localtime.c revision 1.85 1 /* $NetBSD: localtime.c,v 1.85 2014/08/16 16:22:21 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.85 2014/08/16 16:22:21 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #include "private.h"
27 #include "tzfile.h"
28 #include "fcntl.h"
29 #include "reentrant.h"
30
31 #if defined(__weak_alias)
32 __weak_alias(daylight,_daylight)
33 __weak_alias(tzname,_tzname)
34 #endif
35
36 #ifndef TZ_ABBR_MAX_LEN
37 #define TZ_ABBR_MAX_LEN 16
38 #endif /* !defined TZ_ABBR_MAX_LEN */
39
40 #ifndef TZ_ABBR_CHAR_SET
41 #define TZ_ABBR_CHAR_SET \
42 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
43 #endif /* !defined TZ_ABBR_CHAR_SET */
44
45 #ifndef TZ_ABBR_ERR_CHAR
46 #define TZ_ABBR_ERR_CHAR '_'
47 #endif /* !defined TZ_ABBR_ERR_CHAR */
48
49 /* The minimum and maximum finite time values. */
50 static time_t const time_t_min =
51 (TYPE_SIGNED(time_t)
52 ? (time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1)
53 : 0);
54 static time_t const time_t_max =
55 (TYPE_SIGNED(time_t)
56 ? - (~ 0 < 0) - ((time_t) -1 << (int)(CHAR_BIT * sizeof (time_t) - 1))
57 : -1);
58
59 /*
60 ** SunOS 4.1.1 headers lack O_BINARY.
61 */
62
63 #ifdef O_BINARY
64 #define OPEN_MODE (O_RDONLY | O_BINARY)
65 #endif /* defined O_BINARY */
66 #ifndef O_BINARY
67 #define OPEN_MODE O_RDONLY
68 #endif /* !defined O_BINARY */
69
70 #ifndef WILDABBR
71 /*
72 ** Someone might make incorrect use of a time zone abbreviation:
73 ** 1. They might reference tzname[0] before calling tzset (explicitly
74 ** or implicitly).
75 ** 2. They might reference tzname[1] before calling tzset (explicitly
76 ** or implicitly).
77 ** 3. They might reference tzname[1] after setting to a time zone
78 ** in which Daylight Saving Time is never observed.
79 ** 4. They might reference tzname[0] after setting to a time zone
80 ** in which Standard Time is never observed.
81 ** 5. They might reference tm.TM_ZONE after calling offtime.
82 ** What's best to do in the above cases is open to debate;
83 ** for now, we just set things up so that in any of the five cases
84 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
85 ** string "tzname[0] used before set", and similarly for the other cases.
86 ** And another: initialize tzname[0] to "ERA", with an explanation in the
87 ** manual page of what this "time zone abbreviation" means (doing this so
88 ** that tzname[0] has the "normal" length of three characters).
89 */
90 #define WILDABBR " "
91 #endif /* !defined WILDABBR */
92
93 static const char wildabbr[] = WILDABBR;
94
95 static const char gmt[] = "GMT";
96
97 /*
98 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
99 ** We default to US rules as of 1999-08-17.
100 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
101 ** implementation dependent; for historical reasons, US rules are a
102 ** common default.
103 */
104 #ifndef TZDEFRULESTRING
105 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
106 #endif /* !defined TZDEFDST */
107
108 struct ttinfo { /* time type information */
109 int_fast32_t tt_gmtoff; /* UT offset in seconds */
110 int tt_isdst; /* used to set tm_isdst */
111 int tt_abbrind; /* abbreviation list index */
112 int tt_ttisstd; /* TRUE if transition is std time */
113 int tt_ttisgmt; /* TRUE if transition is UT */
114 };
115
116 struct lsinfo { /* leap second information */
117 time_t ls_trans; /* transition time */
118 int_fast64_t ls_corr; /* correction to apply */
119 };
120
121 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
122
123 #ifdef TZNAME_MAX
124 #define MY_TZNAME_MAX TZNAME_MAX
125 #endif /* defined TZNAME_MAX */
126 #ifndef TZNAME_MAX
127 #define MY_TZNAME_MAX 255
128 #endif /* !defined TZNAME_MAX */
129
130 struct __state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 int goback;
136 int goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
159 const int_fast32_t offset, struct tm *tmp);
160
161 /*
162 ** Prototypes for static functions.
163 */
164
165 static int_fast32_t detzcode(const char * codep);
166 static int_fast64_t detzcode64(const char * codep);
167 static int differ_by_repeat(time_t t1, time_t t0);
168 static const char * getzname(const char * strp) ATTRIBUTE_PURE;
169 static const char * getqzname(const char * strp, const int delim) ATTRIBUTE_PURE;
170 static const char * getnum(const char * strp, int * nump, int min,
171 int max);
172 static const char * getsecs(const char * strp, int_fast32_t * secsp);
173 static const char * getoffset(const char * strp, int_fast32_t * offsetp);
174 static const char * getrule(const char * strp, struct rule * rulep);
175 static void gmtload(timezone_t sp);
176 static struct tm * gmtsub(const timezone_t sp, const time_t *timep,
177 const int_fast32_t offset, struct tm * tmp);
178 static struct tm * localsub(const timezone_t sp, const time_t *timep,
179 const int_fast32_t offset, struct tm *tmp);
180 static int increment_overflow(int * number, int delta);
181 static int increment_overflow32(int_fast32_t * number, int delta);
182 static int increment_overflow_time(time_t *t, int_fast32_t delta);
183 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE;
184 static int normalize_overflow(int * tensptr, int * unitsptr,
185 int base);
186 static int normalize_overflow32(int_fast32_t * tensptr,
187 int * unitsptr, int base);
188 static void settzname(void);
189 static time_t time1(const timezone_t sp, struct tm * const tmp,
190 subfun_t funcp, const int_fast32_t offset);
191 static time_t time2(const timezone_t sp, struct tm * const tmp,
192 subfun_t funcp,
193 const int_fast32_t offset, int *const okayp);
194 static time_t time2sub(const timezone_t sp, struct tm * const tmp,
195 subfun_t funcp, const int_fast32_t offset,
196 int *const okayp, const int do_norm_secs);
197 static struct tm * timesub(const timezone_t sp, const time_t * timep,
198 const int_fast32_t offset, struct tm * tmp);
199 static int tmcomp(const struct tm * atmp,
200 const struct tm * btmp);
201 static int_fast32_t transtime(int year, const struct rule * rulep,
202 int_fast32_t offset)
203 ATTRIBUTE_PURE;
204 static int typesequiv(const timezone_t sp, int a, int b);
205 static int tzload(timezone_t sp, const char * name,
206 int doextend);
207 static int tzparse(timezone_t sp, const char * name,
208 int lastditch);
209 static void tzset_unlocked(void);
210 static void tzsetwall_unlocked(void);
211 static int_fast64_t leapcorr(const timezone_t sp, time_t * timep);
212
213 static timezone_t lclptr;
214 static timezone_t gmtptr;
215
216 #ifndef TZ_STRLEN_MAX
217 #define TZ_STRLEN_MAX 255
218 #endif /* !defined TZ_STRLEN_MAX */
219
220 static char lcl_TZname[TZ_STRLEN_MAX + 1];
221 static int lcl_is_set;
222 static int gmt_is_set;
223
224 #if !defined(__LIBC12_SOURCE__)
225
226 __aconst char * tzname[2] = {
227 (__aconst char *)__UNCONST(wildabbr),
228 (__aconst char *)__UNCONST(wildabbr)
229 };
230
231 #else
232
233 extern __aconst char * tzname[2];
234
235 #endif
236
237 #ifdef _REENTRANT
238 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
239 #endif
240
241 /*
242 ** Section 4.12.3 of X3.159-1989 requires that
243 ** Except for the strftime function, these functions [asctime,
244 ** ctime, gmtime, localtime] return values in one of two static
245 ** objects: a broken-down time structure and an array of char.
246 ** Thanks to Paul Eggert for noting this.
247 */
248
249 static struct tm tm;
250
251 #ifdef USG_COMPAT
252 #if !defined(__LIBC12_SOURCE__)
253 long timezone = 0;
254 int daylight = 0;
255 #else
256 extern int daylight;
257 extern long timezone __RENAME(__timezone13);
258 #endif
259 #endif /* defined USG_COMPAT */
260
261 #ifdef ALTZONE
262 long altzone = 0;
263 #endif /* defined ALTZONE */
264
265 static int_fast32_t
266 detzcode(const char *const codep)
267 {
268 int_fast32_t result;
269 int i;
270
271 result = (codep[0] & 0x80) ? -1 : 0;
272 for (i = 0; i < 4; ++i)
273 result = (result << 8) | (codep[i] & 0xff);
274 return result;
275 }
276
277 static int_fast64_t
278 detzcode64(const char *const codep)
279 {
280 int_fast64_t result;
281 int i;
282
283 result = (codep[0] & 0x80) ? -1 : 0;
284 for (i = 0; i < 8; ++i)
285 result = (result << 8) | (codep[i] & 0xff);
286 return result;
287 }
288
289 const char *
290 tzgetname(const timezone_t sp, int isdst)
291 {
292 int i;
293 for (i = 0; i < sp->timecnt; ++i) {
294 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
295
296 if (ttisp->tt_isdst == isdst)
297 return &sp->chars[ttisp->tt_abbrind];
298 }
299 return NULL;
300 }
301
302 static void
303 settzname_z(timezone_t sp)
304 {
305 int i;
306
307 /*
308 ** Scrub the abbreviations.
