localtime.c revision 1.82.2.1 1 /* $NetBSD: localtime.c,v 1.82.2.1 2015/01/25 09:11:03 martin Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.82.2.1 2015/01/25 09:11:03 martin Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE (O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static const char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 int_fast32_t tt_gmtoff; /* UT offset in seconds */
108 bool tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 bool tt_ttisstd; /* transition is std time */
111 bool tt_ttisgmt; /* transition is UT */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 int_fast64_t ls_corr; /* correction to apply */
117 };
118
119 #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
121
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX 255
127 #endif /* !defined TZNAME_MAX */
128
129 #define state __state
130 struct state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 bool goback;
136 bool goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
159 struct tm *);
160 static bool increment_overflow(int *, int);
161 static bool increment_overflow_time(time_t *, int_fast32_t);
162 static bool normalize_overflow32(int_fast32_t *, int *, int);
163 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
164 struct tm *);
165 static bool typesequiv(struct state const *, int, int);
166 static bool tzparse(char const *, struct state *, bool);
167
168 static timezone_t lclptr;
169 static timezone_t gmtptr;
170
171 #ifndef TZ_STRLEN_MAX
172 #define TZ_STRLEN_MAX 255
173 #endif /* !defined TZ_STRLEN_MAX */
174
175 static char lcl_TZname[TZ_STRLEN_MAX + 1];
176 static int lcl_is_set;
177
178 #if !defined(__LIBC12_SOURCE__)
179
180 __aconst char * tzname[2] = {
181 (__aconst char *)__UNCONST(wildabbr),
182 (__aconst char *)__UNCONST(wildabbr)
183 };
184
185 #else
186
187 extern __aconst char * tzname[2];
188
189 #endif
190
191 #ifdef _REENTRANT
192 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
193 #endif
194
195 /*
196 ** Section 4.12.3 of X3.159-1989 requires that
197 ** Except for the strftime function, these functions [asctime,
198 ** ctime, gmtime, localtime] return values in one of two static
199 ** objects: a broken-down time structure and an array of char.
200 ** Thanks to Paul Eggert for noting this.
201 */
202
203 static struct tm tm;
204
205 #ifdef USG_COMPAT
206 #if !defined(__LIBC12_SOURCE__)
207 long timezone = 0;
208 int daylight = 0;
209 #else
210 extern int daylight;
211 extern long timezone __RENAME(__timezone13);
212 #endif
213 #endif /* defined USG_COMPAT */
214
215 #ifdef ALTZONE
216 long altzone = 0;
217 #endif /* defined ALTZONE */
218
219 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
220 static void
221 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
222 {
223 s->tt_gmtoff = gmtoff;
224 s->tt_isdst = isdst;
225 s->tt_abbrind = abbrind;
226 s->tt_ttisstd = false;
227 s->tt_ttisgmt = false;
228 }
229
230 static int_fast32_t
231 detzcode(const char *const codep)
232 {
233 int_fast32_t result;
234 int i;
235
236 result = (codep[0] & 0x80) ? -1 : 0;
237 for (i = 0; i < 4; ++i)
238 result = (result << 8) | (codep[i] & 0xff);
239 return result;
240 }
241
242 static int_fast64_t
243 detzcode64(const char *const codep)
244 {
245 int_fast64_t result;
246 int i;
247
248 result = (codep[0] & 0x80) ? -1 : 0;
249 for (i = 0; i < 8; ++i)
250 result = (result << 8) | (codep[i] & 0xff);
251 return result;
252 }
253
254 const char *
255 tzgetname(const timezone_t sp, int isdst)
256 {
257 int i;
258 for (i = 0; i < sp->timecnt; ++i) {
259 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
260
261 if (ttisp->tt_isdst == isdst)
262 return &sp->chars[ttisp->tt_abbrind];
263 }
264 errno = ESRCH;
265 return NULL;
266 }
267
268 static void
269 settzname_z(timezone_t sp)
270 {
271 int i;
272
273 /*
274 ** Scrub the abbreviations.
275 ** First, replace bogus characters.
276 */
277 for (i = 0; i < sp->charcnt; ++i)
278 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
279 sp->chars[i] = TZ_ABBR_ERR_CHAR;
280 /*
281 ** Second, truncate long abbreviations.
282 */
283 for (i = 0; i < sp->typecnt; ++i) {
284 const struct ttinfo * const ttisp = &sp->ttis[i];
285 char * cp = &sp->chars[ttisp->tt_abbrind];
286
287 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
288 strcmp(cp, GRANDPARENTED) != 0)
289 *(cp + TZ_ABBR_MAX_LEN) = '\0';
290 }
291 }
292
293 static char *
294 setzone(const struct state *sp, const struct ttinfo *ttisp, int_fast32_t offset)
295 {
296 char *zn = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
297 if (offset) {
298 #ifdef USG_COMPAT
299 if (ttisp->tt_isdst)
300 daylight = 1;
301 if (!ttisp->tt_isdst)
302 timezone = -(ttisp->tt_gmtoff);
303 #endif /* defined USG_COMPAT */
304 #ifdef ALTZONE
305 if (ttisp->tt_isdst)
306 altzone = -(ttisp->tt_gmtoff);
307 #endif /* defined ALTZONE */
308 }
309
310 tzname[ttisp->tt_isdst] = zn;
311 return zn;
312 }
313
314 static void
315 settzname(void)
316 {
317 timezone_t const sp = lclptr;
318 int i;
319
320 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
321 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
322 #ifdef USG_COMPAT
323 daylight = 0;
324 timezone = 0;
325 #endif /* defined USG_COMPAT */
326 #ifdef ALTZONE
327 altzone = 0;
328 #endif /* defined ALTZONE */
329 if (sp == NULL) {
330 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
331 return;
332 }
333 /*
334 ** And to get the latest zone names into tzname. . .
335 */
336 for (i = 0; i < sp->typecnt; ++i)
337 setzone(sp, &sp->ttis[i], -1);
338
339 settzname_z(sp);
340 }
341
342 static bool
343 differ_by_repeat(const time_t t1, const time_t t0)
344 {
345 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
346 return 0;
347 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
348 }
349
350 union input_buffer {
351 /* The first part of the buffer, interpreted as a header. */
352 struct tzhead tzhead;
353
354 /* The entire buffer. */
355 char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
356 + 4 * TZ_MAX_TIMES];
357 };
358
359 /* Local storage needed for 'tzloadbody'. */
360 union local_storage {
361 /* The file name to be opened. */
362 char fullname[FILENAME_MAX + 1];
363
364 /* The results of analyzing the file's contents after it is opened. */
365 struct {
366 /* The input buffer. */
367 union input_buffer u;
368
369 /* A temporary state used for parsing a TZ string in the file. */
370 struct state st;
371 } u;
372 };
373
374 /* Load tz data from the file named NAME into *SP. Read extended
375 format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
376 success, an errno value on failure. */
377 static int
378 tzloadbody(char const *name, struct state *sp, bool doextend,
379 union local_storage *lsp)
380 {
381 int i;
382 int fid;
383 int stored;
384 ssize_t nread;
385 bool doaccess;
386 char *fullname = lsp->fullname;
387 union input_buffer *up = &lsp->u.u;
388 size_t tzheadsize = sizeof(struct tzhead);
389
390 sp->goback = sp->goahead = false;
391
392 if (! name) {
393 name = TZDEFAULT;
394 if (! name)
395 return EINVAL;
396 }
397
398 if (name[0] == ':')
399 ++name;
400 doaccess = name[0] == '/';
401 if (!doaccess) {
402 char const *p = TZDIR;
403 if (! p)
404 return EINVAL;
405 if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
406 return ENAMETOOLONG;
407 strcpy(fullname, p);
408 strcat(fullname, "/");
409 strcat(fullname, name);
410 /* Set doaccess if '.' (as in "../") shows up in name. */
411 if (strchr(name, '.'))
