localtime.c revision 1.87 1 /* $NetBSD: localtime.c,v 1.87 2014/10/07 21:51:03 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.87 2014/10/07 21:51:03 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE (O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static const char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 int_fast32_t tt_gmtoff; /* UT offset in seconds */
108 bool tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 bool tt_ttisstd; /* transition is std time */
111 bool tt_ttisgmt; /* transition is UT */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 int_fast64_t ls_corr; /* correction to apply */
117 };
118
119 #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
121
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX 255
127 #endif /* !defined TZNAME_MAX */
128
129 #define state __state
130 struct state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 bool goback;
136 bool goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
159 struct tm *);
160 static bool increment_overflow(int *, int);
161 static bool increment_overflow_time(time_t *, int_fast32_t);
162 static bool normalize_overflow32(int_fast32_t *, int *, int);
163 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
164 struct tm *);
165 static bool typesequiv(struct state const *, int, int);
166 static bool tzparse(char const *, struct state *, bool);
167
168 static timezone_t lclptr;
169 static timezone_t gmtptr;
170
171 #ifndef TZ_STRLEN_MAX
172 #define TZ_STRLEN_MAX 255
173 #endif /* !defined TZ_STRLEN_MAX */
174
175 static char lcl_TZname[TZ_STRLEN_MAX + 1];
176 static int lcl_is_set;
177
178 #if !defined(__LIBC12_SOURCE__)
179
180 __aconst char * tzname[2] = {
181 (__aconst char *)__UNCONST(wildabbr),
182 (__aconst char *)__UNCONST(wildabbr)
183 };
184
185 #else
186
187 extern __aconst char * tzname[2];
188
189 #endif
190
191 #ifdef _REENTRANT
192 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
193 #endif
194
195 /*
196 ** Section 4.12.3 of X3.159-1989 requires that
197 ** Except for the strftime function, these functions [asctime,
198 ** ctime, gmtime, localtime] return values in one of two static
199 ** objects: a broken-down time structure and an array of char.
200 ** Thanks to Paul Eggert for noting this.
201 */
202
203 static struct tm tm;
204
205 #ifdef USG_COMPAT
206 #if !defined(__LIBC12_SOURCE__)
207 long timezone = 0;
208 int daylight = 0;
209 #else
210 extern int daylight;
211 extern long timezone __RENAME(__timezone13);
212 #endif
213 #endif /* defined USG_COMPAT */
214
215 #ifdef ALTZONE
216 long altzone = 0;
217 #endif /* defined ALTZONE */
218
219 static int_fast32_t
220 detzcode(const char *const codep)
221 {
222 int_fast32_t result;
223 int i;
224
225 result = (codep[0] & 0x80) ? -1 : 0;
226 for (i = 0; i < 4; ++i)
227 result = (result << 8) | (codep[i] & 0xff);
228 return result;
229 }
230
231 static int_fast64_t
232 detzcode64(const char *const codep)
233 {
234 int_fast64_t result;
235 int i;
236
237 result = (codep[0] & 0x80) ? -1 : 0;
238 for (i = 0; i < 8; ++i)
239 result = (result << 8) | (codep[i] & 0xff);
240 return result;
241 }
242
243 const char *
244 tzgetname(const timezone_t sp, int isdst)
245 {
246 int i;
247 for (i = 0; i < sp->timecnt; ++i) {
248 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
249
250 if (ttisp->tt_isdst == isdst)
251 return &sp->chars[ttisp->tt_abbrind];
252 }
253 return NULL;
254 }
255
256 static void
257 settzname_z(timezone_t sp)
258 {
259 int i;
260
261 /*
262 ** Scrub the abbreviations.
263 ** First, replace bogus characters.
264 */
265 for (i = 0; i < sp->charcnt; ++i)
266 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
267 sp->chars[i] = TZ_ABBR_ERR_CHAR;
268 /*
269 ** Second, truncate long abbreviations.
270 */
271 for (i = 0; i < sp->typecnt; ++i) {
272 const struct ttinfo * const ttisp = &sp->ttis[i];
273 char * cp = &sp->chars[ttisp->tt_abbrind];
274
275 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
276 strcmp(cp, GRANDPARENTED) != 0)
277 *(cp + TZ_ABBR_MAX_LEN) = '\0';
278 }
279 }
280
281 static void
282 settzname(void)
283 {
284 timezone_t const sp = lclptr;
285 int i;
286
287 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
288 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
289 #ifdef USG_COMPAT
290 daylight = 0;
291 timezone = 0;
292 #endif /* defined USG_COMPAT */
293 #ifdef ALTZONE
294 altzone = 0;
295 #endif /* defined ALTZONE */
296 if (sp == NULL) {
297 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
298 return;
299 }
300 /*
301 ** And to get the latest zone names into tzname. . .
302 */
303 for (i = 0; i < sp->typecnt; ++i) {
304 const struct ttinfo * const ttisp = &sp->ttis[i];
305
306 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
307 #ifdef USG_COMPAT
308 if (ttisp->tt_isdst)
309 daylight = 1;
310 if (!ttisp->tt_isdst)
311 timezone = -(ttisp->tt_gmtoff);
312 #endif /* defined USG_COMPAT */
313 #ifdef ALTZONE
314 if (ttisp->tt_isdst)
315 altzone = -(ttisp->tt_gmtoff);
316 #endif /* defined ALTZONE */
317 }
318 settzname_z(sp);
319 }
320
321 static bool
322 differ_by_repeat(const time_t t1, const time_t t0)
323 {
324 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
325 return 0;
326 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
327 }
328
329 static bool
330 tzload(const char *name, timezone_t sp, bool doextend)
331 {
332 const char * p;
333 int i;
334 int fid;
335 int stored;
336 ssize_t nread;
337 typedef union {
338 struct tzhead tzhead;
339 char buf[2 * sizeof(struct tzhead) +
340 2 * sizeof *sp +
341 4 * TZ_MAX_TIMES];
342 } u_t;
343 union local_storage {
344 /*
345 ** Section 4.9.1 of the C standard says that
346 ** "FILENAME_MAX expands to an integral constant expression
347 ** that is the size needed for an array of char large enough
348 ** to hold the longest file name string that the implementation
349 ** guarantees can be opened."
