	tzset_unlocked();
   1346 	rwlock_unlock(&lcl_lock);
   1347 }
   1348 
   1349 /*
   1350 ** The easy way to behave "as if no library function calls" localtime
   1351 ** is to not call it--so we drop its guts into "localsub", which can be
   1352 ** freely called. (And no, the PANS doesn't require the above behavior--
   1353 ** but it *is* desirable.)
   1354 **
   1355 ** The unused offset argument is for the benefit of mktime variants.
   1356 */
   1357 
   1358 /*ARGSUSED*/
   1359 static struct tm *
   1360 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
   1361     struct tm *const tmp)
   1362 {
   1363 	const struct ttinfo *	ttisp;
   1364 	int			i;
   1365 	struct tm *		result;
   1366 	const time_t			t = *timep;
   1367 
   1368 	if ((sp->goback && t < sp->ats[0]) ||
   1369 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1370 			time_t			newt = t;
   1371 			time_t		seconds;
   1372 			time_t		years;
   1373 
   1374 			if (t < sp->ats[0])
   1375 				seconds = sp->ats[0] - t;
   1376 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1377 			--seconds;
   1378 			years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
   1379 			seconds = (time_t)(years * AVGSECSPERYEAR);
   1380 			if (t < sp->ats[0])
   1381 				newt += seconds;
   1382 			else	newt -= seconds;
   1383 			if (newt < sp->ats[0] ||
   1384 				newt > sp->ats[sp->timecnt - 1])
   1385 					return NULL;	/* "cannot happen" */
   1386 			result = localsub(sp, &newt, offset, tmp);
   1387 			if (result == tmp) {
   1388 				time_t	newy;
   1389 
   1390 				newy = tmp->tm_year;
   1391 				if (t < sp->ats[0])
   1392 					newy -= years;
   1393 				else	newy += years;
   1394 				tmp->tm_year = (int)newy;
   1395 				if (tmp->tm_year != newy)
   1396 					return NULL;
   1397 			}
   1398 			return result;
   1399 	}
   1400 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1401 		i = sp->defaulttype;
   1402 	} else {
   1403 		int	lo = 1;
   1404 		int	hi = sp->timecnt;
   1405 
   1406 		while (lo < hi) {
   1407 			int	mid = (lo + hi) / 2;
   1408 
   1409 			if (t < sp->ats[mid])
   1410 				hi = mid;
   1411 			else	lo = mid + 1;
   1412 		}
   1413 		i = (int) sp->types[lo - 1];
   1414 	}
   1415 	ttisp = &sp->ttis[i];
   1416 	/*
   1417 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1418 	** you'd replace the statement below with
   1419 	**	t += ttisp->tt_gmtoff;
   1420 	**	timesub(&t, 0L, sp, tmp);
   1421 	*/
   1422 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1423 	tmp->tm_isdst = ttisp->tt_isdst;
   1424 	if (sp == lclptr)
   1425 		tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1426 #ifdef TM_ZONE
   1427 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1428 #endif /* defined TM_ZONE */
   1429 	return result;
   1430 }
   1431 
   1432 /*
   1433 ** Re-entrant version of localtime.
   1434 */
   1435 
   1436 struct tm *
   1437 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1438 {
   1439 	rwlock_rdlock(&lcl_lock);
   1440 	tzset_unlocked();
   1441 	tmp = localtime_rz(lclptr, timep, tmp);
   1442 	rwlock_unlock(&lcl_lock);
   1443 	return tmp;
   1444 }
   1445 
   1446 struct tm *
   1447 localtime(const time_t *const timep)
   1448 {
   1449 	return localtime_r(timep, &tm);
   1450 }
   1451 
   1452 struct tm *
   1453 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1454 {
   1455 	if (sp == NULL)
   1456 		tmp = gmtsub(NULL, timep, 0, tmp);
   1457 	else
   1458 		tmp = localsub(sp, timep, 0, tmp);
   1459 	if (tmp == NULL)
   1460 		errno = EOVERFLOW;
   1461 	return tmp;
   1462 }
   1463 
   1464 /*
   1465 ** gmtsub is to gmtime as localsub is to localtime.