412 doaccess = true;
413 name = fullname;
414 }
415 if (doaccess && access(name, R_OK) != 0)
416 return errno;
417
418 fid = open(name, OPEN_MODE);
419 if (fid < 0)
420 return errno;
421 nread = read(fid, up->buf, sizeof up->buf);
422 if (nread < (ssize_t)tzheadsize) {
423 int err = nread < 0 ? errno : EINVAL;
424 close(fid);
425 return err;
426 }
427 if (close(fid) < 0)
428 return errno;
429 for (stored = 4; stored <= 8; stored *= 2) {
430 int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
431 int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
432 int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
433 int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
434 int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
435 int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
436 char const *p = up->buf + tzheadsize;
437 if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
438 && 0 < typecnt && typecnt < TZ_MAX_TYPES
439 && 0 <= timecnt && timecnt < TZ_MAX_TIMES
440 && 0 <= charcnt && charcnt < TZ_MAX_CHARS
441 && (ttisstdcnt == typecnt || ttisstdcnt == 0)
442 && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
443 return EINVAL;
444 if ((size_t)nread
445 < (tzheadsize /* struct tzhead */
446 + timecnt * stored /* ats */
447 + timecnt /* types */
448 + typecnt * 6 /* ttinfos */
449 + charcnt /* chars */
450 + leapcnt * (stored + 4) /* lsinfos */
451 + ttisstdcnt /* ttisstds */
452 + ttisgmtcnt)) /* ttisgmts */
453 return EINVAL;
454 sp->leapcnt = leapcnt;
455 sp->timecnt = timecnt;
456 sp->typecnt = typecnt;
457 sp->charcnt = charcnt;
458
459 /* Read transitions, discarding those out of time_t range.
460 But pretend the last transition before time_t_min
461 occurred at time_t_min. */
462 timecnt = 0;
463 for (i = 0; i < sp->timecnt; ++i) {
464 int_fast64_t at
465 = stored == 4 ? detzcode(p) : detzcode64(p);
466 sp->types[i] = at <= time_t_max;
467 if (sp->types[i]) {
468 time_t attime
469 = ((TYPE_SIGNED(time_t) ?
470 at < time_t_min : at < 0)
471 ? time_t_min : (time_t)at);
472 if (timecnt && attime <= sp->ats[timecnt - 1]) {
473 if (attime < sp->ats[timecnt - 1])
474 return EINVAL;
475 sp->types[i - 1] = 0;
476 timecnt--;
477 }
478 sp->ats[timecnt++] = attime;
479 }
480 p += stored;
481 }
482
483 timecnt = 0;
484 for (i = 0; i < sp->timecnt; ++i) {
485 unsigned char typ = *p++;
486 if (sp->typecnt <= typ)
487 return EINVAL;
488 if (sp->types[i])
489 sp->types[timecnt++] = typ;
490 }
491 sp->timecnt = timecnt;
492 for (i = 0; i < sp->typecnt; ++i) {
493 struct ttinfo * ttisp;
494 unsigned char isdst, abbrind;
495
496 ttisp = &sp->ttis[i];
497 ttisp->tt_gmtoff = detzcode(p);
498 p += 4;
499 isdst = *p++;
500 if (! (isdst < 2))
501 return EINVAL;
502 ttisp->tt_isdst = isdst;
503 abbrind = *p++;
504 if (! (abbrind < sp->charcnt))
505 return EINVAL;
506 ttisp->tt_abbrind = abbrind;
507 }
508 for (i = 0; i < sp->charcnt; ++i)
509 sp->chars[i] = *p++;
510 sp->chars[i] = '\0'; /* ensure '\0' at end */
511
512 /* Read leap seconds, discarding those out of time_t range. */
513 leapcnt = 0;
514 for (i = 0; i < sp->leapcnt; ++i) {
515 int_fast64_t tr = stored == 4 ? detzcode(p) :
516 detzcode64(p);
517 int_fast32_t corr = detzcode(p + stored);
518 p += stored + 4;
519 if (tr <= time_t_max) {
520 time_t trans = ((TYPE_SIGNED(time_t) ?
521 tr < time_t_min : tr < 0)
522 ? time_t_min : (time_t)tr);
523 if (leapcnt && trans <=
524 sp->lsis[leapcnt - 1].ls_trans) {
525 if (trans <
526 sp->lsis[leapcnt - 1].ls_trans)
527 return EINVAL;
528 leapcnt--;
529 }
530 sp->lsis[leapcnt].ls_trans = trans;
531 sp->lsis[leapcnt].ls_corr = corr;
532 leapcnt++;
533 }
534 }
535 sp->leapcnt = leapcnt;
536
537 for (i = 0; i < sp->typecnt; ++i) {
538 struct ttinfo * ttisp;
539
540 ttisp = &sp->ttis[i];
541 if (ttisstdcnt == 0)
542 ttisp->tt_ttisstd = false;
543 else {
544 if (*p != true && *p != false)
545 return EINVAL;
546 ttisp->tt_ttisstd = *p++;
547 }
548 }
549 for (i = 0; i < sp->typecnt; ++i) {
550 struct ttinfo * ttisp;
551
552 ttisp = &sp->ttis[i];
553 if (ttisgmtcnt == 0)
554 ttisp->tt_ttisgmt = false;
555 else {
556 if (*p != true && *p != false)
557 return EINVAL;
558 ttisp->tt_ttisgmt = *p++;
559 }
560 }
561 /*
562 ** If this is an old file, we're done.
563 */
564 if (up->tzhead.tzh_version[0] == '\0')
565 break;
566 nread -= p - up->buf;
567 memmove(up->buf, p, (size_t)nread);
568 /*
569 ** If this is a signed narrow time_t system, we're done.
570 */
571 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
572 break;
573 }
574 if (doextend && nread > 2 &&
575 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
576 sp->typecnt + 2 <= TZ_MAX_TYPES) {
577 struct state *ts = &lsp->u.st;
578
579 up->buf[nread - 1] = '\0';
580 if (tzparse(&up->buf[1], ts, false)
581 && ts->typecnt == 2
582 && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
583 for (i = 0; i < 2; ++i)
584 ts->ttis[i].tt_abbrind +=
585 sp->charcnt;
586 for (i = 0; i < ts->charcnt; ++i)
587 sp->chars[sp->charcnt++] =
588 ts->chars[i];
589 i = 0;
590 while (i < ts->timecnt &&
591 ts->ats[i] <=
592 sp->ats[sp->timecnt - 1])
593 ++i;
594 while (i < ts->timecnt &&
595 sp->timecnt < TZ_MAX_TIMES) {
596 sp->ats[sp->timecnt] =
597 ts->ats[i];
598 sp->types[sp->timecnt] =
599 sp->typecnt +
600 ts->types[i];
601 ++sp->timecnt;
602 ++i;
603 }
604 sp->ttis[sp->typecnt++] = ts->ttis[0];
605 sp->ttis[sp->typecnt++] = ts->ttis[1];
606 }
607 }
608 if (sp->timecnt > 1) {
609 for (i = 1; i < sp->timecnt; ++i)
610 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
611 differ_by_repeat(sp->ats[i], sp->ats[0])) {
612 sp->goback = true;
613 break;
614 }
615 for (i = sp->timecnt - 2; i >= 0; --i)
616 if (typesequiv(sp, sp->types[sp->timecnt - 1],
617 sp->types[i]) &&
618 differ_by_repeat(sp->ats[sp->timecnt - 1],
619 sp->ats[i])) {
620 sp->goahead = true;
621 break;
622 }
623 }
624 /*
625 ** If type 0 is is unused in transitions,
626 ** it's the type to use for early times.
627 */
628 for (i = 0; i < sp->timecnt; ++i)
629 if (sp->types[i] == 0)
630 break;
631 i = i < sp->timecnt ? -1 : 0;
632 /*
633 ** Absent the above,
634 ** if there are transition times
635 ** and the first transition is to a daylight time
636 ** find the standard type less than and closest to
637 ** the type of the first transition.
638 */
639 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
640 i = sp->types[0];
641 while (--i >= 0)
642 if (!sp->ttis[i].tt_isdst)
643 break;
644 }
645 /*
646 ** If no result yet, find the first standard type.
647 ** If there is none, punt to type zero.
