localtime.c revision 1.81 1 /* $NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.81 2013/12/26 18:34:28 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #if defined(__weak_alias)
32 __weak_alias(daylight,_daylight)
33 __weak_alias(tzname,_tzname)
34 #endif
35
36 #ifndef TZ_ABBR_MAX_LEN
37 #define TZ_ABBR_MAX_LEN 16
38 #endif /* !defined TZ_ABBR_MAX_LEN */
39
40 #ifndef TZ_ABBR_CHAR_SET
41 #define TZ_ABBR_CHAR_SET \
42 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
43 #endif /* !defined TZ_ABBR_CHAR_SET */
44
45 #ifndef TZ_ABBR_ERR_CHAR
46 #define TZ_ABBR_ERR_CHAR '_'
47 #endif /* !defined TZ_ABBR_ERR_CHAR */
48
49 /* The minimum and maximum finite time values. */
50 static time_t const time_t_min =
51 (TYPE_SIGNED(time_t)
52 ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)
53 : 0);
54 static time_t const time_t_max =
55 (TYPE_SIGNED(time_t)
56 ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1))
57 : -1);
58
59 /*
60 ** SunOS 4.1.1 headers lack O_BINARY.
61 */
62
63 #ifdef O_BINARY
64 #define OPEN_MODE (O_RDONLY | O_BINARY)
65 #endif /* defined O_BINARY */
66 #ifndef O_BINARY
67 #define OPEN_MODE O_RDONLY
68 #endif /* !defined O_BINARY */
69
70 #ifndef WILDABBR
71 /*
72 ** Someone might make incorrect use of a time zone abbreviation:
73 ** 1. They might reference tzname[0] before calling tzset (explicitly
74 ** or implicitly).
75 ** 2. They might reference tzname[1] before calling tzset (explicitly
76 ** or implicitly).
77 ** 3. They might reference tzname[1] after setting to a time zone
78 ** in which Daylight Saving Time is never observed.
79 ** 4. They might reference tzname[0] after setting to a time zone
80 ** in which Standard Time is never observed.
81 ** 5. They might reference tm.TM_ZONE after calling offtime.
82 ** What's best to do in the above cases is open to debate;
83 ** for now, we just set things up so that in any of the five cases
84 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
85 ** string "tzname[0] used before set", and similarly for the other cases.
86 ** And another: initialize tzname[0] to "ERA", with an explanation in the
87 ** manual page of what this "time zone abbreviation" means (doing this so
88 ** that tzname[0] has the "normal" length of three characters).
89 */
90 #define WILDABBR " "
91 #endif /* !defined WILDABBR */
92
93 static const char wildabbr[] = WILDABBR;
94
95 static const char gmt[] = "GMT";
96
97 /*
98 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
99 ** We default to US rules as of 1999-08-17.
100 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
101 ** implementation dependent; for historical reasons, US rules are a
102 ** common default.
103 */
104 #ifndef TZDEFRULESTRING
105 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
106 #endif /* !defined TZDEFDST */
107
108 struct ttinfo { /* time type information */
109 int_fast32_t tt_gmtoff; /* UT offset in seconds */
110 int tt_isdst; /* used to set tm_isdst */
111 int tt_abbrind; /* abbreviation list index */
112 int tt_ttisstd; /* TRUE if transition is std time */
113 int tt_ttisgmt; /* TRUE if transition is UT */
114 };
115
116 struct lsinfo { /* leap second information */
117 time_t ls_trans; /* transition time */
118 int_fast64_t ls_corr; /* correction to apply */
119 };
120
121 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
122
123 #ifdef TZNAME_MAX
124 #define MY_TZNAME_MAX TZNAME_MAX
125 #endif /* defined TZNAME_MAX */
126 #ifndef TZNAME_MAX
127 #define MY_TZNAME_MAX 255
128 #endif /* !defined TZNAME_MAX */
129
130 struct __state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 int goback;
136 int goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule--see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn - Julian day */
155 #define DAY_OF_YEAR 1 /* n - day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
157
158 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
159 const int_fast32_t offset, struct tm *tmp);
160
161 /*
162 ** Prototypes for static functions.
163 */
164
165 static int_fast32_t detzcode(const char * codep);
166 static int_fast64_t detzcode64(const char * codep);
167 static int differ_by_repeat(time_t t1, time_t t0);
168 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
169 static const char * getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
170 static const char * getnum(const char * strp, int * nump, int min,
171 int max);
172 static const char * getsecs(const char * strp, int_fast32_t * secsp);
173 static const char * getoffset(const char * strp, int_fast32_t * offsetp);
174 static const char * getrule(const char * strp, struct rule * rulep);
175 static void gmtload(timezone_t sp);
176 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
177 const int_fast32_t offset, struct tm * tmp);
178 static struct tm * localsub(const timezone_t sp, const time_t *timep,
179 const int_fast32_t offset, struct tm *tmp);
180 static int increment_overflow(int * number, int delta);
181 static int increment_overflow32(int_fast32_t * number, int delta);
182 static int increment_overflow_time(time_t *t, int_fast32_t delta);
183 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
184 static int normalize_overflow(int * tensptr, int * unitsptr,
185 int base);
186 static int normalize_overflow32(int_fast32_t * tensptr,
187 int * unitsptr, int base);
188 static void settzname(void);
189 static time_t time1(const timezone_t sp, struct tm * const tmp,
190 subfun_t funcp, const int_fast32_t offset);
191 static time_t time2(const timezone_t sp, struct tm * const tmp,
192 subfun_t funcp,
193 const int_fast32_t offset, int *const okayp);
194 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
195 subfun_t funcp, const int_fast32_t offset,
196 int *const okayp, const int do_norm_secs);
197 static struct tm * timesub(const timezone_t sp, const time_t * timep,
198 const int_fast32_t offset, struct tm * tmp);
199 static int tmcomp(const struct tm * atmp,
200 const struct tm * btmp);
201 static int_fast32_t transtime(int year, const struct rule * rulep,
202 int_fast32_t offset)
203 ATTRIBUTE_PURE;
204 static int typesequiv(const timezone_t sp, int a, int b);
205 static int tzload(timezone_t sp, const char * name,
206 int doextend);
207 static int tzparse(timezone_t sp, const char * name,
208 int lastditch);
209 static void tzset_unlocked(void);
210 static void tzsetwall_unlocked(void);
211 static int_fast64_t leapcorr(const timezone_t sp, time_t * timep);
212
213 static timezone_t lclptr;
214 static timezone_t gmtptr;
215
216 #ifndef TZ_STRLEN_MAX
217 #define TZ_STRLEN_MAX 255
218 #endif /* !defined TZ_STRLEN_MAX */
219
220 static char lcl_TZname[TZ_STRLEN_MAX + 1];
221 static int lcl_is_set;
222 static int gmt_is_set;
223
224 #if !defined(__LIBC12_SOURCE__)
225
226 __aconst char * tzname[2] = {
227 (__aconst char *)__UNCONST(wildabbr),
228 (__aconst char *)__UNCONST(wildabbr)
229 };
230
231 #else
232
233 extern __aconst char * tzname[2];
234
235 #endif
236
237 #ifdef _REENTRANT
238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
239 #endif
240
241 /*
242 ** Section 4.12.3 of X3.159-1989 requires that
243 ** Except for the strftime function, these functions [asctime,
244 ** ctime, gmtime, localtime] return values in one of two static
245 ** objects: a broken-down time structure and an array of char.
246 ** Thanks to Paul Eggert for noting this.
247 */
248
249 static struct tm tm;
250
251 #ifdef USG_COMPAT
252 #if !defined(__LIBC12_SOURCE__)
253 long timezone = 0;
254 int daylight = 0;
255 #else
256 extern int daylight;
257 extern long timezone __RENAME(__timezone13);
258 #endif
259 #endif /* defined USG_COMPAT */
260
261 #ifdef ALTZONE
262 long altzone = 0;
263 #endif /* defined ALTZONE */
264
265 static int_fast32_t
266 detzcode(const char *const codep)
267 {
268 int_fast32_t result;
269 int i;
270
271 result = (codep[0] & 0x80) ? -1 : 0;
272 for (i = 0; i < 4; ++i)
273 result = (result << 8) | (codep[i] & 0xff);
274 return result;
275 }
276
277 static int_fast64_t
278 detzcode64(const char *const codep)
279 {
280 int_fast64_t result;
281 int i;
282
283 result = (codep[0] & 0x80) ? -1 : 0;
284 for (i = 0; i < 8; ++i)
285 result = (result << 8) | (codep[i] & 0xff);
286 return result;
287 }
288
289 const char *
290 tzgetname(const timezone_t sp, int isdst)
291 {
292 int i;
293 for (i = 0; i < sp->timecnt; ++i) {
294 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
295
296 if (ttisp->tt_isdst == isdst)
297 return &sp->chars[ttisp->tt_abbrind];
298 }
299 return NULL;
300 }
301
302 static void
303 settzname_z(timezone_t sp)
304 {
305 int i;
306
307 /*
308 ** Scrub the abbreviations.