   1466 */
   1467 
   1468 static struct tm *
   1469 gmtsub(const timezone_t sp, const time_t *const timep,
   1470     const int_fast32_t offset, struct tm *const tmp)
   1471 {
   1472 	struct tm *	result;
   1473 #ifdef _REENTRANT
   1474 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1475 #endif
   1476 
   1477 	mutex_lock(&gmt_mutex);
   1478 	if (!gmt_is_set) {
   1479 		int saveerrno;
   1480 		gmt_is_set = TRUE;
   1481 		saveerrno = errno;
   1482 		gmtptr = calloc(1, sizeof *gmtptr);
   1483 		errno = saveerrno;
   1484 		if (gmtptr != NULL)
   1485 			gmtload(gmtptr);
   1486 	}
   1487 	mutex_unlock(&gmt_mutex);
   1488 	result = timesub(gmtptr, timep, offset, tmp);
   1489 #ifdef TM_ZONE
   1490 	/*
   1491 	** Could get fancy here and deliver something such as
   1492 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
   1493 	** but this is no time for a treasure hunt.
   1494 	*/
   1495 	if (offset != 0)
   1496 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1497 	else {
   1498 		if (gmtptr == NULL)
   1499 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1500 		else	tmp->TM_ZONE = gmtptr->chars;
   1501 	}
   1502 #endif /* defined TM_ZONE */
   1503 	return result;
   1504 }
   1505 
   1506 struct tm *
   1507 gmtime(const time_t *const timep)
   1508 {
   1509 	struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
   1510 
   1511 	if (tmp == NULL)
   1512 		errno = EOVERFLOW;
   1513 
   1514 	return tmp;
   1515 }
   1516 
   1517 /*
   1518 ** Re-entrant version of gmtime.
   1519 */
   1520 
   1521 struct tm *
   1522 gmtime_r(const time_t * const timep, struct tm *tmp)
   1523 {
   1524 	tmp = gmtsub(NULL, timep, 0, tmp);
   1525 
   1526 	if (tmp == NULL)
   1527 		errno = EOVERFLOW;
   1528 
   1529 	return tmp;
   1530 }
   1531 
   1532 #ifdef STD_INSPIRED
   1533 
   1534 struct tm *
   1535 offtime(const time_t *const timep, long offset)
   1536 {
   1537 	struct tm *tmp;
   1538 
   1539 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1540 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   1541 		errno = EOVERFLOW;
   1542 		return NULL;
   1543 	}
   1544 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
   1545 
   1546 	if (tmp == NULL)
   1547 		errno = EOVERFLOW;
   1548 
   1549 	return tmp;
   1550 }
   1551 
   1552 struct tm *
   1553 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1554 {
   1555 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   1556 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   1557 		errno = EOVERFLOW;
   1558 		return NULL;
   1559 	}
   1560 	tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
   1561 
   1562 	if (tmp == NULL)
   1563 		errno = EOVERFLOW;
   1564 
   1565 	return tmp;
   1566 }
   1567 
   1568 #endif /* defined STD_INSPIRED */
   1569 
   1570 /*
   1571 ** Return the number of leap years through the end of the given year
   1572 ** where, to make the math easy, the answer for year zero is defined as zero.