350 */
351 char fullname[FILENAME_MAX + 1];
352
353 /* The main part of the storage for this function. */
354 struct {
355 u_t u;
356 struct state st;
357 } u;
358 };
359 char *fullname;
360 u_t *up;
361 bool doaccess;
362 union local_storage *lsp;
363 lsp = malloc(sizeof *lsp);
364 if (!lsp)
365 return false;
366 fullname = lsp->fullname;
367 up = &lsp->u.u;
368
369 sp->goback = sp->goahead = false;
370
371 if (! name) {
372 name = TZDEFAULT;
373 if (! name)
374 goto oops;
375 }
376
377 if (name[0] == ':')
378 ++name;
379 doaccess = name[0] == '/';
380 if (!doaccess) {
381 p = TZDIR;
382 if (! p || sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
383 goto oops;
384 strcpy(fullname, p);
385 strcat(fullname, "/");
386 strcat(fullname, name);
387 /* Set doaccess if '.' (as in "../") shows up in name. */
388 if (strchr(name, '.'))
389 doaccess = true;
390 name = fullname;
391 }
392 if (doaccess && access(name, R_OK) != 0)
393 goto oops;
394
395 fid = open(name, OPEN_MODE);
396 if (fid < 0)
397 goto oops;
398 nread = read(fid, up->buf, sizeof up->buf);
399 if (close(fid) < 0 || nread <= 0)
400 goto oops;
401 for (stored = 4; stored <= 8; stored *= 2) {
402 int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
403 int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
404 int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
405 int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
406 int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
407 int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
408 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
409 if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
410 && 0 < typecnt && typecnt < TZ_MAX_TYPES
411 && 0 <= timecnt && timecnt < TZ_MAX_TIMES
412 && 0 <= charcnt && charcnt < TZ_MAX_CHARS
413 && (ttisstdcnt == typecnt || ttisstdcnt == 0)
414 && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
415 goto oops;
416 if (nread - (p - up->buf)
417 < (timecnt * stored /* ats */
418 + timecnt /* types */
419 + typecnt * 6 /* ttinfos */
420 + charcnt /* chars */
421 + leapcnt * (stored + 4) /* lsinfos */
422 + ttisstdcnt /* ttisstds */
423 + ttisgmtcnt)) /* ttisgmts */
424 goto oops;
425 sp->leapcnt = leapcnt;
426 sp->timecnt = timecnt;
427 sp->typecnt = typecnt;
428 sp->charcnt = charcnt;
429
430 /* Read transitions, discarding those out of time_t range.
431 But pretend the last transition before time_t_min
432 occurred at time_t_min. */
433 timecnt = 0;
434 for (i = 0; i < sp->timecnt; ++i) {
435 int_fast64_t at
436 = stored == 4 ? detzcode(p) : detzcode64(p);
437 sp->types[i] = at <= time_t_max;
438 if (sp->types[i]) {
439 time_t attime
440 = ((TYPE_SIGNED(time_t) ?
441 at < time_t_min : at < 0)
442 ? time_t_min : (time_t)at);
443 if (timecnt && attime <= sp->ats[timecnt - 1]) {
444 if (attime < sp->ats[timecnt - 1])
445 goto oops;
446 sp->types[i - 1] = 0;
447 timecnt--;
448 }
449 sp->ats[timecnt++] = attime;
450 }
451 p += stored;
452 }
453
454 timecnt = 0;
455 for (i = 0; i < sp->timecnt; ++i) {
456 unsigned char typ = *p++;
457 if (sp->typecnt <= typ)
458 goto oops;
459 if (sp->types[i])
460 sp->types[timecnt++] = typ;
461 }
462 sp->timecnt = timecnt;
463 for (i = 0; i < sp->typecnt; ++i) {
464 struct ttinfo * ttisp;
465 unsigned char isdst, abbrind;
466
467 ttisp = &sp->ttis[i];
468 ttisp->tt_gmtoff = detzcode(p);
469 p += 4;
470 isdst = *p++;
471 if (! (isdst < 2))
472 goto oops;
473 ttisp->tt_isdst = isdst;
474 abbrind = *p++;
475 if (! (abbrind < sp->charcnt))
476 goto oops;
477 ttisp->tt_abbrind = abbrind;
478 }
479 for (i = 0; i < sp->charcnt; ++i)
480 sp->chars[i] = *p++;
481 sp->chars[i] = '\0'; /* ensure '\0' at end */
482
483 /* Read leap seconds, discarding those out of time_t range. */
484 leapcnt = 0;
485 for (i = 0; i < sp->leapcnt; ++i) {
486 int_fast64_t tr = stored == 4 ? detzcode(p) :
487 detzcode64(p);
488 int_fast32_t corr = detzcode(p + stored);
489 p += stored + 4;
490 if (tr <= time_t_max) {
491 time_t trans = ((TYPE_SIGNED(time_t) ?
492 tr < time_t_min : tr < 0)
493 ? time_t_min : (time_t)tr);
494 if (leapcnt && trans <=
495 sp->lsis[leapcnt - 1].ls_trans) {
496 if (trans <
497 sp->lsis[leapcnt - 1].ls_trans)
498 goto oops;
499 leapcnt--;
500 }
501 sp->lsis[leapcnt].ls_trans = trans;
502 sp->lsis[leapcnt].ls_corr = corr;
503 leapcnt++;
504 }
505 }
506 sp->leapcnt = leapcnt;
507
508 for (i = 0; i < sp->typecnt; ++i) {
509 struct ttinfo * ttisp;
510
511 ttisp = &sp->ttis[i];
512 if (ttisstdcnt == 0)
513 ttisp->tt_ttisstd = false;
514 else {
515 if (*p != true && *p != false)
516 goto oops;
517 ttisp->tt_ttisstd = *p++;
518 }
519 }
520 for (i = 0; i < sp->typecnt; ++i) {
521 struct ttinfo * ttisp;
522
523 ttisp = &sp->ttis[i];
524 if (ttisgmtcnt == 0)
525 ttisp->tt_ttisgmt = false;
526 else {
527 if (*p != true && *p != false)
528 goto oops;
529 ttisp->tt_ttisgmt = *p++;
530 }
531 }
532 /*
533 ** If this is an old file, we're done.