309 ** First, replace bogus characters.
310 */
311 for (i = 0; i < sp->charcnt; ++i)
312 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
313 sp->chars[i] = TZ_ABBR_ERR_CHAR;
314 /*
315 ** Second, truncate long abbreviations.
316 */
317 for (i = 0; i < sp->typecnt; ++i) {
318 const struct ttinfo * const ttisp = &sp->ttis[i];
319 char * cp = &sp->chars[ttisp->tt_abbrind];
320
321 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
322 strcmp(cp, GRANDPARENTED) != 0)
323 *(cp + TZ_ABBR_MAX_LEN) = '\0';
324 }
325 }
326
327 static void
328 settzname(void)
329 {
330 timezone_t const sp = lclptr;
331 int i;
332
333 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
334 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
335 #ifdef USG_COMPAT
336 daylight = 0;
337 timezone = 0;
338 #endif /* defined USG_COMPAT */
339 #ifdef ALTZONE
340 altzone = 0;
341 #endif /* defined ALTZONE */
342 if (sp == NULL) {
343 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
344 return;
345 }
346 /*
347 ** And to get the latest zone names into tzname. . .
348 */
349 for (i = 0; i < sp->typecnt; ++i) {
350 const struct ttinfo * const ttisp = &sp->ttis[i];
351
352 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
353 #ifdef USG_COMPAT
354 if (ttisp->tt_isdst)
355 daylight = 1;
356 if (!ttisp->tt_isdst)
357 timezone = -(ttisp->tt_gmtoff);
358 #endif /* defined USG_COMPAT */
359 #ifdef ALTZONE
360 if (ttisp->tt_isdst)
361 altzone = -(ttisp->tt_gmtoff);
362 #endif /* defined ALTZONE */
363 }
364 settzname_z(sp);
365 }
366
367 static int
368 differ_by_repeat(const time_t t1, const time_t t0)
369 {
370 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
371 return 0;
372 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
373 }
374
375 static int
376 tzload(timezone_t sp, const char *name, const int doextend)
377 {
378 const char * p;
379 int i;
380 int fid;
381 int stored;
382 ssize_t nread;
383 typedef union {
384 struct tzhead tzhead;
385 char buf[2 * sizeof(struct tzhead) +
386 2 * sizeof *sp +
387 4 * TZ_MAX_TIMES];
388 } u_t;
389 union local_storage {
390 /*
391 ** Section 4.9.1 of the C standard says that
392 ** "FILENAME_MAX expands to an integral constant expression
393 ** that is the size needed for an array of char large enough
394 ** to hold the longest file name string that the implementation
395 ** guarantees can be opened."
396 */
397 char fullname[FILENAME_MAX + 1];
398
399 /* The main part of the storage for this function. */
400 struct {
401 u_t u;
402 struct __state st;
403 } u;
404 };
405 char *fullname;
406 u_t *up;
407 int doaccess;
408 union local_storage *lsp;
409 lsp = malloc(sizeof *lsp);
410 if (!lsp)
411 return -1;
412 fullname = lsp->fullname;
413 up = &lsp->u.u;
414
415 sp->goback = sp->goahead = FALSE;
416
417 if (! name) {
418 name = TZDEFAULT;
419 if (! name)
420 goto oops;
421 }
422
423 if (name[0] == ':')
424 ++name;
425 doaccess = name[0] == '/';
426 if (!doaccess) {
427 p = TZDIR;
428 if (! p || sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
429 goto oops;
430 strcpy(fullname, p);
431 strcat(fullname, "/");
432 strcat(fullname, name);
433 /* Set doaccess if '.' (as in "../") shows up in name. */
434 if (strchr(name, '.'))
435 doaccess = TRUE;
436 name = fullname;
437 }
438 if (doaccess && access(name, R_OK) != 0)
439 goto oops;
440
441 fid = open(name, OPEN_MODE);
442 if (fid < 0)
443 goto oops;
444 nread = read(fid, up->buf, sizeof up->buf);
445 if (close(fid) < 0 || nread <= 0)
446 goto oops;
447 for (stored = 4; stored <= 8; stored *= 2) {
448 int ttisstdcnt;
449 int ttisgmtcnt;
450 int timecnt;
451
452 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
453 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
454 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
455 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
456 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
457 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
458 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
459 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
460 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
461 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
462 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
463 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
464 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
465 goto oops;
466 if (nread - (p - up->buf) <
467 sp->timecnt * stored + /* ats */
468 sp->timecnt + /* types */
469 sp->typecnt * 6 + /* ttinfos */
470 sp->charcnt + /* chars */
471 sp->leapcnt * (stored + 4) + /* lsinfos */
472 ttisstdcnt + /* ttisstds */
473 ttisgmtcnt) /* ttisgmts */
474 goto oops;
475 timecnt = 0;
476 for (i = 0; i < sp->timecnt; ++i) {
477 int_fast64_t at
478 = stored == 4 ? detzcode(p) : detzcode64(p);
479 sp->types[i] = ((TYPE_SIGNED(time_t)
480 ? time_t_min <= at
481 : 0 <= at)
482 && at <= time_t_max);
483 if (sp->types[i]) {
484 if (i && !timecnt && at != time_t_min) {
485 /*
486 ** Keep the earlier record, but tweak
487 ** it so that it starts with the
488 ** minimum time_t value.
489 */
490 sp->types[i - 1] = 1;
491 sp->ats[timecnt++] = time_t_min;
492 }
493 _DIAGASSERT(__type_fit(time_t, at));
494 sp->ats[timecnt++] = (time_t)at;
495 }
496 p += stored;
497 }
498 timecnt = 0;
499 for (i = 0; i < sp->timecnt; ++i) {
500 unsigned char typ = *p++;
501 if (sp->typecnt <= typ)
502 goto oops;
503 if (sp->types[i])
504 sp->types[timecnt++] = typ;
505 }
506 for (i = 0; i < sp->typecnt; ++i) {
507 struct ttinfo * ttisp;
508
509 ttisp = &sp->ttis[i];
510 ttisp->tt_gmtoff = detzcode(p);
511 p += 4;
512 ttisp->tt_isdst = (unsigned char) *p++;
513 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
514 goto oops;
515 ttisp->tt_abbrind = (unsigned char) *p++;
516 if (ttisp->tt_abbrind < 0 ||
517 ttisp->tt_abbrind > sp->charcnt)
518 goto oops;
519 }
520 for (i = 0; i < sp->charcnt; ++i)
521 sp->chars[i] = *p++;
522 sp->chars[i] = '\0'; /* ensure '\0' at end */
523 for (i = 0; i < sp->leapcnt; ++i) {
524 struct lsinfo * lsisp;
525
526 lsisp = &sp->lsis[i];
527 lsisp->ls_trans = (time_t)((stored == 4) ?
528 detzcode(p) : detzcode64(p));
529 p += stored;
530 lsisp->ls_corr = detzcode(p);
531 p += 4;
532 }
533 for (i = 0; i < sp->typecnt; ++i) {
534 struct ttinfo * ttisp;
535
536 ttisp = &sp->ttis[i];
537 if (ttisstdcnt == 0)
538 ttisp->tt_ttisstd = FALSE;
539 else {
540 ttisp->tt_ttisstd = *p++;
541 if (ttisp->tt_ttisstd != TRUE &&
542 ttisp->tt_ttisstd != FALSE)
543 goto oops;
544 }
545 }
546 for (i = 0; i < sp->typecnt; ++i) {
547 struct ttinfo * ttisp;
548
549 ttisp = &sp->ttis[i];
550 if (ttisgmtcnt == 0)
551 ttisp->tt_ttisgmt = FALSE;
552 else {
553 ttisp->tt_ttisgmt = *p++;
554 if (ttisp->tt_ttisgmt != TRUE &&
555 ttisp->tt_ttisgmt != FALSE)
556 goto oops;
557 }
558 }
559 /*
560 ** If this is an old file, we're done.
561 */
562 if (up->tzhead.tzh_version[0] == '\0')
563 break;
564 nread -= p - up->buf;
565 for (i = 0; i < nread; ++i)
566 up->buf[i] = p[i];
567 /*
568 ** If this is a signed narrow time_t system, we're done.
