localtime.c revision 1.83 1 /* $NetBSD: localtime.c,v 1.83 2014/08/15 11:04:07 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.83 2014/08/15 11:04:07 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #if defined(__weak_alias)
32 __weak_alias(daylight,_daylight)
33 __weak_alias(tzname,_tzname)
34 #endif
35
36 #ifndef TZ_ABBR_MAX_LEN
37 #define TZ_ABBR_MAX_LEN 16
38 #endif /* !defined TZ_ABBR_MAX_LEN */
39
40 #ifndef TZ_ABBR_CHAR_SET
41 #define TZ_ABBR_CHAR_SET \
42 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
43 #endif /* !defined TZ_ABBR_CHAR_SET */
44
45 #ifndef TZ_ABBR_ERR_CHAR
46 #define TZ_ABBR_ERR_CHAR '_'
47 #endif /* !defined TZ_ABBR_ERR_CHAR */
48
49 /* The minimum and maximum finite time values. */
50 static time_t const time_t_min =
51 (TYPE_SIGNED(time_t)
52 ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)
53 : 0);
54 static time_t const time_t_max =
55 (TYPE_SIGNED(time_t)
56 ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1))
57 : -1);
58
59 /*
60 ** SunOS 4.1.1 headers lack O_BINARY.
61 */
62
63 #ifdef O_BINARY
64 #define OPEN_MODE (O_RDONLY | O_BINARY)
65 #endif /* defined O_BINARY */
66 #ifndef O_BINARY
67 #define OPEN_MODE O_RDONLY
68 #endif /* !defined O_BINARY */
69
70 #ifndef WILDABBR
71 /*
72 ** Someone might make incorrect use of a time zone abbreviation:
73 ** 1. They might reference tzname[0] before calling tzset (explicitly
74 ** or implicitly).
75 ** 2. They might reference tzname[1] before calling tzset (explicitly
76 ** or implicitly).
77 ** 3. They might reference tzname[1] after setting to a time zone
78 ** in which Daylight Saving Time is never observed.
79 ** 4. They might reference tzname[0] after setting to a time zone
80 ** in which Standard Time is never observed.
81 ** 5. They might reference tm.TM_ZONE after calling offtime.
82 ** What's best to do in the above cases is open to debate;
83 ** for now, we just set things up so that in any of the five cases
84 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
85 ** string "tzname[0] used before set", and similarly for the other cases.
86 ** And another: initialize tzname[0] to "ERA", with an explanation in the
87 ** manual page of what this "time zone abbreviation" means (doing this so
88 ** that tzname[0] has the "normal" length of three characters).
89 */
90 #define WILDABBR " "
91 #endif /* !defined WILDABBR */
92
93 static const char wildabbr[] = WILDABBR;
94
95 static const char gmt[] = "GMT";
96
97 /*
98 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
99 ** We default to US rules as of 1999-08-17.
100 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
101 ** implementation dependent; for historical reasons, US rules are a
102 ** common default.
103 */
104 #ifndef TZDEFRULESTRING
105 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
106 #endif /* !defined TZDEFDST */
107
108 struct ttinfo { /* time type information */
109 int_fast32_t tt_gmtoff; /* UT offset in seconds */
110 int tt_isdst; /* used to set tm_isdst */
111 int tt_abbrind; /* abbreviation list index */
112 int tt_ttisstd; /* TRUE if transition is std time */
113 int tt_ttisgmt; /* TRUE if transition is UT */
114 };
115
116 struct lsinfo { /* leap second information */
117 time_t ls_trans; /* transition time */
118 int_fast64_t ls_corr; /* correction to apply */
119 };
120
121 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
122
123 #ifdef TZNAME_MAX
124 #define MY_TZNAME_MAX TZNAME_MAX
125 #endif /* defined TZNAME_MAX */
126 #ifndef TZNAME_MAX
127 #define MY_TZNAME_MAX 255
128 #endif /* !defined TZNAME_MAX */
129
130 struct __state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 int goback;
136 int goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
159 const int_fast32_t offset, struct tm *tmp);
160
161 /*
162 ** Prototypes for static functions.
163 */
164
165 static int_fast32_t detzcode(const char * codep);
166 static int_fast64_t detzcode64(const char * codep);
167 static int differ_by_repeat(time_t t1, time_t t0);
168 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
169 static const char * getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
170 static const char * getnum(const char * strp, int * nump, int min,
171 int max);
172 static const char * getsecs(const char * strp, int_fast32_t * secsp);
173 static const char * getoffset(const char * strp, int_fast32_t * offsetp);
174 static const char * getrule(const char * strp, struct rule * rulep);
175 static void gmtload(timezone_t sp);
176 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
177 const int_fast32_t offset, struct tm * tmp);
178 static struct tm * localsub(const timezone_t sp, const time_t *timep,
179 const int_fast32_t offset, struct tm *tmp);
180 static int increment_overflow(int * number, int delta);
181 static int increment_overflow32(int_fast32_t * number, int delta);
182 static int increment_overflow_time(time_t *t, int_fast32_t delta);
183 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
184 static int normalize_overflow(int * tensptr, int * unitsptr,
185 int base);
186 static int normalize_overflow32(int_fast32_t * tensptr,
187 int * unitsptr, int base);
188 static void settzname(void);
189 static time_t time1(const timezone_t sp, struct tm * const tmp,
190 subfun_t funcp, const int_fast32_t offset);
191 static time_t time2(const timezone_t sp, struct tm * const tmp,
192 subfun_t funcp,
193 const int_fast32_t offset, int *const okayp);
194 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
195 subfun_t funcp, const int_fast32_t offset,
196 int *const okayp, const int do_norm_secs);
197 static struct tm * timesub(const timezone_t sp, const time_t * timep,
198 const int_fast32_t offset, struct tm * tmp);
199 static int tmcomp(const struct tm * atmp,
200 const struct tm * btmp);
201 static int_fast32_t transtime(int year, const struct rule * rulep,
202 int_fast32_t offset)
203 ATTRIBUTE_PURE;
204 static int typesequiv(const timezone_t sp, int a, int b);
205 static int tzload(timezone_t sp, const char * name,
206 int doextend);
207 static int tzparse(timezone_t sp, const char * name,
208 int lastditch);
209 static void tzset_unlocked(void);
210 static void tzsetwall_unlocked(void);
211 static int_fast64_t leapcorr(const timezone_t sp, time_t * timep);
212
213 static timezone_t lclptr;
214 static timezone_t gmtptr;
215
216 #ifndef TZ_STRLEN_MAX
217 #define TZ_STRLEN_MAX 255
218 #endif /* !defined TZ_STRLEN_MAX */
219
220 static char lcl_TZname[TZ_STRLEN_MAX + 1];
221 static int lcl_is_set;
222 static int gmt_is_set;
223
224 #if !defined(__LIBC12_SOURCE__)
225
226 __aconst char * tzname[2] = {
227 (__aconst char *)__UNCONST(wildabbr),
228 (__aconst char *)__UNCONST(wildabbr)
229 };
230
231 #else
232
233 extern __aconst char * tzname[2];
234
235 #endif
236
237 #ifdef _REENTRANT
238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
239 #endif
240
241 /*
242 ** Section 4.12.3 of X3.159-1989 requires that
243 ** Except for the strftime function, these functions [asctime,
244 ** ctime, gmtime, localtime] return values in one of two static
245 ** objects: a broken-down time structure and an array of char.
246 ** Thanks to Paul Eggert for noting this.
247 */
248
249 static struct tm tm;
250
251 #ifdef USG_COMPAT
252 #if !defined(__LIBC12_SOURCE__)
253 long timezone = 0;
254 int daylight = 0;
255 #else
256 extern int daylight;
257 extern long timezone __RENAME(__timezone13);
258 #endif
259 #endif /* defined USG_COMPAT */
260
261 #ifdef ALTZONE
262 long altzone = 0;
263 #endif /* defined ALTZONE */
264
265 static int_fast32_t
266 detzcode(const char *const codep)
267 {
268 int_fast32_t result;
269 int i;
270
271 result = (codep[0] & 0x80) ? -1 : 0;
272 for (i = 0; i < 4; ++i)
273 result = (result << 8) | (codep[i] & 0xff);
274 return result;
275 }
276
277 static int_fast64_t
278 detzcode64(const char *const codep)
279 {
280 int_fast64_t result;
281 int i;
282
283 result = (codep[0] & 0x80) ? -1 : 0;
284 for (i = 0; i < 8; ++i)
285 result = (result << 8) | (codep[i] & 0xff);
286 return result;
287 }
288
289 const char *
290 tzgetname(const timezone_t sp, int isdst)
291 {
292 int i;
293 for (i = 0; i < sp->timecnt; ++i) {
294 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
295
296 if (ttisp->tt_isdst == isdst)
297 return &sp->chars[ttisp->tt_abbrind];
298 }
299 return NULL;
300 }
301
302 static void
303 settzname_z(timezone_t sp)
304 {
305 int i;
306
307 /*
308 ** Scrub the abbreviations.