534 */
535 if (up->tzhead.tzh_version[0] == '\0')
536 break;
537 nread -= p - up->buf;
538 for (i = 0; i < nread; ++i)
539 up->buf[i] = p[i];
540 /*
541 ** If this is a signed narrow time_t system, we're done.
542 */
543 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
544 break;
545 }
546 if (doextend && nread > 2 &&
547 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
548 sp->typecnt + 2 <= TZ_MAX_TYPES) {
549 struct state *ts = &lsp->u.st;
550
551 up->buf[nread - 1] = '\0';
552 if (tzparse(&up->buf[1], ts, false)
553 && ts->typecnt == 2
554 && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
555 for (i = 0; i < 2; ++i)
556 ts->ttis[i].tt_abbrind +=
557 sp->charcnt;
558 for (i = 0; i < ts->charcnt; ++i)
559 sp->chars[sp->charcnt++] =
560 ts->chars[i];
561 i = 0;
562 while (i < ts->timecnt &&
563 ts->ats[i] <=
564 sp->ats[sp->timecnt - 1])
565 ++i;
566 while (i < ts->timecnt &&
567 sp->timecnt < TZ_MAX_TIMES) {
568 sp->ats[sp->timecnt] =
569 ts->ats[i];
570 sp->types[sp->timecnt] =
571 sp->typecnt +
572 ts->types[i];
573 ++sp->timecnt;
574 ++i;
575 }
576 sp->ttis[sp->typecnt++] = ts->ttis[0];
577 sp->ttis[sp->typecnt++] = ts->ttis[1];
578 }
579 }
580 if (sp->timecnt > 1) {
581 for (i = 1; i < sp->timecnt; ++i)
582 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
583 differ_by_repeat(sp->ats[i], sp->ats[0])) {
584 sp->goback = true;
585 break;
586 }
587 for (i = sp->timecnt - 2; i >= 0; --i)
588 if (typesequiv(sp, sp->types[sp->timecnt - 1],
589 sp->types[i]) &&
590 differ_by_repeat(sp->ats[sp->timecnt - 1],
591 sp->ats[i])) {
592 sp->goahead = true;
593 break;
594 }
595 }
596 /*
597 ** If type 0 is is unused in transitions,
598 ** it's the type to use for early times.
599 */
600 for (i = 0; i < sp->timecnt; ++i)
601 if (sp->types[i] == 0)
602 break;
603 i = i < sp->timecnt ? -1 : 0;
604 /*
605 ** Absent the above,
606 ** if there are transition times
607 ** and the first transition is to a daylight time
608 ** find the standard type less than and closest to
609 ** the type of the first transition.
610 */
611 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
612 i = sp->types[0];
613 while (--i >= 0)
614 if (!sp->ttis[i].tt_isdst)
615 break;
616 }
617 /*
618 ** If no result yet, find the first standard type.
619 ** If there is none, punt to type zero.
620 */
621 if (i < 0) {
622 i = 0;
623 while (sp->ttis[i].tt_isdst)
624 if (++i >= sp->typecnt) {
625 i = 0;
626 break;
627 }
628 }
629 sp->defaulttype = i;
630 free(up);
631 return true;
632 oops:
633 free(up);
634 return false;
635 }
636
637 static bool
638 typesequiv(struct state const *sp, int a, int b)
639 {
640 bool result;
641
642 if (sp == NULL ||
643 a < 0 || a >= sp->typecnt ||
644 b < 0 || b >= sp->typecnt)
645 result = false;
646 else {
647 const struct ttinfo * ap = &sp->ttis[a];
648 const struct ttinfo * bp = &sp->ttis[b];
649 result = ap->tt_gmtoff == bp->tt_gmtoff &&
650 ap->tt_isdst == bp->tt_isdst &&
651 ap->tt_ttisstd == bp->tt_ttisstd &&
652 ap->tt_ttisgmt == bp->tt_ttisgmt &&
653 strcmp(&sp->chars[ap->tt_abbrind],
654 &sp->chars[bp->tt_abbrind]) == 0;
655 }
656 return result;
657 }
658
659 static const int mon_lengths[2][MONSPERYEAR] = {
660 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
661 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
662 };
663
664 static const int year_lengths[2] = {
665 DAYSPERNYEAR, DAYSPERLYEAR
666 };
667
668 /*
669 ** Given a pointer into a time zone string, scan until a character that is not
670 ** a valid character in a zone name is found. Return a pointer to that
671 ** character.
672 */
673
674 static const char * ATTRIBUTE_PURE
675 getzname(const char *strp)
676 {
677 char c;
678
679 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
680 c != '+')
681 ++strp;
682 return strp;
683 }
684
685 /*
686 ** Given a pointer into an extended time zone string, scan until the ending
687 ** delimiter of the zone name is located. Return a pointer to the delimiter.
688 **
689 ** As with getzname above, the legal character set is actually quite
690 ** restricted, with other characters producing undefined results.
691 ** We don't do any checking here; checking is done later in common-case code.
692 */
693
694 static const char * ATTRIBUTE_PURE
695 getqzname(const char *strp, const int delim)
696 {
697 int c;
698
699 while ((c = *strp) != '\0' && c != delim)
700 ++strp;
701 return strp;
702 }
703
704 /*
705 ** Given a pointer into a time zone string, extract a number from that string.
706 ** Check that the number is within a specified range; if it is not, return
707 ** NULL.
708 ** Otherwise, return a pointer to the first character not part of the number.