648 */
649 if (i < 0) {
650 i = 0;
651 while (sp->ttis[i].tt_isdst)
652 if (++i >= sp->typecnt) {
653 i = 0;
654 break;
655 }
656 }
657 sp->defaulttype = i;
658 return 0;
659 }
660
661 /* Load tz data from the file named NAME into *SP. Read extended
662 format if DOEXTEND. Return 0 on success, an errno value on failure. */
663 static int
664 tzload(char const *name, struct state *sp, bool doextend)
665 {
666 union local_storage *lsp = malloc(sizeof *lsp);
667 if (!lsp)
668 return errno;
669 else {
670 int err = tzloadbody(name, sp, doextend, lsp);
671 free(lsp);
672 return err;
673 }
674 }
675
676 static bool
677 typesequiv(struct state const *sp, int a, int b)
678 {
679 bool result;
680
681 if (sp == NULL ||
682 a < 0 || a >= sp->typecnt ||
683 b < 0 || b >= sp->typecnt)
684 result = false;
685 else {
686 const struct ttinfo * ap = &sp->ttis[a];
687 const struct ttinfo * bp = &sp->ttis[b];
688 result = ap->tt_gmtoff == bp->tt_gmtoff &&
689 ap->tt_isdst == bp->tt_isdst &&
690 ap->tt_ttisstd == bp->tt_ttisstd &&
691 ap->tt_ttisgmt == bp->tt_ttisgmt &&
692 strcmp(&sp->chars[ap->tt_abbrind],
693 &sp->chars[bp->tt_abbrind]) == 0;
694 }
695 return result;
696 }
697
698 static const int mon_lengths[2][MONSPERYEAR] = {
699 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
700 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
701 };
702
703 static const int year_lengths[2] = {
704 DAYSPERNYEAR, DAYSPERLYEAR
705 };
706
707 /*
708 ** Given a pointer into a time zone string, scan until a character that is not
709 ** a valid character in a zone name is found. Return a pointer to that
710 ** character.
711 */
712
713 static const char * ATTRIBUTE_PURE
714 getzname(const char *strp)
715 {
716 char c;
717
718 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
719 c != '+')
720 ++strp;
721 return strp;
722 }
723
724 /*
725 ** Given a pointer into an extended time zone string, scan until the ending
726 ** delimiter of the zone name is located. Return a pointer to the delimiter.
727 **
728 ** As with getzname above, the legal character set is actually quite
729 ** restricted, with other characters producing undefined results.
730 ** We don't do any checking here; checking is done later in common-case code.
731 */
732
733 static const char * ATTRIBUTE_PURE
734 getqzname(const char *strp, const int delim)
735 {
736 int c;
737
738 while ((c = *strp) != '\0' && c != delim)
739 ++strp;
740 return strp;
741 }
742
743 /*
744 ** Given a pointer into a time zone string, extract a number from that string.
745 ** Check that the number is within a specified range; if it is not, return
746 ** NULL.
747 ** Otherwise, return a pointer to the first character not part of the number.
748 */
749
750 static const char *
751 getnum(const char *strp, int *const nump, const int min, const int max)
752 {
753 char c;
754 int num;
755
756 if (strp == NULL || !is_digit(c = *strp)) {
757 errno = EINVAL;
758 return NULL;
759 }
760 num = 0;
761 do {
762 num = num * 10 + (c - '0');
763 if (num > max) {
764 errno = EOVERFLOW;
765 return NULL; /* illegal value */
766 }
767 c = *++strp;
768 } while (is_digit(c));
769 if (num < min) {
770 errno = EINVAL;
771 return NULL; /* illegal value */
772 }
773 *nump = num;
774 return strp;
775 }
776
777 /*
778 ** Given a pointer into a time zone string, extract a number of seconds,
779 ** in hh[:mm[:ss]] form, from the string.
780 ** If any error occurs, return NULL.
781 ** Otherwise, return a pointer to the first character not part of the number
782 ** of seconds.
783 */
784
785 static const char *
786 getsecs(const char *strp, int_fast32_t *const secsp)
787 {
788 int num;
789
790 /*
791 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
792 ** "M10.4.6/26", which does not conform to Posix,
793 ** but which specifies the equivalent of
794 ** "02:00 on the first Sunday on or after 23 Oct".
795 */
796 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
797 if (strp == NULL)
798 return NULL;
799 *secsp = num * (int_fast32_t) SECSPERHOUR;
800 if (*strp == ':') {
801 ++strp;
802 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
803 if (strp == NULL)
804 return NULL;
805 *secsp += num * SECSPERMIN;
806 if (*strp == ':') {
807 ++strp;
808 /* 'SECSPERMIN' allows for leap seconds. */
809 strp = getnum(strp, &num, 0, SECSPERMIN);
810 if (strp == NULL)
811 return NULL;
812 *secsp += num;
813 }
814 }
815 return strp;
816 }
817
818 /*
819 ** Given a pointer into a time zone string, extract an offset, in
820 ** [+-]hh[:mm[:ss]] form, from the string.
821 ** If any error occurs, return NULL.
822 ** Otherwise, return a pointer to the first character not part of the time.
823 */
824
825 static const char *
826 getoffset(const char *strp, int_fast32_t *const offsetp)
827 {
828 bool neg = false;
829
830 if (*strp == '-') {
831 neg = true;
832 ++strp;
833 } else if (*strp == '+')
834 ++strp;
835 strp = getsecs(strp, offsetp);
836 if (strp == NULL)
837 return NULL; /* illegal time */
838 if (neg)
839 *offsetp = -*offsetp;
840 return strp;
841 }
842
843 /*
844 ** Given a pointer into a time zone string, extract a rule in the form
845 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
846 ** If a valid rule is not found, return NULL.
847 ** Otherwise, return a pointer to the first character not part of the rule.
848 */
849
850 static const char *
851 getrule(const char *strp, struct rule *const rulep)
852 {
853 if (*strp == 'J') {
854 /*
855 ** Julian day.
856 */
857 rulep->r_type = JULIAN_DAY;
858 ++strp;
859 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
860 } else if (*strp == 'M') {
861 /*
862 ** Month, week, day.
863 */
864 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
865 ++strp;
866 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
867 if (strp == NULL)
868 return NULL;
869 if (*strp++ != '.')
870 return NULL;
871 strp = getnum(strp, &rulep->r_week, 1, 5);
872 if (strp == NULL)
873 return NULL;
874 if (*strp++ != '.')
875 return NULL;
876 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
877 } else if (is_digit(*strp)) {
878 /*
879 ** Day of year.
880 */
881 rulep->r_type = DAY_OF_YEAR;
882 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
883 } else return NULL; /* invalid format */
884 if (strp == NULL)
885 return NULL;
886 if (*strp == '/') {
887 /*
888 ** Time specified.
889 */
890 ++strp;
891 strp = getoffset(strp, &rulep->r_time);
892 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
893 return strp;
894 }
895
896 /*
897 ** Given a year, a rule, and the offset from UT at the time that rule takes
898 ** effect, calculate the year-relative time that rule takes effect.
899 */
900
901 static int_fast32_t ATTRIBUTE_PURE
902 transtime(const int year, const struct rule *const rulep,
903 const int_fast32_t offset)
904 {
905 bool leapyear;
906 int_fast32_t value;
907 int i;
908 int d, m1, yy0, yy1, yy2, dow;
909
910 INITIALIZE(value);
911 leapyear = isleap(year);
912 switch (rulep->r_type) {
913
914 case JULIAN_DAY:
915 /*
916 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
917 ** years.
918 ** In non-leap years, or if the day number is 59 or less, just
919 ** add SECSPERDAY times the day number-1 to the time of
920 ** January 1, midnight, to get the day.
921 */
922 value = (rulep->r_day - 1) * SECSPERDAY;
923 if (leapyear && rulep->r_day >= 60)
924 value += SECSPERDAY;
925 break;
926
927 case DAY_OF_YEAR:
928 /*
929 ** n - day of year.
930 ** Just add SECSPERDAY times the day number to the time of
931 ** January 1, midnight, to get the day.
932 */
933 value = rulep->r_day * SECSPERDAY;
934 break;
935
936 case MONTH_NTH_DAY_OF_WEEK:
937 /*
938 ** Mm.n.d - nth "dth day" of month m.
939 */
940
941 /*
942 ** Use Zeller's Congruence to get day-of-week of first day of
943 ** month.
944 */
945 m1 = (rulep->r_mon + 9) % 12 + 1;
946 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
947 yy1 = yy0 / 100;
948 yy2 = yy0 % 100;
949 dow = ((26 * m1 - 2) / 10 +
950 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
951 if (dow < 0)
952 dow += DAYSPERWEEK;
953
954 /*
955 ** "dow" is the day-of-week of the first day of the month. Get
956 ** the day-of-month (zero-origin) of the first "dow" day of the
957 ** month.
958 */
959 d = rulep->r_day - dow;
960 if (d < 0)
961 d += DAYSPERWEEK;
962 for (i = 1; i < rulep->r_week; ++i) {
963 if (d + DAYSPERWEEK >=
964 mon_lengths[leapyear][rulep->r_mon - 1])
965 break;
966 d += DAYSPERWEEK;
967 }
968
969 /*
970 ** "d" is the day-of-month (zero-origin) of the day we want.