   1573 */
   1574 
   1575 static int
   1576 leaps_thru_end_of(const int y)
   1577 {
   1578 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1579 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1580 }
   1581 
   1582 static struct tm *
   1583 timesub(const timezone_t sp, const time_t *const timep,
   1584     const int_fast32_t offset, struct tm *const tmp)
   1585 {
   1586 	const struct lsinfo *	lp;
   1587 	time_t			tdays;
   1588 	int			idays;	/* unsigned would be so 2003 */
   1589 	int_fast64_t		rem;
   1590 	int			y;
   1591 	const int *		ip;
   1592 	int_fast64_t		corr;
   1593 	int			hit;
   1594 	int			i;
   1595 
   1596 	corr = 0;
   1597 	hit = 0;
   1598 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1599 	while (--i >= 0) {
   1600 		lp = &sp->lsis[i];
   1601 		if (*timep >= lp->ls_trans) {
   1602 			if (*timep == lp->ls_trans) {
   1603 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1604 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1605 				if (hit)
   1606 					while (i > 0 &&
   1607 						sp->lsis[i].ls_trans ==
   1608 						sp->lsis[i - 1].ls_trans + 1 &&
   1609 						sp->lsis[i].ls_corr ==
   1610 						sp->lsis[i - 1].ls_corr + 1) {
   1611 							++hit;
   1612 							--i;
   1613 					}
   1614 			}
   1615 			corr = lp->ls_corr;
   1616 			break;
   1617 		}
   1618 	}
   1619 	y = EPOCH_YEAR;
   1620 	tdays = (time_t)(*timep / SECSPERDAY);
   1621 	rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
   1622 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1623 		int		newy;
   1624 		time_t	tdelta;
   1625 		int	idelta;
   1626 		int	leapdays;
   1627 
   1628 		tdelta = tdays / DAYSPERLYEAR;
   1629 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
   1630 		       && tdelta <= INT_MAX))
   1631 			return NULL;
   1632 		idelta = tdelta;
   1633 		if (idelta == 0)
   1634 			idelta = (tdays < 0) ? -1 : 1;
   1635 		newy = y;
   1636 		if (increment_overflow(&newy, idelta))
   1637 			return NULL;
   1638 		leapdays = leaps_thru_end_of(newy - 1) -
   1639 			leaps_thru_end_of(y - 1);
   1640 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1641 		tdays -= leapdays;
   1642 		y = newy;
   1643 	}
   1644 	{
   1645 		int_fast32_t seconds;
   1646 
   1647 		seconds = (int_fast32_t)(tdays * SECSPERDAY);
   1648 		tdays = (time_t)(seconds / SECSPERDAY);
   1649 		rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
   1650 	}
   1651 	/*
   1652 	** Given the range, we can now fearlessly cast...
   1653 	*/
   1654 	idays = (int) tdays;
   1655 	rem += offset - corr;
   1656 	while (rem < 0) {
   1657 		rem += SECSPERDAY;
   1658 		--idays;
   1659 	}
   1660 	while (rem >= SECSPERDAY) {
   1661 		rem -= SECSPERDAY;
   1662 		++idays;
   1663 	}
   1664 	while (idays < 0) {
   1665 		if (increment_overflow(&y, -1))
   1666 			return NULL;
   1667 		idays += year_lengths[isleap(y)];
   1668 	}
   1669 	while (idays >= year_lengths[isleap(y)]) {
   1670 		idays -= year_lengths[isleap(y)];
   1671 		if (increment_overflow(&y, 1))
   1672 			return NULL;
   1673 	}
   1674 	tmp->tm_year = y;
   1675 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1676 		return NULL;
   1677 	tmp->tm_yday = idays;
   1678 	/*
   1679 	** The "extra" mods below avoid overflow problems.
   1680 	*/
   1681 	tmp->tm_wday = EPOCH_WDAY +
   1682 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1683 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1684 		leaps_thru_end_of(y - 1) -
   1685 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1686 		idays;
   1687 	tmp->tm_wday %= DAYSPERWEEK;
   1688 	if (tmp->tm_wday < 0)
   1689 		tmp->tm_wday += DAYSPERWEEK;
   1690 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1691 	rem %= SECSPERHOUR;
   1692 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1693 	/*
   1694 	** A positive leap second requires a special
   1695 	** representation. This uses "... ??:59:60" et seq.