709 */
710
711 static const char *
712 getnum(const char *strp, int *const nump, const int min, const int max)
713 {
714 char c;
715 int num;
716
717 if (strp == NULL || !is_digit(c = *strp)) {
718 errno = EINVAL;
719 return NULL;
720 }
721 num = 0;
722 do {
723 num = num * 10 + (c - '0');
724 if (num > max) {
725 errno = EOVERFLOW;
726 return NULL; /* illegal value */
727 }
728 c = *++strp;
729 } while (is_digit(c));
730 if (num < min) {
731 errno = EINVAL;
732 return NULL; /* illegal value */
733 }
734 *nump = num;
735 return strp;
736 }
737
738 /*
739 ** Given a pointer into a time zone string, extract a number of seconds,
740 ** in hh[:mm[:ss]] form, from the string.
741 ** If any error occurs, return NULL.
742 ** Otherwise, return a pointer to the first character not part of the number
743 ** of seconds.
744 */
745
746 static const char *
747 getsecs(const char *strp, int_fast32_t *const secsp)
748 {
749 int num;
750
751 /*
752 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
753 ** "M10.4.6/26", which does not conform to Posix,
754 ** but which specifies the equivalent of
755 ** "02:00 on the first Sunday on or after 23 Oct".
756 */
757 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
758 if (strp == NULL)
759 return NULL;
760 *secsp = num * (int_fast32_t) SECSPERHOUR;
761 if (*strp == ':') {
762 ++strp;
763 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
764 if (strp == NULL)
765 return NULL;
766 *secsp += num * SECSPERMIN;
767 if (*strp == ':') {
768 ++strp;
769 /* 'SECSPERMIN' allows for leap seconds. */
770 strp = getnum(strp, &num, 0, SECSPERMIN);
771 if (strp == NULL)
772 return NULL;
773 *secsp += num;
774 }
775 }
776 return strp;
777 }
778
779 /*
780 ** Given a pointer into a time zone string, extract an offset, in
781 ** [+-]hh[:mm[:ss]] form, from the string.
782 ** If any error occurs, return NULL.
783 ** Otherwise, return a pointer to the first character not part of the time.
784 */
785
786 static const char *
787 getoffset(const char *strp, int_fast32_t *const offsetp)
788 {
789 bool neg = false;
790
791 if (*strp == '-') {
792 neg = true;
793 ++strp;
794 } else if (*strp == '+')
795 ++strp;
796 strp = getsecs(strp, offsetp);
797 if (strp == NULL)
798 return NULL; /* illegal time */
799 if (neg)
800 *offsetp = -*offsetp;
801 return strp;
802 }
803
804 /*
805 ** Given a pointer into a time zone string, extract a rule in the form
806 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
807 ** If a valid rule is not found, return NULL.
808 ** Otherwise, return a pointer to the first character not part of the rule.
809 */
810
811 static const char *
812 getrule(const char *strp, struct rule *const rulep)
813 {
814 if (*strp == 'J') {
815 /*
816 ** Julian day.
817 */
818 rulep->r_type = JULIAN_DAY;
819 ++strp;
820 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
821 } else if (*strp == 'M') {
822 /*
823 ** Month, week, day.
824 */
825 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
826 ++strp;
827 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
828 if (strp == NULL)
829 return NULL;
830 if (*strp++ != '.')
831 return NULL;
832 strp = getnum(strp, &rulep->r_week, 1, 5);
833 if (strp == NULL)
834 return NULL;
835 if (*strp++ != '.')
836 return NULL;
837 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
838 } else if (is_digit(*strp)) {
839 /*
840 ** Day of year.
841 */
842 rulep->r_type = DAY_OF_YEAR;
843 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
844 } else return NULL; /* invalid format */
845 if (strp == NULL)
846 return NULL;
847 if (*strp == '/') {
848 /*
849 ** Time specified.
850 */
851 ++strp;
852 strp = getoffset(strp, &rulep->r_time);
853 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
854 return strp;
855 }
856
857 /*
858 ** Given a year, a rule, and the offset from UT at the time that rule takes
859 ** effect, calculate the year-relative time that rule takes effect.
860 */
861
862 static int_fast32_t ATTRIBUTE_PURE
863 transtime(const int year, const struct rule *const rulep,
864 const int_fast32_t offset)
865 {
866 bool leapyear;
867 int_fast32_t value;
868 int i;
869 int d, m1, yy0, yy1, yy2, dow;
870
871 INITIALIZE(value);
872 leapyear = isleap(year);
873 switch (rulep->r_type) {
874
875 case JULIAN_DAY:
876 /*
877 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
878 ** years.
879 ** In non-leap years, or if the day number is 59 or less, just
880 ** add SECSPERDAY times the day number-1 to the time of
881 ** January 1, midnight, to get the day.
882 */
883 value = (rulep->r_day - 1) * SECSPERDAY;
884 if (leapyear && rulep->r_day >= 60)
885 value += SECSPERDAY;
886 break;
887
888 case DAY_OF_YEAR:
889 /*
890 ** n - day of year.
891 ** Just add SECSPERDAY times the day number to the time of
892 ** January 1, midnight, to get the day.
893 */
894 value = rulep->r_day * SECSPERDAY;
895 break;
896
897 case MONTH_NTH_DAY_OF_WEEK:
898 /*
899 ** Mm.n.d - nth "dth day" of month m.
900 */
901
902 /*
903 ** Use Zeller's Congruence to get day-of-week of first day of
904 ** month.
905 */
906 m1 = (rulep->r_mon + 9) % 12 + 1;
907 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
908 yy1 = yy0 / 100;
909 yy2 = yy0 % 100;
910 dow = ((26 * m1 - 2) / 10 +
911 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
912 if (dow < 0)
913 dow += DAYSPERWEEK;
914
915 /*
916 ** "dow" is the day-of-week of the first day of the month. Get
917 ** the day-of-month (zero-origin) of the first "dow" day of the
918 ** month.
919 */
920 d = rulep->r_day - dow;
921 if (d < 0)
922 d += DAYSPERWEEK;
923 for (i = 1; i < rulep->r_week; ++i) {
924 if (d + DAYSPERWEEK >=
925 mon_lengths[leapyear][rulep->r_mon - 1])
926 break;
927 d += DAYSPERWEEK;
928 }
929
930 /*
931 ** "d" is the day-of-month (zero-origin) of the day we want.