309 ** First, replace bogus characters.
310 */
311 for (i = 0; i < sp->charcnt; ++i)
312 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
313 sp->chars[i] = TZ_ABBR_ERR_CHAR;
314 /*
315 ** Second, truncate long abbreviations.
316 */
317 for (i = 0; i < sp->typecnt; ++i) {
318 const struct ttinfo * const ttisp = &sp->ttis[i];
319 char * cp = &sp->chars[ttisp->tt_abbrind];
320
321 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
322 strcmp(cp, GRANDPARENTED) != 0)
323 *(cp + TZ_ABBR_MAX_LEN) = '\0';
324 }
325 }
326
327 static void
328 settzname(void)
329 {
330 timezone_t const sp = lclptr;
331 int i;
332
333 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
334 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
335 #ifdef USG_COMPAT
336 daylight = 0;
337 timezone = 0;
338 #endif /* defined USG_COMPAT */
339 #ifdef ALTZONE
340 altzone = 0;
341 #endif /* defined ALTZONE */
342 if (sp == NULL) {
343 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
344 return;
345 }
346 /*
347 ** And to get the latest zone names into tzname. . .
348 */
349 for (i = 0; i < sp->typecnt; ++i) {
350 const struct ttinfo * const ttisp = &sp->ttis[i];
351
352 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
353 #ifdef USG_COMPAT
354 if (ttisp->tt_isdst)
355 daylight = 1;
356 if (!ttisp->tt_isdst)
357 timezone = -(ttisp->tt_gmtoff);
358 #endif /* defined USG_COMPAT */
359 #ifdef ALTZONE
360 if (ttisp->tt_isdst)
361 altzone = -(ttisp->tt_gmtoff);
362 #endif /* defined ALTZONE */
363 }
364 settzname_z(sp);
365 }
366
367 static int
368 differ_by_repeat(const time_t t1, const time_t t0)
369 {
370 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
371 return 0;
372 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
373 }
374
375 static int
376 tzload(timezone_t sp, const char *name, const int doextend)
377 {
378 const char * p;
379 int i;
380 int fid;
381 int stored;
382 ssize_t nread;
383 typedef union {
384 struct tzhead tzhead;
385 char buf[2 * sizeof(struct tzhead) +
386 2 * sizeof *sp +
387 4 * TZ_MAX_TIMES];
388 } u_t;
389 union local_storage {
390 /*
391 ** Section 4.9.1 of the C standard says that
392 ** "FILENAME_MAX expands to an integral constant expression
393 ** that is the size needed for an array of char large enough
394 ** to hold the longest file name string that the implementation
395 ** guarantees can be opened."
396 */
397 char fullname[FILENAME_MAX + 1];
398
399 /* The main part of the storage for this function. */
400 struct {
401 u_t u;
402 struct __state st;
403 } u;
404 };
405 char *fullname;
406 u_t *up;
407 int doaccess;
408 union local_storage *lsp;
409 lsp = malloc(sizeof *lsp);
410 if (!lsp)
411 return -1;
412 fullname = lsp->fullname;
413 up = &lsp->u.u;
414
415 sp->goback = sp->goahead = FALSE;
416
417 if (! name) {
418 name = TZDEFAULT;
419 if (! name)
420 goto oops;
421 }
422
423 if (name[0] == ':')
424 ++name;
425 doaccess = name[0] == '/';
426 if (!doaccess) {
427 p = TZDIR;
428 if (! p || sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
429 goto oops;
430 strcpy(fullname, p);
431 strcat(fullname, "/");
432 strcat(fullname, name);
433 /* Set doaccess if '.' (as in "../") shows up in name. */
434 if (strchr(name, '.'))
435 doaccess = TRUE;
436 name = fullname;
437 }
438 if (doaccess && access(name, R_OK) != 0)
439 goto oops;
440
441 fid = open(name, OPEN_MODE);
442 if (fid < 0)
443 goto oops;
444 nread = read(fid, up->buf, sizeof up->buf);
445 if (close(fid) < 0 || nread <= 0)
446 goto oops;
447 for (stored = 4; stored <= 8; stored *= 2) {
448 int ttisstdcnt;
449 int ttisgmtcnt;
450 int timecnt;
451
452 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
453 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
454 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
455 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
456 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
457 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
458 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
459 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
460 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
461 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
462 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
463 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
464 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
465 goto oops;
466 if (nread - (p - up->buf) <
467 sp->timecnt * stored + /* ats */
468 sp->timecnt + /* types */
469 sp->typecnt * 6 + /* ttinfos */
470 sp->charcnt + /* chars */
471 sp->leapcnt * (stored + 4) + /* lsinfos */
472 ttisstdcnt + /* ttisstds */
473 ttisgmtcnt) /* ttisgmts */
474 goto oops;
475 timecnt = 0;
476 for (i = 0; i < sp->timecnt; ++i) {
477 int_fast64_t at
478 = stored == 4 ? detzcode(p) : detzcode64(p);
479 sp->types[i] = ((TYPE_SIGNED(time_t)
480 ? time_t_min <= at
481 : 0 <= at)
482 && at <= time_t_max);
483 if (sp->types[i]) {
484 if (i && !timecnt && at != time_t_min) {
485 /*
486 ** Keep the earlier record, but tweak
487 ** it so that it starts with the
488 ** minimum time_t value.
489 */
490 sp->types[i - 1] = 1;
491 sp->ats[timecnt++] = time_t_min;
492 }
493 _DIAGASSERT(__type_fit(time_t, at));
494 sp->ats[timecnt++] = (time_t)at;
495 }
496 p += stored;
497 }
498 timecnt = 0;
499 for (i = 0; i < sp->timecnt; ++i) {
500 unsigned char typ = *p++;
501 if (sp->typecnt <= typ)
502 goto oops;
503 if (sp->types[i])
504 sp->types[timecnt++] = typ;
505 }
506 for (i = 0; i < sp->typecnt; ++i) {
507 struct ttinfo * ttisp;
508
509 ttisp = &sp->ttis[i];
510 ttisp->tt_gmtoff = detzcode(p);
511 p += 4;
512 ttisp->tt_isdst = (unsigned char) *p++;
513 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
514 goto oops;
515 ttisp->tt_abbrind = (unsigned char) *p++;
516 if (ttisp->tt_abbrind < 0 ||
517 ttisp->tt_abbrind > sp->charcnt)
518 goto oops;
519 }
520 for (i = 0; i < sp->charcnt; ++i)
521 sp->chars[i] = *p++;
522 sp->chars[i] = '\0'; /* ensure '\0' at end */
523 for (i = 0; i < sp->leapcnt; ++i) {
524 struct lsinfo * lsisp;
525
526 lsisp = &sp->lsis[i];
527 lsisp->ls_trans = (time_t)((stored == 4) ?
528 detzcode(p) : detzcode64(p));
529 p += stored;
530 lsisp->ls_corr = detzcode(p);
531 p += 4;
532 }
533 for (i = 0; i < sp->typecnt; ++i) {
534 struct ttinfo * ttisp;
535
536 ttisp = &sp->ttis[i];
537 if (ttisstdcnt == 0)
538 ttisp->tt_ttisstd = FALSE;
539 else {
540 ttisp->tt_ttisstd = *p++;
541 if (ttisp->tt_ttisstd != TRUE &&
542 ttisp->tt_ttisstd != FALSE)
543 goto oops;
544 }
545 }
546 for (i = 0; i < sp->typecnt; ++i) {
547 struct ttinfo * ttisp;
548
549 ttisp = &sp->ttis[i];
550 if (ttisgmtcnt == 0)
551 ttisp->tt_ttisgmt = FALSE;
552 else {
553 ttisp->tt_ttisgmt = *p++;
554 if (ttisp->tt_ttisgmt != TRUE &&
555 ttisp->tt_ttisgmt != FALSE)
556 goto oops;
557 }
558 }
559 /*
560 ** If this is an old file, we're done.
561 */
562 if (up->tzhead.tzh_version[0] == '\0')
563 break;
564 nread -= p - up->buf;
565 for (i = 0; i < nread; ++i)
566 up->buf[i] = p[i];
567 /*
568 ** If this is a signed narrow time_t system, we're done.