569 */
570 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
571 break;
572 }
573 if (doextend && nread > 2 &&
574 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
575 sp->typecnt + 2 <= TZ_MAX_TYPES) {
576 struct __state *ts = &lsp->u.st;
577 int result;
578
579 up->buf[nread - 1] = '\0';
580 result = tzparse(ts, &up->buf[1], FALSE);
581 if (result == 0 && ts->typecnt == 2 &&
582 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
583 for (i = 0; i < 2; ++i)
584 ts->ttis[i].tt_abbrind +=
585 sp->charcnt;
586 for (i = 0; i < ts->charcnt; ++i)
587 sp->chars[sp->charcnt++] =
588 ts->chars[i];
589 i = 0;
590 while (i < ts->timecnt &&
591 ts->ats[i] <=
592 sp->ats[sp->timecnt - 1])
593 ++i;
594 while (i < ts->timecnt &&
595 sp->timecnt < TZ_MAX_TIMES) {
596 sp->ats[sp->timecnt] =
597 ts->ats[i];
598 sp->types[sp->timecnt] =
599 sp->typecnt +
600 ts->types[i];
601 ++sp->timecnt;
602 ++i;
603 }
604 sp->ttis[sp->typecnt++] = ts->ttis[0];
605 sp->ttis[sp->typecnt++] = ts->ttis[1];
606 }
607 }
608 if (sp->timecnt > 1) {
609 for (i = 1; i < sp->timecnt; ++i)
610 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
611 differ_by_repeat(sp->ats[i], sp->ats[0])) {
612 sp->goback = TRUE;
613 break;
614 }
615 for (i = sp->timecnt - 2; i >= 0; --i)
616 if (typesequiv(sp, sp->types[sp->timecnt - 1],
617 sp->types[i]) &&
618 differ_by_repeat(sp->ats[sp->timecnt - 1],
619 sp->ats[i])) {
620 sp->goahead = TRUE;
621 break;
622 }
623 }
624 /*
625 ** If type 0 is is unused in transitions,
626 ** it's the type to use for early times.
627 */
628 for (i = 0; i < sp->typecnt; ++i)
629 if (sp->types[i] == 0)
630 break;
631 i = (i >= sp->typecnt) ? 0 : -1;
632 /*
633 ** Absent the above,
634 ** if there are transition times
635 ** and the first transition is to a daylight time
636 ** find the standard type less than and closest to
637 ** the type of the first transition.
638 */
639 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
640 i = sp->types[0];
641 while (--i >= 0)
642 if (!sp->ttis[i].tt_isdst)
643 break;
644 }
645 /*
646 ** If no result yet, find the first standard type.
647 ** If there is none, punt to type zero.
648 */
649 if (i < 0) {
650 i = 0;
651 while (sp->ttis[i].tt_isdst)
652 if (++i >= sp->typecnt) {
653 i = 0;
654 break;
655 }
656 }
657 sp->defaulttype = i;
658 free(up);
659 return 0;
660 oops:
661 free(up);
662 return -1;
663 }
664
665 static int
666 typesequiv(const timezone_t sp, const int a, const int b)
667 {
668 int result;
669
670 if (sp == NULL ||
671 a < 0 || a >= sp->typecnt ||
672 b < 0 || b >= sp->typecnt)
673 result = FALSE;
674 else {
675 const struct ttinfo * ap = &sp->ttis[a];
676 const struct ttinfo * bp = &sp->ttis[b];
677 result = ap->tt_gmtoff == bp->tt_gmtoff &&
678 ap->tt_isdst == bp->tt_isdst &&
679 ap->tt_ttisstd == bp->tt_ttisstd &&
680 ap->tt_ttisgmt == bp->tt_ttisgmt &&
681 strcmp(&sp->chars[ap->tt_abbrind],
682 &sp->chars[bp->tt_abbrind]) == 0;
683 }
684 return result;
685 }
686
687 static const int mon_lengths[2][MONSPERYEAR] = {
688 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
689 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
690 };
691
692 static const int year_lengths[2] = {
693 DAYSPERNYEAR, DAYSPERLYEAR
694 };
695
696 /*
697 ** Given a pointer into a time zone string, scan until a character that is not
698 ** a valid character in a zone name is found. Return a pointer to that
699 ** character.
700 */
701
702 static const char *
703 getzname(const char *strp)
704 {
705 char c;
706
707 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
708 c != '+')
709 ++strp;
710 return strp;
711 }
712
713 /*
714 ** Given a pointer into an extended time zone string, scan until the ending
715 ** delimiter of the zone name is located. Return a pointer to the delimiter.
716 **
717 ** As with getzname above, the legal character set is actually quite
718 ** restricted, with other characters producing undefined results.
719 ** We don't do any checking here; checking is done later in common-case code.
720 */
721
722 static const char *
723 getqzname(const char *strp, const int delim)
724 {
725 int c;
726
727 while ((c = *strp) != '\0' && c != delim)
728 ++strp;
729 return strp;
730 }
731
732 /*
733 ** Given a pointer into a time zone string, extract a number from that string.
734 ** Check that the number is within a specified range; if it is not, return
735 ** NULL.
736 ** Otherwise, return a pointer to the first character not part of the number.
737 */
738
739 static const char *
740 getnum(const char *strp, int *const nump, const int min, const int max)
741 {
742 char c;
743 int num;
744
745 if (strp == NULL || !is_digit(c = *strp)) {
746 errno = EINVAL;
747 return NULL;
748 }
749 num = 0;
750 do {
751 num = num * 10 + (c - '0');
752 if (num > max) {
753 errno = EOVERFLOW;
754 return NULL; /* illegal value */
755 }
756 c = *++strp;
757 } while (is_digit(c));
758 if (num < min) {
759 errno = EINVAL;
760 return NULL; /* illegal value */
761 }
762 *nump = num;
763 return strp;
764 }
765
766 /*
767 ** Given a pointer into a time zone string, extract a number of seconds,
768 ** in hh[:mm[:ss]] form, from the string.
769 ** If any error occurs, return NULL.
770 ** Otherwise, return a pointer to the first character not part of the number
771 ** of seconds.
772 */
773
774 static const char *
775 getsecs(const char *strp, int_fast32_t *const secsp)
776 {
777 int num;
778
779 /*
780 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
781 ** "M10.4.6/26", which does not conform to Posix,
782 ** but which specifies the equivalent of
783 ** "02:00 on the first Sunday on or after 23 Oct".
784 */
785 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
786 if (strp == NULL)
787 return NULL;
788 *secsp = num * (int_fast32_t) SECSPERHOUR;
789 if (*strp == ':') {
790 ++strp;
791 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
792 if (strp == NULL)
793 return NULL;
794 *secsp += num * SECSPERMIN;
795 if (*strp == ':') {
796 ++strp;
797 /* 'SECSPERMIN' allows for leap seconds. */
798 strp = getnum(strp, &num, 0, SECSPERMIN);
799 if (strp == NULL)
800 return NULL;
801 *secsp += num;
802 }
803 }
804 return strp;
805 }
806
807 /*
808 ** Given a pointer into a time zone string, extract an offset, in
809 ** [+-]hh[:mm[:ss]] form, from the string.
810 ** If any error occurs, return NULL.
811 ** Otherwise, return a pointer to the first character not part of the time.
812 */
813
814 static const char *
815 getoffset(const char *strp, int_fast32_t *const offsetp)
816 {
817 int neg = 0;
818
819 if (*strp == '-') {
820 neg = 1;
821 ++strp;
822 } else if (*strp == '+')
823 ++strp;
824 strp = getsecs(strp, offsetp);
825 if (strp == NULL)
826 return NULL; /* illegal time */
827 if (neg)
828 *offsetp = -*offsetp;
829 return strp;
830 }
831
832 /*
833 ** Given a pointer into a time zone string, extract a rule in the form
834 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
835 ** If a valid rule is not found, return NULL.
836 ** Otherwise, return a pointer to the first character not part of the rule.
837 */
838
839 static const char *
840 getrule(const char *strp, struct rule *const rulep)
841 {
842 if (*strp == 'J') {
843 /*
844 ** Julian day.
845 */
846 rulep->r_type = JULIAN_DAY;
847 ++strp;
848 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
849 } else if (*strp == 'M') {
850 /*
851 ** Month, week, day.
852 */
853 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
854 ++strp;
855 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
856 if (strp == NULL)
857 return NULL;
858 if (*strp++ != '.')
859 return NULL;
860 strp = getnum(strp, &rulep->r_week, 1, 5);
861 if (strp == NULL)
862 return NULL;
863 if (*strp++ != '.')
864 return NULL;
865 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
866 } else if (is_digit(*strp)) {
867 /*
868 ** Day of year.
869 */
870 rulep->r_type = DAY_OF_YEAR;
871 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
872 } else return NULL; /* invalid format */
873 if (strp == NULL)
874 return NULL;
875 if (*strp == '/') {
876 /*
877 ** Time specified.