309 ** First, replace bogus characters.
310 */
311 for (i = 0; i < sp->charcnt; ++i)
312 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
313 sp->chars[i] = TZ_ABBR_ERR_CHAR;
314 /*
315 ** Second, truncate long abbreviations.
316 */
317 for (i = 0; i < sp->typecnt; ++i) {
318 const struct ttinfo * const ttisp = &sp->ttis[i];
319 char * cp = &sp->chars[ttisp->tt_abbrind];
320
321 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
322 strcmp(cp, GRANDPARENTED) != 0)
323 *(cp + TZ_ABBR_MAX_LEN) = '\0';
324 }
325 }
326
327 static void
328 settzname(void)
329 {
330 timezone_t const sp = lclptr;
331 int i;
332
333 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
334 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
335 #ifdef USG_COMPAT
336 daylight = 0;
337 timezone = 0;
338 #endif /* defined USG_COMPAT */
339 #ifdef ALTZONE
340 altzone = 0;
341 #endif /* defined ALTZONE */
342 if (sp == NULL) {
343 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
344 return;
345 }
346 /*
347 ** And to get the latest zone names into tzname. . .
348 */
349 for (i = 0; i < sp->typecnt; ++i) {
350 const struct ttinfo * const ttisp = &sp->ttis[i];
351
352 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
353 #ifdef USG_COMPAT
354 if (ttisp->tt_isdst)
355 daylight = 1;
356 if (!ttisp->tt_isdst)
357 timezone = -(ttisp->tt_gmtoff);
358 #endif /* defined USG_COMPAT */
359 #ifdef ALTZONE
360 if (ttisp->tt_isdst)
361 altzone = -(ttisp->tt_gmtoff);
362 #endif /* defined ALTZONE */
363 }
364 settzname_z(sp);
365 }
366
367 static int
368 differ_by_repeat(const time_t t1, const time_t t0)
369 {
370 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
371 return 0;
372 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
373 }
374
375 static int
376 tzload(timezone_t sp, const char *name, const int doextend)
377 {
378 const char * p;
379 int i;
380 int fid;
381 int stored;
382 ssize_t nread;
383 typedef union {
384 struct tzhead tzhead;
385 char buf[2 * sizeof(struct tzhead) +
386 2 * sizeof *sp +
387 4 * TZ_MAX_TIMES];
388 } u_t;
389 u_t * up;
390
391 up = calloc(1, sizeof *up);
392 if (up == NULL)
393 return -1;
394
395 sp->goback = sp->goahead = FALSE;
396 if (name == NULL && (name = TZDEFAULT) == NULL)
397 goto oops;
398 {
399 int doaccess;
400 /*
401 ** Section 4.9.1 of the C standard says that
402 ** "FILENAME_MAX expands to an integral constant expression
403 ** that is the size needed for an array of char large enough
404 ** to hold the longest file name string that the implementation
405 ** guarantees can be opened."
406 */
407 char fullname[FILENAME_MAX + 1];
408
409 if (name[0] == ':')
410 ++name;
411 doaccess = name[0] == '/';
412 if (!doaccess) {
413 if ((p = TZDIR) == NULL)
414 goto oops;
415 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
416 goto oops;
417 (void) strcpy(fullname, p); /* XXX strcpy is safe */
418 (void) strcat(fullname, "/"); /* XXX strcat is safe */
419 (void) strcat(fullname, name); /* XXX strcat is safe */
420 /*
421 ** Set doaccess if '.' (as in "../") shows up in name.
422 */
423 if (strchr(name, '.') != NULL)
424 doaccess = TRUE;
425 name = fullname;
426 }
427 if (doaccess && access(name, R_OK) != 0)
428 goto oops;
429 /*
430 * XXX potential security problem here if user of a set-id
431 * program has set TZ (which is passed in as name) here,
432 * and uses a race condition trick to defeat the access(2)
433 * above.
434 */
435 if ((fid = open(name, OPEN_MODE)) == -1)
436 goto oops;
437 }
438 nread = read(fid, up->buf, sizeof up->buf);
439 if (close(fid) < 0 || nread <= 0)
440 goto oops;
441 for (stored = 4; stored <= 8; stored *= 2) {
442 int ttisstdcnt;
443 int ttisgmtcnt;
444 int timecnt;
445
446 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
447 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
448 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
449 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
450 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
451 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
452 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
453 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
454 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
455 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
456 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
457 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
458 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
459 goto oops;
460 if (nread - (p - up->buf) <
461 sp->timecnt * stored + /* ats */
462 sp->timecnt + /* types */
463 sp->typecnt * 6 + /* ttinfos */
464 sp->charcnt + /* chars */
465 sp->leapcnt * (stored + 4) + /* lsinfos */
466 ttisstdcnt + /* ttisstds */
467 ttisgmtcnt) /* ttisgmts */
468 goto oops;
469 timecnt = 0;
470 for (i = 0; i < sp->timecnt; ++i) {
471 int_fast64_t at
472 = stored == 4 ? detzcode(p) : detzcode64(p);
473 sp->types[i] = ((TYPE_SIGNED(time_t)
474 ? time_t_min <= at
475 : 0 <= at)
476 && at <= time_t_max);
477 if (sp->types[i]) {
478 if (i && !timecnt && at != time_t_min) {
479 /*
480 ** Keep the earlier record, but tweak
481 ** it so that it starts with the
482 ** minimum time_t value.
483 */
484 sp->types[i - 1] = 1;
485 sp->ats[timecnt++] = time_t_min;
486 }
487 _DIAGASSERT(__type_fit(time_t, at));
488 sp->ats[timecnt++] = (time_t)at;
489 }
490 p += stored;
491 }
492 timecnt = 0;
493 for (i = 0; i < sp->timecnt; ++i) {
494 unsigned char typ = *p++;
495 if (sp->typecnt <= typ)
496 goto oops;
497 if (sp->types[i])
498 sp->types[timecnt++] = typ;
499 }
500 for (i = 0; i < sp->typecnt; ++i) {
501 struct ttinfo * ttisp;
502
503 ttisp = &sp->ttis[i];
504 ttisp->tt_gmtoff = detzcode(p);
505 p += 4;
506 ttisp->tt_isdst = (unsigned char) *p++;
507 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
508 goto oops;
509 ttisp->tt_abbrind = (unsigned char) *p++;
510 if (ttisp->tt_abbrind < 0 ||
511 ttisp->tt_abbrind > sp->charcnt)
512 goto oops;
513 }
514 for (i = 0; i < sp->charcnt; ++i)
515 sp->chars[i] = *p++;
516 sp->chars[i] = '\0'; /* ensure '\0' at end */
517 for (i = 0; i < sp->leapcnt; ++i) {
518 struct lsinfo * lsisp;
519
520 lsisp = &sp->lsis[i];
521 lsisp->ls_trans = (time_t)((stored == 4) ?
522 detzcode(p) : detzcode64(p));
523 p += stored;
524 lsisp->ls_corr = detzcode(p);
525 p += 4;
526 }
527 for (i = 0; i < sp->typecnt; ++i) {
528 struct ttinfo * ttisp;
529
530 ttisp = &sp->ttis[i];
531 if (ttisstdcnt == 0)
532 ttisp->tt_ttisstd = FALSE;
533 else {
534 ttisp->tt_ttisstd = *p++;
535 if (ttisp->tt_ttisstd != TRUE &&
536 ttisp->tt_ttisstd != FALSE)
537 goto oops;
538 }
539 }
540 for (i = 0; i < sp->typecnt; ++i) {
541 struct ttinfo * ttisp;
542
543 ttisp = &sp->ttis[i];
544 if (ttisgmtcnt == 0)
545 ttisp->tt_ttisgmt = FALSE;
546 else {
547 ttisp->tt_ttisgmt = *p++;
548 if (ttisp->tt_ttisgmt != TRUE &&
549 ttisp->tt_ttisgmt != FALSE)
550 goto oops;
551 }
552 }
553 /*
554 ** If this is an old file, we're done.
555 */
556 if (up->tzhead.tzh_version[0] == '\0')
557 break;
558 nread -= p - up->buf;
559 for (i = 0; i < nread; ++i)
560 up->buf[i] = p[i];
561 /*
562 ** If this is a signed narrow time_t system, we're done.