569 */
570 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
571 break;
572 }
573 if (doextend && nread > 2 &&
574 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
575 sp->typecnt + 2 <= TZ_MAX_TYPES) {
576 struct __state *ts = &lsp->u.st;
577 int result;
578
579 up->buf[nread - 1] = '\0';
580 result = tzparse(ts, &up->buf[1], FALSE);
581 if (result == 0 && ts->typecnt == 2 &&
582 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
583 for (i = 0; i < 2; ++i)
584 ts->ttis[i].tt_abbrind +=
585 sp->charcnt;
586 for (i = 0; i < ts->charcnt; ++i)
587 sp->chars[sp->charcnt++] =
588 ts->chars[i];
589 i = 0;
590 while (i < ts->timecnt &&
591 ts->ats[i] <=
592 sp->ats[sp->timecnt - 1])
593 ++i;
594 while (i < ts->timecnt &&
595 sp->timecnt < TZ_MAX_TIMES) {
596 sp->ats[sp->timecnt] =
597 ts->ats[i];
598 sp->types[sp->timecnt] =
599 sp->typecnt +
600 ts->types[i];
601 ++sp->timecnt;
602 ++i;
603 }
604 sp->ttis[sp->typecnt++] = ts->ttis[0];
605 sp->ttis[sp->typecnt++] = ts->ttis[1];
606 }
607 }
608 if (sp->timecnt > 1) {
609 for (i = 1; i < sp->timecnt; ++i)
610 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
611 differ_by_repeat(sp->ats[i], sp->ats[0])) {
612 sp->goback = TRUE;
613 break;
614 }
615 for (i = sp->timecnt - 2; i >= 0; --i)
616 if (typesequiv(sp, sp->types[sp->timecnt - 1],
617 sp->types[i]) &&
618 differ_by_repeat(sp->ats[sp->timecnt - 1],
619 sp->ats[i])) {
620 sp->goahead = TRUE;
621 break;
622 }
623 }
624 /*
625 ** If type 0 is is unused in transitions,
626 ** it's the type to use for early times.
627 */
628 for (i = 0; i < sp->typecnt; ++i)
629 if (sp->types[i] == 0)
630 break;
631 i = (i >= sp->typecnt) ? 0 : -1;
632 /*
633 ** Absent the above,
634 ** if there are transition times
635 ** and the first transition is to a daylight time
636 ** find the standard type less than and closest to
637 ** the type of the first transition.
638 */
639 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
640 i = sp->types[0];
641 while (--i >= 0)
642 if (!sp->ttis[i].tt_isdst)
643 break;
644 }
645 /*
646 ** If no result yet, find the first standard type.
647 ** If there is none, punt to type zero.
648 */
649 if (i < 0) {
650 i = 0;
651 while (sp->ttis[i].tt_isdst)
652 if (++i >= sp->typecnt) {
653 i = 0;
654 break;
655 }
656 }
657 sp->defaulttype = i;
658 free(up);
659 return 0;
660 oops:
661 free(up);
662 return -1;
663 }
664
665 static int
666 typesequiv(const timezone_t sp, const int a, const int b)
667 {
668 int result;
669
670 if (sp == NULL ||
671 a < 0 || a >= sp->typecnt ||
672 b < 0 || b >= sp->typecnt)
673 result = FALSE;
674 else {
675 const struct ttinfo * ap = &sp->ttis[a];
676 const struct ttinfo * bp = &sp->ttis[b];
677 result = ap->tt_gmtoff == bp->tt_gmtoff &&
678 ap->tt_isdst == bp->tt_isdst &&
679 ap->tt_ttisstd == bp->tt_ttisstd &&
680 ap->tt_ttisgmt == bp->tt_ttisgmt &&
681 strcmp(&sp->chars[ap->tt_abbrind],
682 &sp->chars[bp->tt_abbrind]) == 0;
683 }
684 return result;
685 }
686
687 static const int mon_lengths[2][MONSPERYEAR] = {
688 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
689 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
690 };
691
692 static const int year_lengths[2] = {
693 DAYSPERNYEAR, DAYSPERLYEAR
694 };
695
696 /*
697 ** Given a pointer into a time zone string, scan until a character that is not
698 ** a valid character in a zone name is found. Return a pointer to that
699 ** character.
700 */
701
702 static const char *
703 getzname(const char *strp)
704 {
705 char c;
706
707 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
708 c != '+')
709 ++strp;
710 return strp;
711 }
712
713 /*
714 ** Given a pointer into an extended time zone string, scan until the ending
715 ** delimiter of the zone name is located. Return a pointer to the delimiter.
716 **
717 ** As with getzname above, the legal character set is actually quite
718 ** restricted, with other characters producing undefined results.
719 ** We don't do any checking here; checking is done later in common-case code.
720 */
721
722 static const char *
723 getqzname(const char *strp, const int delim)
724 {
725 int c;
726
727 while ((c = *strp) != '\0' && c != delim)
728 ++strp;
729 return strp;
730 }
731
732 /*
733 ** Given a pointer into a time zone string, extract a number from that string.
734 ** Check that the number is within a specified range; if it is not, return
735 ** NULL.
736 ** Otherwise, return a pointer to the first character not part of the number.
737 */
738
739 static const char *
740 getnum(const char *strp, int *const nump, const int min, const int max)
741 {
742 char c;
743 int num;
744
745 if (strp == NULL || !is_digit(c = *strp)) {
746 errno = EINVAL;
747 return NULL;
748 }
749 num = 0;
750 do {
751 num = num * 10 + (c - '0');
752 if (num > max) {
753 errno = EOVERFLOW;
754 return NULL; /* illegal value */
755 }
756 c = *++strp;
757 } while (is_digit(c));
758 if (num < min) {
759 errno = EINVAL;
760 return NULL; /* illegal value */
761 }
762 *nump = num;
763 return strp;
764 }
765
766 /*
767 ** Given a pointer into a time zone string, extract a number of seconds,
768 ** in hh[:mm[:ss]] form, from the string.
769 ** If any error occurs, return NULL.
770 ** Otherwise, return a pointer to the first character not part of the number
771 ** of seconds.
772 */
773
774 static const char *
775 getsecs(const char *strp, int_fast32_t *const secsp)
776 {
777 int num;
778
779 /*
780 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
781 ** "M10.4.6/26", which does not conform to Posix,
782 ** but which specifies the equivalent of
783 ** "02:00 on the first Sunday on or after 23 Oct".
784 */
785 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
786 if (strp == NULL)
787 return NULL;
788 *secsp = num * (int_fast32_t) SECSPERHOUR;
789 if (*strp == ':') {
790 ++strp;
791 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
792 if (strp == NULL)
793 return NULL;
794 *secsp += num * SECSPERMIN;
795 if (*strp == ':') {
796 ++strp;
797 /* 'SECSPERMIN' allows for leap seconds. */
798 strp = getnum(strp, &num, 0, SECSPERMIN);
799 if (strp == NULL)
800 return NULL;
801 *secsp += num;
802 }
803 }
804 return strp;
805 }
806
807 /*
808 ** Given a pointer into a time zone string, extract an offset, in
809 ** [+-]hh[:mm[:ss]] form, from the string.
810 ** If any error occurs, return NULL.
811 ** Otherwise, return a pointer to the first character not part of the time.
812 */
813
814 static const char *
815 getoffset(const char *strp, int_fast32_t *const offsetp)
816 {
817 int neg = 0;
818
819 if (*strp == '-') {
820 neg = 1;
821 ++strp;
822 } else if (*strp == '+')
823 ++strp;
824 strp = getsecs(strp, offsetp);
825 if (strp == NULL)
826 return NULL; /* illegal time */
827 if (neg)
828 *offsetp = -*offsetp;
829 return strp;
830 }
831
832 /*
833 ** Given a pointer into a time zone string, extract a rule in the form
834 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
835 ** If a valid rule is not found, return NULL.
836 ** Otherwise, return a pointer to the first character not part of the rule.
837 */
838
839 static const char *
840 getrule(const char *strp, struct rule *const rulep)
841 {
842 if (*strp == 'J') {
843 /*
844 ** Julian day.
845 */
846 rulep->r_type = JULIAN_DAY;
847 ++strp;
848 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
849 } else if (*strp == 'M') {
850 /*
851 ** Month, week, day.
852 */
853 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
854 ++strp;
855 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
856 if (strp == NULL)
857 return NULL;
858 if (*strp++ != '.')
859 return NULL;
860 strp = getnum(strp, &rulep->r_week, 1, 5);
861 if (strp == NULL)
862 return NULL;
863 if (*strp++ != '.')
864 return NULL;
865 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
866 } else if (is_digit(*strp)) {
867 /*
868 ** Day of year.
869 */
870 rulep->r_type = DAY_OF_YEAR;
871 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
872 } else return NULL; /* invalid format */
873 if (strp == NULL)
874 return NULL;
875 if (*strp == '/') {
876 /*
877 ** Time specified.
878 */
879 ++strp;
880 strp = getoffset(strp, &rulep->r_time);
881 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
882 return strp;
883 }
884
885 /*
886 ** Given a year, a rule, and the offset from UT at the time that rule takes
887 ** effect, calculate the year-relative time that rule takes effect.