878 */
879 ++strp;
880 strp = getoffset(strp, &rulep->r_time);
881 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
882 return strp;
883 }
884
885 /*
886 ** Given a year, a rule, and the offset from UT at the time that rule takes
887 ** effect, calculate the year-relative time that rule takes effect.
888 */
889
890 static int_fast32_t
891 transtime(const int year, const struct rule *const rulep,
892 const int_fast32_t offset)
893 {
894 int leapyear;
895 int_fast32_t value;
896 int i;
897 int d, m1, yy0, yy1, yy2, dow;
898
899 INITIALIZE(value);
900 leapyear = isleap(year);
901 switch (rulep->r_type) {
902
903 case JULIAN_DAY:
904 /*
905 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
906 ** years.
907 ** In non-leap years, or if the day number is 59 or less, just
908 ** add SECSPERDAY times the day number-1 to the time of
909 ** January 1, midnight, to get the day.
910 */
911 value = (rulep->r_day - 1) * SECSPERDAY;
912 if (leapyear && rulep->r_day >= 60)
913 value += SECSPERDAY;
914 break;
915
916 case DAY_OF_YEAR:
917 /*
918 ** n - day of year.
919 ** Just add SECSPERDAY times the day number to the time of
920 ** January 1, midnight, to get the day.
921 */
922 value = rulep->r_day * SECSPERDAY;
923 break;
924
925 case MONTH_NTH_DAY_OF_WEEK:
926 /*
927 ** Mm.n.d - nth "dth day" of month m.
928 */
929
930 /*
931 ** Use Zeller's Congruence to get day-of-week of first day of
932 ** month.
933 */
934 m1 = (rulep->r_mon + 9) % 12 + 1;
935 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
936 yy1 = yy0 / 100;
937 yy2 = yy0 % 100;
938 dow = ((26 * m1 - 2) / 10 +
939 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
940 if (dow < 0)
941 dow += DAYSPERWEEK;
942
943 /*
944 ** "dow" is the day-of-week of the first day of the month. Get
945 ** the day-of-month (zero-origin) of the first "dow" day of the
946 ** month.
947 */
948 d = rulep->r_day - dow;
949 if (d < 0)
950 d += DAYSPERWEEK;
951 for (i = 1; i < rulep->r_week; ++i) {
952 if (d + DAYSPERWEEK >=
953 mon_lengths[leapyear][rulep->r_mon - 1])
954 break;
955 d += DAYSPERWEEK;
956 }
957
958 /*
959 ** "d" is the day-of-month (zero-origin) of the day we want.
960 */
961 value = d * SECSPERDAY;
962 for (i = 0; i < rulep->r_mon - 1; ++i)
963 value += mon_lengths[leapyear][i] * SECSPERDAY;
964 break;
965 }
966
967 /*
968 ** "value" is the year-relative time of 00:00:00 UT on the day in
969 ** question. To get the year-relative time of the specified local
970 ** time on that day, add the transition time and the current offset
971 ** from UT.
972 */
973 return value + rulep->r_time + offset;
974 }
975
976 /*
977 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
978 ** appropriate.
979 */
980
981 static int
982 tzparse(timezone_t sp, const char *name, const int lastditch)
983 {
984 const char * stdname;
985 const char * dstname;
986 size_t stdlen;
987 size_t dstlen;
988 int_fast32_t stdoffset;
989 int_fast32_t dstoffset;
990 char * cp;
991 int load_result;
992
993 dstname = NULL; /* XXX gcc */
994 stdname = name;
995 if (lastditch) {
996 stdlen = strlen(name); /* length of standard zone name */
997 name += stdlen;
998 if (stdlen >= sizeof sp->chars)
999 stdlen = (sizeof sp->chars) - 1;
1000 stdoffset = 0;
1001 } else {
1002 if (*name == '<') {
1003 name++;
1004 stdname = name;
1005 name = getqzname(name, '>');
1006 if (*name != '>')
1007 return (-1);
1008 stdlen = name - stdname;
1009 name++;
1010 } else {
1011 name = getzname(name);
1012 stdlen = name - stdname;
1013 }
1014 if (*name == '\0')
1015 return -1;
1016 name = getoffset(name, &stdoffset);
1017 if (name == NULL)
1018 return -1;
1019 }
1020 load_result = tzload(sp, TZDEFRULES, FALSE);
1021 if (load_result != 0)
1022 sp->leapcnt = 0; /* so, we're off a little */
1023 if (*name != '\0') {
1024 if (*name == '<') {
1025 dstname = ++name;
1026 name = getqzname(name, '>');
1027 if (*name != '>')
1028 return -1;
1029 dstlen = name - dstname;
1030 name++;
1031 } else {
1032 dstname = name;
1033 name = getzname(name);
1034 dstlen = name - dstname; /* length of DST zone name */
1035 }
1036 if (*name != '\0' && *name != ',' && *name != ';') {
1037 name = getoffset(name, &dstoffset);
1038 if (name == NULL)
1039 return -1;
1040 } else dstoffset = stdoffset - SECSPERHOUR;
1041 if (*name == '\0' && load_result != 0)
1042 name = TZDEFRULESTRING;
1043 if (*name == ',' || *name == ';') {
1044 struct rule start;
1045 struct rule end;
1046 int year;
1047 int yearlim;
1048 int timecnt;
1049 time_t janfirst;
1050
1051 ++name;
1052 if ((name = getrule(name, &start)) == NULL)
1053 return -1;
1054 if (*name++ != ',')
1055 return -1;
1056 if ((name = getrule(name, &end)) == NULL)
1057 return -1;
1058 if (*name != '\0')
1059 return -1;
1060 sp->typecnt = 2; /* standard time and DST */
1061 /*
1062 ** Two transitions per year, from EPOCH_YEAR forward.
1063 */
1064 memset(sp->ttis, 0, sizeof(sp->ttis));
1065 sp->ttis[0].tt_gmtoff = -dstoffset;
1066 sp->ttis[0].tt_isdst = 1;
1067 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1068 sp->ttis[1].tt_gmtoff = -stdoffset;
1069 sp->ttis[1].tt_isdst = 0;
1070 sp->ttis[1].tt_abbrind = 0;
1071 sp->defaulttype = 0;
1072 timecnt = 0;
1073 janfirst = 0;
1074 sp->timecnt = 0;
1075 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1076 for (year = EPOCH_YEAR; year < yearlim; year++) {
1077 int_fast32_t
1078 starttime = transtime(year, &start, stdoffset),
1079 endtime = transtime(year, &end, dstoffset);
1080 int_fast32_t
1081 yearsecs = (year_lengths[isleap(year)]
1082 * SECSPERDAY);
1083 int reversed = endtime < starttime;
1084 if (reversed) {
1085 int_fast32_t swap = starttime;
1086 starttime = endtime;
1087 endtime = swap;
1088 }
1089 if (reversed
1090 || (starttime < endtime
1091 && (endtime - starttime
1092 < (yearsecs
1093 + (stdoffset - dstoffset))))) {
1094 if (TZ_MAX_TIMES - 2 < timecnt)
1095 break;
1096 yearlim = year + YEARSPERREPEAT + 1;
1097 sp->ats[timecnt] = janfirst;
1098 if (increment_overflow_time
1099 (&sp->ats[timecnt], starttime))
1100 break;
1101 sp->types[timecnt++] = reversed;
1102 sp->ats[timecnt] = janfirst;
1103 if (increment_overflow_time
1104 (&sp->ats[timecnt], endtime))
1105 break;
1106 sp->types[timecnt++] = !reversed;
1107 }
1108 if (increment_overflow_time(&janfirst, yearsecs))
1109 break;
1110 }
1111 sp->timecnt = timecnt;
1112 if (!timecnt)
1113 sp->typecnt = 1; /* Perpetual DST. */
1114 } else {
1115 int_fast32_t theirstdoffset;
1116 int_fast32_t theirdstoffset;
1117 int_fast32_t theiroffset;
1118 int isdst;
1119 int i;
1120 int j;
1121
1122 if (*name != '\0')
1123 return -1;
1124 /*
1125 ** Initial values of theirstdoffset and theirdstoffset.
1126 */
1127 theirstdoffset = 0;
1128 for (i = 0; i < sp->timecnt; ++i) {
1129 j = sp->types[i];
1130 if (!sp->ttis[j].tt_isdst) {
1131 theirstdoffset =
1132 -sp->ttis[j].tt_gmtoff;
1133 break;
1134 }
1135 }
1136 theirdstoffset = 0;
1137 for (i = 0; i < sp->timecnt; ++i) {
1138 j = sp->types[i];
1139 if (sp->ttis[j].tt_isdst) {
1140 theirdstoffset =
1141 -sp->ttis[j].tt_gmtoff;
1142 break;
1143 }
1144 }
1145 /*
1146 ** Initially we're assumed to be in standard time.
1147 */
1148 isdst = FALSE;
1149 theiroffset = theirstdoffset;
1150 /*
1151 ** Now juggle transition times and types
1152 ** tracking offsets as you do.