563 */
564 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
565 break;
566 }
567 if (doextend && nread > 2 &&
568 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
569 sp->typecnt + 2 <= TZ_MAX_TYPES) {
570 struct __state ts;
571 int result;
572
573 up->buf[nread - 1] = '\0';
574 result = tzparse(&ts, &up->buf[1], FALSE);
575 if (result == 0 && ts.typecnt == 2 &&
576 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
577 for (i = 0; i < 2; ++i)
578 ts.ttis[i].tt_abbrind +=
579 sp->charcnt;
580 for (i = 0; i < ts.charcnt; ++i)
581 sp->chars[sp->charcnt++] =
582 ts.chars[i];
583 i = 0;
584 while (i < ts.timecnt &&
585 ts.ats[i] <=
586 sp->ats[sp->timecnt - 1])
587 ++i;
588 while (i < ts.timecnt &&
589 sp->timecnt < TZ_MAX_TIMES) {
590 sp->ats[sp->timecnt] =
591 ts.ats[i];
592 sp->types[sp->timecnt] =
593 sp->typecnt +
594 ts.types[i];
595 ++sp->timecnt;
596 ++i;
597 }
598 sp->ttis[sp->typecnt++] = ts.ttis[0];
599 sp->ttis[sp->typecnt++] = ts.ttis[1];
600 }
601 }
602 if (sp->timecnt > 1) {
603 for (i = 1; i < sp->timecnt; ++i)
604 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
605 differ_by_repeat(sp->ats[i], sp->ats[0])) {
606 sp->goback = TRUE;
607 break;
608 }
609 for (i = sp->timecnt - 2; i >= 0; --i)
610 if (typesequiv(sp, sp->types[sp->timecnt - 1],
611 sp->types[i]) &&
612 differ_by_repeat(sp->ats[sp->timecnt - 1],
613 sp->ats[i])) {
614 sp->goahead = TRUE;
615 break;
616 }
617 }
618 /*
619 ** If type 0 is is unused in transitions,
620 ** it's the type to use for early times.
621 */
622 for (i = 0; i < sp->typecnt; ++i)
623 if (sp->types[i] == 0)
624 break;
625 i = (i >= sp->typecnt) ? 0 : -1;
626 /*
627 ** Absent the above,
628 ** if there are transition times
629 ** and the first transition is to a daylight time
630 ** find the standard type less than and closest to
631 ** the type of the first transition.
632 */
633 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
634 i = sp->types[0];
635 while (--i >= 0)
636 if (!sp->ttis[i].tt_isdst)
637 break;
638 }
639 /*
640 ** If no result yet, find the first standard type.
641 ** If there is none, punt to type zero.
642 */
643 if (i < 0) {
644 i = 0;
645 while (sp->ttis[i].tt_isdst)
646 if (++i >= sp->typecnt) {
647 i = 0;
648 break;
649 }
650 }
651 sp->defaulttype = i;
652 free(up);
653 return 0;
654 oops:
655 free(up);
656 return -1;
657 }
658
659 static int
660 typesequiv(const timezone_t sp, const int a, const int b)
661 {
662 int result;
663
664 if (sp == NULL ||
665 a < 0 || a >= sp->typecnt ||
666 b < 0 || b >= sp->typecnt)
667 result = FALSE;
668 else {
669 const struct ttinfo * ap = &sp->ttis[a];
670 const struct ttinfo * bp = &sp->ttis[b];
671 result = ap->tt_gmtoff == bp->tt_gmtoff &&
672 ap->tt_isdst == bp->tt_isdst &&
673 ap->tt_ttisstd == bp->tt_ttisstd &&
674 ap->tt_ttisgmt == bp->tt_ttisgmt &&
675 strcmp(&sp->chars[ap->tt_abbrind],
676 &sp->chars[bp->tt_abbrind]) == 0;
677 }
678 return result;
679 }
680
681 static const int mon_lengths[2][MONSPERYEAR] = {
682 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
683 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
684 };
685
686 static const int year_lengths[2] = {
687 DAYSPERNYEAR, DAYSPERLYEAR
688 };
689
690 /*
691 ** Given a pointer into a time zone string, scan until a character that is not
692 ** a valid character in a zone name is found. Return a pointer to that
693 ** character.
694 */
695
696 static const char *
697 getzname(const char *strp)
698 {
699 char c;
700
701 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
702 c != '+')
703 ++strp;
704 return strp;
705 }
706
707 /*
708 ** Given a pointer into an extended time zone string, scan until the ending
709 ** delimiter of the zone name is located. Return a pointer to the delimiter.
710 **
711 ** As with getzname above, the legal character set is actually quite
712 ** restricted, with other characters producing undefined results.
713 ** We don't do any checking here; checking is done later in common-case code.
714 */
715
716 static const char *
717 getqzname(const char *strp, const int delim)
718 {
719 int c;
720
721 while ((c = *strp) != '\0' && c != delim)
722 ++strp;
723 return strp;
724 }
725
726 /*
727 ** Given a pointer into a time zone string, extract a number from that string.
728 ** Check that the number is within a specified range; if it is not, return
729 ** NULL.
730 ** Otherwise, return a pointer to the first character not part of the number.
731 */
732
733 static const char *
734 getnum(const char *strp, int *const nump, const int min, const int max)
735 {
736 char c;
737 int num;
738
739 if (strp == NULL || !is_digit(c = *strp)) {
740 errno = EINVAL;
741 return NULL;
742 }
743 num = 0;
744 do {
745 num = num * 10 + (c - '0');
746 if (num > max) {
747 errno = EOVERFLOW;
748 return NULL; /* illegal value */
749 }
750 c = *++strp;
751 } while (is_digit(c));
752 if (num < min) {
753 errno = EINVAL;
754 return NULL; /* illegal value */
755 }
756 *nump = num;
757 return strp;
758 }
759
760 /*
761 ** Given a pointer into a time zone string, extract a number of seconds,
762 ** in hh[:mm[:ss]] form, from the string.
763 ** If any error occurs, return NULL.
764 ** Otherwise, return a pointer to the first character not part of the number
765 ** of seconds.
766 */
767
768 static const char *
769 getsecs(const char *strp, int_fast32_t *const secsp)
770 {
771 int num;
772
773 /*
774 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
775 ** "M10.4.6/26", which does not conform to Posix,
776 ** but which specifies the equivalent of
777 ** ``02:00 on the first Sunday on or after 23 Oct''.
778 */
779 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
780 if (strp == NULL)
781 return NULL;
782 *secsp = num * (int_fast32_t) SECSPERHOUR;
783 if (*strp == ':') {
784 ++strp;
785 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
786 if (strp == NULL)
787 return NULL;
788 *secsp += num * SECSPERMIN;
789 if (*strp == ':') {
790 ++strp;
791 /* `SECSPERMIN' allows for leap seconds. */
792 strp = getnum(strp, &num, 0, SECSPERMIN);
793 if (strp == NULL)
794 return NULL;
795 *secsp += num;
796 }
797 }
798 return strp;
799 }
800
801 /*
802 ** Given a pointer into a time zone string, extract an offset, in
803 ** [+-]hh[:mm[:ss]] form, from the string.
804 ** If any error occurs, return NULL.
805 ** Otherwise, return a pointer to the first character not part of the time.
806 */
807
808 static const char *
809 getoffset(const char *strp, int_fast32_t *const offsetp)
810 {
811 int neg = 0;
812
813 if (*strp == '-') {
814 neg = 1;
815 ++strp;
816 } else if (*strp == '+')
817 ++strp;
818 strp = getsecs(strp, offsetp);
819 if (strp == NULL)
820 return NULL; /* illegal time */
821 if (neg)
822 *offsetp = -*offsetp;
823 return strp;
824 }
825
826 /*
827 ** Given a pointer into a time zone string, extract a rule in the form
828 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
829 ** If a valid rule is not found, return NULL.
830 ** Otherwise, return a pointer to the first character not part of the rule.
831 */
832
833 static const char *
834 getrule(const char *strp, struct rule *const rulep)
835 {
836 if (*strp == 'J') {
837 /*
838 ** Julian day.
839 */
840 rulep->r_type = JULIAN_DAY;
841 ++strp;
842 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
843 } else if (*strp == 'M') {
844 /*
845 ** Month, week, day.
846 */
847 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
848 ++strp;
849 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
850 if (strp == NULL)
851 return NULL;
852 if (*strp++ != '.')
853 return NULL;
854 strp = getnum(strp, &rulep->r_week, 1, 5);
855 if (strp == NULL)
856 return NULL;
857 if (*strp++ != '.')
858 return NULL;
859 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
860 } else if (is_digit(*strp)) {
861 /*
862 ** Day of year.
863 */
864 rulep->r_type = DAY_OF_YEAR;
865 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
866 } else return NULL; /* invalid format */
867 if (strp == NULL)
868 return NULL;
869 if (*strp == '/') {
870 /*
871 ** Time specified.
872 */
873 ++strp;
874 strp = getoffset(strp, &rulep->r_time);
875 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
876 return strp;
877 }
878
879 /*
880 ** Given a year, a rule, and the offset from UT at the time that rule takes
881 ** effect, calculate the year-relative time that rule takes effect.