   1696 	*/
   1697 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1698 	ip = mon_lengths[isleap(y)];
   1699 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1700 		idays -= ip[tmp->tm_mon];
   1701 	tmp->tm_mday = (int) (idays + 1);
   1702 	tmp->tm_isdst = 0;
   1703 #ifdef TM_GMTOFF
   1704 	tmp->TM_GMTOFF = offset;
   1705 #endif /* defined TM_GMTOFF */
   1706 	return tmp;
   1707 }
   1708 
   1709 char *
   1710 ctime(const time_t *const timep)
   1711 {
   1712 /*
   1713 ** Section 4.12.3.2 of X3.159-1989 requires that
   1714 **	The ctime function converts the calendar time pointed to by timer
   1715 **	to local time in the form of a string. It is equivalent to
   1716 **		asctime(localtime(timer))
   1717 */
   1718 	struct tm *rtm = localtime(timep);
   1719 	if (rtm == NULL)
   1720 		return NULL;
   1721 	return asctime(rtm);
   1722 }
   1723 
   1724 char *
   1725 ctime_r(const time_t *const timep, char *buf)
   1726 {
   1727 	struct tm	mytm, *rtm;
   1728 
   1729 	rtm = localtime_r(timep, &mytm);
   1730 	if (rtm == NULL)
   1731 		return NULL;
   1732 	return asctime_r(rtm, buf);
   1733 }
   1734 
   1735 char *
   1736 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1737 {
   1738 	struct tm	mytm, *rtm;
   1739 
   1740 	rtm = localtime_rz(sp, timep, &mytm);
   1741 	if (rtm == NULL)
   1742 		return NULL;
   1743 	return asctime_r(rtm, buf);
   1744 }
   1745 
   1746 /*
   1747 ** Adapted from code provided by Robert Elz, who writes:
   1748 **	The "best" way to do mktime I think is based on an idea of Bob
   1749 **	Kridle's (so its said...) from a long time ago.
   1750 **	It does a binary search of the time_t space. Since time_t's are
   1751 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1752 **	would still be very reasonable).
   1753 */
   1754 
   1755 #ifndef WRONG
   1756 #define WRONG	((time_t)-1)
   1757 #endif /* !defined WRONG */
   1758 
   1759 /*
   1760 ** Simplified normalize logic courtesy Paul Eggert.
   1761 */
   1762 
   1763 static int
   1764 increment_overflow(int *const ip, int j)
   1765 {
   1766 	int	i = *ip;
   1767 
   1768 	/*
   1769 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1770 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1771 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1772 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1773 	*/
   1774 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1775 		return TRUE;
   1776 	*ip += j;
   1777 	return FALSE;
   1778 }
   1779 
   1780 static int
   1781 increment_overflow32(int_fast32_t *const lp, int const m)
   1782 {
   1783 	int_fast32_t l = *lp;
   1784 
   1785 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   1786 		return TRUE;
   1787 	*lp += m;
   1788 	return FALSE;
   1789 }
   1790 
   1791 static int
   1792 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1793 {
   1794 	int	tensdelta;
   1795 
   1796 	tensdelta = (*unitsptr >= 0) ?
   1797 		(*unitsptr / base) :
   1798 		(-1 - (-1 - *unitsptr) / base);
   1799 	*unitsptr -= tensdelta * base;
   1800 	return increment_overflow(tensptr, tensdelta);
   1801 }
   1802 
   1803 static int
   1804 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
   1805     const int base)
   1806 {
   1807 	int	tensdelta;
   1808 
   1809 	tensdelta = (*unitsptr >= 0) ?