1153 */
1154 for (i = 0; i < sp->timecnt; ++i) {
1155 j = sp->types[i];
1156 sp->types[i] = sp->ttis[j].tt_isdst;
1157 if (sp->ttis[j].tt_ttisgmt) {
1158 /* No adjustment to transition time */
1159 } else {
1160 /*
1161 ** If summer time is in effect, and the
1162 ** transition time was not specified as
1163 ** standard time, add the summer time
1164 ** offset to the transition time;
1165 ** otherwise, add the standard time
1166 ** offset to the transition time.
1167 */
1168 /*
1169 ** Transitions from DST to DDST
1170 ** will effectively disappear since
1171 ** POSIX provides for only one DST
1172 ** offset.
1173 */
1174 if (isdst && !sp->ttis[j].tt_ttisstd) {
1175 sp->ats[i] += (time_t)
1176 (dstoffset - theirdstoffset);
1177 } else {
1178 sp->ats[i] += (time_t)
1179 (stdoffset - theirstdoffset);
1180 }
1181 }
1182 theiroffset = -sp->ttis[j].tt_gmtoff;
1183 if (!sp->ttis[j].tt_isdst)
1184 theirstdoffset = theiroffset;
1185 else theirdstoffset = theiroffset;
1186 }
1187 /*
1188 ** Finally, fill in ttis.
1189 ** ttisstd and ttisgmt need not be handled
1190 */
1191 memset(sp->ttis, 0, sizeof(sp->ttis));
1192 sp->ttis[0].tt_gmtoff = -stdoffset;
1193 sp->ttis[0].tt_isdst = FALSE;
1194 sp->ttis[0].tt_abbrind = 0;
1195 sp->ttis[1].tt_gmtoff = -dstoffset;
1196 sp->ttis[1].tt_isdst = TRUE;
1197 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1198 sp->typecnt = 2;
1199 sp->defaulttype = 0;
1200 }
1201 } else {
1202 dstlen = 0;
1203 sp->typecnt = 1; /* only standard time */
1204 sp->timecnt = 0;
1205 memset(sp->ttis, 0, sizeof(sp->ttis));
1206 sp->ttis[0].tt_gmtoff = -stdoffset;
1207 sp->ttis[0].tt_isdst = 0;
1208 sp->ttis[0].tt_abbrind = 0;
1209 sp->defaulttype = 0;
1210 }
1211 sp->charcnt = (int)(stdlen + 1);
1212 if (dstlen != 0)
1213 sp->charcnt += (int)(dstlen + 1);
1214 if ((size_t) sp->charcnt > sizeof sp->chars)
1215 return -1;
1216 cp = sp->chars;
1217 (void) strncpy(cp, stdname, stdlen);
1218 cp += stdlen;
1219 *cp++ = '\0';
1220 if (dstlen != 0) {
1221 (void) strncpy(cp, dstname, dstlen);
1222 *(cp + dstlen) = '\0';
1223 }
1224 return 0;
1225 }
1226
1227 static void
1228 gmtload(timezone_t sp)
1229 {
1230 if (tzload(sp, gmt, TRUE) != 0)
1231 (void) tzparse(sp, gmt, TRUE);
1232 }
1233
1234 timezone_t
1235 tzalloc(const char *name)
1236 {
1237 timezone_t sp = malloc(sizeof *sp);
1238 if (sp == NULL)
1239 return NULL;
1240 if (tzload(sp, name, TRUE) != 0) {
1241 free(sp);
1242 return NULL;
1243 }
1244 settzname_z(sp);
1245 return sp;
1246 }
1247
1248 void
1249 tzfree(const timezone_t sp)
1250 {
1251 free(sp);
1252 }
1253
1254 static void
1255 tzsetwall_unlocked(void)
1256 {
1257 if (lcl_is_set < 0)
1258 return;
1259 lcl_is_set = -1;
1260
1261 if (lclptr == NULL) {
1262 int saveerrno = errno;
1263 lclptr = malloc(sizeof *lclptr);
1264 errno = saveerrno;
1265 if (lclptr == NULL) {
1266 settzname(); /* all we can do */
1267 return;
1268 }
1269 }
1270 if (tzload(lclptr, NULL, TRUE) != 0)
1271 gmtload(lclptr);
1272 settzname();
1273 }
1274
1275 #ifndef STD_INSPIRED
1276 /*
1277 ** A non-static declaration of tzsetwall in a system header file
1278 ** may cause a warning about this upcoming static declaration...
1279 */
1280 static
1281 #endif /* !defined STD_INSPIRED */
1282 void
1283 tzsetwall(void)
1284 {
1285 rwlock_wrlock(&lcl_lock);
1286 tzsetwall_unlocked();
1287 rwlock_unlock(&lcl_lock);
1288 }
1289
1290 #ifndef STD_INSPIRED
1291 /*
1292 ** A non-static declaration of tzsetwall in a system header file
1293 ** may cause a warning about this upcoming static declaration...
1294 */
1295 static
1296 #endif /* !defined STD_INSPIRED */
1297 void
1298 tzset_unlocked(void)
1299 {
1300 const char * name;
1301
1302 name = getenv("TZ");
1303 if (name == NULL) {
1304 tzsetwall_unlocked();
1305 return;
1306 }
1307
1308 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1309 return;
1310 lcl_is_set = strlen(name) < sizeof lcl_TZname;
1311 if (lcl_is_set)
1312 (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1313
1314 if (lclptr == NULL) {
1315 int saveerrno = errno;
1316 lclptr = malloc(sizeof *lclptr);
1317 errno = saveerrno;
1318 if (lclptr == NULL) {
1319 settzname(); /* all we can do */
1320 return;
1321 }
1322 }
1323 if (*name == '\0') {
1324 /*
1325 ** User wants it fast rather than right.
1326 */
1327 lclptr->leapcnt = 0; /* so, we're off a little */
1328 lclptr->timecnt = 0;
1329 lclptr->typecnt = 0;
1330 lclptr->ttis[0].tt_isdst = 0;
1331 lclptr->ttis[0].tt_gmtoff = 0;
1332 lclptr->ttis[0].tt_abbrind = 0;
1333 (void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1334 } else if (tzload(lclptr, name, TRUE) != 0)
1335 if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
1336 (void) gmtload(lclptr);
1337 settzname();
1338 }
1339
1340 void
1341 tzset(void)
1342 {
1343 rwlock_wrlock(&lcl_lock);
1344 tzset_unlocked();
1345 rwlock_unlock(&lcl_lock);
1346 }
1347
1348 /*
1349 ** The easy way to behave "as if no library function calls" localtime
1350 ** is to not call it, so we drop its guts into "localsub", which can be
1351 ** freely called. (And no, the PANS doesn't require the above behavior,
1352 ** but it *is* desirable.)
1353 **
1354 ** The unused offset argument is for the benefit of mktime variants.
1355 */
1356
1357 /*ARGSUSED*/
1358 static struct tm *
1359 localsub(const timezone_t sp, const time_t * const timep, const int_fast32_t offset,
1360 struct tm *const tmp)
1361 {
1362 const struct ttinfo * ttisp;
1363 int i;
1364 struct tm * result;
1365 const time_t t = *timep;
1366
1367 if ((sp->goback && t < sp->ats[0]) ||
1368 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1369 time_t newt = t;
1370 time_t seconds;
1371 time_t years;
1372
1373 if (t < sp->ats[0])
1374 seconds = sp->ats[0] - t;
1375 else seconds = t - sp->ats[sp->timecnt - 1];
1376 --seconds;
1377 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1378 seconds = (time_t)(years * AVGSECSPERYEAR);
1379 if (t < sp->ats[0])
1380 newt += seconds;
1381 else newt -= seconds;
1382 if (newt < sp->ats[0] ||
1383 newt > sp->ats[sp->timecnt - 1])
1384 return NULL; /* "cannot happen" */
1385 result = localsub(sp, &newt, offset, tmp);
1386 if (result == tmp) {
1387 time_t newy;
1388
1389 newy = tmp->tm_year;
1390 if (t < sp->ats[0])
1391 newy -= years;
1392 else newy += years;
1393 tmp->tm_year = (int)newy;
1394 if (tmp->tm_year != newy)
1395 return NULL;
1396 }
1397 return result;
1398 }
1399 if (sp->timecnt == 0 || t < sp->ats[0]) {
1400 i = sp->defaulttype;
1401 } else {
1402 int lo = 1;
1403 int hi = sp->timecnt;
1404
1405 while (lo < hi) {
1406 int mid = (lo + hi) / 2;
1407
1408 if (t < sp->ats[mid])
1409 hi = mid;
1410 else lo = mid + 1;
1411 }
1412 i = (int) sp->types[lo - 1];
1413 }
1414 ttisp = &sp->ttis[i];
1415 /*
1416 ** To get (wrong) behavior that's compatible with System V Release 2.0
1417 ** you'd replace the statement below with
1418 ** t += ttisp->tt_gmtoff;
1419 ** timesub(&t, 0L, sp, tmp);
1420 */
1421 result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
1422 tmp->tm_isdst = ttisp->tt_isdst;
1423 if (sp == lclptr)
1424 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1425 #ifdef TM_ZONE
1426 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1427 #endif /* defined TM_ZONE */
1428 return result;
1429 }
1430
1431 /*
1432 ** Re-entrant version of localtime.