882 */
883
884 static int_fast32_t
885 transtime(const int year, const struct rule *const rulep,
886 const int_fast32_t offset)
887 {
888 int leapyear;
889 int_fast32_t value;
890 int i;
891 int d, m1, yy0, yy1, yy2, dow;
892
893 INITIALIZE(value);
894 leapyear = isleap(year);
895 switch (rulep->r_type) {
896
897 case JULIAN_DAY:
898 /*
899 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
900 ** years.
901 ** In non-leap years, or if the day number is 59 or less, just
902 ** add SECSPERDAY times the day number-1 to the time of
903 ** January 1, midnight, to get the day.
904 */
905 value = (rulep->r_day - 1) * SECSPERDAY;
906 if (leapyear && rulep->r_day >= 60)
907 value += SECSPERDAY;
908 break;
909
910 case DAY_OF_YEAR:
911 /*
912 ** n - day of year.
913 ** Just add SECSPERDAY times the day number to the time of
914 ** January 1, midnight, to get the day.
915 */
916 value = rulep->r_day * SECSPERDAY;
917 break;
918
919 case MONTH_NTH_DAY_OF_WEEK:
920 /*
921 ** Mm.n.d - nth "dth day" of month m.
922 */
923
924 /*
925 ** Use Zeller's Congruence to get day-of-week of first day of
926 ** month.
927 */
928 m1 = (rulep->r_mon + 9) % 12 + 1;
929 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
930 yy1 = yy0 / 100;
931 yy2 = yy0 % 100;
932 dow = ((26 * m1 - 2) / 10 +
933 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
934 if (dow < 0)
935 dow += DAYSPERWEEK;
936
937 /*
938 ** "dow" is the day-of-week of the first day of the month. Get
939 ** the day-of-month (zero-origin) of the first "dow" day of the
940 ** month.
941 */
942 d = rulep->r_day - dow;
943 if (d < 0)
944 d += DAYSPERWEEK;
945 for (i = 1; i < rulep->r_week; ++i) {
946 if (d + DAYSPERWEEK >=
947 mon_lengths[leapyear][rulep->r_mon - 1])
948 break;
949 d += DAYSPERWEEK;
950 }
951
952 /*
953 ** "d" is the day-of-month (zero-origin) of the day we want.
954 */
955 value = d * SECSPERDAY;
956 for (i = 0; i < rulep->r_mon - 1; ++i)
957 value += mon_lengths[leapyear][i] * SECSPERDAY;
958 break;
959 }
960
961 /*
962 ** "value" is the year-relative time of 00:00:00 UT on the day in
963 ** question. To get the year-relative time of the specified local
964 ** time on that day, add the transition time and the current offset
965 ** from UT.
966 */
967 return value + rulep->r_time + offset;
968 }
969
970 /*
971 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
972 ** appropriate.
973 */
974
975 static int
976 tzparse(timezone_t sp, const char *name, const int lastditch)
977 {
978 const char * stdname;
979 const char * dstname;
980 size_t stdlen;
981 size_t dstlen;
982 int_fast32_t stdoffset;
983 int_fast32_t dstoffset;
984 char * cp;
985 int load_result;
986
987 INITIALIZE(dstname);
988 stdname = name;
989 if (lastditch) {
990 stdlen = strlen(name); /* length of standard zone name */
991 name += stdlen;
992 if (stdlen >= sizeof sp->chars)
993 stdlen = (sizeof sp->chars) - 1;
994 stdoffset = 0;
995 } else {
996 if (*name == '<') {
997 name++;
998 stdname = name;
999 name = getqzname(name, '>');
1000 if (*name != '>')
1001 return (-1);
1002 stdlen = name - stdname;
1003 name++;
1004 } else {
1005 name = getzname(name);
1006 stdlen = name - stdname;
1007 }
1008 if (*name == '\0')
1009 return -1;
1010 name = getoffset(name, &stdoffset);
1011 if (name == NULL)
1012 return -1;
1013 }
1014 load_result = tzload(sp, TZDEFRULES, FALSE);
1015 if (load_result != 0)
1016 sp->leapcnt = 0; /* so, we're off a little */
1017 if (*name != '\0') {
1018 if (*name == '<') {
1019 dstname = ++name;
1020 name = getqzname(name, '>');
1021 if (*name != '>')
1022 return -1;
1023 dstlen = name - dstname;
1024 name++;
1025 } else {
1026 dstname = name;
1027 name = getzname(name);
1028 dstlen = name - dstname; /* length of DST zone name */
1029 }
1030 if (*name != '\0' && *name != ',' && *name != ';') {
1031 name = getoffset(name, &dstoffset);
1032 if (name == NULL)
1033 return -1;
1034 } else dstoffset = stdoffset - SECSPERHOUR;
1035 if (*name == '\0' && load_result != 0)
1036 name = TZDEFRULESTRING;
1037 if (*name == ',' || *name == ';') {
1038 struct rule start;
1039 struct rule end;
1040 int year;
1041 int yearlim;
1042 int timecnt;
1043 time_t janfirst;
1044
1045 ++name;
1046 if ((name = getrule(name, &start)) == NULL)
1047 return -1;
1048 if (*name++ != ',')
1049 return -1;
1050 if ((name = getrule(name, &end)) == NULL)
1051 return -1;
1052 if (*name != '\0')
1053 return -1;
1054 sp->typecnt = 2; /* standard time and DST */
1055 /*
1056 ** Two transitions per year, from EPOCH_YEAR forward.
1057 */
1058 memset(sp->ttis, 0, sizeof(sp->ttis));
1059 sp->ttis[0].tt_gmtoff = -dstoffset;
1060 sp->ttis[0].tt_isdst = 1;
1061 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1062 sp->ttis[1].tt_gmtoff = -stdoffset;
1063 sp->ttis[1].tt_isdst = 0;
1064 sp->ttis[1].tt_abbrind = 0;
1065 timecnt = 0;
1066 janfirst = 0;
1067 sp->timecnt = 0;
1068 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1069 for (year = EPOCH_YEAR; year < yearlim; year++) {
1070 int_fast32_t
1071 starttime = transtime(year, &start, stdoffset),
1072 endtime = transtime(year, &end, dstoffset);
1073 int_fast32_t
1074 yearsecs = (year_lengths[isleap(year)]
1075 * SECSPERDAY);
1076 int reversed = endtime < starttime;
1077 if (reversed) {
1078 int_fast32_t swap = starttime;
1079 starttime = endtime;
1080 endtime = swap;
1081 }
1082 if (reversed
1083 || (starttime < endtime
1084 && (endtime - starttime
1085 < (yearsecs
1086 + (stdoffset - dstoffset))))) {
1087 if (TZ_MAX_TIMES - 2 < timecnt)
1088 break;
1089 yearlim = year + YEARSPERREPEAT + 1;
1090 sp->ats[timecnt] = janfirst;
1091 if (increment_overflow_time
1092 (&sp->ats[timecnt], starttime))
1093 break;
1094 sp->types[timecnt++] = reversed;
1095 sp->ats[timecnt] = janfirst;
1096 if (increment_overflow_time
1097 (&sp->ats[timecnt], endtime))
1098 break;
1099 sp->types[timecnt++] = !reversed;
1100 }
1101 if (increment_overflow_time(&janfirst, yearsecs))
1102 break;
1103 }
1104 sp->timecnt = timecnt;
1105 if (!timecnt)
1106 sp->typecnt = 1; /* Perpetual DST. */
1107 } else {
1108 int_fast32_t theirstdoffset;
1109 int_fast32_t theirdstoffset;
1110 int_fast32_t theiroffset;
1111 int isdst;
1112 int i;
1113 int j;
1114
1115 if (*name != '\0')
1116 return -1;
1117 /*
1118 ** Initial values of theirstdoffset and theirdstoffset.
1119 */
1120 theirstdoffset = 0;
1121 for (i = 0; i < sp->timecnt; ++i) {
1122 j = sp->types[i];
1123 if (!sp->ttis[j].tt_isdst) {
1124 theirstdoffset =
1125 -sp->ttis[j].tt_gmtoff;
1126 break;
1127 }
1128 }
1129 theirdstoffset = 0;
1130 for (i = 0; i < sp->timecnt; ++i) {
1131 j = sp->types[i];
1132 if (sp->ttis[j].tt_isdst) {
1133 theirdstoffset =
1134 -sp->ttis[j].tt_gmtoff;
1135 break;
1136 }
1137 }
1138 /*
1139 ** Initially we're assumed to be in standard time.
1140 */
1141 isdst = FALSE;
1142 theiroffset = theirstdoffset;
1143 /*
1144 ** Now juggle transition times and types
1145 ** tracking offsets as you do.