888 */
889
890 static int_fast32_t
891 transtime(const int year, const struct rule *const rulep,
892 const int_fast32_t offset)
893 {
894 int leapyear;
895 int_fast32_t value;
896 int i;
897 int d, m1, yy0, yy1, yy2, dow;
898
899 INITIALIZE(value);
900 leapyear = isleap(year);
901 switch (rulep->r_type) {
902
903 case JULIAN_DAY:
904 /*
905 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
906 ** years.
907 ** In non-leap years, or if the day number is 59 or less, just
908 ** add SECSPERDAY times the day number-1 to the time of
909 ** January 1, midnight, to get the day.
910 */
911 value = (rulep->r_day - 1) * SECSPERDAY;
912 if (leapyear && rulep->r_day >= 60)
913 value += SECSPERDAY;
914 break;
915
916 case DAY_OF_YEAR:
917 /*
918 ** n - day of year.
919 ** Just add SECSPERDAY times the day number to the time of
920 ** January 1, midnight, to get the day.
921 */
922 value = rulep->r_day * SECSPERDAY;
923 break;
924
925 case MONTH_NTH_DAY_OF_WEEK:
926 /*
927 ** Mm.n.d - nth "dth day" of month m.
928 */
929
930 /*
931 ** Use Zeller's Congruence to get day-of-week of first day of
932 ** month.
933 */
934 m1 = (rulep->r_mon + 9) % 12 + 1;
935 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
936 yy1 = yy0 / 100;
937 yy2 = yy0 % 100;
938 dow = ((26 * m1 - 2) / 10 +
939 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
940 if (dow < 0)
941 dow += DAYSPERWEEK;
942
943 /*
944 ** "dow" is the day-of-week of the first day of the month. Get
945 ** the day-of-month (zero-origin) of the first "dow" day of the
946 ** month.
947 */
948 d = rulep->r_day - dow;
949 if (d < 0)
950 d += DAYSPERWEEK;
951 for (i = 1; i < rulep->r_week; ++i) {
952 if (d + DAYSPERWEEK >=
953 mon_lengths[leapyear][rulep->r_mon - 1])
954 break;
955 d += DAYSPERWEEK;
956 }
957
958 /*
959 ** "d" is the day-of-month (zero-origin) of the day we want.
960 */
961 value = d * SECSPERDAY;
962 for (i = 0; i < rulep->r_mon - 1; ++i)
963 value += mon_lengths[leapyear][i] * SECSPERDAY;
964 break;
965 default:
966 _DIAGASSERT(
967 rulep->r_type == JULIAN_DAY ||
968 rulep->r_type == DAY_OF_YEAR ||
969 rulep->r_type == MONTH_NTH_DAY_OF_WEEK);
970 value = 0;
971 break;
972 }
973
974 /*
975 ** "value" is the year-relative time of 00:00:00 UT on the day in
976 ** question. To get the year-relative time of the specified local
977 ** time on that day, add the transition time and the current offset
978 ** from UT.
979 */
980 return value + rulep->r_time + offset;
981 }
982
983 /*
984 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
985 ** appropriate.
986 */
987
988 static int
989 tzparse(timezone_t sp, const char *name, const int lastditch)
990 {
991 const char * stdname;
992 const char * dstname;
993 size_t stdlen;
994 size_t dstlen;
995 int_fast32_t stdoffset;
996 int_fast32_t dstoffset;
997 char * cp;
998 int load_result;
999
1000 stdname = name;
1001 if (lastditch) {
1002 stdlen = strlen(name); /* length of standard zone name */
1003 name += stdlen;
1004 if (stdlen >= sizeof sp->chars)
1005 stdlen = (sizeof sp->chars) - 1;
1006 stdoffset = 0;
1007 } else {
1008 if (*name == '<') {
1009 name++;
1010 stdname = name;
1011 name = getqzname(name, '>');
1012 if (*name != '>')
1013 return (-1);
1014 stdlen = name - stdname;
1015 name++;
1016 } else {
1017 name = getzname(name);
1018 stdlen = name - stdname;
1019 }
1020 if (*name == '\0')
1021 return -1;
1022 name = getoffset(name, &stdoffset);
1023 if (name == NULL)
1024 return -1;
1025 }
1026 load_result = tzload(sp, TZDEFRULES, FALSE);
1027 if (load_result != 0)
1028 sp->leapcnt = 0; /* so, we're off a little */
1029 if (*name != '\0') {
1030 if (*name == '<') {
1031 dstname = ++name;
1032 name = getqzname(name, '>');
1033 if (*name != '>')
1034 return -1;
1035 dstlen = name - dstname;
1036 name++;
1037 } else {
1038 dstname = name;
1039 name = getzname(name);
1040 dstlen = name - dstname; /* length of DST zone name */
1041 }
1042 if (*name != '\0' && *name != ',' && *name != ';') {
1043 name = getoffset(name, &dstoffset);
1044 if (name == NULL)
1045 return -1;
1046 } else dstoffset = stdoffset - SECSPERHOUR;
1047 if (*name == '\0' && load_result != 0)
1048 name = TZDEFRULESTRING;
1049 if (*name == ',' || *name == ';') {
1050 struct rule start;
1051 struct rule end;
1052 int year;
1053 int yearlim;
1054 int timecnt;
1055 time_t janfirst;
1056
1057 ++name;
1058 if ((name = getrule(name, &start)) == NULL)
1059 return -1;
1060 if (*name++ != ',')
1061 return -1;
1062 if ((name = getrule(name, &end)) == NULL)
1063 return -1;
1064 if (*name != '\0')
1065 return -1;
1066 sp->typecnt = 2; /* standard time and DST */
1067 /*
1068 ** Two transitions per year, from EPOCH_YEAR forward.
1069 */
1070 memset(sp->ttis, 0, sizeof(sp->ttis));
1071 sp->ttis[0].tt_gmtoff = -dstoffset;
1072 sp->ttis[0].tt_isdst = 1;
1073 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1074 sp->ttis[1].tt_gmtoff = -stdoffset;
1075 sp->ttis[1].tt_isdst = 0;
1076 sp->ttis[1].tt_abbrind = 0;
1077 sp->defaulttype = 0;
1078 timecnt = 0;
1079 janfirst = 0;
1080 sp->timecnt = 0;
1081 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1082 for (year = EPOCH_YEAR; year < yearlim; year++) {
1083 int_fast32_t
1084 starttime = transtime(year, &start, stdoffset),
1085 endtime = transtime(year, &end, dstoffset);
1086 int_fast32_t
1087 yearsecs = (year_lengths[isleap(year)]
1088 * SECSPERDAY);
1089 int reversed = endtime < starttime;
1090 if (reversed) {
1091 int_fast32_t swap = starttime;
1092 starttime = endtime;
1093 endtime = swap;
1094 }
1095 if (reversed
1096 || (starttime < endtime
1097 && (endtime - starttime
1098 < (yearsecs
1099 + (stdoffset - dstoffset))))) {
1100 if (TZ_MAX_TIMES - 2 < timecnt)
1101 break;
1102 yearlim = year + YEARSPERREPEAT + 1;
1103 sp->ats[timecnt] = janfirst;
1104 if (increment_overflow_time
1105 (&sp->ats[timecnt], starttime))
1106 break;
1107 sp->types[timecnt++] = reversed;
1108 sp->ats[timecnt] = janfirst;
1109 if (increment_overflow_time
1110 (&sp->ats[timecnt], endtime))
1111 break;
1112 sp->types[timecnt++] = !reversed;
1113 }
1114 if (increment_overflow_time(&janfirst, yearsecs))
1115 break;
1116 }
1117 sp->timecnt = timecnt;
1118 if (!timecnt)
1119 sp->typecnt = 1; /* Perpetual DST. */
1120 } else {
1121 int_fast32_t theirstdoffset;
1122 int_fast32_t theirdstoffset;
1123 int_fast32_t theiroffset;
1124 int isdst;
1125 int i;
1126 int j;
1127
1128 if (*name != '\0')
1129 return -1;
1130 /*
1131 ** Initial values of theirstdoffset and theirdstoffset.
1132 */
1133 theirstdoffset = 0;
1134 for (i = 0; i < sp->timecnt; ++i) {
1135 j = sp->types[i];
1136 if (!sp->ttis[j].tt_isdst) {
1137 theirstdoffset =
1138 -sp->ttis[j].tt_gmtoff;
1139 break;
1140 }
1141 }
1142 theirdstoffset = 0;
1143 for (i = 0; i < sp->timecnt; ++i) {
1144 j = sp->types[i];
1145 if (sp->ttis[j].tt_isdst) {
1146 theirdstoffset =
1147 -sp->ttis[j].tt_gmtoff;
1148 break;
1149 }
1150 }
1151 /*
1152 ** Initially we're assumed to be in standard time.
1153 */
1154 isdst = FALSE;
1155 theiroffset = theirstdoffset;
1156 /*
1157 ** Now juggle transition times and types
1158 ** tracking offsets as you do.