1433 */
1434
1435 struct tm *
1436 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1437 {
1438 rwlock_rdlock(&lcl_lock);
1439 tzset_unlocked();
1440 tmp = localtime_rz(lclptr, timep, tmp);
1441 rwlock_unlock(&lcl_lock);
1442 return tmp;
1443 }
1444
1445 struct tm *
1446 localtime(const time_t *const timep)
1447 {
1448 return localtime_r(timep, &tm);
1449 }
1450
1451 struct tm *
1452 localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
1453 {
1454 if (sp == NULL)
1455 tmp = gmtsub(NULL, timep, 0, tmp);
1456 else
1457 tmp = localsub(sp, timep, 0, tmp);
1458 if (tmp == NULL)
1459 errno = EOVERFLOW;
1460 return tmp;
1461 }
1462
1463 /*
1464 ** gmtsub is to gmtime as localsub is to localtime.
1465 */
1466
1467 static struct tm *
1468 gmtsub(const timezone_t sp, const time_t *const timep,
1469 const int_fast32_t offset, struct tm *const tmp)
1470 {
1471 struct tm * result;
1472 #ifdef _REENTRANT
1473 static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1474 #endif
1475
1476 mutex_lock(&gmt_mutex);
1477 if (!gmt_is_set) {
1478 int saveerrno;
1479 gmt_is_set = TRUE;
1480 saveerrno = errno;
1481 gmtptr = malloc(sizeof *gmtptr);
1482 gmt_is_set = gmtptr != NULL;
1483 errno = saveerrno;
1484 if (gmt_is_set)
1485 gmtload(gmtptr);
1486 }
1487 mutex_unlock(&gmt_mutex);
1488 result = timesub(gmtptr, timep, offset, tmp);
1489 #ifdef TM_ZONE
1490 /*
1491 ** Could get fancy here and deliver something such as
1492 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1493 ** but this is no time for a treasure hunt.
1494 */
1495 tmp->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ? gmtptr->chars :
1496 __UNCONST(gmt);
1497 #endif /* defined TM_ZONE */
1498 return result;
1499 }
1500
1501 struct tm *
1502 gmtime(const time_t *const timep)
1503 {
1504 struct tm *tmp = gmtsub(NULL, timep, 0, &tm);
1505
1506 if (tmp == NULL)
1507 errno = EOVERFLOW;
1508
1509 return tmp;
1510 }
1511
1512 /*
1513 ** Re-entrant version of gmtime.
1514 */
1515
1516 struct tm *
1517 gmtime_r(const time_t * const timep, struct tm *tmp)
1518 {
1519 tmp = gmtsub(NULL, timep, 0, tmp);
1520
1521 if (tmp == NULL)
1522 errno = EOVERFLOW;
1523
1524 return tmp;
1525 }
1526
1527 #ifdef STD_INSPIRED
1528
1529 struct tm *
1530 offtime(const time_t *const timep, long offset)
1531 {
1532 struct tm *tmp;
1533
1534 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1535 (offset < 0 && offset < INT_FAST32_MIN)) {
1536 errno = EOVERFLOW;
1537 return NULL;
1538 }
1539 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, &tm);
1540
1541 if (tmp == NULL)
1542 errno = EOVERFLOW;
1543
1544 return tmp;
1545 }
1546
1547 struct tm *
1548 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1549 {
1550 if ((offset > 0 && offset > INT_FAST32_MAX) ||
1551 (offset < 0 && offset < INT_FAST32_MIN)) {
1552 errno = EOVERFLOW;
1553 return NULL;
1554 }
1555 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1556
1557 if (tmp == NULL)
1558 errno = EOVERFLOW;
1559
1560 return tmp;
1561 }
1562
1563 #endif /* defined STD_INSPIRED */
1564
1565 /*
1566 ** Return the number of leap years through the end of the given year
1567 ** where, to make the math easy, the answer for year zero is defined as zero.
1568 */
1569
1570 static int
1571 leaps_thru_end_of(const int y)
1572 {
1573 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1574 -(leaps_thru_end_of(-(y + 1)) + 1);
1575 }
1576
1577 static struct tm *
1578 timesub(const timezone_t sp, const time_t *const timep,
1579 const int_fast32_t offset, struct tm *const tmp)
1580 {
1581 const struct lsinfo * lp;
1582 time_t tdays;
1583 int idays; /* unsigned would be so 2003 */
1584 int_fast64_t rem;
1585 int y;
1586 const int * ip;
1587 int_fast64_t corr;
1588 int hit;
1589 int i;
1590
1591 corr = 0;
1592 hit = 0;
1593 i = (sp == NULL) ? 0 : sp->leapcnt;
1594 while (--i >= 0) {
1595 lp = &sp->lsis[i];
1596 if (*timep >= lp->ls_trans) {
1597 if (*timep == lp->ls_trans) {
1598 hit = ((i == 0 && lp->ls_corr > 0) ||
1599 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1600 if (hit)
1601 while (i > 0 &&
1602 sp->lsis[i].ls_trans ==
1603 sp->lsis[i - 1].ls_trans + 1 &&
1604 sp->lsis[i].ls_corr ==
1605 sp->lsis[i - 1].ls_corr + 1) {
1606 ++hit;
1607 --i;
1608 }
1609 }
1610 corr = lp->ls_corr;
1611 break;
1612 }
1613 }
1614 y = EPOCH_YEAR;
1615 tdays = (time_t)(*timep / SECSPERDAY);
1616 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1617 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1618 int newy;
1619 time_t tdelta;
1620 int idelta;
1621 int leapdays;
1622
1623 tdelta = tdays / DAYSPERLYEAR;
1624 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1625 && tdelta <= INT_MAX))
1626 return NULL;
1627 _DIAGASSERT(__type_fit(int, tdelta));
1628 idelta = (int)tdelta;
1629 if (idelta == 0)
1630 idelta = (tdays < 0) ? -1 : 1;
1631 newy = y;
1632 if (increment_overflow(&newy, idelta))
1633 return NULL;
1634 leapdays = leaps_thru_end_of(newy - 1) -
1635 leaps_thru_end_of(y - 1);
1636 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1637 tdays -= leapdays;
1638 y = newy;
1639 }
1640 {
1641 int_fast32_t seconds;
1642
1643 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1644 tdays = (time_t)(seconds / SECSPERDAY);
1645 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1646 }
1647 /*
1648 ** Given the range, we can now fearlessly cast...
1649 */
1650 idays = (int) tdays;
1651 rem += offset - corr;
1652 while (rem < 0) {
1653 rem += SECSPERDAY;
1654 --idays;
1655 }
1656 while (rem >= SECSPERDAY) {
1657 rem -= SECSPERDAY;
1658 ++idays;
1659 }
1660 while (idays < 0) {
1661 if (increment_overflow(&y, -1))
1662 return NULL;
1663 idays += year_lengths[isleap(y)];
1664 }
1665 while (idays >= year_lengths[isleap(y)]) {
1666 idays -= year_lengths[isleap(y)];
1667 if (increment_overflow(&y, 1))
1668 return NULL;
1669 }
1670 tmp->tm_year = y;
1671 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1672 return NULL;
1673 tmp->tm_yday = idays;
1674 /*
1675 ** The "extra" mods below avoid overflow problems.
1676 */
1677 tmp->tm_wday = EPOCH_WDAY +
1678 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1679 (DAYSPERNYEAR % DAYSPERWEEK) +
1680 leaps_thru_end_of(y - 1) -
1681 leaps_thru_end_of(EPOCH_YEAR - 1) +
1682 idays;
1683 tmp->tm_wday %= DAYSPERWEEK;
1684 if (tmp->tm_wday < 0)
1685 tmp->tm_wday += DAYSPERWEEK;
1686 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1687 rem %= SECSPERHOUR;
1688 tmp->tm_min = (int) (rem / SECSPERMIN);
1689 /*
1690 ** A positive leap second requires a special
1691 ** representation. This uses "... ??:59:60" et seq.