971 */
972 value = d * SECSPERDAY;
973 for (i = 0; i < rulep->r_mon - 1; ++i)
974 value += mon_lengths[leapyear][i] * SECSPERDAY;
975 break;
976 }
977
978 /*
979 ** "value" is the year-relative time of 00:00:00 UT on the day in
980 ** question. To get the year-relative time of the specified local
981 ** time on that day, add the transition time and the current offset
982 ** from UT.
983 */
984 return value + rulep->r_time + offset;
985 }
986
987 /*
988 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
989 ** appropriate.
990 */
991
992 static bool
993 tzparse(const char *name, timezone_t sp,
994 bool lastditch)
995 {
996 const char * stdname;
997 const char * dstname;
998 size_t stdlen;
999 size_t dstlen;
1000 int_fast32_t stdoffset;
1001 int_fast32_t dstoffset;
1002 char * cp;
1003 bool load_ok;
1004
1005 dstname = NULL; /* XXX gcc */
1006 stdname = name;
1007 if (lastditch) {
1008 stdlen = strlen(name); /* length of standard zone name */
1009 name += stdlen;
1010 if (stdlen >= sizeof sp->chars)
1011 stdlen = (sizeof sp->chars) - 1;
1012 stdoffset = 0;
1013 } else {
1014 if (*name == '<') {
1015 name++;
1016 stdname = name;
1017 name = getqzname(name, '>');
1018 if (*name != '>')
1019 return false;
1020 stdlen = name - stdname;
1021 name++;
1022 } else {
1023 name = getzname(name);
1024 stdlen = name - stdname;
1025 }
1026 if (*name == '\0')
1027 return false;
1028 name = getoffset(name, &stdoffset);
1029 if (name == NULL)
1030 return false;
1031 }
1032 load_ok = tzload(TZDEFRULES, sp, false) == 0;
1033 if (!load_ok)
1034 sp->leapcnt = 0; /* so, we're off a little */
1035 if (*name != '\0') {
1036 if (*name == '<') {
1037 dstname = ++name;
1038 name = getqzname(name, '>');
1039 if (*name != '>')
1040 return false;
1041 dstlen = name - dstname;
1042 name++;
1043 } else {
1044 dstname = name;
1045 name = getzname(name);
1046 dstlen = name - dstname; /* length of DST zone name */
1047 }
1048 if (*name != '\0' && *name != ',' && *name != ';') {
1049 name = getoffset(name, &dstoffset);
1050 if (name == NULL)
1051 return false;
1052 } else dstoffset = stdoffset - SECSPERHOUR;
1053 if (*name == '\0' && !load_ok)
1054 name = TZDEFRULESTRING;
1055 if (*name == ',' || *name == ';') {
1056 struct rule start;
1057 struct rule end;
1058 int year;
1059 int yearlim;
1060 int timecnt;
1061 time_t janfirst;
1062
1063 ++name;
1064 if ((name = getrule(name, &start)) == NULL)
1065 return false;
1066 if (*name++ != ',')
1067 return false;
1068 if ((name = getrule(name, &end)) == NULL)
1069 return false;
1070 if (*name != '\0')
1071 return false;
1072 sp->typecnt = 2; /* standard time and DST */
1073 /*
1074 ** Two transitions per year, from EPOCH_YEAR forward.
1075 */
1076 init_ttinfo(&sp->ttis[0], -dstoffset, true,
1077 (int)(stdlen + 1));
1078 init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
1079 sp->defaulttype = 0;
1080 timecnt = 0;
1081 janfirst = 0;
1082 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1083 for (year = EPOCH_YEAR; year < yearlim; year++) {
1084 int_fast32_t
1085 starttime = transtime(year, &start, stdoffset),
1086 endtime = transtime(year, &end, dstoffset);
1087 int_fast32_t
1088 yearsecs = (year_lengths[isleap(year)]
1089 * SECSPERDAY);
1090 bool reversed = endtime < starttime;
1091 if (reversed) {
1092 int_fast32_t swap = starttime;
1093 starttime = endtime;
1094 endtime = swap;
1095 }
1096 if (reversed
1097 || (starttime < endtime
1098 && (endtime - starttime
1099 < (yearsecs
1100 + (stdoffset - dstoffset))))) {
1101 if (TZ_MAX_TIMES - 2 < timecnt)
1102 break;
1103 yearlim = year + YEARSPERREPEAT + 1;
1104 sp->ats[timecnt] = janfirst;
1105 if (increment_overflow_time
1106 (&sp->ats[timecnt], starttime))
1107 break;
1108 sp->types[timecnt++] = reversed;
1109 sp->ats[timecnt] = janfirst;
1110 if (increment_overflow_time
1111 (&sp->ats[timecnt], endtime))
1112 break;
1113 sp->types[timecnt++] = !reversed;
1114 }
1115 if (increment_overflow_time(&janfirst, yearsecs))
1116 break;
1117 }
1118 sp->timecnt = timecnt;
1119 if (!timecnt)
1120 sp->typecnt = 1; /* Perpetual DST. */
1121 } else {
1122 int_fast32_t theirstdoffset;
1123 int_fast32_t theirdstoffset;
1124 int_fast32_t theiroffset;
1125 bool isdst;
1126 int i;
1127 int j;
1128
1129 if (*name != '\0')
1130 return false;
1131 /*
1132 ** Initial values of theirstdoffset and theirdstoffset.
1133 */
1134 theirstdoffset = 0;
1135 for (i = 0; i < sp->timecnt; ++i) {
1136 j = sp->types[i];
1137 if (!sp->ttis[j].tt_isdst) {
1138 theirstdoffset =
1139 -sp->ttis[j].tt_gmtoff;
1140 break;
1141 }
1142 }
1143 theirdstoffset = 0;
1144 for (i = 0; i < sp->timecnt; ++i) {
1145 j = sp->types[i];
1146 if (sp->ttis[j].tt_isdst) {
1147 theirdstoffset =
1148 -sp->ttis[j].tt_gmtoff;
1149 break;
1150 }
1151 }
1152 /*
1153 ** Initially we're assumed to be in standard time.
1154 */
1155 isdst = false;
1156 theiroffset = theirstdoffset;
1157 /*
1158 ** Now juggle transition times and types
1159 ** tracking offsets as you do.
1160 */
1161 for (i = 0; i < sp->timecnt; ++i) {
1162 j = sp->types[i];
1163 sp->types[i] = sp->ttis[j].tt_isdst;
1164 if (sp->ttis[j].tt_ttisgmt) {
1165 /* No adjustment to transition time */
1166 } else {
1167 /*
1168 ** If summer time is in effect, and the
1169 ** transition time was not specified as
1170 ** standard time, add the summer time
1171 ** offset to the transition time;
1172 ** otherwise, add the standard time
1173 ** offset to the transition time.
1174 */
1175 /*
1176 ** Transitions from DST to DDST
1177 ** will effectively disappear since
1178 ** POSIX provides for only one DST
1179 ** offset.
1180 */
1181 if (isdst && !sp->ttis[j].tt_ttisstd) {
1182 sp->ats[i] += (time_t)
1183 (dstoffset - theirdstoffset);
1184 } else {
1185 sp->ats[i] += (time_t)
1186 (stdoffset - theirstdoffset);
1187 }
1188 }
1189 theiroffset = -sp->ttis[j].tt_gmtoff;
1190 if (sp->ttis[j].tt_isdst)
1191 theirstdoffset = theiroffset;
1192 else theirdstoffset = theiroffset;
1193 }
1194 /*
1195 ** Finally, fill in ttis.