1146 */
1147 for (i = 0; i < sp->timecnt; ++i) {
1148 j = sp->types[i];
1149 sp->types[i] = sp->ttis[j].tt_isdst;
1150 if (sp->ttis[j].tt_ttisgmt) {
1151 /* No adjustment to transition time */
1152 } else {
1153 /*
1154 ** If summer time is in effect, and the
1155 ** transition time was not specified as
1156 ** standard time, add the summer time
1157 ** offset to the transition time;
1158 ** otherwise, add the standard time
1159 ** offset to the transition time.
1160 */
1161 /*
1162 ** Transitions from DST to DDST
1163 ** will effectively disappear since
1164 ** POSIX provides for only one DST
1165 ** offset.
1166 */
1167 if (isdst && !sp->ttis[j].tt_ttisstd) {
1168 sp->ats[i] += (time_t)
1169 (dstoffset - theirdstoffset);
1170 } else {
1171 sp->ats[i] += (time_t)
1172 (stdoffset - theirstdoffset);
1173 }
1174 }
1175 theiroffset = -sp->ttis[j].tt_gmtoff;
1176 if (!sp->ttis[j].tt_isdst)
1177 theirstdoffset = theiroffset;
1178 else theirdstoffset = theiroffset;
1179 }
1180 /*
1181 ** Finally, fill in ttis.
1182 ** ttisstd and ttisgmt need not be handled
1183 */
1184 memset(sp->ttis, 0, sizeof(sp->ttis));
1185 sp->ttis[0].tt_gmtoff = -stdoffset;
1186 sp->ttis[0].tt_isdst = FALSE;
1187 sp->ttis[0].tt_abbrind = 0;
1188 sp->ttis[1].tt_gmtoff = -dstoffset;
1189 sp->ttis[1].tt_isdst = TRUE;
1190 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1191 sp->typecnt = 2;
1192 }
1193 } else {
1194 dstlen = 0;
1195 sp->typecnt = 1; /* only standard time */
1196 sp->timecnt = 0;
1197 memset(sp->ttis, 0, sizeof(sp->ttis));
1198 sp->ttis[0].tt_gmtoff = -stdoffset;
1199 sp->ttis[0].tt_isdst = 0;
1200 sp->ttis[0].tt_abbrind = 0;
1201 }
1202 sp->charcnt = (int)(stdlen + 1);
1203 if (dstlen != 0)
1204 sp->charcnt += (int)(dstlen + 1);
1205 if ((size_t) sp->charcnt > sizeof sp->chars)
1206 return -1;
1207 cp = sp->chars;
1208 (void) strncpy(cp, stdname, stdlen);
1209 cp += stdlen;
1210 *cp++ = '\0';
1211 if (dstlen != 0) {
1212 (void) strncpy(cp, dstname, dstlen);
1213 *(cp + dstlen) = '\0';
1214 }
1215 return 0;
1216 }
1217
1218 static void
1219 gmtload(timezone_t sp)
1220 {
1221 if (tzload(sp, gmt, TRUE) != 0)
1222 (void) tzparse(sp, gmt, TRUE);
1223 }
1224
1225 timezone_t
1226 tzalloc(const char *name)
1227 {
1228 timezone_t sp = calloc(1, sizeof *sp);
1229 if (sp == NULL)
1230 return NULL;
1231 if (tzload(sp, name, TRUE) != 0) {
1232 free(sp);
1233 return NULL;
1234 }
1235 settzname_z(sp);
1236 return sp;
1237 }
1238
1239 void
1240 tzfree(const timezone_t sp)
1241 {
1242 free(sp);
1243 }
1244
1245 static void
1246 tzsetwall_unlocked(void)
1247 {
1248 if (lcl_is_set < 0)
1249 return;
1250 lcl_is_set = -1;
1251
1252 if (lclptr == NULL) {
1253 int saveerrno = errno;
1254 lclptr = calloc(1, sizeof *lclptr);
1255 errno = saveerrno;
1256 if (lclptr == NULL) {
1257 settzname(); /* all we can do */
1258 return;
1259 }
1260 }
1261 if (tzload(lclptr, NULL, TRUE) != 0)
1262 gmtload(lclptr);
1263 settzname();
1264 }
1265
1266 #ifndef STD_INSPIRED
1267 /*
1268 ** A non-static declaration of tzsetwall in a system header file
1269 ** may cause a warning about this upcoming static declaration...
1270 */
1271 static
1272 #endif /* !defined STD_INSPIRED */
1273 void
1274 tzsetwall(void)
1275 {
1276 rwlock_wrlock(&lcl_lock);
1277 tzsetwall_unlocked();
1278 rwlock_unlock(&lcl_lock);
1279 }
1280
1281 #ifndef STD_INSPIRED
1282 /*
1283 ** A non-static declaration of tzsetwall in a system header file
1284 ** may cause a warning about this upcoming static declaration...
1285 */
1286 static
1287 #endif /* !defined STD_INSPIRED */
1288 void
1289 tzset_unlocked(void)
1290 {
1291 const char * name;
1292
1293 name = getenv("TZ");
1294 if (name == NULL) {
1295 tzsetwall_unlocked();
1296 return;
1297 }
1298
1299 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1300 return;
1301 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1302 if (lcl_is_set)
1303 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1304
1305 if (lclptr == NULL) {
1306 int saveerrno = errno;
1307 lclptr = calloc(1, sizeof *lclptr);
1308 errno = saveerrno;
1309 if (lclptr == NULL) {
1310 settzname(); /* all we can do */
1311 return;
1312 }
1313 }
1314 if (*name == '\0') {
1315 /*
1316 ** User wants it fast rather than right.
1317 */
1318 lclptr->leapcnt = 0; /* so, we're off a little */
1319 lclptr->timecnt = 0;
1320 lclptr->typecnt = 0;
1321 lclptr->ttis[0].tt_isdst = 0;
1322 lclptr->ttis[0].tt_gmtoff = 0;
1323 lclptr->ttis[0].tt_abbrind = 0;
1324 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1325 } else if (tzload(lclptr, name, TRUE) != 0)
1326 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1327 (void) gmtload(lclptr);
1328 settzname();
1329 }
1330
1331 void
1332 tzset(void)
1333 {
1334 rwlock_wrlock(&lcl_lock);
1335 tzset_unlocked();
1336 rwlock_unlock(&lcl_lock);
1337 }
1338
1339 /*
1340 ** The easy way to behave "as if no library function calls" localtime
1341 ** is to not call it--so we drop its guts into "localsub", which can be
1342 ** freely called. (And no, the PANS doesn't require the above behavior--
1343 ** but it *is* desirable.)
1344 **
1345 ** The unused offset argument is for the benefit of mktime variants.
1346 */
1347
1348 /*ARGSUSED*/
1349 static struct tm *
1350 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
1351 struct tm *const tmp)
1352 {
1353 const struct ttinfo * ttisp;
1354 int i;
1355 struct tm * result;
1356 const time_t t = *timep;
1357
1358 if ((sp->goback && t < sp->ats[0]) ||
1359 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1360 time_t newt = t;
1361 time_t seconds;
1362 time_t years;
1363
1364 if (t < sp->ats[0])
1365 seconds = sp->ats[0] - t;
1366 else seconds = t - sp->ats[sp->timecnt - 1];
1367 --seconds;
1368 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1369 seconds = (time_t)(years * AVGSECSPERYEAR);
1370 if (t < sp->ats[0])
1371 newt += seconds;
1372 else newt -= seconds;
1373 if (newt < sp->ats[0] ||
1374 newt > sp->ats[sp->timecnt - 1])
1375 return NULL; /* "cannot happen" */
1376 result = localsub(sp, &newt, offset, tmp);
1377 if (result == tmp) {
1378 time_t newy;
1379
1380 newy = tmp->tm_year;
1381 if (t < sp->ats[0])
1382 newy -= years;
1383 else newy += years;
1384 tmp->tm_year = (int)newy;
1385 if (tmp->tm_year != newy)
1386 return NULL;
1387 }
1388 return result;
1389 }
1390 if (sp->timecnt == 0 || t < sp->ats[0]) {
1391 i = sp->defaulttype;
1392 } else {
1393 int lo = 1;
1394 int hi = sp->timecnt;
1395
1396 while (lo < hi) {
1397 int mid = (lo + hi) / 2;
1398
1399 if (t < sp->ats[mid])
1400 hi = mid;
1401 else lo = mid + 1;
1402 }
1403 i = (int) sp->types[lo - 1];
1404 }
1405 ttisp = &sp->ttis[i];
1406 /*
1407 ** To get (wrong) behavior that's compatible with System V Release 2.0
1408 ** you'd replace the statement below with
1409 ** t += ttisp->tt_gmtoff;
1410 ** timesub(&t, 0L, sp, tmp);
1411 */
1412 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1413 tmp->tm_isdst = ttisp->tt_isdst;
1414 if (sp == lclptr)
1415 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1416 #ifdef TM_ZONE
1417 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1418 #endif /* defined TM_ZONE */
1419 return result;
1420 }
1421
1422 /*
1423 ** Re-entrant version of localtime.