   1810 		(*unitsptr / base) :
   1811 		(-1 - (-1 - *unitsptr) / base);
   1812 	*unitsptr -= tensdelta * base;
   1813 	return increment_overflow32(tensptr, tensdelta);
   1814 }
   1815 
   1816 static int
   1817 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1818 {
   1819 	int	result;
   1820 
   1821 	if (atmp->tm_year != btmp->tm_year)
   1822 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
   1823 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1824 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1825 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1826 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1827 			result = atmp->tm_sec - btmp->tm_sec;
   1828 	return result;
   1829 }
   1830 
   1831 static time_t
   1832 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1833     const int_fast32_t offset, int *const okayp, const int do_norm_secs)
   1834 {
   1835 	int			dir;
   1836 	int			i, j;
   1837 	int			saved_seconds;
   1838 	int_fast32_t		li;
   1839 	time_t			lo;
   1840 	time_t			hi;
   1841 #ifdef NO_ERROR_IN_DST_GAP
   1842 	time_t			ilo;
   1843 #endif
   1844 	int_fast32_t		y;
   1845 	time_t			newt;
   1846 	time_t			t;
   1847 	struct tm		yourtm, mytm;
   1848 
   1849 	*okayp = FALSE;
   1850 	yourtm = *tmp;
   1851 #ifdef NO_ERROR_IN_DST_GAP
   1852 again:
   1853 #endif
   1854 	if (do_norm_secs) {
   1855 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1856 		    SECSPERMIN))
   1857 			goto overflow;
   1858 	}
   1859 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1860 		goto overflow;
   1861 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1862 		goto overflow;
   1863 	y = yourtm.tm_year;
   1864 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   1865 		goto overflow;
   1866 	/*
   1867 	** Turn y into an actual year number for now.
   1868 	** It is converted back to an offset from TM_YEAR_BASE later.
   1869 	*/
   1870 	if (increment_overflow32(&y, TM_YEAR_BASE))
   1871 		goto overflow;
   1872 	while (yourtm.tm_mday <= 0) {
   1873 		if (increment_overflow32(&y, -1))
   1874 			goto overflow;
   1875 		li = y + (1 < yourtm.tm_mon);
   1876 		yourtm.tm_mday += year_lengths[isleap(li)];
   1877 	}
   1878 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1879 		li = y + (1 < yourtm.tm_mon);
   1880 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1881 		if (increment_overflow32(&y, 1))
   1882 			goto overflow;
   1883 	}
   1884 	for ( ; ; ) {
   1885 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1886 		if (yourtm.tm_mday <= i)
   1887 			break;
   1888 		yourtm.tm_mday -= i;
   1889 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1890 			yourtm.tm_mon = 0;
   1891 			if (increment_overflow32(&y, 1))
   1892 				goto overflow;
   1893 		}
   1894 	}
   1895 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   1896 		goto overflow;
   1897 	yourtm.tm_year = (int)y;
   1898 	if (yourtm.tm_year != y)
   1899 		goto overflow;
   1900 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1901 		saved_seconds = 0;
   1902 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1903 		/*
   1904 		** We can't set tm_sec to 0, because that might push the
   1905 		** time below the minimum representable time.
   1906 		** Set tm_sec to 59 instead.
   1907 		** This assumes that the minimum representable time is
   1908 		** not in the same minute that a leap second was deleted from,
   1909 		** which is a safer assumption than using 58 would be.
   1910 		*/
   1911 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1912 			goto overflow;
   1913 		saved_seconds = yourtm.tm_sec;
   1914 		yourtm.tm_sec = SECSPERMIN - 1;
   1915 	} else {
   1916 		saved_seconds = yourtm.tm_sec;
   1917 		yourtm.tm_sec = 0;
   1918 	}
   1919 	/*
   1920 	** Do a binary search (this works whatever time_t's type is).
   1921 	*/
   1922 	/* LINTED const not */
   1923 	if (!TYPE_SIGNED(time_t)) {
   1924 		lo = 0;
   1925 		hi = lo - 1;
   1926 	} else {
   1927 		lo = 1;
   1928 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1929 			lo *= 2;
   1930 		hi = -(lo + 1);
   1931 	}
   1932 #ifdef NO_ERROR_IN_DST_GAP
   1933 	ilo = lo;
   1934 #endif
   1935 	for ( ; ; ) {
   1936 		t = lo / 2 + hi / 2;
   1937 		if (t < lo)
   1938 			t = lo;
   1939 		else if (t > hi)
   1940 			t = hi;
   1941 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1942 			/*
   1943 			** Assume that t is too extreme to be represented in
   1944 			** a struct tm; arrange things so that it is less
   1945 			** extreme on the next pass.