1196 */
1197 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1198 init_ttinfo(&sp->ttis[1], -dstoffset, true,
1199 (int)(stdlen + 1));
1200 sp->typecnt = 2;
1201 sp->defaulttype = 0;
1202 }
1203 } else {
1204 dstlen = 0;
1205 sp->typecnt = 1; /* only standard time */
1206 sp->timecnt = 0;
1207 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1208 init_ttinfo(&sp->ttis[1], 0, false, 0);
1209 sp->defaulttype = 0;
1210 }
1211 sp->charcnt = (int)(stdlen + 1);
1212 if (dstlen != 0)
1213 sp->charcnt += (int)(dstlen + 1);
1214 if ((size_t) sp->charcnt > sizeof sp->chars)
1215 return false;
1216 cp = sp->chars;
1217 (void) memcpy(cp, stdname, stdlen);
1218 cp += stdlen;
1219 *cp++ = '\0';
1220 if (dstlen != 0) {
1221 (void) memcpy(cp, dstname, dstlen);
1222 *(cp + dstlen) = '\0';
1223 }
1224 return true;
1225 }
1226
1227 static void
1228 gmtload(struct state *const sp)
1229 {
1230 if (tzload(gmt, sp, true) != 0)
1231 (void) tzparse(gmt, sp, true);
1232 }
1233
1234 static int
1235 zoneinit(struct state *sp, char const *name)
1236 {
1237 if (name && ! name[0]) {
1238 /*
1239 ** User wants it fast rather than right.
1240 */
1241 sp->leapcnt = 0; /* so, we're off a little */
1242 sp->timecnt = 0;
1243 sp->typecnt = 0;
1244 sp->charcnt = 0;
1245 sp->goback = sp->goahead = false;
1246 init_ttinfo(&sp->ttis[0], 0, false, 0);
1247 strcpy(sp->chars, gmt);
1248 sp->defaulttype = 0;
1249 return 0;
1250 } else {
1251 int err = tzload(name, sp, true);
1252 if (err != 0 && name && name[0] != ':' &&
1253 tzparse(name, sp, false))
1254 return 0;
1255 return err;
1256 }
1257 }
1258
1259 static void
1260 tzsetlcl(char const *name)
1261 {
1262 struct state *sp = lclptr;
1263 int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1264 if (lcl < 0 ? lcl_is_set < 0
1265 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1266 return;
1267
1268 if (! sp)
1269 lclptr = sp = malloc(sizeof *lclptr);
1270 if (sp) {
1271 if (zoneinit(sp, name) != 0)
1272 zoneinit(sp, "");
1273 if (0 < lcl)
1274 strcpy(lcl_TZname, name);
1275 }
1276 settzname();
1277 lcl_is_set = lcl;
1278 }
1279
1280 #ifdef STD_INSPIRED
1281 void
1282 tzsetwall(void)
1283 {
1284 rwlock_wrlock(&lcl_lock);
1285 tzsetlcl(NULL);
1286 rwlock_unlock(&lcl_lock);
1287 }
1288 #endif
1289
1290 static void
1291 tzset_unlocked(void)
1292 {
1293 tzsetlcl(getenv("TZ"));
1294 }
1295
1296 void
1297 tzset(void)
1298 {
1299 rwlock_wrlock(&lcl_lock);
1300 tzset_unlocked();
1301 rwlock_unlock(&lcl_lock);
1302 }
1303
1304 static void
1305 gmtcheck(void)
1306 {
1307 static bool gmt_is_set;
1308 rwlock_wrlock(&lcl_lock);
1309 if (! gmt_is_set) {
1310 gmtptr = malloc(sizeof *gmtptr);
1311 if (gmtptr)
1312 gmtload(gmtptr);
1313 gmt_is_set = true;
1314 }
1315 rwlock_unlock(&lcl_lock);
1316 }
1317
1318 #if NETBSD_INSPIRED
1319
1320 timezone_t
1321 tzalloc(const char *name)
1322 {
1323 timezone_t sp = malloc(sizeof *sp);
1324 if (sp) {
1325 int err = zoneinit(sp, name);
1326 if (err != 0) {
1327 free(sp);
1328 errno = err;
1329 return NULL;
1330 }
1331 }
1332 return sp;
1333 }
1334
1335 void
1336 tzfree(timezone_t sp)
1337 {
1338 free(sp);
1339 }
1340
1341 /*
1342 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1343 ** ctime_r are obsolescent and have potential security problems that
1344 ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1345 **
1346 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1347 ** in zones with three or more time zone abbreviations.
1348 ** Callers can instead use localtime_rz + strftime.
1349 */
1350
1351 #endif
1352
1353 /*
1354 ** The easy way to behave "as if no library function calls" localtime
1355 ** is to not call it, so we drop its guts into "localsub", which can be
1356 ** freely called. (And no, the PANS doesn't require the above behavior,
1357 ** but it *is* desirable.)
1358 **
1359 ** If successful and OFFSET is nonzero,
1360 ** set the applicable parts of tzname, timezone and altzone;
1361 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
1362 ** since in that case tzset should have already done this step correctly.
1363 ** OFFSET's type is intfast32_t for compatibility with gmtsub.
1364 */
1365
1366 /*ARGSUSED*/
1367 static struct tm *
1368 localsub(struct state const *sp, time_t const *timep, int_fast32_t offset,
1369 struct tm *const tmp)
1370 {
1371 const struct ttinfo * ttisp;
1372 int i;
1373 struct tm * result;
1374 const time_t t = *timep;
1375
1376 if (sp == NULL) {
1377 /* Don't bother to set tzname etc.; tzset has already done it. */
1378 return gmtsub(gmtptr, timep, 0, tmp);
1379 }
1380 if ((sp->goback && t < sp->ats[0]) ||
1381 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1382 time_t newt = t;
1383 time_t seconds;
1384 time_t years;
1385
1386 if (t < sp->ats[0])
1387 seconds = sp->ats[0] - t;
1388 else seconds = t - sp->ats[sp->timecnt - 1];
1389 --seconds;
1390 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1391 seconds = (time_t)(years * AVGSECSPERYEAR);
1392 if (t < sp->ats[0])
1393 newt += seconds;
1394 else newt -= seconds;
1395 if (newt < sp->ats[0] ||
1396 newt > sp->ats[sp->timecnt - 1]) {
1397 errno = EINVAL;
1398 return NULL; /* "cannot happen" */
1399 }
1400 result = localsub(sp, &newt, offset, tmp);
1401 if (result) {
1402 int_fast64_t newy;
1403
1404 newy = result->tm_year;
1405 if (t < sp->ats[0])
1406 newy -= years;
1407 else newy += years;
1408 if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1409 errno = EOVERFLOW;
1410 return NULL;
1411 }
1412 result->tm_year = (int)newy;
1413 }
1414 return result;
1415 }
1416 if (sp->timecnt == 0 || t < sp->ats[0]) {
1417 i = sp->defaulttype;
1418 } else {
1419 int lo = 1;
1420 int hi = sp->timecnt;
1421
1422 while (lo < hi) {
1423 int mid = (lo + hi) / 2;
1424
1425 if (t < sp->ats[mid])
1426 hi = mid;
1427 else lo = mid + 1;
1428 }
1429 i = (int) sp->types[lo - 1];
1430 }
1431 ttisp = &sp->ttis[i];
1432 /*
1433 ** To get (wrong) behavior that's compatible with System V Release 2.0
1434 ** you'd replace the statement below with
1435 ** t += ttisp->tt_gmtoff;
1436 ** timesub(&t, 0L, sp, tmp);
1437 */
1438 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1439 if (result) {
1440 char *zn = setzone(sp, ttisp, offset);
1441 result->tm_isdst = ttisp->tt_isdst;
1442 #ifdef TM_ZONE
1443 result->TM_ZONE = zn;
1444 #endif /* defined TM_ZONE */
1445 }
1446 return result;
1447 }
1448
1449 #if NETBSD_INSPIRED
1450
1451 struct tm *
1452 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1453 {
1454 return localsub(sp, timep, 0, tmp);
1455 }
1456
1457 #endif
1458
1459 static struct tm *
1460 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1461 {
1462 rwlock_wrlock(&lcl_lock);
1463 if (setname || !lcl_is_set)
1464 tzset_unlocked();
1465 tmp = localsub(lclptr, timep, setname, tmp);
1466 rwlock_unlock(&lcl_lock);
1467 return tmp;
1468 }
1469
1470 struct tm *
1471 localtime(const time_t *const timep)
1472 {
1473 return localtime_tzset(timep, &tm, true);
1474 }
1475
1476 struct tm *
1477 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1478 {
1479 return localtime_tzset(timep, tmp, false);
1480 }
1481
1482 /*
1483 ** gmtsub is to gmtime as localsub is to localtime.
1484 */
1485
1486 static struct tm *
1487 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1488 struct tm *tmp)
1489 {
1490 struct tm * result;
1491
1492 result = timesub(timep, offset, gmtptr, tmp);
1493 #ifdef TM_ZONE
1494 /*
1495 ** Could get fancy here and deliver something such as
1496 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1497 ** but this is no time for a treasure hunt.