932 */
933 value = d * SECSPERDAY;
934 for (i = 0; i < rulep->r_mon - 1; ++i)
935 value += mon_lengths[leapyear][i] * SECSPERDAY;
936 break;
937 }
938
939 /*
940 ** "value" is the year-relative time of 00:00:00 UT on the day in
941 ** question. To get the year-relative time of the specified local
942 ** time on that day, add the transition time and the current offset
943 ** from UT.
944 */
945 return value + rulep->r_time + offset;
946 }
947
948 /*
949 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
950 ** appropriate.
951 */
952
953 static bool
954 tzparse(const char *name, timezone_t sp,
955 bool lastditch)
956 {
957 const char * stdname;
958 const char * dstname;
959 size_t stdlen;
960 size_t dstlen;
961 int_fast32_t stdoffset;
962 int_fast32_t dstoffset;
963 char * cp;
964 bool load_ok;
965
966 dstname = NULL; /* XXX gcc */
967 stdname = name;
968 if (lastditch) {
969 stdlen = strlen(name); /* length of standard zone name */
970 name += stdlen;
971 if (stdlen >= sizeof sp->chars)
972 stdlen = (sizeof sp->chars) - 1;
973 stdoffset = 0;
974 } else {
975 if (*name == '<') {
976 name++;
977 stdname = name;
978 name = getqzname(name, '>');
979 if (*name != '>')
980 return false;
981 stdlen = name - stdname;
982 name++;
983 } else {
984 name = getzname(name);
985 stdlen = name - stdname;
986 }
987 if (*name == '\0')
988 return false;
989 name = getoffset(name, &stdoffset);
990 if (name == NULL)
991 return false;
992 }
993 load_ok = tzload(TZDEFRULES, sp, false);
994 if (!load_ok)
995 sp->leapcnt = 0; /* so, we're off a little */
996 if (*name != '\0') {
997 if (*name == '<') {
998 dstname = ++name;
999 name = getqzname(name, '>');
1000 if (*name != '>')
1001 return false;
1002 dstlen = name - dstname;
1003 name++;
1004 } else {
1005 dstname = name;
1006 name = getzname(name);
1007 dstlen = name - dstname; /* length of DST zone name */
1008 }
1009 if (*name != '\0' && *name != ',' && *name != ';') {
1010 name = getoffset(name, &dstoffset);
1011 if (name == NULL)
1012 return false;
1013 } else dstoffset = stdoffset - SECSPERHOUR;
1014 if (*name == '\0' && !load_ok)
1015 name = TZDEFRULESTRING;
1016 if (*name == ',' || *name == ';') {
1017 struct rule start;
1018 struct rule end;
1019 int year;
1020 int yearlim;
1021 int timecnt;
1022 time_t janfirst;
1023
1024 ++name;
1025 if ((name = getrule(name, &start)) == NULL)
1026 return false;
1027 if (*name++ != ',')
1028 return false;
1029 if ((name = getrule(name, &end)) == NULL)
1030 return false;
1031 if (*name != '\0')
1032 return false;
1033 sp->typecnt = 2; /* standard time and DST */
1034 /*
1035 ** Two transitions per year, from EPOCH_YEAR forward.
1036 */
1037 memset(sp->ttis, 0, sizeof(sp->ttis));
1038 sp->ttis[0].tt_gmtoff = -dstoffset;
1039 sp->ttis[0].tt_isdst = true;
1040 sp->ttis[0].tt_abbrind = (int)(stdlen + 1);
1041 sp->ttis[1].tt_gmtoff = -stdoffset;
1042 sp->ttis[1].tt_isdst = false;
1043 sp->ttis[1].tt_abbrind = 0;
1044 sp->defaulttype = 0;
1045 timecnt = 0;
1046 janfirst = 0;
1047 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1048 for (year = EPOCH_YEAR; year < yearlim; year++) {
1049 int_fast32_t
1050 starttime = transtime(year, &start, stdoffset),
1051 endtime = transtime(year, &end, dstoffset);
1052 int_fast32_t
1053 yearsecs = (year_lengths[isleap(year)]
1054 * SECSPERDAY);
1055 bool reversed = endtime < starttime;
1056 if (reversed) {
1057 int_fast32_t swap = starttime;
1058 starttime = endtime;
1059 endtime = swap;
1060 }
1061 if (reversed
1062 || (starttime < endtime
1063 && (endtime - starttime
1064 < (yearsecs
1065 + (stdoffset - dstoffset))))) {
1066 if (TZ_MAX_TIMES - 2 < timecnt)
1067 break;
1068 yearlim = year + YEARSPERREPEAT + 1;
1069 sp->ats[timecnt] = janfirst;
1070 if (increment_overflow_time
1071 (&sp->ats[timecnt], starttime))
1072 break;
1073 sp->types[timecnt++] = reversed;
1074 sp->ats[timecnt] = janfirst;
1075 if (increment_overflow_time
1076 (&sp->ats[timecnt], endtime))
1077 break;
1078 sp->types[timecnt++] = !reversed;
1079 }
1080 if (increment_overflow_time(&janfirst, yearsecs))
1081 break;
1082 }
1083 sp->timecnt = timecnt;
1084 if (!timecnt)
1085 sp->typecnt = 1; /* Perpetual DST. */
1086 } else {
1087 int_fast32_t theirstdoffset;
1088 int_fast32_t theirdstoffset;
1089 int_fast32_t theiroffset;
1090 bool isdst;
1091 int i;
1092 int j;
1093
1094 if (*name != '\0')
1095 return false;
1096 /*
1097 ** Initial values of theirstdoffset and theirdstoffset.
1098 */
1099 theirstdoffset = 0;
1100 for (i = 0; i < sp->timecnt; ++i) {
1101 j = sp->types[i];
1102 if (!sp->ttis[j].tt_isdst) {
1103 theirstdoffset =
1104 -sp->ttis[j].tt_gmtoff;
1105 break;
1106 }
1107 }
1108 theirdstoffset = 0;
1109 for (i = 0; i < sp->timecnt; ++i) {
1110 j = sp->types[i];
1111 if (sp->ttis[j].tt_isdst) {
1112 theirdstoffset =
1113 -sp->ttis[j].tt_gmtoff;
1114 break;
1115 }
1116 }
1117 /*
1118 ** Initially we're assumed to be in standard time.