1159 */
1160 for (i = 0; i < sp->timecnt; ++i) {
1161 j = sp->types[i];
1162 sp->types[i] = sp->ttis[j].tt_isdst;
1163 if (sp->ttis[j].tt_ttisgmt) {
1164 /* No adjustment to transition time */
1165 } else {
1166 /*
1167 ** If summer time is in effect, and the
1168 ** transition time was not specified as
1169 ** standard time, add the summer time
1170 ** offset to the transition time;
1171 ** otherwise, add the standard time
1172 ** offset to the transition time.
1173 */
1174 /*
1175 ** Transitions from DST to DDST
1176 ** will effectively disappear since
1177 ** POSIX provides for only one DST
1178 ** offset.
1179 */
1180 if (isdst && !sp->ttis[j].tt_ttisstd) {
1181 sp->ats[i] += (time_t)
1182 (dstoffset - theirdstoffset);
1183 } else {
1184 sp->ats[i] += (time_t)
1185 (stdoffset - theirstdoffset);
1186 }
1187 }
1188 theiroffset = -sp->ttis[j].tt_gmtoff;
1189 if (!sp->ttis[j].tt_isdst)
1190 theirstdoffset = theiroffset;
1191 else theirdstoffset = theiroffset;
1192 }
1193 /*
1194 ** Finally, fill in ttis.
1195 ** ttisstd and ttisgmt need not be handled
1196 */
1197 memset(sp->ttis, 0, sizeof(sp->ttis));
1198 sp->ttis[0].tt_gmtoff = -stdoffset;
1199 sp->ttis[0].tt_isdst = FALSE;
1200 sp->ttis[0].tt_abbrind = 0;
1201 sp->ttis[1].tt_gmtoff = -dstoffset;
1202 sp->ttis[1].tt_isdst = TRUE;
1203 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1204 sp->typecnt = 2;
1205 sp->defaulttype = 0;
1206 }
1207 } else {
1208 dstlen = 0;
1209 sp->typecnt = 1; /* only standard time */
1210 sp->timecnt = 0;
1211 memset(sp->ttis, 0, sizeof(sp->ttis));
1212 sp->ttis[0].tt_gmtoff = -stdoffset;
1213 sp->ttis[0].tt_isdst = 0;
1214 sp->ttis[0].tt_abbrind = 0;
1215 sp->defaulttype = 0;
1216 }
1217 sp->charcnt = (int)(stdlen + 1);
1218 if (dstlen != 0)
1219 sp->charcnt += (int)(dstlen + 1);
1220 if ((size_t) sp->charcnt > sizeof sp->chars)
1221 return -1;
1222 cp = sp->chars;
1223 (void) strncpy(cp, stdname, stdlen);
1224 cp += stdlen;
1225 *cp++ = '\0';
1226 if (dstlen != 0) {
1227 (void) strncpy(cp, dstname, dstlen);
1228 *(cp + dstlen) = '\0';
1229 }
1230 return 0;
1231 }
1232
1233 static void
1234 gmtload(timezone_t sp)
1235 {
1236 if (tzload(sp, gmt, TRUE) != 0)
1237 (void) tzparse(sp, gmt, TRUE);
1238 }
1239
1240 timezone_t
1241 tzalloc(const char *name)
1242 {
1243 timezone_t sp = malloc(sizeof *sp);
1244 if (sp == NULL)
1245 return NULL;
1246 if (tzload(sp, name, TRUE) != 0) {
1247 free(sp);
1248 return NULL;
1249 }
1250 settzname_z(sp);
1251 return sp;
1252 }
1253
1254 void
1255 tzfree(const timezone_t sp)
1256 {
1257 free(sp);
1258 }
1259
1260 static void
1261 tzsetwall_unlocked(void)
1262 {
1263 if (lcl_is_set < 0)
1264 return;
1265 lcl_is_set = -1;
1266
1267 if (lclptr == NULL) {
1268 int saveerrno = errno;
1269 lclptr = malloc(sizeof *lclptr);
1270 errno = saveerrno;
1271 if (lclptr == NULL) {
1272 settzname(); /* all we can do */
1273 return;
1274 }
1275 }
1276 if (tzload(lclptr, NULL, TRUE) != 0)
1277 gmtload(lclptr);
1278 settzname();
1279 }
1280
1281 #ifndef STD_INSPIRED
1282 /*
1283 ** A non-static declaration of tzsetwall in a system header file
1284 ** may cause a warning about this upcoming static declaration...
1285 */
1286 static
1287 #endif /* !defined STD_INSPIRED */
1288 void
1289 tzsetwall(void)
1290 {
1291 rwlock_wrlock(&lcl_lock);
1292 tzsetwall_unlocked();
1293 rwlock_unlock(&lcl_lock);
1294 }
1295
1296 #ifndef STD_INSPIRED
1297 /*
1298 ** A non-static declaration of tzsetwall in a system header file
1299 ** may cause a warning about this upcoming static declaration...
1300 */
1301 static
1302 #endif /* !defined STD_INSPIRED */
1303 void
1304 tzset_unlocked(void)
1305 {
1306 const char * name;
1307
1308 name = getenv("TZ");
1309 if (name == NULL) {
1310 tzsetwall_unlocked();
1311 return;
1312 }
1313
1314 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1315 return;
1316 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1317 if (lcl_is_set)
1318 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1319
1320 if (lclptr == NULL) {
1321 int saveerrno = errno;
1322 lclptr = malloc(sizeof *lclptr);
1323 errno = saveerrno;
1324 if (lclptr == NULL) {
1325 settzname(); /* all we can do */
1326 return;
1327 }
1328 }
1329 if (*name == '\0') {
1330 /*
1331 ** User wants it fast rather than right.
1332 */
1333 lclptr->leapcnt = 0; /* so, we're off a little */
1334 lclptr->timecnt = 0;
1335 lclptr->typecnt = 0;
1336 lclptr->ttis[0].tt_isdst = 0;
1337 lclptr->ttis[0].tt_gmtoff = 0;
1338 lclptr->ttis[0].tt_abbrind = 0;
1339 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1340 } else if (tzload(lclptr, name, TRUE) != 0)
1341 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1342 (void) gmtload(lclptr);
1343 settzname();
1344 }
1345
1346 void
1347 tzset(void)
1348 {
1349 rwlock_wrlock(&lcl_lock);
1350 tzset_unlocked();
1351 rwlock_unlock(&lcl_lock);
1352 }
1353
1354 /*
1355 ** The easy way to behave "as if no library function calls" localtime
1356 ** is to not call it, so we drop its guts into "localsub", which can be
1357 ** freely called. (And no, the PANS doesn't require the above behavior,
1358 ** but it *is* desirable.)
1359 **
1360 ** The unused offset argument is for the benefit of mktime variants.
1361 */
1362
1363 /*ARGSUSED*/
1364 static struct tm *
1365 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
1366 struct tm *const tmp)
1367 {
1368 const struct ttinfo * ttisp;
1369 int i;
1370 struct tm * result;
1371 const time_t t = *timep;
1372
1373 if ((sp->goback && t < sp->ats[0]) ||
1374 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1375 time_t newt = t;
1376 time_t seconds;
1377 time_t years;
1378
1379 if (t < sp->ats[0])
1380 seconds = sp->ats[0] - t;
1381 else seconds = t - sp->ats[sp->timecnt - 1];
1382 --seconds;
1383 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1384 seconds = (time_t)(years * AVGSECSPERYEAR);
1385 if (t < sp->ats[0])
1386 newt += seconds;
1387 else newt -= seconds;
1388 if (newt < sp->ats[0] ||
1389 newt > sp->ats[sp->timecnt - 1])
1390 return NULL; /* "cannot happen" */
1391 result = localsub(sp, &newt, offset, tmp);
1392 if (result == tmp) {
1393 time_t newy;
1394
1395 newy = tmp->tm_year;
1396 if (t < sp->ats[0])
1397 newy -= years;
1398 else newy += years;
1399 tmp->tm_year = (int)newy;
1400 if (tmp->tm_year != newy)
1401 return NULL;
1402 }
1403 return result;
1404 }
1405 if (sp->timecnt == 0 || t < sp->ats[0]) {
1406 i = sp->defaulttype;
1407 } else {
1408 int lo = 1;
1409 int hi = sp->timecnt;
1410
1411 while (lo < hi) {
1412 int mid = (lo + hi) / 2;
1413
1414 if (t < sp->ats[mid])
1415 hi = mid;
1416 else lo = mid + 1;
1417 }
1418 i = (int) sp->types[lo - 1];
1419 }
1420 ttisp = &sp->ttis[i];
1421 /*
1422 ** To get (wrong) behavior that's compatible with System V Release 2.0
1423 ** you'd replace the statement below with
1424 ** t += ttisp->tt_gmtoff;
1425 ** timesub(&t, 0L, sp, tmp);
1426 */
1427 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1428 tmp->tm_isdst = ttisp->tt_isdst;
1429 if (sp == lclptr)
1430 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1431 #ifdef TM_ZONE
1432 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1433 #endif /* defined TM_ZONE */
1434 return result;
1435 }
1436
1437 /*
1438 ** Re-entrant version of localtime.