1692 */
1693 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1694 ip = mon_lengths[isleap(y)];
1695 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1696 idays -= ip[tmp->tm_mon];
1697 tmp->tm_mday = (int) (idays + 1);
1698 tmp->tm_isdst = 0;
1699 #ifdef TM_GMTOFF
1700 tmp->TM_GMTOFF = offset;
1701 #endif /* defined TM_GMTOFF */
1702 return tmp;
1703 }
1704
1705 char *
1706 ctime(const time_t *const timep)
1707 {
1708 /*
1709 ** Section 4.12.3.2 of X3.159-1989 requires that
1710 ** The ctime function converts the calendar time pointed to by timer
1711 ** to local time in the form of a string. It is equivalent to
1712 ** asctime(localtime(timer))
1713 */
1714 struct tm *rtm = localtime(timep);
1715 if (rtm == NULL)
1716 return NULL;
1717 return asctime(rtm);
1718 }
1719
1720 char *
1721 ctime_r(const time_t *const timep, char *buf)
1722 {
1723 struct tm mytm, *rtm;
1724
1725 rtm = localtime_r(timep, &mytm);
1726 if (rtm == NULL)
1727 return NULL;
1728 return asctime_r(rtm, buf);
1729 }
1730
1731 char *
1732 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1733 {
1734 struct tm mytm, *rtm;
1735
1736 rtm = localtime_rz(sp, timep, &mytm);
1737 if (rtm == NULL)
1738 return NULL;
1739 return asctime_r(rtm, buf);
1740 }
1741
1742 /*
1743 ** Adapted from code provided by Robert Elz, who writes:
1744 ** The "best" way to do mktime I think is based on an idea of Bob
1745 ** Kridle's (so its said...) from a long time ago.
1746 ** It does a binary search of the time_t space. Since time_t's are
1747 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1748 ** would still be very reasonable).
1749 */
1750
1751 #ifndef WRONG
1752 #define WRONG ((time_t)-1)
1753 #endif /* !defined WRONG */
1754
1755 /*
1756 ** Simplified normalize logic courtesy Paul Eggert.
1757 */
1758
1759 static int
1760 increment_overflow(int *const ip, int j)
1761 {
1762 int i = *ip;
1763
1764 /*
1765 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1766 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1767 ** If i < 0 there can only be overflow if i + j < INT_MIN
1768 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1769 */
1770 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1771 return TRUE;
1772 *ip += j;
1773 return FALSE;
1774 }
1775
1776 static int
1777 increment_overflow32(int_fast32_t *const lp, int const m)
1778 {
1779 int_fast32_t l = *lp;
1780
1781 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1782 return TRUE;
1783 *lp += m;
1784 return FALSE;
1785 }
1786
1787 static int
1788 increment_overflow_time(time_t *tp, int_fast32_t j)
1789 {
1790 /*
1791 ** This is like
1792 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1793 ** except that it does the right thing even if *tp + j would overflow.
1794 */
1795 if (! (j < 0
1796 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1797 : *tp <= time_t_max - j))
1798 return TRUE;
1799 *tp += j;
1800 return FALSE;
1801 }
1802
1803 static int
1804 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1805 {
1806 int tensdelta;
1807
1808 tensdelta = (*unitsptr >= 0) ?
1809 (*unitsptr / base) :
1810 (-1 - (-1 - *unitsptr) / base);
1811 *unitsptr -= tensdelta * base;
1812 return increment_overflow(tensptr, tensdelta);
1813 }
1814
1815 static int
1816 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1817 const int base)
1818 {
1819 int tensdelta;
1820
1821 tensdelta = (*unitsptr >= 0) ?
1822 (*unitsptr / base) :
1823 (-1 - (-1 - *unitsptr) / base);
1824 *unitsptr -= tensdelta * base;
1825 return increment_overflow32(tensptr, tensdelta);
1826 }
1827
1828 static int
1829 tmcomp(const struct tm *const atmp, const struct tm *const btmp)
1830 {
1831 int result;
1832
1833 if (atmp->tm_year != btmp->tm_year)
1834 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1835 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1836 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1837 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1838 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1839 result = atmp->tm_sec - btmp->tm_sec;
1840 return result;
1841 }
1842
1843 static time_t
1844 time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
1845 const int_fast32_t offset, int *const okayp, const int do_norm_secs)
1846 {
1847 int dir;
1848 int i, j;
1849 int saved_seconds;
1850 int_fast32_t li;
1851 time_t lo;
1852 time_t hi;
1853 #ifdef NO_ERROR_IN_DST_GAP
1854 time_t ilo;
1855 #endif
1856 int_fast32_t y;
1857 time_t newt;
1858 time_t t;
1859 struct tm yourtm, mytm;
1860
1861 *okayp = FALSE;
1862 yourtm = *tmp;
1863 #ifdef NO_ERROR_IN_DST_GAP
1864 again:
1865 #endif
1866 if (do_norm_secs) {
1867 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1868 SECSPERMIN))
1869 goto overflow;
1870 }
1871 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1872 goto overflow;
1873 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1874 goto overflow;
1875 y = yourtm.tm_year;
1876 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1877 goto overflow;
1878 /*
1879 ** Turn y into an actual year number for now.
1880 ** It is converted back to an offset from TM_YEAR_BASE later.
1881 */
1882 if (increment_overflow32(&y, TM_YEAR_BASE))
1883 goto overflow;
1884 while (yourtm.tm_mday <= 0) {
1885 if (increment_overflow32(&y, -1))
1886 goto overflow;
1887 li = y + (1 < yourtm.tm_mon);
1888 yourtm.tm_mday += year_lengths[isleap(li)];
1889 }
1890 while (yourtm.tm_mday > DAYSPERLYEAR) {
1891 li = y + (1 < yourtm.tm_mon);
1892 yourtm.tm_mday -= year_lengths[isleap(li)];
1893 if (increment_overflow32(&y, 1))
1894 goto overflow;
1895 }
1896 for ( ; ; ) {
1897 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1898 if (yourtm.tm_mday <= i)
1899 break;
1900 yourtm.tm_mday -= i;
1901 if (++yourtm.tm_mon >= MONSPERYEAR) {
1902 yourtm.tm_mon = 0;
1903 if (increment_overflow32(&y, 1))
1904 goto overflow;
1905 }
1906 }
1907 if (increment_overflow32(&y, -TM_YEAR_BASE))
1908 goto overflow;
1909 yourtm.tm_year = (int)y;
1910 if (yourtm.tm_year != y)
1911 goto overflow;
1912 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1913 saved_seconds = 0;
1914 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1915 /*
1916 ** We can't set tm_sec to 0, because that might push the
1917 ** time below the minimum representable time.
1918 ** Set tm_sec to 59 instead.
1919 ** This assumes that the minimum representable time is
1920 ** not in the same minute that a leap second was deleted from,
1921 ** which is a safer assumption than using 58 would be.
1922 */
1923 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1924 goto overflow;
1925 saved_seconds = yourtm.tm_sec;
1926 yourtm.tm_sec = SECSPERMIN - 1;
1927 } else {
1928 saved_seconds = yourtm.tm_sec;
1929 yourtm.tm_sec = 0;
1930 }
1931 /*
1932 ** Do a binary search (this works whatever time_t's type is).
1933 */
1934 /* LINTED const not */
1935 if (!TYPE_SIGNED(time_t)) {
1936 lo = 0;
1937 hi = lo - 1;
1938 } else {
1939 lo = 1;
1940 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1941 lo *= 2;
1942 hi = -(lo + 1);
1943 }
1944 #ifdef NO_ERROR_IN_DST_GAP
1945 ilo = lo;
1946 #endif
1947 for ( ; ; ) {
1948 t = lo / 2 + hi / 2;
1949 if (t < lo)
1950 t = lo;
1951 else if (t > hi)
1952 t = hi;
1953 if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
1954 /*
1955 ** Assume that t is too extreme to be represented in
1956 ** a struct tm; arrange things so that it is less
1957 ** extreme on the next pass.
1958 */
1959 dir = (t > 0) ? 1 : -1;
1960 } else dir = tmcomp(&mytm, &yourtm);
1961 if (dir != 0) {
1962 if (t == lo) {
1963 if (t == time_t_max)
1964 goto overflow;
1965 ++t;
1966 ++lo;
1967 } else if (t == hi) {
1968 if (t == time_t_min)
1969 goto overflow;
1970 --t;
1971 --hi;
1972 }
1973 #ifdef NO_ERROR_IN_DST_GAP
1974 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1975 do_norm_secs) {
1976 for (i = sp->typecnt - 1; i >= 0; --i) {
1977 for (j = sp->typecnt - 1; j >= 0; --j) {
1978 time_t off;
1979 if (sp->ttis[j].tt_isdst ==
1980 sp->ttis[i].tt_isdst)
1981 continue;
1982 off = sp->ttis[j].tt_gmtoff -
1983 sp->ttis[i].tt_gmtoff;
1984 yourtm.tm_sec += off < 0 ?
1985 -off : off;
1986 goto again;
1987 }
1988 }
1989 }
1990 #endif
1991 if (lo > hi)
1992 goto invalid;
1993 if (dir > 0)
1994 hi = t;
1995 else lo = t;
1996 continue;
1997 }
1998 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1999 break;
2000 /*
2001 ** Right time, wrong type.
2002 ** Hunt for right time, right type.
2003 ** It's okay to guess wrong since the guess
2004 ** gets checked.