1119 */
1120 isdst = false;
1121 theiroffset = theirstdoffset;
1122 /*
1123 ** Now juggle transition times and types
1124 ** tracking offsets as you do.
1125 */
1126 for (i = 0; i < sp->timecnt; ++i) {
1127 j = sp->types[i];
1128 sp->types[i] = sp->ttis[j].tt_isdst;
1129 if (sp->ttis[j].tt_ttisgmt) {
1130 /* No adjustment to transition time */
1131 } else {
1132 /*
1133 ** If summer time is in effect, and the
1134 ** transition time was not specified as
1135 ** standard time, add the summer time
1136 ** offset to the transition time;
1137 ** otherwise, add the standard time
1138 ** offset to the transition time.
1139 */
1140 /*
1141 ** Transitions from DST to DDST
1142 ** will effectively disappear since
1143 ** POSIX provides for only one DST
1144 ** offset.
1145 */
1146 if (isdst && !sp->ttis[j].tt_ttisstd) {
1147 sp->ats[i] += (time_t)
1148 (dstoffset - theirdstoffset);
1149 } else {
1150 sp->ats[i] += (time_t)
1151 (stdoffset - theirstdoffset);
1152 }
1153 }
1154 theiroffset = -sp->ttis[j].tt_gmtoff;
1155 if (sp->ttis[j].tt_isdst)
1156 theirstdoffset = theiroffset;
1157 else theirdstoffset = theiroffset;
1158 }
1159 /*
1160 ** Finally, fill in ttis.
1161 */
1162 memset(sp->ttis, 0, sizeof(sp->ttis));
1163 sp->ttis[0].tt_gmtoff = -stdoffset;
1164 sp->ttis[0].tt_isdst = false;
1165 sp->ttis[0].tt_abbrind = 0;
1166 sp->ttis[1].tt_gmtoff = -dstoffset;
1167 sp->ttis[1].tt_isdst = true;
1168 sp->ttis[1].tt_abbrind = (int)(stdlen + 1);
1169 sp->typecnt = 2;
1170 sp->defaulttype = 0;
1171 }
1172 } else {
1173 dstlen = 0;
1174 sp->typecnt = 1; /* only standard time */
1175 sp->timecnt = 0;
1176 memset(sp->ttis, 0, sizeof(sp->ttis));
1177 sp->ttis[0].tt_gmtoff = -stdoffset;
1178 sp->ttis[0].tt_isdst = false;
1179 sp->ttis[0].tt_abbrind = 0;
1180 sp->defaulttype = 0;
1181 }
1182 sp->charcnt = (int)(stdlen + 1);
1183 if (dstlen != 0)
1184 sp->charcnt += (int)(dstlen + 1);
1185 if ((size_t) sp->charcnt > sizeof sp->chars)
1186 return false;
1187 cp = sp->chars;
1188 (void) memcpy(cp, stdname, stdlen);
1189 cp += stdlen;
1190 *cp++ = '\0';
1191 if (dstlen != 0) {
1192 (void) memcpy(cp, dstname, dstlen);
1193 *(cp + dstlen) = '\0';
1194 }
1195 return true;
1196 }
1197
1198 static void
1199 gmtload(struct state *const sp)
1200 {
1201 if (! tzload(gmt, sp, true))
1202 (void) tzparse(gmt, sp, true);
1203 }
1204
1205 static struct state *
1206 zoneinit(struct state *sp, char const *name)
1207 {
1208 if (!sp)
1209 return NULL;
1210 if (name && ! name[0]) {
1211 /*
1212 ** User wants it fast rather than right.
1213 */
1214 sp->leapcnt = 0; /* so, we're off a little */
1215 sp->timecnt = 0;
1216 sp->typecnt = 0;
1217 sp->ttis[0].tt_isdst = 0;
1218 sp->ttis[0].tt_gmtoff = 0;
1219 sp->ttis[0].tt_abbrind = 0;
1220 strcpy(sp->chars, gmt);
1221 return sp;
1222 }
1223 if (! (tzload(name, sp, true)
1224 || (name && name[0] != ':' && tzparse(name, sp, false))))
1225 return NULL;
1226 return sp;
1227 }
1228
1229 static void
1230 tzsetlcl(char const *name)
1231 {
1232 int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1233 if (lcl < 0 ? lcl_is_set < 0
1234 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1235 return;
1236 if (0 < lcl)
1237 (void)strcpy(lcl_TZname, name);
1238
1239 if (! lclptr)
1240 lclptr = malloc(sizeof *lclptr);
1241 zoneinit(lclptr, name);
1242 settzname();
1243 lcl_is_set = lcl;
1244 }
1245
1246 #ifdef STD_INSPIRED
1247 void
1248 tzsetwall(void)
1249 {
1250 rwlock_wrlock(&lcl_lock);
1251 tzsetlcl(NULL);
1252 rwlock_unlock(&lcl_lock);
1253 }
1254 #endif
1255
1256 static void
1257 tzset_unlocked(void)
1258 {
1259 tzsetlcl(getenv("TZ"));
1260 }
1261
1262 void
1263 tzset(void)
1264 {
1265 rwlock_wrlock(&lcl_lock);
1266 tzset_unlocked();
1267 rwlock_unlock(&lcl_lock);
1268 }
1269
1270 static void
1271 gmtcheck(void)
1272 {
1273 static bool gmt_is_set;
1274 rwlock_wrlock(&lcl_lock);
1275 if (! gmt_is_set) {
1276 gmtptr = malloc(sizeof *gmtptr);
1277 if (gmtptr)
1278 gmtload(gmtptr);
1279 gmt_is_set = true;
1280 }
1281 rwlock_unlock(&lcl_lock);
1282 }
1283
1284 #if NETBSD_INSPIRED
1285
1286 timezone_t
1287 tzalloc(const char *name)
1288 {
1289 timezone_t sp = malloc(sizeof *sp);
1290 timezone_t tp = sp ? zoneinit(sp, name) : sp;
1291 if (!tp)
1292 free(sp);
1293 return tp;
1294 }
1295
1296 void
1297 tzfree(timezone_t sp)
1298 {
1299 free(sp);
1300 }
1301
1302 /*
1303 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1304 ** ctime_r are obsolescent and have potential security problems that
1305 ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1306 **
1307 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1308 ** in zones with three or more time zone abbreviations.