1439 */
1440
1441 struct tm *
1442 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1443 {
1444 rwlock_rdlock(&lcl_lock);
1445 tzset_unlocked();
1446 tmp = localtime_rz(lclptr, timep, tmp);
1447 rwlock_unlock(&lcl_lock);
1448 return tmp;
1449 }
1450
1451 struct tm *
1452 localtime(const time_t *const timep)
1453 {
1454 return localtime_r(timep, &tm);
1455 }
1456
1457 struct tm *
1458 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1459 {
1460 if (sp == NULL)
1461 tmp = gmtsub(NULL, timep, 0, tmp);
1462 else
1463 tmp = localsub(sp, timep, 0, tmp);
1464 if (tmp == NULL)
1465 errno = EOVERFLOW;
1466 return tmp;
1467 }
1468
1469 /*
1470 ** gmtsub is to gmtime as localsub is to localtime.
1471 */
1472
1473 static struct tm *
1474 gmtsub(const timezone_t sp, const time_t *const timep,
1475 const int_fast32_t offset, struct tm *const tmp)
1476 {
1477 struct tm * result;
1478 #ifdef _REENTRANT
1479 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1480 #endif
1481
1482 mutex_lock(&gmt_mutex);
1483 if (!gmt_is_set) {
1484 int saveerrno;
1485 gmt_is_set = TRUE;
1486 saveerrno = errno;
1487 gmtptr = malloc(sizeof *gmtptr);
1488 gmt_is_set = gmtptr != NULL;
1489 errno = saveerrno;
1490 if (gmt_is_set)
1491 gmtload(gmtptr);
1492 }
1493 mutex_unlock(&gmt_mutex);
1494 result = timesub(gmtptr, timep, offset, tmp);
1495 #ifdef TM_ZONE
1496 /*
1497 ** Could get fancy here and deliver something such as
1498 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1499 ** but this is no time for a treasure hunt.
1500 */
1501 tmp->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ? gmtptr->chars :
1502 __UNCONST(gmt);
1503 #endif /* defined TM_ZONE */
1504 return result;
1505 }
1506
1507 struct tm *
1508 gmtime(const time_t *const timep)
1509 {
1510 struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
1511
1512 if (tmp == NULL)
1513 errno = EOVERFLOW;
1514
1515 return tmp;
1516 }
1517
1518 /*
1519 ** Re-entrant version of gmtime.
1520 */
1521
1522 struct tm *
1523 gmtime_r(const time_t * const timep, struct tm *tmp)
1524 {
1525 tmp = gmtsub(NULL, timep, 0, tmp);
1526
1527 if (tmp == NULL)
1528 errno = EOVERFLOW;
1529
1530 return tmp;
1531 }
1532
1533 #ifdef STD_INSPIRED
1534
1535 struct tm *
1536 offtime(const time_t *const timep, long offset)
1537 {
1538 struct tm *tmp;
1539
1540 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1541 (offset < 0 && offset < INT_FAST32_MIN)) {
1542 errno = EOVERFLOW;
1543 return NULL;
1544 }
1545 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
1546
1547 if (tmp == NULL)
1548 errno = EOVERFLOW;
1549
1550 return tmp;
1551 }
1552
1553 struct tm *
1554 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1555 {
1556 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1557 (offset < 0 && offset < INT_FAST32_MIN)) {
1558 errno = EOVERFLOW;
1559 return NULL;
1560 }
1561 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1562
1563 if (tmp == NULL)
1564 errno = EOVERFLOW;
1565
1566 return tmp;
1567 }
1568
1569 #endif /* defined STD_INSPIRED */
1570
1571 /*
1572 ** Return the number of leap years through the end of the given year
1573 ** where, to make the math easy, the answer for year zero is defined as zero.
1574 */
1575
1576 static int
1577 leaps_thru_end_of(const int y)
1578 {
1579 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1580 -(leaps_thru_end_of(-(y + 1)) + 1);
1581 }
1582
1583 static struct tm *
1584 timesub(const timezone_t sp, const time_t *const timep,
1585 const int_fast32_t offset, struct tm *const tmp)
1586 {
1587 const struct lsinfo * lp;
1588 time_t tdays;
1589 int idays; /* unsigned would be so 2003 */
1590 int_fast64_t rem;
1591 int y;
1592 const int * ip;
1593 int_fast64_t corr;
1594 int hit;
1595 int i;
1596
1597 corr = 0;
1598 hit = 0;
1599 i = (sp == NULL) ? 0 : sp->leapcnt;
1600 while (--i >= 0) {
1601 lp = &sp->lsis[i];
1602 if (*timep >= lp->ls_trans) {
1603 if (*timep == lp->ls_trans) {
1604 hit = ((i == 0 && lp->ls_corr > 0) ||
1605 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1606 if (hit)
1607 while (i > 0 &&
1608 sp->lsis[i].ls_trans ==
1609 sp->lsis[i - 1].ls_trans + 1 &&
1610 sp->lsis[i].ls_corr ==
1611 sp->lsis[i - 1].ls_corr + 1) {
1612 ++hit;
1613 --i;
1614 }
1615 }
1616 corr = lp->ls_corr;
1617 break;
1618 }
1619 }
1620 y = EPOCH_YEAR;
1621 tdays = (time_t)(*timep / SECSPERDAY);
1622 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1623 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1624 int newy;
1625 time_t tdelta;
1626 int idelta;
1627 int leapdays;
1628
1629 tdelta = tdays / DAYSPERLYEAR;
1630 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1631 && tdelta <= INT_MAX))
1632 return NULL;
1633 _DIAGASSERT(__type_fit(int, tdelta));
1634 idelta = (int)tdelta;
1635 if (idelta == 0)
1636 idelta = (tdays < 0) ? -1 : 1;
1637 newy = y;
1638 if (increment_overflow(&newy, idelta))
1639 return NULL;
1640 leapdays = leaps_thru_end_of(newy - 1) -
1641 leaps_thru_end_of(y - 1);
1642 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1643 tdays -= leapdays;
1644 y = newy;
1645 }
1646 {
1647 int_fast32_t seconds;
1648
1649 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1650 tdays = (time_t)(seconds / SECSPERDAY);
1651 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1652 }
1653 /*
1654 ** Given the range, we can now fearlessly cast...
1655 */
1656 idays = (int) tdays;
1657 rem += offset - corr;
1658 while (rem < 0) {
1659 rem += SECSPERDAY;
1660 --idays;
1661 }
1662 while (rem >= SECSPERDAY) {
1663 rem -= SECSPERDAY;
1664 ++idays;
1665 }
1666 while (idays < 0) {
1667 if (increment_overflow(&y, -1))
1668 return NULL;
1669 idays += year_lengths[isleap(y)];
1670 }
1671 while (idays >= year_lengths[isleap(y)]) {
1672 idays -= year_lengths[isleap(y)];
1673 if (increment_overflow(&y, 1))
1674 return NULL;
1675 }
1676 tmp->tm_year = y;
1677 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1678 return NULL;
1679 tmp->tm_yday = idays;
1680 /*
1681 ** The "extra" mods below avoid overflow problems.
1682 */
1683 tmp->tm_wday = EPOCH_WDAY +
1684 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1685 (DAYSPERNYEAR % DAYSPERWEEK) +
1686 leaps_thru_end_of(y - 1) -
1687 leaps_thru_end_of(EPOCH_YEAR - 1) +
1688 idays;
1689 tmp->tm_wday %= DAYSPERWEEK;
1690 if (tmp->tm_wday < 0)
1691 tmp->tm_wday += DAYSPERWEEK;
1692 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1693 rem %= SECSPERHOUR;
1694 tmp->tm_min = (int) (rem / SECSPERMIN);
1695 /*
1696 ** A positive leap second requires a special
1697 ** representation. This uses "... ??:59:60" et seq.