1424 */
1425
1426 struct tm *
1427 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1428 {
1429 rwlock_rdlock(&lcl_lock);
1430 tzset_unlocked();
1431 tmp = localtime_rz(lclptr, timep, tmp);
1432 rwlock_unlock(&lcl_lock);
1433 return tmp;
1434 }
1435
1436 struct tm *
1437 localtime(const time_t *const timep)
1438 {
1439 return localtime_r(timep, &tm);
1440 }
1441
1442 struct tm *
1443 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1444 {
1445 if (sp == NULL)
1446 tmp = gmtsub(NULL, timep, 0, tmp);
1447 else
1448 tmp = localsub(sp, timep, 0, tmp);
1449 if (tmp == NULL)
1450 errno = EOVERFLOW;
1451 return tmp;
1452 }
1453
1454 /*
1455 ** gmtsub is to gmtime as localsub is to localtime.
1456 */
1457
1458 static struct tm *
1459 gmtsub(const timezone_t sp, const time_t *const timep,
1460 const int_fast32_t offset, struct tm *const tmp)
1461 {
1462 struct tm * result;
1463 #ifdef _REENTRANT
1464 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1465 #endif
1466
1467 mutex_lock(&gmt_mutex);
1468 if (!gmt_is_set) {
1469 int saveerrno;
1470 gmt_is_set = TRUE;
1471 saveerrno = errno;
1472 gmtptr = calloc(1, sizeof *gmtptr);
1473 errno = saveerrno;
1474 if (gmtptr != NULL)
1475 gmtload(gmtptr);
1476 }
1477 mutex_unlock(&gmt_mutex);
1478 result = timesub(gmtptr, timep, offset, tmp);
1479 #ifdef TM_ZONE
1480 /*
1481 ** Could get fancy here and deliver something such as
1482 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1483 ** but this is no time for a treasure hunt.
1484 */
1485 if (offset != 0)
1486 tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1487 else {
1488 if (gmtptr == NULL)
1489 tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1490 else tmp->TM_ZONE = gmtptr->chars;
1491 }
1492 #endif /* defined TM_ZONE */
1493 return result;
1494 }
1495
1496 struct tm *
1497 gmtime(const time_t *const timep)
1498 {
1499 struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
1500
1501 if (tmp == NULL)
1502 errno = EOVERFLOW;
1503
1504 return tmp;
1505 }
1506
1507 /*
1508 ** Re-entrant version of gmtime.
1509 */
1510
1511 struct tm *
1512 gmtime_r(const time_t * const timep, struct tm *tmp)
1513 {
1514 tmp = gmtsub(NULL, timep, 0, tmp);
1515
1516 if (tmp == NULL)
1517 errno = EOVERFLOW;
1518
1519 return tmp;
1520 }
1521
1522 #ifdef STD_INSPIRED
1523
1524 struct tm *
1525 offtime(const time_t *const timep, long offset)
1526 {
1527 struct tm *tmp;
1528
1529 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1530 (offset < 0 && offset < INT_FAST32_MIN)) {
1531 errno = EOVERFLOW;
1532 return NULL;
1533 }
1534 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
1535
1536 if (tmp == NULL)
1537 errno = EOVERFLOW;
1538
1539 return tmp;
1540 }
1541
1542 struct tm *
1543 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1544 {
1545 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1546 (offset < 0 && offset < INT_FAST32_MIN)) {
1547 errno = EOVERFLOW;
1548 return NULL;
1549 }
1550 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1551
1552 if (tmp == NULL)
1553 errno = EOVERFLOW;
1554
1555 return tmp;
1556 }
1557
1558 #endif /* defined STD_INSPIRED */
1559
1560 /*
1561 ** Return the number of leap years through the end of the given year
1562 ** where, to make the math easy, the answer for year zero is defined as zero.
1563 */
1564
1565 static int
1566 leaps_thru_end_of(const int y)
1567 {
1568 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1569 -(leaps_thru_end_of(-(y + 1)) + 1);
1570 }
1571
1572 static struct tm *
1573 timesub(const timezone_t sp, const time_t *const timep,
1574 const int_fast32_t offset, struct tm *const tmp)
1575 {
1576 const struct lsinfo * lp;
1577 time_t tdays;
1578 int idays; /* unsigned would be so 2003 */
1579 int_fast64_t rem;
1580 int y;
1581 const int * ip;
1582 int_fast64_t corr;
1583 int hit;
1584 int i;
1585
1586 corr = 0;
1587 hit = 0;
1588 i = (sp == NULL) ? 0 : sp->leapcnt;
1589 while (--i >= 0) {
1590 lp = &sp->lsis[i];
1591 if (*timep >= lp->ls_trans) {
1592 if (*timep == lp->ls_trans) {
1593 hit = ((i == 0 && lp->ls_corr > 0) ||
1594 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1595 if (hit)
1596 while (i > 0 &&
1597 sp->lsis[i].ls_trans ==
1598 sp->lsis[i - 1].ls_trans + 1 &&
1599 sp->lsis[i].ls_corr ==
1600 sp->lsis[i - 1].ls_corr + 1) {
1601 ++hit;
1602 --i;
1603 }
1604 }
1605 corr = lp->ls_corr;
1606 break;
1607 }
1608 }
1609 y = EPOCH_YEAR;
1610 tdays = (time_t)(*timep / SECSPERDAY);
1611 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1612 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1613 int newy;
1614 time_t tdelta;
1615 int idelta;
1616 int leapdays;
1617
1618 tdelta = tdays / DAYSPERLYEAR;
1619 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1620 && tdelta <= INT_MAX))
1621 return NULL;
1622 _DIAGASSERT(__type_fit(int, tdelta));
1623 idelta = (int)tdelta;
1624 if (idelta == 0)
1625 idelta = (tdays < 0) ? -1 : 1;
1626 newy = y;
1627 if (increment_overflow(&newy, idelta))
1628 return NULL;
1629 leapdays = leaps_thru_end_of(newy - 1) -
1630 leaps_thru_end_of(y - 1);
1631 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1632 tdays -= leapdays;
1633 y = newy;
1634 }
1635 {
1636 int_fast32_t seconds;
1637
1638 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1639 tdays = (time_t)(seconds / SECSPERDAY);
1640 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1641 }
1642 /*
1643 ** Given the range, we can now fearlessly cast...
1644 */
1645 idays = (int) tdays;
1646 rem += offset - corr;
1647 while (rem < 0) {
1648 rem += SECSPERDAY;
1649 --idays;
1650 }
1651 while (rem >= SECSPERDAY) {
1652 rem -= SECSPERDAY;
1653 ++idays;
1654 }
1655 while (idays < 0) {
1656 if (increment_overflow(&y, -1))
1657 return NULL;
1658 idays += year_lengths[isleap(y)];
1659 }
1660 while (idays >= year_lengths[isleap(y)]) {
1661 idays -= year_lengths[isleap(y)];
1662 if (increment_overflow(&y, 1))
1663 return NULL;
1664 }
1665 tmp->tm_year = y;
1666 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1667 return NULL;
1668 tmp->tm_yday = idays;
1669 /*
1670 ** The "extra" mods below avoid overflow problems.
1671 */
1672 tmp->tm_wday = EPOCH_WDAY +
1673 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1674 (DAYSPERNYEAR % DAYSPERWEEK) +
1675 leaps_thru_end_of(y - 1) -
1676 leaps_thru_end_of(EPOCH_YEAR - 1) +
1677 idays;
1678 tmp->tm_wday %= DAYSPERWEEK;
1679 if (tmp->tm_wday < 0)
1680 tmp->tm_wday += DAYSPERWEEK;
1681 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1682 rem %= SECSPERHOUR;
1683 tmp->tm_min = (int) (rem / SECSPERMIN);
1684 /*
1685 ** A positive leap second requires a special
1686 ** representation. This uses "... ??:59:60" et seq.