   1946 			*/
   1947 			dir = (t > 0) ? 1 : -1;
   1948 		} else	dir = tmcomp(&mytm, &yourtm);
   1949 		if (dir != 0) {
   1950 			if (t == lo) {
   1951 				if (t == time_t_max)
   1952 					goto overflow;
   1953 				++t;
   1954 				++lo;
   1955 			} else if (t == hi) {
   1956 				if (t == time_t_min)
   1957 					goto overflow;
   1958 				--t;
   1959 				--hi;
   1960 			}
   1961 #ifdef NO_ERROR_IN_DST_GAP
   1962 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   1963 			    do_norm_secs) {
   1964 				for (i = sp->typecnt - 1; i >= 0; --i) {
   1965 					for (j = sp->typecnt - 1; j >= 0; --j) {
   1966 						time_t off;
   1967 						if (sp->ttis[j].tt_isdst ==
   1968 						    sp->ttis[i].tt_isdst)
   1969 							continue;
   1970 						off = sp->ttis[j].tt_gmtoff -
   1971 						    sp->ttis[i].tt_gmtoff;
   1972 						yourtm.tm_sec += off < 0 ?
   1973 						    -off : off;
   1974 						goto again;
   1975 					}
   1976 				}
   1977 			}
   1978 #endif
   1979 			if (lo > hi)
   1980 				goto invalid;
   1981 			if (dir > 0)
   1982 				hi = t;
   1983 			else	lo = t;
   1984 			continue;
   1985 		}
   1986 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1987 			break;
   1988 		/*
   1989 		** Right time, wrong type.
   1990 		** Hunt for right time, right type.
   1991 		** It's okay to guess wrong since the guess
   1992 		** gets checked.
   1993 		*/
   1994 		if (sp == NULL)
   1995 			goto invalid;
   1996 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1997 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1998 				continue;
   1999 			for (j = sp->typecnt - 1; j >= 0; --j) {
   2000 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   2001 					continue;
   2002 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
   2003 				    sp->ttis[i].tt_gmtoff);
   2004 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   2005 					continue;
   2006 				if (tmcomp(&mytm, &yourtm) != 0)
   2007 					continue;
   2008 				if (mytm.tm_isdst != yourtm.tm_isdst)
   2009 					continue;
   2010 				/*
   2011 				** We have a match.
   2012 				*/
   2013 				t = newt;
   2014 				goto label;
   2015 			}
   2016 		}
   2017 		goto invalid;
   2018 	}
   2019 label:
   2020 	newt = t + saved_seconds;
   2021 	if ((newt < t) != (saved_seconds < 0))
   2022 		goto overflow;
   2023 	t = newt;
   2024 	if ((*funcp)(sp, &t, offset, tmp)) {
   2025 		*okayp = TRUE;
   2026 		return t;
   2027 	}
   2028 overflow:
   2029 	errno = EOVERFLOW;
   2030 	return WRONG;
   2031 invalid:
   2032 	errno = EINVAL;
   2033 	return WRONG;
   2034 }
   2035 
   2036 static time_t
   2037 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2038     const int_fast32_t offset, int *const okayp)
   2039 {
   2040 	time_t	t;
   2041 
   2042 	/*
   2043 	** First try without normalization of seconds
   2044 	** (in case tm_sec contains a value associated with a leap second).
   2045 	** If that fails, try with normalization of seconds.
   2046 	*/
   2047 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   2048 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   2049 }
   2050 
   2051 static time_t
   2052 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   2053     const int_fast32_t offset)
   2054 {
   2055 	time_t			t;
   2056 	int			samei, otheri;
   2057 	int			sameind, otherind;
   2058 	int			i;
   2059 	int			nseen;
   2060 	int				seen[TZ_MAX_TYPES];
   2061 	int				types[TZ_MAX_TYPES];
   2062 	int				okay;
   2063 
   2064 	if (tmp == NULL) {
   2065 		errno = EINVAL;
   2066 		return WRONG;
   2067 	}
   2068 	if (tmp->tm_isdst > 1)
   2069 		tmp->tm_isdst = 1;
   2070 	t = time2(sp, tmp, funcp, offset, &okay);
   2071 #ifdef PCTS
   2072 	/*
   2073 	** PCTS code courtesy Grant Sullivan.