1698 */
1699 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1700 ip = mon_lengths[isleap(y)];
1701 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1702 idays -= ip[tmp->tm_mon];
1703 tmp->tm_mday = (int) (idays + 1);
1704 tmp->tm_isdst = 0;
1705 #ifdef TM_GMTOFF
1706 tmp->TM_GMTOFF = offset;
1707 #endif /* defined TM_GMTOFF */
1708 return tmp;
1709 }
1710
1711 char *
1712 ctime(const time_t *const timep)
1713 {
1714 /*
1715 ** Section 4.12.3.2 of X3.159-1989 requires that
1716 ** The ctime function converts the calendar time pointed to by timer
1717 ** to local time in the form of a string. It is equivalent to
1718 ** asctime(localtime(timer))
1719 */
1720 struct tm *rtm = localtime(timep);
1721 if (rtm == NULL)
1722 return NULL;
1723 return asctime(rtm);
1724 }
1725
1726 char *
1727 ctime_r(const time_t *const timep, char *buf)
1728 {
1729 struct tm mytm, *rtm;
1730
1731 rtm = localtime_r(timep, &mytm);
1732 if (rtm == NULL)
1733 return NULL;
1734 return asctime_r(rtm, buf);
1735 }
1736
1737 char *
1738 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1739 {
1740 struct tm mytm, *rtm;
1741
1742 rtm = localtime_rz(sp, timep, &mytm);
1743 if (rtm == NULL)
1744 return NULL;
1745 return asctime_r(rtm, buf);
1746 }
1747
1748 /*
1749 ** Adapted from code provided by Robert Elz, who writes:
1750 ** The "best" way to do mktime I think is based on an idea of Bob
1751 ** Kridle's (so its said...) from a long time ago.
1752 ** It does a binary search of the time_t space. Since time_t's are
1753 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1754 ** would still be very reasonable).
1755 */
1756
1757 #ifndef WRONG
1758 #define WRONG ((time_t)-1)
1759 #endif /* !defined WRONG */
1760
1761 /*
1762 ** Simplified normalize logic courtesy Paul Eggert.
1763 */
1764
1765 static int
1766 increment_overflow(int *const ip, int j)
1767 {
1768 int i = *ip;
1769
1770 /*
1771 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1772 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1773 ** If i < 0 there can only be overflow if i + j < INT_MIN
1774 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1775 */
1776 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1777 return TRUE;
1778 *ip += j;
1779 return FALSE;
1780 }
1781
1782 static int
1783 increment_overflow32(int_fast32_t *const lp, int const m)
1784 {
1785 int_fast32_t l = *lp;
1786
1787 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1788 return TRUE;
1789 *lp += m;
1790 return FALSE;
1791 }
1792
1793 static int
1794 increment_overflow_time(time_t *tp, int_fast32_t j)
1795 {
1796 /*
1797 ** This is like
1798 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1799 ** except that it does the right thing even if *tp + j would overflow.
1800 */
1801 if (! (j < 0
1802 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1803 : *tp <= time_t_max - j))
1804 return TRUE;
1805 *tp += j;
1806 return FALSE;
1807 }
1808
1809 static int
1810 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1811 {
1812 int tensdelta;
1813
1814 tensdelta = (*unitsptr >= 0) ?
1815 (*unitsptr / base) :
1816 (-1 - (-1 - *unitsptr) / base);
1817 *unitsptr -= tensdelta * base;
1818 return increment_overflow(tensptr, tensdelta);
1819 }
1820
1821 static int
1822 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1823 const int base)
1824 {
1825 int tensdelta;
1826
1827 tensdelta = (*unitsptr >= 0) ?
1828 (*unitsptr / base) :
1829 (-1 - (-1 - *unitsptr) / base);
1830 *unitsptr -= tensdelta * base;
1831 return increment_overflow32(tensptr, tensdelta);
1832 }
1833
1834 static int
1835 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1836 {
1837 int result;
1838
1839 if (atmp->tm_year != btmp->tm_year)
1840 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1841 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1842 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1843 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1844 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1845 result = atmp->tm_sec - btmp->tm_sec;
1846 return result;
1847 }
1848
1849 static time_t
1850 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1851 const int_fast32_t offset, int *const okayp, const int do_norm_secs)
1852 {
1853 int dir;
1854 int i, j;
1855 int saved_seconds;
1856 int_fast32_t li;
1857 time_t lo;
1858 time_t hi;
1859 #ifdef NO_ERROR_IN_DST_GAP
1860 time_t ilo;
1861 #endif
1862 int_fast32_t y;
1863 time_t newt;
1864 time_t t;
1865 struct tm yourtm, mytm;
1866
1867 *okayp = FALSE;
1868 yourtm = *tmp;
1869 #ifdef NO_ERROR_IN_DST_GAP
1870 again:
1871 #endif
1872 if (do_norm_secs) {
1873 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1874 SECSPERMIN))
1875 goto overflow;
1876 }
1877 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1878 goto overflow;
1879 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1880 goto overflow;
1881 y = yourtm.tm_year;
1882 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1883 goto overflow;
1884 /*
1885 ** Turn y into an actual year number for now.
1886 ** It is converted back to an offset from TM_YEAR_BASE later.
1887 */
1888 if (increment_overflow32(&y, TM_YEAR_BASE))
1889 goto overflow;
1890 while (yourtm.tm_mday <= 0) {
1891 if (increment_overflow32(&y, -1))
1892 goto overflow;
1893 li = y + (1 < yourtm.tm_mon);
1894 yourtm.tm_mday += year_lengths[isleap(li)];
1895 }
1896 while (yourtm.tm_mday > DAYSPERLYEAR) {
1897 li = y + (1 < yourtm.tm_mon);
1898 yourtm.tm_mday -= year_lengths[isleap(li)];
1899 if (increment_overflow32(&y, 1))
1900 goto overflow;
1901 }
1902 for ( ; ; ) {
1903 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1904 if (yourtm.tm_mday <= i)
1905 break;
1906 yourtm.tm_mday -= i;
1907 if (++yourtm.tm_mon >= MONSPERYEAR) {
1908 yourtm.tm_mon = 0;
1909 if (increment_overflow32(&y, 1))
1910 goto overflow;
1911 }
1912 }
1913 if (increment_overflow32(&y, -TM_YEAR_BASE))
1914 goto overflow;
1915 yourtm.tm_year = (int)y;
1916 if (yourtm.tm_year != y)
1917 goto overflow;
1918 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1919 saved_seconds = 0;
1920 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1921 /*
1922 ** We can't set tm_sec to 0, because that might push the
1923 ** time below the minimum representable time.
1924 ** Set tm_sec to 59 instead.
1925 ** This assumes that the minimum representable time is
1926 ** not in the same minute that a leap second was deleted from,
1927 ** which is a safer assumption than using 58 would be.
1928 */
1929 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1930 goto overflow;
1931 saved_seconds = yourtm.tm_sec;
1932 yourtm.tm_sec = SECSPERMIN - 1;
1933 } else {
1934 saved_seconds = yourtm.tm_sec;
1935 yourtm.tm_sec = 0;
1936 }
1937 /*
1938 ** Do a binary search (this works whatever time_t's type is).
1939 */
1940 /* LINTED const not */
1941 if (!TYPE_SIGNED(time_t)) {
1942 lo = 0;
1943 hi = lo - 1;
1944 } else {
1945 lo = 1;
1946 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1947 lo *= 2;
1948 hi = -(lo + 1);
1949 }
1950 #ifdef NO_ERROR_IN_DST_GAP
1951 ilo = lo;
1952 #endif
1953 for ( ; ; ) {
1954 t = lo / 2 + hi / 2;
1955 if (t < lo)
1956 t = lo;
1957 else if (t > hi)
1958 t = hi;
1959 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1960 /*
1961 ** Assume that t is too extreme to be represented in
1962 ** a struct tm; arrange things so that it is less
1963 ** extreme on the next pass.
1964 */
1965 dir = (t > 0) ? 1 : -1;
1966 } else dir = tmcomp(&mytm, &yourtm);
1967 if (dir != 0) {
1968 if (t == lo) {
1969 if (t == time_t_max)
1970 goto overflow;
1971 ++t;
1972 ++lo;
1973 } else if (t == hi) {
1974 if (t == time_t_min)
1975 goto overflow;
1976 --t;
1977 --hi;
1978 }
1979 #ifdef NO_ERROR_IN_DST_GAP
1980 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1981 do_norm_secs) {
1982 for (i = sp->typecnt - 1; i >= 0; --i) {
1983 for (j = sp->typecnt - 1; j >= 0; --j) {
1984 time_t off;
1985 if (sp->ttis[j].tt_isdst ==
1986 sp->ttis[i].tt_isdst)
1987 continue;
1988 off = sp->ttis[j].tt_gmtoff -
1989 sp->ttis[i].tt_gmtoff;
1990 yourtm.tm_sec += off < 0 ?
1991 -off : off;
1992 goto again;
1993 }
1994 }
1995 }
1996 #endif
1997 if (lo > hi)
1998 goto invalid;
1999 if (dir > 0)
2000 hi = t;
2001 else lo = t;
2002 continue;
2003 }
2004 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2005 break;
2006 /*
2007 ** Right time, wrong type.
2008 ** Hunt for right time, right type.
2009 ** It's okay to guess wrong since the guess
2010 ** gets checked.