1309 ** Callers can instead use localtime_rz + strftime.
1310 */
1311
1312 #endif
1313
1314 /*
1315 ** The easy way to behave "as if no library function calls" localtime
1316 ** is to not call it, so we drop its guts into "localsub", which can be
1317 ** freely called. (And no, the PANS doesn't require the above behavior,
1318 ** but it *is* desirable.)
1319 **
1320 ** If OFFSET is nonzero, set tzname if successful.
1321 ** OFFSET's type is intfast32_t for compatibility with gmtsub.
1322 */
1323
1324 /*ARGSUSED*/
1325 static struct tm *
1326 localsub(struct state const *sp, time_t const *timep, int_fast32_t offset,
1327 struct tm *const tmp)
1328 {
1329 const struct ttinfo * ttisp;
1330 int i;
1331 struct tm * result;
1332 const time_t t = *timep;
1333
1334 if (sp == NULL) {
1335 result = gmtsub(gmtptr, timep, 0, tmp);
1336 if (result && offset)
1337 tzname[0] = gmtptr ? gmtptr->chars : __UNCONST(gmt);
1338 return result;
1339 }
1340 if ((sp->goback && t < sp->ats[0]) ||
1341 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1342 time_t newt = t;
1343 time_t seconds;
1344 time_t years;
1345
1346 if (t < sp->ats[0])
1347 seconds = sp->ats[0] - t;
1348 else seconds = t - sp->ats[sp->timecnt - 1];
1349 --seconds;
1350 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1351 seconds = (time_t)(years * AVGSECSPERYEAR);
1352 if (t < sp->ats[0])
1353 newt += seconds;
1354 else newt -= seconds;
1355 if (newt < sp->ats[0] ||
1356 newt > sp->ats[sp->timecnt - 1])
1357 return NULL; /* "cannot happen" */
1358 result = localsub(sp, &newt, offset, tmp);
1359 if (result) {
1360 int_fast64_t newy;
1361
1362 newy = result->tm_year;
1363 if (t < sp->ats[0])
1364 newy -= years;
1365 else newy += years;
1366 if (! (INT_MIN <= newy && newy <= INT_MAX))
1367 return NULL;
1368 result->tm_year = (int)newy;
1369 }
1370 return result;
1371 }
1372 if (sp->timecnt == 0 || t < sp->ats[0]) {
1373 i = sp->defaulttype;
1374 } else {
1375 int lo = 1;
1376 int hi = sp->timecnt;
1377
1378 while (lo < hi) {
1379 int mid = (lo + hi) / 2;
1380
1381 if (t < sp->ats[mid])
1382 hi = mid;
1383 else lo = mid + 1;
1384 }
1385 i = (int) sp->types[lo - 1];
1386 }
1387 ttisp = &sp->ttis[i];
1388 /*
1389 ** To get (wrong) behavior that's compatible with System V Release 2.0
1390 ** you'd replace the statement below with
1391 ** t += ttisp->tt_gmtoff;
1392 ** timesub(&t, 0L, sp, tmp);
1393 */
1394 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1395 if (result) {
1396 result->tm_isdst = ttisp->tt_isdst;
1397 if (offset)
1398 tzname[result->tm_isdst] =
1399 __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1400 #ifdef TM_ZONE
1401 tmp->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1402 #endif /* defined TM_ZONE */
1403 }
1404 return result;
1405 }
1406
1407 #if NETBSD_INSPIRED
1408
1409 struct tm *
1410 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1411 {
1412 return localsub(sp, timep, 0, tmp);
1413 }
1414
1415 #endif
1416
1417 static struct tm *
1418 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1419 {
1420 rwlock_wrlock(&lcl_lock);
1421 if (setname || !lcl_is_set)
1422 tzset_unlocked();
1423 tmp = localsub(lclptr, timep, setname, tmp);
1424 rwlock_unlock(&lcl_lock);
1425 if (tmp == NULL)
1426 errno = EOVERFLOW;
1427 return tmp;
1428 }
1429
1430 struct tm *
1431 localtime(const time_t *const timep)
1432 {
1433 return localtime_tzset(timep, &tm, true);
1434 }
1435
1436 struct tm *
1437 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1438 {
1439 return localtime_tzset(timep, tmp, false);
1440 }
1441
1442 /*
1443 ** gmtsub is to gmtime as localsub is to localtime.
1444 */
1445
1446 static struct tm *
1447 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1448 struct tm *tmp)
1449 {
1450 struct tm * result;
1451
1452 result = timesub(timep, offset, gmtptr, tmp);
1453 #ifdef TM_ZONE
1454 /*
1455 ** Could get fancy here and deliver something such as
1456 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1457 ** but this is no time for a treasure hunt.
1458 */
1459 tmp->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ? gmtptr->chars :
1460 __UNCONST(gmt);
1461 #endif /* defined TM_ZONE */
1462 return result;
1463 }
1464
1465 struct tm *
1466 gmtime(const time_t *const timep)
1467 {
1468 return gmtime_r(timep, &tm);
1469 }
1470
1471 /*
1472 ** Re-entrant version of gmtime.