   2074 	*/
   2075 	if (okay)
   2076 		return t;
   2077 	if (tmp->tm_isdst < 0)
   2078 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2079 #endif /* defined PCTS */
   2080 #ifndef PCTS
   2081 	if (okay || tmp->tm_isdst < 0)
   2082 		return t;
   2083 #endif /* !defined PCTS */
   2084 	/*
   2085 	** We're supposed to assume that somebody took a time of one type
   2086 	** and did some math on it that yielded a "struct tm" that's bad.
   2087 	** We try to divine the type they started from and adjust to the
   2088 	** type they need.
   2089 	*/
   2090 	if (sp == NULL) {
   2091 		errno = EINVAL;
   2092 		return WRONG;
   2093 	}
   2094 	for (i = 0; i < sp->typecnt; ++i)
   2095 		seen[i] = FALSE;
   2096 	nseen = 0;
   2097 	for (i = sp->timecnt - 1; i >= 0; --i)
   2098 		if (!seen[sp->types[i]]) {
   2099 			seen[sp->types[i]] = TRUE;
   2100 			types[nseen++] = sp->types[i];
   2101 		}
   2102 	for (sameind = 0; sameind < nseen; ++sameind) {
   2103 		samei = types[sameind];
   2104 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2105 			continue;
   2106 		for (otherind = 0; otherind < nseen; ++otherind) {
   2107 			otheri = types[otherind];
   2108 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2109 				continue;
   2110 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2111 					sp->ttis[samei].tt_gmtoff);
   2112 			tmp->tm_isdst = !tmp->tm_isdst;
   2113 			t = time2(sp, tmp, funcp, offset, &okay);
   2114 			if (okay)
   2115 				return t;
   2116 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2117 					sp->ttis[samei].tt_gmtoff);
   2118 			tmp->tm_isdst = !tmp->tm_isdst;
   2119 		}
   2120 	}
   2121 	errno = EOVERFLOW;
   2122 	return WRONG;
   2123 }
   2124 
   2125 time_t
   2126 mktime_z(const timezone_t sp, struct tm *const tmp)
   2127 {
   2128 	time_t t;
   2129 	if (sp == NULL)
   2130 		t = time1(NULL, tmp, gmtsub, 0);
   2131 	else
   2132 		t = time1(sp, tmp, localsub, 0);
   2133 	return t;
   2134 }
   2135 
   2136 time_t
   2137 mktime(struct tm *const tmp)
   2138 {
   2139 	time_t result;
   2140 
   2141 	rwlock_wrlock(&lcl_lock);
   2142 	tzset_unlocked();
   2143 	result = mktime_z(lclptr, tmp);
   2144 	rwlock_unlock(&lcl_lock);
   2145 	return result;
   2146 }
   2147 
   2148 #ifdef STD_INSPIRED
   2149 
   2150 time_t
   2151 timelocal_z(const timezone_t sp, struct tm *const tmp)
   2152 {
   2153 	if (tmp != NULL)
   2154 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2155 	return mktime_z(sp, tmp);
   2156 }
   2157 
   2158 time_t
   2159 timelocal(struct tm *const tmp)
   2160 {
   2161 	if (tmp != NULL)
   2162 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2163 	return mktime(tmp);
   2164 }
   2165 
   2166 time_t
   2167 timegm(struct tm *const tmp)
   2168 {
   2169 	time_t t;
   2170 
   2171 	if (tmp != NULL)
   2172 		tmp->tm_isdst = 0;
   2173 	t = time1(gmtptr, tmp, gmtsub, 0);
   2174 	return t;
   2175 }
   2176 
   2177 time_t
   2178 timeoff(struct tm *const tmp, long offset)
   2179 {
   2180 	time_t t;
   2181 
   2182 	if ((offset > 0 && offset > INT_FAST32_MAX) ||
   2183 	    (offset < 0 && offset < INT_FAST32_MIN)) {
   2184 		errno = EOVERFLOW;
   2185 		return -1;
   2186 	}
   2187 	if (tmp != NULL)
   2188 		tmp->tm_isdst = 0;
   2189 	t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
   2190 	return t;
   2191 }
   2192 
   2193 #endif /* defined STD_INSPIRED */
   2194 
   2195 #ifdef CMUCS
   2196 
   2197 /*
   2198 ** The following is supplied for compatibility with
   2199 ** previous versions of the CMUCS runtime library.