1498 */
1499 if (result)
1500 result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1501 gmtptr->chars : __UNCONST(gmt);
1502 #endif /* defined TM_ZONE */
1503 return result;
1504 }
1505
1506 struct tm *
1507 gmtime(const time_t *const timep)
1508 {
1509 return gmtime_r(timep, &tm);
1510 }
1511
1512 /*
1513 ** Re-entrant version of gmtime.
1514 */
1515
1516 struct tm *
1517 gmtime_r(const time_t * const timep, struct tm *tmp)
1518 {
1519 gmtcheck();
1520 return gmtsub(NULL, timep, 0, tmp);
1521 }
1522
1523 #ifdef STD_INSPIRED
1524
1525 struct tm *
1526 offtime(const time_t *const timep, long offset)
1527 {
1528 gmtcheck();
1529 return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1530 }
1531
1532 struct tm *
1533 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1534 {
1535 gmtcheck();
1536 return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1537 }
1538
1539 #endif /* defined STD_INSPIRED */
1540
1541 /*
1542 ** Return the number of leap years through the end of the given year
1543 ** where, to make the math easy, the answer for year zero is defined as zero.
1544 */
1545
1546 static int ATTRIBUTE_PURE
1547 leaps_thru_end_of(const int y)
1548 {
1549 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1550 -(leaps_thru_end_of(-(y + 1)) + 1);
1551 }
1552
1553 static struct tm *
1554 timesub(time_t const *timep, int_fast32_t offset, struct state const *sp,
1555 struct tm *tmp)
1556 {
1557 const struct lsinfo * lp;
1558 time_t tdays;
1559 int idays; /* unsigned would be so 2003 */
1560 int_fast64_t rem;
1561 int y;
1562 const int * ip;
1563 int_fast64_t corr;
1564 bool hit;
1565 int i;
1566
1567 corr = 0;
1568 hit = false;
1569 i = (sp == NULL) ? 0 : sp->leapcnt;
1570 while (--i >= 0) {
1571 lp = &sp->lsis[i];
1572 if (*timep >= lp->ls_trans) {
1573 if (*timep == lp->ls_trans) {
1574 hit = ((i == 0 && lp->ls_corr > 0) ||
1575 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1576 if (hit)
1577 while (i > 0 &&
1578 sp->lsis[i].ls_trans ==
1579 sp->lsis[i - 1].ls_trans + 1 &&
1580 sp->lsis[i].ls_corr ==
1581 sp->lsis[i - 1].ls_corr + 1) {
1582 ++hit;
1583 --i;
1584 }
1585 }
1586 corr = lp->ls_corr;
1587 break;
1588 }
1589 }
1590 y = EPOCH_YEAR;
1591 tdays = (time_t)(*timep / SECSPERDAY);
1592 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1593 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1594 int newy;
1595 time_t tdelta;
1596 int idelta;
1597 int leapdays;
1598
1599 tdelta = tdays / DAYSPERLYEAR;
1600 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1601 && tdelta <= INT_MAX))
1602 goto out_of_range;
1603 _DIAGASSERT(__type_fit(int, tdelta));
1604 idelta = (int)tdelta;
1605 if (idelta == 0)
1606 idelta = (tdays < 0) ? -1 : 1;
1607 newy = y;
1608 if (increment_overflow(&newy, idelta))
1609 goto out_of_range;
1610 leapdays = leaps_thru_end_of(newy - 1) -
1611 leaps_thru_end_of(y - 1);
1612 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1613 tdays -= leapdays;
1614 y = newy;
1615 }
1616 {
1617 int_fast32_t seconds;
1618
1619 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1620 tdays = (time_t)(seconds / SECSPERDAY);
1621 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1622 }
1623 /*
1624 ** Given the range, we can now fearlessly cast...
1625 */
1626 idays = (int) tdays;
1627 rem += offset - corr;
1628 while (rem < 0) {
1629 rem += SECSPERDAY;
1630 --idays;
1631 }
1632 while (rem >= SECSPERDAY) {
1633 rem -= SECSPERDAY;
1634 ++idays;
1635 }
1636 while (idays < 0) {
1637 if (increment_overflow(&y, -1))
1638 goto out_of_range;
1639 idays += year_lengths[isleap(y)];
1640 }
1641 while (idays >= year_lengths[isleap(y)]) {
1642 idays -= year_lengths[isleap(y)];
1643 if (increment_overflow(&y, 1))
1644 goto out_of_range;
1645 }
1646 tmp->tm_year = y;
1647 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1648 goto out_of_range;
1649 tmp->tm_yday = idays;
1650 /*
1651 ** The "extra" mods below avoid overflow problems.
1652 */
1653 tmp->tm_wday = EPOCH_WDAY +
1654 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1655 (DAYSPERNYEAR % DAYSPERWEEK) +
1656 leaps_thru_end_of(y - 1) -
1657 leaps_thru_end_of(EPOCH_YEAR - 1) +
1658 idays;
1659 tmp->tm_wday %= DAYSPERWEEK;
1660 if (tmp->tm_wday < 0)
1661 tmp->tm_wday += DAYSPERWEEK;
1662 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1663 rem %= SECSPERHOUR;
1664 tmp->tm_min = (int) (rem / SECSPERMIN);
1665 /*
1666 ** A positive leap second requires a special
1667 ** representation. This uses "... ??:59:60" et seq.
1668 */
1669 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1670 ip = mon_lengths[isleap(y)];
1671 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1672 idays -= ip[tmp->tm_mon];
1673 tmp->tm_mday = (int) (idays + 1);
1674 tmp->tm_isdst = 0;
1675 #ifdef TM_GMTOFF
1676 tmp->TM_GMTOFF = offset;
1677 #endif /* defined TM_GMTOFF */
1678 return tmp;
1679 out_of_range:
1680 errno = EOVERFLOW;
1681 return NULL;
1682 }
1683
1684 char *
1685 ctime(const time_t *const timep)
1686 {
1687 /*
1688 ** Section 4.12.3.2 of X3.159-1989 requires that
1689 ** The ctime function converts the calendar time pointed to by timer
1690 ** to local time in the form of a string. It is equivalent to
1691 ** asctime(localtime(timer))
1692 */
1693 struct tm *tmp = localtime(timep);
1694 return tmp ? asctime(tmp) : NULL;
1695 }
1696
1697 char *
1698 ctime_r(const time_t *const timep, char *buf)
1699 {
1700 struct tm mytm;
1701 struct tm *tmp = localtime_r(timep, &mytm);
1702 return tmp ? asctime_r(tmp, buf) : NULL;
1703 }
1704
1705 char *
1706 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1707 {
1708 struct tm mytm, *rtm;
1709
1710 rtm = localtime_rz(sp, timep, &mytm);
1711 if (rtm == NULL)
1712 return NULL;
1713 return asctime_r(rtm, buf);
1714 }
1715
1716 /*
1717 ** Adapted from code provided by Robert Elz, who writes:
1718 ** The "best" way to do mktime I think is based on an idea of Bob
1719 ** Kridle's (so its said...) from a long time ago.
1720 ** It does a binary search of the time_t space. Since time_t's are
1721 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1722 ** would still be very reasonable).
1723 */
1724
1725 #ifndef WRONG
1726 #define WRONG ((time_t)-1)
1727 #endif /* !defined WRONG */
1728
1729 /*
1730 ** Normalize logic courtesy Paul Eggert.
1731 */
1732
1733 static bool
1734 increment_overflow(int *const ip, int j)
1735 {
1736 int const i = *ip;
1737
1738 /*
1739 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1740 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1741 ** If i < 0 there can only be overflow if i + j < INT_MIN
1742 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1743 */
1744 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1745 return true;
1746 *ip += j;
1747 return false;
1748 }
1749
1750 static bool
1751 increment_overflow32(int_fast32_t *const lp, int const m)
1752 {
1753 int_fast32_t const l = *lp;
1754
1755 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1756 return true;
1757 *lp += m;
1758 return false;
1759 }
1760
1761 static bool
1762 increment_overflow_time(time_t *tp, int_fast32_t j)
1763 {
1764 /*
1765 ** This is like
1766 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1767 ** except that it does the right thing even if *tp + j would overflow.