1687 */
1688 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1689 ip = mon_lengths[isleap(y)];
1690 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1691 idays -= ip[tmp->tm_mon];
1692 tmp->tm_mday = (int) (idays + 1);
1693 tmp->tm_isdst = 0;
1694 #ifdef TM_GMTOFF
1695 tmp->TM_GMTOFF = offset;
1696 #endif /* defined TM_GMTOFF */
1697 return tmp;
1698 }
1699
1700 char *
1701 ctime(const time_t *const timep)
1702 {
1703 /*
1704 ** Section 4.12.3.2 of X3.159-1989 requires that
1705 ** The ctime function converts the calendar time pointed to by timer
1706 ** to local time in the form of a string. It is equivalent to
1707 ** asctime(localtime(timer))
1708 */
1709 struct tm *rtm = localtime(timep);
1710 if (rtm == NULL)
1711 return NULL;
1712 return asctime(rtm);
1713 }
1714
1715 char *
1716 ctime_r(const time_t *const timep, char *buf)
1717 {
1718 struct tm mytm, *rtm;
1719
1720 rtm = localtime_r(timep, &mytm);
1721 if (rtm == NULL)
1722 return NULL;
1723 return asctime_r(rtm, buf);
1724 }
1725
1726 char *
1727 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1728 {
1729 struct tm mytm, *rtm;
1730
1731 rtm = localtime_rz(sp, timep, &mytm);
1732 if (rtm == NULL)
1733 return NULL;
1734 return asctime_r(rtm, buf);
1735 }
1736
1737 /*
1738 ** Adapted from code provided by Robert Elz, who writes:
1739 ** The "best" way to do mktime I think is based on an idea of Bob
1740 ** Kridle's (so its said...) from a long time ago.
1741 ** It does a binary search of the time_t space. Since time_t's are
1742 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1743 ** would still be very reasonable).
1744 */
1745
1746 #ifndef WRONG
1747 #define WRONG ((time_t)-1)
1748 #endif /* !defined WRONG */
1749
1750 /*
1751 ** Simplified normalize logic courtesy Paul Eggert.
1752 */
1753
1754 static int
1755 increment_overflow(int *const ip, int j)
1756 {
1757 int i = *ip;
1758
1759 /*
1760 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1761 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1762 ** If i < 0 there can only be overflow if i + j < INT_MIN
1763 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1764 */
1765 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1766 return TRUE;
1767 *ip += j;
1768 return FALSE;
1769 }
1770
1771 static int
1772 increment_overflow32(int_fast32_t *const lp, int const m)
1773 {
1774 int_fast32_t l = *lp;
1775
1776 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1777 return TRUE;
1778 *lp += m;
1779 return FALSE;
1780 }
1781
1782 static int
1783 increment_overflow_time(time_t *tp, int_fast32_t j)
1784 {
1785 /*
1786 ** This is like
1787 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1788 ** except that it does the right thing even if *tp + j would overflow.
1789 */
1790 if (! (j < 0
1791 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1792 : *tp <= time_t_max - j))
1793 return TRUE;
1794 *tp += j;
1795 return FALSE;
1796 }
1797
1798 static int
1799 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1800 {
1801 int tensdelta;
1802
1803 tensdelta = (*unitsptr >= 0) ?
1804 (*unitsptr / base) :
1805 (-1 - (-1 - *unitsptr) / base);
1806 *unitsptr -= tensdelta * base;
1807 return increment_overflow(tensptr, tensdelta);
1808 }
1809
1810 static int
1811 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1812 const int base)
1813 {
1814 int tensdelta;
1815
1816 tensdelta = (*unitsptr >= 0) ?
1817 (*unitsptr / base) :
1818 (-1 - (-1 - *unitsptr) / base);
1819 *unitsptr -= tensdelta * base;
1820 return increment_overflow32(tensptr, tensdelta);
1821 }
1822
1823 static int
1824 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1825 {
1826 int result;
1827
1828 if (atmp->tm_year != btmp->tm_year)
1829 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1830 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1831 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1832 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1833 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1834 result = atmp->tm_sec - btmp->tm_sec;
1835 return result;
1836 }
1837
1838 static time_t
1839 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1840 const int_fast32_t offset, int *const okayp, const int do_norm_secs)
1841 {
1842 int dir;
1843 int i, j;
1844 int saved_seconds;
1845 int_fast32_t li;
1846 time_t lo;
1847 time_t hi;
1848 #ifdef NO_ERROR_IN_DST_GAP
1849 time_t ilo;
1850 #endif
1851 int_fast32_t y;
1852 time_t newt;
1853 time_t t;
1854 struct tm yourtm, mytm;
1855
1856 *okayp = FALSE;
1857 yourtm = *tmp;
1858 #ifdef NO_ERROR_IN_DST_GAP
1859 again:
1860 #endif
1861 if (do_norm_secs) {
1862 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1863 SECSPERMIN))
1864 goto overflow;
1865 }
1866 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1867 goto overflow;
1868 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1869 goto overflow;
1870 y = yourtm.tm_year;
1871 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1872 goto overflow;
1873 /*
1874 ** Turn y into an actual year number for now.
1875 ** It is converted back to an offset from TM_YEAR_BASE later.
1876 */
1877 if (increment_overflow32(&y, TM_YEAR_BASE))
1878 goto overflow;
1879 while (yourtm.tm_mday <= 0) {
1880 if (increment_overflow32(&y, -1))
1881 goto overflow;
1882 li = y + (1 < yourtm.tm_mon);
1883 yourtm.tm_mday += year_lengths[isleap(li)];
1884 }
1885 while (yourtm.tm_mday > DAYSPERLYEAR) {
1886 li = y + (1 < yourtm.tm_mon);
1887 yourtm.tm_mday -= year_lengths[isleap(li)];
1888 if (increment_overflow32(&y, 1))
1889 goto overflow;
1890 }
1891 for ( ; ; ) {
1892 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1893 if (yourtm.tm_mday <= i)
1894 break;
1895 yourtm.tm_mday -= i;
1896 if (++yourtm.tm_mon >= MONSPERYEAR) {
1897 yourtm.tm_mon = 0;
1898 if (increment_overflow32(&y, 1))
1899 goto overflow;
1900 }
1901 }
1902 if (increment_overflow32(&y, -TM_YEAR_BASE))
1903 goto overflow;
1904 yourtm.tm_year = (int)y;
1905 if (yourtm.tm_year != y)
1906 goto overflow;
1907 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1908 saved_seconds = 0;
1909 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1910 /*
1911 ** We can't set tm_sec to 0, because that might push the
1912 ** time below the minimum representable time.
1913 ** Set tm_sec to 59 instead.
1914 ** This assumes that the minimum representable time is
1915 ** not in the same minute that a leap second was deleted from,
1916 ** which is a safer assumption than using 58 would be.
1917 */
1918 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1919 goto overflow;
1920 saved_seconds = yourtm.tm_sec;
1921 yourtm.tm_sec = SECSPERMIN - 1;
1922 } else {
1923 saved_seconds = yourtm.tm_sec;
1924 yourtm.tm_sec = 0;
1925 }
1926 /*
1927 ** Do a binary search (this works whatever time_t's type is).
1928 */
1929 /* LINTED const not */
1930 if (!TYPE_SIGNED(time_t)) {
1931 lo = 0;
1932 hi = lo - 1;
1933 } else {
1934 lo = 1;
1935 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1936 lo *= 2;
1937 hi = -(lo + 1);
1938 }
1939 #ifdef NO_ERROR_IN_DST_GAP
1940 ilo = lo;
1941 #endif
1942 for ( ; ; ) {
1943 t = lo / 2 + hi / 2;
1944 if (t < lo)
1945 t = lo;
1946 else if (t > hi)
1947 t = hi;
1948 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1949 /*
1950 ** Assume that t is too extreme to be represented in
1951 ** a struct tm; arrange things so that it is less
1952 ** extreme on the next pass.
1953 */
1954 dir = (t > 0) ? 1 : -1;
1955 } else dir = tmcomp(&mytm, &yourtm);
1956 if (dir != 0) {
1957 if (t == lo) {
1958 if (t == time_t_max)
1959 goto overflow;
1960 ++t;
1961 ++lo;
1962 } else if (t == hi) {
1963 if (t == time_t_min)
1964 goto overflow;
1965 --t;
1966 --hi;
1967 }
1968 #ifdef NO_ERROR_IN_DST_GAP
1969 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1970 do_norm_secs) {
1971 for (i = sp->typecnt - 1; i >= 0; --i) {
1972 for (j = sp->typecnt - 1; j >= 0; --j) {
1973 time_t off;
1974 if (sp->ttis[j].tt_isdst ==
1975 sp->ttis[i].tt_isdst)
1976 continue;
1977 off = sp->ttis[j].tt_gmtoff -
1978 sp->ttis[i].tt_gmtoff;
1979 yourtm.tm_sec += off < 0 ?
1980 -off : off;
1981 goto again;
1982 }
1983 }
1984 }
1985 #endif
1986 if (lo > hi)
1987 goto invalid;
1988 if (dir > 0)
1989 hi = t;
1990 else lo = t;
1991 continue;
1992 }
1993 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1994 break;
1995 /*
1996 ** Right time, wrong type.
1997 ** Hunt for right time, right type.
1998 ** It's okay to guess wrong since the guess
1999 ** gets checked.