   2200 */
   2201 
   2202 long
   2203 gtime(struct tm *const tmp)
   2204 {
   2205 	const time_t t = mktime(tmp);
   2206 
   2207 	if (t == WRONG)
   2208 		return -1;
   2209 	return t;
   2210 }
   2211 
   2212 #endif /* defined CMUCS */
   2213 
   2214 /*
   2215 ** XXX--is the below the right way to conditionalize??
   2216 */
   2217 
   2218 #ifdef STD_INSPIRED
   2219 
   2220 /*
   2221 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2222 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2223 ** is not the case if we are accounting for leap seconds.
   2224 ** So, we provide the following conversion routines for use
   2225 ** when exchanging timestamps with POSIX conforming systems.
   2226 */
   2227 
   2228 static int_fast64_t
   2229 leapcorr(const timezone_t sp, time_t *timep)
   2230 {
   2231 	struct lsinfo * lp;
   2232 	int		i;
   2233 
   2234 	i = sp->leapcnt;
   2235 	while (--i >= 0) {
   2236 		lp = &sp->lsis[i];
   2237 		if (*timep >= lp->ls_trans)
   2238 			return lp->ls_corr;
   2239 	}
   2240 	return 0;
   2241 }
   2242 
   2243 time_t
   2244 time2posix_z(const timezone_t sp, time_t t)
   2245 {
   2246 	return (time_t)(t - leapcorr(sp, &t));
   2247 }
   2248 
   2249 time_t
   2250 time2posix(time_t t)
   2251 {
   2252 	time_t result;
   2253 	rwlock_wrlock(&lcl_lock);
   2254 	tzset_unlocked();
   2255 	result = (time_t)(t - leapcorr(lclptr, &t));
   2256 	rwlock_unlock(&lcl_lock);
   2257 	return (result);
   2258 }
   2259 
   2260 time_t
   2261 posix2time_z(const timezone_t sp, time_t t)
   2262 {
   2263 	time_t	x;
   2264 	time_t	y;
   2265 
   2266 	/*
   2267 	** For a positive leap second hit, the result
   2268 	** is not unique. For a negative leap second
   2269 	** hit, the corresponding time doesn't exist,
   2270 	** so we return an adjacent second.
   2271 	*/
   2272 	x = (time_t)(t + leapcorr(sp, &t));
   2273 	y = (time_t)(x - leapcorr(sp, &x));
   2274 	if (y < t) {
   2275 		do {
   2276 			x++;
   2277 			y = (time_t)(x - leapcorr(sp, &x));
   2278 		} while (y < t);
   2279 		if (t != y) {
   2280 			return x - 1;
   2281 		}
   2282 	} else if (y > t) {
   2283 		do {
   2284 			--x;
   2285 			y = (time_t)(x - leapcorr(sp, &x));
   2286 		} while (y > t);
   2287 		if (t != y) {
   2288 			return x + 1;
   2289 		}
   2290 	}
   2291 	return x;
   2292 }
   2293 
   2294 
   2295 
   2296 time_t
   2297 posix2time(time_t t)
   2298 {
   2299 	time_t result;
   2300 
   2301 	rwlock_wrlock(&lcl_lock);
   2302 	tzset_unlocked();
   2303 	result = posix2time_z(lclptr, t);
   2304 	rwlock_unlock(&lcl_lock);
   2305 	return result;
   2306 }
   2307 
   2308 #endif /* defined STD_INSPIRED */
   2309