1768 */
1769 if (! (j < 0
1770 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1771 : *tp <= time_t_max - j))
1772 return true;
1773 *tp += j;
1774 return false;
1775 }
1776
1777 static bool
1778 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1779 {
1780 int tensdelta;
1781
1782 tensdelta = (*unitsptr >= 0) ?
1783 (*unitsptr / base) :
1784 (-1 - (-1 - *unitsptr) / base);
1785 *unitsptr -= tensdelta * base;
1786 return increment_overflow(tensptr, tensdelta);
1787 }
1788
1789 static bool
1790 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1791 const int base)
1792 {
1793 int tensdelta;
1794
1795 tensdelta = (*unitsptr >= 0) ?
1796 (*unitsptr / base) :
1797 (-1 - (-1 - *unitsptr) / base);
1798 *unitsptr -= tensdelta * base;
1799 return increment_overflow32(tensptr, tensdelta);
1800 }
1801
1802 static int
1803 tmcomp(const struct tm *const atmp,
1804 const struct tm *const btmp)
1805 {
1806 int result;
1807
1808 if (atmp->tm_year != btmp->tm_year)
1809 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1810 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1811 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1812 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1813 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1814 result = atmp->tm_sec - btmp->tm_sec;
1815 return result;
1816 }
1817
1818 static time_t
1819 time2sub(struct tm *const tmp,
1820 struct tm *(*funcp)(struct state const *, time_t const *,
1821 int_fast32_t, struct tm *),
1822 struct state const *sp,
1823 const int_fast32_t offset,
1824 bool *okayp,
1825 bool do_norm_secs)
1826 {
1827 int dir;
1828 int i, j;
1829 int saved_seconds;
1830 int_fast32_t li;
1831 time_t lo;
1832 time_t hi;
1833 #ifdef NO_ERROR_IN_DST_GAP
1834 time_t ilo;
1835 #endif
1836 int_fast32_t y;
1837 time_t newt;
1838 time_t t;
1839 struct tm yourtm, mytm;
1840
1841 *okayp = false;
1842 yourtm = *tmp;
1843 #ifdef NO_ERROR_IN_DST_GAP
1844 again:
1845 #endif
1846 if (do_norm_secs) {
1847 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1848 SECSPERMIN))
1849 goto out_of_range;
1850 }
1851 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1852 goto out_of_range;
1853 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1854 goto out_of_range;
1855 y = yourtm.tm_year;
1856 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1857 goto out_of_range;
1858 /*
1859 ** Turn y into an actual year number for now.
1860 ** It is converted back to an offset from TM_YEAR_BASE later.
1861 */
1862 if (increment_overflow32(&y, TM_YEAR_BASE))
1863 goto out_of_range;
1864 while (yourtm.tm_mday <= 0) {
1865 if (increment_overflow32(&y, -1))
1866 goto out_of_range;
1867 li = y + (1 < yourtm.tm_mon);
1868 yourtm.tm_mday += year_lengths[isleap(li)];
1869 }
1870 while (yourtm.tm_mday > DAYSPERLYEAR) {
1871 li = y + (1 < yourtm.tm_mon);
1872 yourtm.tm_mday -= year_lengths[isleap(li)];
1873 if (increment_overflow32(&y, 1))
1874 goto out_of_range;
1875 }
1876 for ( ; ; ) {
1877 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1878 if (yourtm.tm_mday <= i)
1879 break;
1880 yourtm.tm_mday -= i;
1881 if (++yourtm.tm_mon >= MONSPERYEAR) {
1882 yourtm.tm_mon = 0;
1883 if (increment_overflow32(&y, 1))
1884 goto out_of_range;
1885 }
1886 }
1887 if (increment_overflow32(&y, -TM_YEAR_BASE))
1888 goto out_of_range;
1889 if (! (INT_MIN <= y && y <= INT_MAX))
1890 goto out_of_range;
1891 yourtm.tm_year = (int)y;
1892 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1893 saved_seconds = 0;
1894 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1895 /*
1896 ** We can't set tm_sec to 0, because that might push the
1897 ** time below the minimum representable time.
1898 ** Set tm_sec to 59 instead.
1899 ** This assumes that the minimum representable time is
1900 ** not in the same minute that a leap second was deleted from,
1901 ** which is a safer assumption than using 58 would be.
1902 */
1903 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1904 goto out_of_range;
1905 saved_seconds = yourtm.tm_sec;
1906 yourtm.tm_sec = SECSPERMIN - 1;
1907 } else {
1908 saved_seconds = yourtm.tm_sec;
1909 yourtm.tm_sec = 0;
1910 }
1911 /*
1912 ** Do a binary search (this works whatever time_t's type is).
1913 */
1914 /* LINTED const not */
1915 if (!TYPE_SIGNED(time_t)) {
1916 lo = 0;
1917 hi = lo - 1;
1918 } else {
1919 lo = 1;
1920 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1921 lo *= 2;
1922 hi = -(lo + 1);
1923 }
1924 #ifdef NO_ERROR_IN_DST_GAP
1925 ilo = lo;
1926 #endif
1927 for ( ; ; ) {
1928 t = lo / 2 + hi / 2;
1929 if (t < lo)
1930 t = lo;
1931 else if (t > hi)
1932 t = hi;
1933 if (! funcp(sp, &t, offset, &mytm)) {
1934 /*
1935 ** Assume that t is too extreme to be represented in
1936 ** a struct tm; arrange things so that it is less
1937 ** extreme on the next pass.
1938 */
1939 dir = (t > 0) ? 1 : -1;
1940 } else dir = tmcomp(&mytm, &yourtm);
1941 if (dir != 0) {
1942 if (t == lo) {
1943 if (t == time_t_max)
1944 goto out_of_range;
1945 ++t;
1946 ++lo;
1947 } else if (t == hi) {
1948 if (t == time_t_min)
1949 goto out_of_range;
1950 --t;
1951 --hi;
1952 }
1953 #ifdef NO_ERROR_IN_DST_GAP
1954 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1955 do_norm_secs) {
1956 for (i = sp->typecnt - 1; i >= 0; --i) {
1957 for (j = sp->typecnt - 1; j >= 0; --j) {
1958 time_t off;
1959 if (sp->ttis[j].tt_isdst ==
1960 sp->ttis[i].tt_isdst)
1961 continue;
1962 off = sp->ttis[j].tt_gmtoff -
1963 sp->ttis[i].tt_gmtoff;
1964 yourtm.tm_sec += off < 0 ?
1965 -off : off;
1966 goto again;
1967 }
1968 }
1969 }
1970 #endif
1971 if (lo > hi)
1972 goto invalid;
1973 if (dir > 0)
1974 hi = t;
1975 else lo = t;
1976 continue;
1977 }
1978 #if defined TM_GMTOFF && ! UNINIT_TRAP
1979 if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
1980 && (yourtm.TM_GMTOFF < 0
1981 ? (-SECSPERDAY <= yourtm.TM_GMTOFF
1982 && (mytm.TM_GMTOFF <=
1983 (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
1984 + yourtm.TM_GMTOFF)))
1985 : (yourtm.TM_GMTOFF <= SECSPERDAY
1986 && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
1987 + yourtm.TM_GMTOFF)
1988 <= mytm.TM_GMTOFF)))) {
1989 /* MYTM matches YOURTM except with the wrong UTC offset.
1990 YOURTM.TM_GMTOFF is plausible, so try it instead.
1991 It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
1992 since the guess gets checked. */
1993 time_t altt = t;
1994 int_fast32_t diff = (int_fast32_t)
1995 (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
1996 if (!increment_overflow_time(&altt, diff)) {
1997 struct tm alttm;
1998 if (! funcp(sp, &altt, offset, &alttm)
1999 && alttm.tm_isdst == mytm.tm_isdst
2000 && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
2001 && tmcomp(&alttm, &yourtm)) {
2002 t = altt;
2003 mytm = alttm;
2004 }
2005 }
2006 }
2007 #endif
2008 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2009 break;
2010 /*
2011 ** Right time, wrong type.
2012 ** Hunt for right time, right type.
2013 ** It's okay to guess wrong since the guess
2014 ** gets checked.
2015 */
2016 if (sp == NULL)
2017 goto invalid;
2018 for (i = sp->typecnt - 1; i >= 0; --i) {
2019 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2020 continue;
2021 for (j = sp->typecnt - 1; j >= 0; --j) {
2022 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2023 continue;
2024 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2025 sp->ttis[i].tt_gmtoff);
2026 if (! funcp(sp, &newt, offset, &mytm))
2027 continue;
2028 if (tmcomp(&mytm, &yourtm) != 0)
2029 continue;
2030 if (mytm.tm_isdst != yourtm.tm_isdst)
2031 continue;
2032 /*
2033 ** We have a match.