2000 */
2001 if (sp == NULL)
2002 goto invalid;
2003 for (i = sp->typecnt - 1; i >= 0; --i) {
2004 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2005 continue;
2006 for (j = sp->typecnt - 1; j >= 0; --j) {
2007 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2008 continue;
2009 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2010 sp->ttis[i].tt_gmtoff);
2011 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
2012 continue;
2013 if (tmcomp(&mytm, &yourtm) != 0)
2014 continue;
2015 if (mytm.tm_isdst != yourtm.tm_isdst)
2016 continue;
2017 /*
2018 ** We have a match.
2019 */
2020 t = newt;
2021 goto label;
2022 }
2023 }
2024 goto invalid;
2025 }
2026 label:
2027 newt = t + saved_seconds;
2028 if ((newt < t) != (saved_seconds < 0))
2029 goto overflow;
2030 t = newt;
2031 if ((*funcp)(sp, &t, offset, tmp)) {
2032 *okayp = TRUE;
2033 return t;
2034 }
2035 overflow:
2036 errno = EOVERFLOW;
2037 return WRONG;
2038 invalid:
2039 errno = EINVAL;
2040 return WRONG;
2041 }
2042
2043 static time_t
2044 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2045 const int_fast32_t offset, int *const okayp)
2046 {
2047 time_t t;
2048
2049 /*
2050 ** First try without normalization of seconds
2051 ** (in case tm_sec contains a value associated with a leap second).
2052 ** If that fails, try with normalization of seconds.
2053 */
2054 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2055 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2056 }
2057
2058 static time_t
2059 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2060 const int_fast32_t offset)
2061 {
2062 time_t t;
2063 int samei, otheri;
2064 int sameind, otherind;
2065 int i;
2066 int nseen;
2067 int seen[TZ_MAX_TYPES];
2068 int types[TZ_MAX_TYPES];
2069 int okay;
2070
2071 if (tmp == NULL) {
2072 errno = EINVAL;
2073 return WRONG;
2074 }
2075 if (tmp->tm_isdst > 1)
2076 tmp->tm_isdst = 1;
2077 t = time2(sp, tmp, funcp, offset, &okay);
2078 #ifdef PCTS
2079 /*
2080 ** PCTS code courtesy Grant Sullivan.
2081 */
2082 if (okay)
2083 return t;
2084 if (tmp->tm_isdst < 0)
2085 tmp->tm_isdst = 0; /* reset to std and try again */
2086 #endif /* defined PCTS */
2087 #ifndef PCTS
2088 if (okay || tmp->tm_isdst < 0)
2089 return t;
2090 #endif /* !defined PCTS */
2091 /*
2092 ** We're supposed to assume that somebody took a time of one type
2093 ** and did some math on it that yielded a "struct tm" that's bad.
2094 ** We try to divine the type they started from and adjust to the
2095 ** type they need.
2096 */
2097 if (sp == NULL) {
2098 errno = EINVAL;
2099 return WRONG;
2100 }
2101 for (i = 0; i < sp->typecnt; ++i)
2102 seen[i] = FALSE;
2103 nseen = 0;
2104 for (i = sp->timecnt - 1; i >= 0; --i)
2105 if (!seen[sp->types[i]]) {
2106 seen[sp->types[i]] = TRUE;
2107 types[nseen++] = sp->types[i];
2108 }
2109 for (sameind = 0; sameind < nseen; ++sameind) {
2110 samei = types[sameind];
2111 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2112 continue;
2113 for (otherind = 0; otherind < nseen; ++otherind) {
2114 otheri = types[otherind];
2115 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2116 continue;
2117 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2118 sp->ttis[samei].tt_gmtoff);
2119 tmp->tm_isdst = !tmp->tm_isdst;
2120 t = time2(sp, tmp, funcp, offset, &okay);
2121 if (okay)
2122 return t;
2123 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2124 sp->ttis[samei].tt_gmtoff);
2125 tmp->tm_isdst = !tmp->tm_isdst;
2126 }
2127 }
2128 errno = EOVERFLOW;
2129 return WRONG;
2130 }
2131
2132 time_t
2133 mktime_z(const timezone_t sp, struct tm *const tmp)
2134 {
2135 time_t t;
2136 if (sp == NULL)
2137 t = time1(NULL, tmp, gmtsub, 0);
2138 else
2139 t = time1(sp, tmp, localsub, 0);
2140 return t;
2141 }
2142
2143 time_t
2144 mktime(struct tm *const tmp)
2145 {
2146 time_t result;
2147
2148 rwlock_wrlock(&lcl_lock);
2149 tzset_unlocked();
2150 result = mktime_z(lclptr, tmp);
2151 rwlock_unlock(&lcl_lock);
2152 return result;
2153 }
2154
2155 #ifdef STD_INSPIRED
2156
2157 time_t
2158 timelocal_z(const timezone_t sp, struct tm *const tmp)
2159 {
2160 if (tmp != NULL)
2161 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2162 return mktime_z(sp, tmp);
2163 }
2164
2165 time_t
2166 timelocal(struct tm *const tmp)
2167 {
2168 if (tmp != NULL)
2169 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2170 return mktime(tmp);
2171 }
2172
2173 time_t
2174 timegm(struct tm *const tmp)
2175 {
2176 time_t t;
2177
2178 if (tmp != NULL)
2179 tmp->tm_isdst = 0;
2180 t = time1(gmtptr, tmp, gmtsub, 0);
2181 return t;
2182 }
2183
2184 time_t
2185 timeoff(struct tm *const tmp, long offset)
2186 {
2187 time_t t;
2188
2189 if ((offset > 0 && offset > INT_FAST32_MAX) ||
2190 (offset < 0 && offset < INT_FAST32_MIN)) {
2191 errno = EOVERFLOW;
2192 return -1;
2193 }
2194 if (tmp != NULL)
2195 tmp->tm_isdst = 0;
2196 t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
2197 return t;
2198 }
2199
2200 #endif /* defined STD_INSPIRED */
2201
2202 #ifdef CMUCS
2203
2204 /*
2205 ** The following is supplied for compatibility with
2206 ** previous versions of the CMUCS runtime library.
2207 */
2208
2209 long
2210 gtime(struct tm *const tmp)
2211 {
2212 const time_t t = mktime(tmp);
2213
2214 if (t == WRONG)
2215 return -1;
2216 return t;
2217 }
2218
2219 #endif /* defined CMUCS */
2220
2221 /*
2222 ** XXX--is the below the right way to conditionalize??
2223 */
2224
2225 #ifdef STD_INSPIRED
2226
2227 /*
2228 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2229 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2230 ** is not the case if we are accounting for leap seconds.
2231 ** So, we provide the following conversion routines for use
2232 ** when exchanging timestamps with POSIX conforming systems.
2233 */
2234
2235 static int_fast64_t
2236 leapcorr(const timezone_t sp, time_t *timep)
2237 {
2238 struct lsinfo * lp;
2239 int i;
2240
2241 i = sp->leapcnt;
2242 while (--i >= 0) {
2243 lp = &sp->lsis[i];
2244 if (*timep >= lp->ls_trans)
2245 return lp->ls_corr;
2246 }
2247 return 0;
2248 }
2249
2250 time_t
2251 time2posix_z(const timezone_t sp, time_t t)
2252 {
2253 return (time_t)(t - leapcorr(sp, &t));
2254 }
2255
2256 time_t
2257 time2posix(time_t t)
2258 {
2259 time_t result;
2260 rwlock_wrlock(&lcl_lock);
2261 tzset_unlocked();
2262 result = (time_t)(t - leapcorr(lclptr, &t));
2263 rwlock_unlock(&lcl_lock);
2264 return (result);
2265 }
2266
2267 time_t
2268 posix2time_z(const timezone_t sp, time_t t)
2269 {
2270 time_t x;
2271 time_t y;
2272
2273 /*
2274 ** For a positive leap second hit, the result
2275 ** is not unique. For a negative leap second
2276 ** hit, the corresponding time doesn't exist,
2277 ** so we return an adjacent second.
2278 */
2279 x = (time_t)(t + leapcorr(sp, &t));
2280 y = (time_t)(x - leapcorr(sp, &x));
2281 if (y < t) {
2282 do {
2283 x++;
2284 y = (time_t)(x - leapcorr(sp, &x));
2285 } while (y < t);
2286 if (t != y) {
2287 return x - 1;
2288 }
2289 } else if (y > t) {
2290 do {
2291 --x;
2292 y = (time_t)(x - leapcorr(sp, &x));
2293 } while (y > t);
2294 if (t != y) {
2295 return x + 1;
2296 }
2297 }
2298 return x;
2299 }
2300
2301
2302
2303 time_t
2304 posix2time(time_t t)
2305 {
2306 time_t result;
2307
2308 rwlock_wrlock(&lcl_lock);
2309 tzset_unlocked();
2310 result = posix2time_z(lclptr, t);
2311 rwlock_unlock(&lcl_lock);
2312 return result;
2313 }
2314
2315 #endif /* defined STD_INSPIRED */
2316