2005 */
2006 if (sp == NULL)
2007 goto invalid;
2008 for (i = sp->typecnt - 1; i >= 0; --i) {
2009 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2010 continue;
2011 for (j = sp->typecnt - 1; j >= 0; --j) {
2012 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2013 continue;
2014 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2015 sp->ttis[i].tt_gmtoff);
2016 if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
2017 continue;
2018 if (tmcomp(&mytm, &yourtm) != 0)
2019 continue;
2020 if (mytm.tm_isdst != yourtm.tm_isdst)
2021 continue;
2022 /*
2023 ** We have a match.
2024 */
2025 t = newt;
2026 goto label;
2027 }
2028 }
2029 goto invalid;
2030 }
2031 label:
2032 newt = t + saved_seconds;
2033 if ((newt < t) != (saved_seconds < 0))
2034 goto overflow;
2035 t = newt;
2036 if ((*funcp)(sp, &t, offset, tmp)) {
2037 *okayp = TRUE;
2038 return t;
2039 }
2040 overflow:
2041 errno = EOVERFLOW;
2042 return WRONG;
2043 invalid:
2044 errno = EINVAL;
2045 return WRONG;
2046 }
2047
2048 static time_t
2049 time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2050 const int_fast32_t offset, int *const okayp)
2051 {
2052 time_t t;
2053
2054 /*
2055 ** First try without normalization of seconds
2056 ** (in case tm_sec contains a value associated with a leap second).
2057 ** If that fails, try with normalization of seconds.
2058 */
2059 t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
2060 return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
2061 }
2062
2063 static time_t
2064 time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
2065 const int_fast32_t offset)
2066 {
2067 time_t t;
2068 int samei, otheri;
2069 int sameind, otherind;
2070 int i;
2071 int nseen;
2072 char seen[TZ_MAX_TYPES];
2073 unsigned char types[TZ_MAX_TYPES];
2074 int okay;
2075
2076 if (tmp == NULL) {
2077 errno = EINVAL;
2078 return WRONG;
2079 }
2080 if (tmp->tm_isdst > 1)
2081 tmp->tm_isdst = 1;
2082 t = time2(sp, tmp, funcp, offset, &okay);
2083 if (okay)
2084 return t;
2085 if (tmp->tm_isdst < 0)
2086 #ifdef PCTS
2087 /*
2088 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2089 */
2090 tmp->tm_isdst = 0; /* reset to std and try again */
2091 #else
2092 return t;
2093 #endif /* !defined PCTS */
2094 /*
2095 ** We're supposed to assume that somebody took a time of one type
2096 ** and did some math on it that yielded a "struct tm" that's bad.
2097 ** We try to divine the type they started from and adjust to the
2098 ** type they need.
2099 */
2100 if (sp == NULL) {
2101 errno = EINVAL;
2102 return WRONG;
2103 }
2104 for (i = 0; i < sp->typecnt; ++i)
2105 seen[i] = FALSE;
2106 nseen = 0;
2107 for (i = sp->timecnt - 1; i >= 0; --i)
2108 if (!seen[sp->types[i]]) {
2109 seen[sp->types[i]] = TRUE;
2110 types[nseen++] = sp->types[i];
2111 }
2112 for (sameind = 0; sameind < nseen; ++sameind) {
2113 samei = types[sameind];
2114 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2115 continue;
2116 for (otherind = 0; otherind < nseen; ++otherind) {
2117 otheri = types[otherind];
2118 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2119 continue;
2120 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2121 sp->ttis[samei].tt_gmtoff);
2122 tmp->tm_isdst = !tmp->tm_isdst;
2123 t = time2(sp, tmp, funcp, offset, &okay);
2124 if (okay)
2125 return t;
2126 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2127 sp->ttis[samei].tt_gmtoff);
2128 tmp->tm_isdst = !tmp->tm_isdst;
2129 }
2130 }
2131 errno = EOVERFLOW;
2132 return WRONG;
2133 }
2134
2135 time_t
2136 mktime_z(const timezone_t sp, struct tm *const tmp)
2137 {
2138 time_t t;
2139 if (sp == NULL)
2140 t = time1(NULL, tmp, gmtsub, 0);
2141 else
2142 t = time1(sp, tmp, localsub, 0);
2143 return t;
2144 }
2145
2146 time_t
2147 mktime(struct tm *const tmp)
2148 {
2149 time_t result;
2150
2151 rwlock_wrlock(&lcl_lock);
2152 tzset_unlocked();
2153 result = mktime_z(lclptr, tmp);
2154 rwlock_unlock(&lcl_lock);
2155 return result;
2156 }
2157
2158 #ifdef STD_INSPIRED
2159
2160 time_t
2161 timelocal_z(const timezone_t sp, struct tm *const tmp)
2162 {
2163 if (tmp != NULL)
2164 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2165 return mktime_z(sp, tmp);
2166 }
2167
2168 time_t
2169 timelocal(struct tm *const tmp)
2170 {
2171 if (tmp != NULL)
2172 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2173 return mktime(tmp);
2174 }
2175
2176 time_t
2177 timegm(struct tm *const tmp)
2178 {
2179 time_t t;
2180
2181 if (tmp != NULL)
2182 tmp->tm_isdst = 0;
2183 t = time1(gmtptr, tmp, gmtsub, 0);
2184 return t;
2185 }
2186
2187 time_t
2188 timeoff(struct tm *const tmp, long offset)
2189 {
2190 time_t t;
2191
2192 if ((offset > 0 && offset > INT_FAST32_MAX) ||
2193 (offset < 0 && offset < INT_FAST32_MIN)) {
2194 errno = EOVERFLOW;
2195 return -1;
2196 }
2197 if (tmp != NULL)
2198 tmp->tm_isdst = 0;
2199 t = time1(gmtptr, tmp, gmtsub, (int_fast32_t)offset);
2200 return t;
2201 }
2202
2203 #endif /* defined STD_INSPIRED */
2204
2205 #ifdef CMUCS
2206
2207 /*
2208 ** The following is supplied for compatibility with
2209 ** previous versions of the CMUCS runtime library.
2210 */
2211
2212 long
2213 gtime(struct tm *const tmp)
2214 {
2215 const time_t t = mktime(tmp);
2216
2217 if (t == WRONG)
2218 return -1;
2219 return t;
2220 }
2221
2222 #endif /* defined CMUCS */
2223
2224 /*
2225 ** XXX--is the below the right way to conditionalize??
2226 */
2227
2228 #ifdef STD_INSPIRED
2229
2230 /*
2231 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2232 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2233 ** is not the case if we are accounting for leap seconds.
2234 ** So, we provide the following conversion routines for use
2235 ** when exchanging timestamps with POSIX conforming systems.
2236 */
2237
2238 static int_fast64_t
2239 leapcorr(const timezone_t sp, time_t *timep)
2240 {
2241 struct lsinfo * lp;
2242 int i;
2243
2244 i = sp->leapcnt;
2245 while (--i >= 0) {
2246 lp = &sp->lsis[i];
2247 if (*timep >= lp->ls_trans)
2248 return lp->ls_corr;
2249 }
2250 return 0;
2251 }
2252
2253 time_t
2254 time2posix_z(const timezone_t sp, time_t t)
2255 {
2256 return (time_t)(t - leapcorr(sp, &t));
2257 }
2258
2259 time_t
2260 time2posix(time_t t)
2261 {
2262 time_t result;
2263 rwlock_wrlock(&lcl_lock);
2264 tzset_unlocked();
2265 result = (time_t)(t - leapcorr(lclptr, &t));
2266 rwlock_unlock(&lcl_lock);
2267 return (result);
2268 }
2269
2270 time_t
2271 posix2time_z(const timezone_t sp, time_t t)
2272 {
2273 time_t x;
2274 time_t y;
2275
2276 /*
2277 ** For a positive leap second hit, the result
2278 ** is not unique. For a negative leap second
2279 ** hit, the corresponding time doesn't exist,
2280 ** so we return an adjacent second.
2281 */
2282 x = (time_t)(t + leapcorr(sp, &t));
2283 y = (time_t)(x - leapcorr(sp, &x));
2284 if (y < t) {
2285 do {
2286 x++;
2287 y = (time_t)(x - leapcorr(sp, &x));
2288 } while (y < t);
2289 if (t != y) {
2290 return x - 1;
2291 }
2292 } else if (y > t) {
2293 do {
2294 --x;
2295 y = (time_t)(x - leapcorr(sp, &x));
2296 } while (y > t);
2297 if (t != y) {
2298 return x + 1;
2299 }
2300 }
2301 return x;
2302 }
2303
2304
2305
2306 time_t
2307 posix2time(time_t t)
2308 {
2309 time_t result;
2310
2311 rwlock_wrlock(&lcl_lock);
2312 tzset_unlocked();
2313 result = posix2time_z(lclptr, t);
2314 rwlock_unlock(&lcl_lock);
2315 return result;
2316 }
2317
2318 #endif /* defined STD_INSPIRED */
2319