2011 */
2012 if (sp == NULL)
2013 goto invalid;
2014 for (i = sp->typecnt - 1; i >= 0; --i) {
2015 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2016 continue;
2017 for (j = sp->typecnt - 1; j >= 0; --j) {
2018 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2019 continue;
2020 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2021 sp->ttis[i].tt_gmtoff);
2022 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
2023 continue;
2024 if (tmcomp(&mytm, &yourtm) != 0)
2025 continue;
2026 if (mytm.tm_isdst != yourtm.tm_isdst)
2027 continue;
2028 /*
2029 ** We have a match.
2030 */
2031 t = newt;
2032 goto label;
2033 }
2034 }
2035 goto invalid;
2036 }
2037 label:
2038 newt = t + saved_seconds;
2039 if ((newt < t) != (saved_seconds < 0))
2040 goto overflow;
2041 t = newt;
2042 if ((*funcp)(sp, &t, offset, tmp)) {
2043 *okayp = TRUE;
2044 return t;
2045 }
2046 overflow:
2047 errno = EOVERFLOW;
2048 return WRONG;
2049 invalid:
2050 errno = EINVAL;
2051 return WRONG;
2052 }
2053
2054 static time_t
2055 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2056 const int_fast32_t offset, int *const okayp)
2057 {
2058 time_t t;
2059
2060 /*
2061 ** First try without normalization of seconds
2062 ** (in case tm_sec contains a value associated with a leap second).
2063 ** If that fails, try with normalization of seconds.
2064 */
2065 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2066 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2067 }
2068
2069 static time_t
2070 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2071 const int_fast32_t offset)
2072 {
2073 time_t t;
2074 int samei, otheri;
2075 int sameind, otherind;
2076 int i;
2077 int nseen;
2078 char seen[TZ_MAX_TYPES];
2079 unsigned char types[TZ_MAX_TYPES];
2080 int okay;
2081
2082 if (tmp == NULL) {
2083 errno = EINVAL;
2084 return WRONG;
2085 }
2086 if (tmp->tm_isdst > 1)
2087 tmp->tm_isdst = 1;
2088 t = time2(sp, tmp, funcp, offset, &okay);
2089 if (okay)
2090 return t;
2091 if (tmp->tm_isdst < 0)
2092 #ifdef PCTS
2093 /*
2094 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2095 */
2096 tmp->tm_isdst = 0; /* reset to std and try again */
2097 #else
2098 return t;
2099 #endif /* !defined PCTS */
2100 /*
2101 ** We're supposed to assume that somebody took a time of one type
2102 ** and did some math on it that yielded a "struct tm" that's bad.
2103 ** We try to divine the type they started from and adjust to the
2104 ** type they need.
2105 */
2106 if (sp == NULL) {
2107 errno = EINVAL;
2108 return WRONG;
2109 }
2110 for (i = 0; i < sp->typecnt; ++i)
2111 seen[i] = FALSE;
2112 nseen = 0;
2113 for (i = sp->timecnt - 1; i >= 0; --i)
2114 if (!seen[sp->types[i]]) {
2115 seen[sp->types[i]] = TRUE;
2116 types[nseen++] = sp->types[i];
2117 }
2118 for (sameind = 0; sameind < nseen; ++sameind) {
2119 samei = types[sameind];
2120 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2121 continue;
2122 for (otherind = 0; otherind < nseen; ++otherind) {
2123 otheri = types[otherind];
2124 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2125 continue;
2126 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2127 sp->ttis[samei].tt_gmtoff);
2128 tmp->tm_isdst = !tmp->tm_isdst;
2129 t = time2(sp, tmp, funcp, offset, &okay);
2130 if (okay)
2131 return t;
2132 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2133 sp->ttis[samei].tt_gmtoff);
2134 tmp->tm_isdst = !tmp->tm_isdst;
2135 }
2136 }
2137 errno = EOVERFLOW;
2138 return WRONG;
2139 }
2140
2141 time_t
2142 mktime_z(const timezone_t sp, struct tm *const tmp)
2143 {
2144 time_t t;
2145 if (sp == NULL)
2146 t = time1(NULL, tmp, gmtsub, 0);
2147 else
2148 t = time1(sp, tmp, localsub, 0);
2149 return t;
2150 }
2151
2152 time_t
2153 mktime(struct tm *const tmp)
2154 {
2155 time_t result;
2156
2157 rwlock_wrlock(&lcl_lock);
2158 tzset_unlocked();
2159 result = mktime_z(lclptr, tmp);
2160 rwlock_unlock(&lcl_lock);
2161 return result;
2162 }
2163
2164 #ifdef STD_INSPIRED
2165
2166 time_t
2167 timelocal_z(const timezone_t sp, struct tm *const tmp)
2168 {
2169 if (tmp != NULL)
2170 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2171 return mktime_z(sp, tmp);
2172 }
2173
2174 time_t
2175 timelocal(struct tm *const tmp)
2176 {
2177 if (tmp != NULL)
2178 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2179 return mktime(tmp);
2180 }
2181
2182 time_t
2183 timegm(struct tm *const tmp)
2184 {
2185 time_t t;
2186
2187 if (tmp != NULL)
2188 tmp->tm_isdst = 0;
2189 t = time1(gmtptr, tmp, gmtsub, 0);
2190 return t;
2191 }
2192
2193 time_t
2194 timeoff(struct tm *const tmp, long offset)
2195 {
2196 time_t t;
2197
2198 if ((offset > 0 && offset > INT_FAST32_MAX) ||
2199 (offset < 0 && offset < INT_FAST32_MIN)) {
2200 errno = EOVERFLOW;
2201 return -1;
2202 }
2203 if (tmp != NULL)
2204 tmp->tm_isdst = 0;
2205 t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
2206 return t;
2207 }
2208
2209 #endif /* defined STD_INSPIRED */
2210
2211 #ifdef CMUCS
2212
2213 /*
2214 ** The following is supplied for compatibility with
2215 ** previous versions of the CMUCS runtime library.
2216 */
2217
2218 long
2219 gtime(struct tm *const tmp)
2220 {
2221 const time_t t = mktime(tmp);
2222
2223 if (t == WRONG)
2224 return -1;
2225 return t;
2226 }
2227
2228 #endif /* defined CMUCS */
2229
2230 /*
2231 ** XXX--is the below the right way to conditionalize??
2232 */
2233
2234 #ifdef STD_INSPIRED
2235
2236 /*
2237 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2238 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2239 ** is not the case if we are accounting for leap seconds.
2240 ** So, we provide the following conversion routines for use
2241 ** when exchanging timestamps with POSIX conforming systems.
2242 */
2243
2244 static int_fast64_t
2245 leapcorr(const timezone_t sp, time_t *timep)
2246 {
2247 struct lsinfo * lp;
2248 int i;
2249
2250 i = sp->leapcnt;
2251 while (--i >= 0) {
2252 lp = &sp->lsis[i];
2253 if (*timep >= lp->ls_trans)
2254 return lp->ls_corr;
2255 }
2256 return 0;
2257 }
2258
2259 time_t
2260 time2posix_z(const timezone_t sp, time_t t)
2261 {
2262 return (time_t)(t - leapcorr(sp, &t));
2263 }
2264
2265 time_t
2266 time2posix(time_t t)
2267 {
2268 time_t result;
2269 rwlock_wrlock(&lcl_lock);
2270 tzset_unlocked();
2271 result = (time_t)(t - leapcorr(lclptr, &t));
2272 rwlock_unlock(&lcl_lock);
2273 return (result);
2274 }
2275
2276 time_t
2277 posix2time_z(const timezone_t sp, time_t t)
2278 {
2279 time_t x;
2280 time_t y;
2281
2282 /*
2283 ** For a positive leap second hit, the result
2284 ** is not unique. For a negative leap second
2285 ** hit, the corresponding time doesn't exist,
2286 ** so we return an adjacent second.
2287 */
2288 x = (time_t)(t + leapcorr(sp, &t));
2289 y = (time_t)(x - leapcorr(sp, &x));
2290 if (y < t) {
2291 do {
2292 x++;
2293 y = (time_t)(x - leapcorr(sp, &x));
2294 } while (y < t);
2295 if (t != y) {
2296 return x - 1;
2297 }
2298 } else if (y > t) {
2299 do {
2300 --x;
2301 y = (time_t)(x - leapcorr(sp, &x));
2302 } while (y > t);
2303 if (t != y) {
2304 return x + 1;
2305 }
2306 }
2307 return x;
2308 }
2309
2310
2311
2312 time_t
2313 posix2time(time_t t)
2314 {
2315 time_t result;
2316
2317 rwlock_wrlock(&lcl_lock);
2318 tzset_unlocked();
2319 result = posix2time_z(lclptr, t);
2320 rwlock_unlock(&lcl_lock);
2321 return result;
2322 }
2323
2324 #endif /* defined STD_INSPIRED */
2325