2034 */
2035 t = newt;
2036 goto label;
2037 }
2038 }
2039 goto invalid;
2040 }
2041 label:
2042 newt = t + saved_seconds;
2043 if ((newt < t) != (saved_seconds < 0))
2044 goto out_of_range;
2045 t = newt;
2046 if (funcp(sp, &t, offset, tmp)) {
2047 *okayp = true;
2048 return t;
2049 }
2050 out_of_range:
2051 errno = EOVERFLOW;
2052 return WRONG;
2053 invalid:
2054 errno = EINVAL;
2055 return WRONG;
2056 }
2057
2058 static time_t
2059 time2(struct tm * const tmp,
2060 struct tm *(*funcp)(struct state const *, time_t const *,
2061 int_fast32_t, struct tm *),
2062 struct state const *sp,
2063 const int_fast32_t offset,
2064 bool *okayp)
2065 {
2066 time_t t;
2067
2068 /*
2069 ** First try without normalization of seconds
2070 ** (in case tm_sec contains a value associated with a leap second).
2071 ** If that fails, try with normalization of seconds.
2072 */
2073 t = time2sub(tmp, funcp, sp, offset, okayp, false);
2074 return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2075 }
2076
2077 static time_t
2078 time1(struct tm *const tmp,
2079 struct tm *(*funcp) (struct state const *, time_t const *,
2080 int_fast32_t, struct tm *),
2081 struct state const *sp,
2082 const int_fast32_t offset)
2083 {
2084 time_t t;
2085 int samei, otheri;
2086 int sameind, otherind;
2087 int i;
2088 int nseen;
2089 int save_errno;
2090 char seen[TZ_MAX_TYPES];
2091 unsigned char types[TZ_MAX_TYPES];
2092 bool okay;
2093
2094 if (tmp == NULL) {
2095 errno = EINVAL;
2096 return WRONG;
2097 }
2098 if (tmp->tm_isdst > 1)
2099 tmp->tm_isdst = 1;
2100 save_errno = errno;
2101 t = time2(tmp, funcp, sp, offset, &okay);
2102 if (okay) {
2103 errno = save_errno;
2104 return t;
2105 }
2106 if (tmp->tm_isdst < 0)
2107 #ifdef PCTS
2108 /*
2109 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2110 */
2111 tmp->tm_isdst = 0; /* reset to std and try again */
2112 #else
2113 return t;
2114 #endif /* !defined PCTS */
2115 /*
2116 ** We're supposed to assume that somebody took a time of one type
2117 ** and did some math on it that yielded a "struct tm" that's bad.
2118 ** We try to divine the type they started from and adjust to the
2119 ** type they need.
2120 */
2121 if (sp == NULL) {
2122 errno = EINVAL;
2123 return WRONG;
2124 }
2125 for (i = 0; i < sp->typecnt; ++i)
2126 seen[i] = false;
2127 nseen = 0;
2128 for (i = sp->timecnt - 1; i >= 0; --i)
2129 if (!seen[sp->types[i]]) {
2130 seen[sp->types[i]] = true;
2131 types[nseen++] = sp->types[i];
2132 }
2133 for (sameind = 0; sameind < nseen; ++sameind) {
2134 samei = types[sameind];
2135 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2136 continue;
2137 for (otherind = 0; otherind < nseen; ++otherind) {
2138 otheri = types[otherind];
2139 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2140 continue;
2141 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2142 sp->ttis[samei].tt_gmtoff);
2143 tmp->tm_isdst = !tmp->tm_isdst;
2144 t = time2(tmp, funcp, sp, offset, &okay);
2145 if (okay) {
2146 errno = save_errno;
2147 return t;
2148 }
2149 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2150 sp->ttis[samei].tt_gmtoff);
2151 tmp->tm_isdst = !tmp->tm_isdst;
2152 }
2153 }
2154 errno = EOVERFLOW;
2155 return WRONG;
2156 }
2157
2158 static time_t
2159 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2160 {
2161 if (sp)
2162 return time1(tmp, localsub, sp, setname);
2163 else {
2164 gmtcheck();
2165 return time1(tmp, gmtsub, gmtptr, 0);
2166 }
2167 }
2168
2169 #if NETBSD_INSPIRED
2170
2171 time_t
2172 mktime_z(timezone_t sp, struct tm *const tmp)
2173 {
2174 return mktime_tzname(sp, tmp, false);
2175 }
2176
2177 #endif
2178
2179 time_t
2180 mktime(struct tm *const tmp)
2181 {
2182 time_t t;
2183
2184 rwlock_wrlock(&lcl_lock);
2185 tzset_unlocked();
2186 t = mktime_tzname(lclptr, tmp, true);
2187 rwlock_unlock(&lcl_lock);
2188 return t;
2189 }
2190
2191 #ifdef STD_INSPIRED
2192
2193 time_t
2194 timelocal_z(const timezone_t sp, struct tm *const tmp)
2195 {
2196 if (tmp != NULL)
2197 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2198 return mktime_z(sp, tmp);
2199 }
2200
2201 time_t
2202 timelocal(struct tm *const tmp)
2203 {
2204 if (tmp != NULL)
2205 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2206 return mktime(tmp);
2207 }
2208
2209 time_t
2210 timegm(struct tm *const tmp)
2211 {
2212
2213 return timeoff(tmp, 0);
2214 }
2215
2216 time_t
2217 timeoff(struct tm *const tmp, long offset)
2218 {
2219 if (tmp)
2220 tmp->tm_isdst = 0;
2221 gmtcheck();
2222 return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2223 }
2224
2225 #endif /* defined STD_INSPIRED */
2226
2227 /*
2228 ** XXX--is the below the right way to conditionalize??
2229 */
2230
2231 #ifdef STD_INSPIRED
2232
2233 /*
2234 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2235 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2236 ** is not the case if we are accounting for leap seconds.
2237 ** So, we provide the following conversion routines for use
2238 ** when exchanging timestamps with POSIX conforming systems.
2239 */
2240
2241 static int_fast64_t
2242 leapcorr(const timezone_t sp, time_t t)
2243 {
2244 struct lsinfo const * lp;
2245 int i;
2246
2247 i = sp->leapcnt;
2248 while (--i >= 0) {
2249 lp = &sp->lsis[i];
2250 if (t >= lp->ls_trans)
2251 return lp->ls_corr;
2252 }
2253 return 0;
2254 }
2255
2256 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2257 time2posix_z(timezone_t sp, time_t t)
2258 {
2259 return (time_t)(t - leapcorr(sp, t));
2260 }
2261
2262 time_t
2263 time2posix(time_t t)
2264 {
2265 rwlock_wrlock(&lcl_lock);
2266 if (!lcl_is_set)
2267 tzset_unlocked();
2268 if (lclptr)
2269 t = (time_t)(t - leapcorr(lclptr, t));
2270 rwlock_unlock(&lcl_lock);
2271 return t;
2272 }
2273
2274 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2275 posix2time_z(timezone_t sp, time_t t)
2276 {
2277 time_t x;
2278 time_t y;
2279
2280 /*
2281 ** For a positive leap second hit, the result
2282 ** is not unique. For a negative leap second
2283 ** hit, the corresponding time doesn't exist,
2284 ** so we return an adjacent second.
2285 */
2286 x = (time_t)(t + leapcorr(sp, t));
2287 y = (time_t)(x - leapcorr(sp, x));
2288 if (y < t) {
2289 do {
2290 x++;
2291 y = (time_t)(x - leapcorr(sp, x));
2292 } while (y < t);
2293 x -= y != t;
2294 } else if (y > t) {
2295 do {
2296 --x;
2297 y = (time_t)(x - leapcorr(sp, x));
2298 } while (y > t);
2299 x += y != t;
2300 }
2301 return x;
2302 }
2303
2304 time_t
2305 posix2time(time_t t)
2306 {
2307 rwlock_wrlock(&lcl_lock);
2308 if (!lcl_is_set)
2309 tzset_unlocked();
2310 if (lclptr)
2311 t = posix2time_z(lclptr, t);
2312 rwlock_unlock(&lcl_lock);
2313 return t;
2314 }
2315
2316 #endif /* defined STD_INSPIRED */
2317