1473 */
1474
1475 struct tm *
1476 gmtime_r(const time_t * const timep, struct tm *tmp)
1477 {
1478 gmtcheck();
1479 tmp = gmtsub(NULL, timep, 0, tmp);
1480
1481 if (tmp == NULL)
1482 errno = EOVERFLOW;
1483
1484 return tmp;
1485 }
1486
1487 #ifdef STD_INSPIRED
1488
1489 struct tm *
1490 offtime(const time_t *const timep, long offset)
1491 {
1492 struct tm *tmp;
1493
1494 gmtcheck();
1495 tmp = gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1496
1497 if (tmp == NULL)
1498 errno = EOVERFLOW;
1499
1500 return tmp;
1501 }
1502
1503 struct tm *
1504 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1505 {
1506 gmtcheck();
1507 tmp = gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1508
1509 if (tmp == NULL)
1510 errno = EOVERFLOW;
1511
1512 return tmp;
1513 }
1514
1515 #endif /* defined STD_INSPIRED */
1516
1517 /*
1518 ** Return the number of leap years through the end of the given year
1519 ** where, to make the math easy, the answer for year zero is defined as zero.
1520 */
1521
1522 static int ATTRIBUTE_PURE
1523 leaps_thru_end_of(const int y)
1524 {
1525 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1526 -(leaps_thru_end_of(-(y + 1)) + 1);
1527 }
1528
1529 static struct tm *
1530 timesub(time_t const *timep, int_fast32_t offset, struct state const *sp,
1531 struct tm *tmp)
1532 {
1533 const struct lsinfo * lp;
1534 time_t tdays;
1535 int idays; /* unsigned would be so 2003 */
1536 int_fast64_t rem;
1537 int y;
1538 const int * ip;
1539 int_fast64_t corr;
1540 bool hit;
1541 int i;
1542
1543 corr = 0;
1544 hit = false;
1545 i = (sp == NULL) ? 0 : sp->leapcnt;
1546 while (--i >= 0) {
1547 lp = &sp->lsis[i];
1548 if (*timep >= lp->ls_trans) {
1549 if (*timep == lp->ls_trans) {
1550 hit = ((i == 0 && lp->ls_corr > 0) ||
1551 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1552 if (hit)
1553 while (i > 0 &&
1554 sp->lsis[i].ls_trans ==
1555 sp->lsis[i - 1].ls_trans + 1 &&
1556 sp->lsis[i].ls_corr ==
1557 sp->lsis[i - 1].ls_corr + 1) {
1558 ++hit;
1559 --i;
1560 }
1561 }
1562 corr = lp->ls_corr;
1563 break;
1564 }
1565 }
1566 y = EPOCH_YEAR;
1567 tdays = (time_t)(*timep / SECSPERDAY);
1568 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1569 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1570 int newy;
1571 time_t tdelta;
1572 int idelta;
1573 int leapdays;
1574
1575 tdelta = tdays / DAYSPERLYEAR;
1576 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1577 && tdelta <= INT_MAX))
1578 return NULL;
1579 _DIAGASSERT(__type_fit(int, tdelta));
1580 idelta = (int)tdelta;
1581 if (idelta == 0)
1582 idelta = (tdays < 0) ? -1 : 1;
1583 newy = y;
1584 if (increment_overflow(&newy, idelta))
1585 return NULL;
1586 leapdays = leaps_thru_end_of(newy - 1) -
1587 leaps_thru_end_of(y - 1);
1588 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1589 tdays -= leapdays;
1590 y = newy;
1591 }
1592 {
1593 int_fast32_t seconds;
1594
1595 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1596 tdays = (time_t)(seconds / SECSPERDAY);
1597 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1598 }
1599 /*
1600 ** Given the range, we can now fearlessly cast...
1601 */
1602 idays = (int) tdays;
1603 rem += offset - corr;
1604 while (rem < 0) {
1605 rem += SECSPERDAY;
1606 --idays;
1607 }
1608 while (rem >= SECSPERDAY) {
1609 rem -= SECSPERDAY;
1610 ++idays;
1611 }
1612 while (idays < 0) {
1613 if (increment_overflow(&y, -1))
1614 return NULL;
1615 idays += year_lengths[isleap(y)];
1616 }
1617 while (idays >= year_lengths[isleap(y)]) {
1618 idays -= year_lengths[isleap(y)];
1619 if (increment_overflow(&y, 1))
1620 return NULL;
1621 }
1622 tmp->tm_year = y;
1623 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1624 return NULL;
1625 tmp->tm_yday = idays;
1626 /*
1627 ** The "extra" mods below avoid overflow problems.
1628 */
1629 tmp->tm_wday = EPOCH_WDAY +
1630 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1631 (DAYSPERNYEAR % DAYSPERWEEK) +
1632 leaps_thru_end_of(y - 1) -
1633 leaps_thru_end_of(EPOCH_YEAR - 1) +
1634 idays;
1635 tmp->tm_wday %= DAYSPERWEEK;
1636 if (tmp->tm_wday < 0)
1637 tmp->tm_wday += DAYSPERWEEK;
1638 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1639 rem %= SECSPERHOUR;
1640 tmp->tm_min = (int) (rem / SECSPERMIN);
1641 /*
1642 ** A positive leap second requires a special
1643 ** representation. This uses "... ??:59:60" et seq.
1644 */
1645 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1646 ip = mon_lengths[isleap(y)];
1647 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1648 idays -= ip[tmp->tm_mon];
1649 tmp->tm_mday = (int) (idays + 1);
1650 tmp->tm_isdst = 0;
1651 #ifdef TM_GMTOFF
1652 tmp->TM_GMTOFF = offset;
1653 #endif /* defined TM_GMTOFF */
1654 return tmp;
1655 }
1656
1657 char *
1658 ctime(const time_t *const timep)
1659 {
1660 /*
1661 ** Section 4.12.3.2 of X3.159-1989 requires that
1662 ** The ctime function converts the calendar time pointed to by timer
1663 ** to local time in the form of a string. It is equivalent to
1664 ** asctime(localtime(timer))
1665 */
1666 struct tm *rtm = localtime(timep);
1667 if (rtm == NULL)
1668 return NULL;
1669 return asctime(rtm);
1670 }
1671
1672 char *
1673 ctime_r(const time_t *const timep, char *buf)
1674 {
1675 struct tm mytm, *rtm;
1676
1677 rtm = localtime_r(timep, &mytm);
1678 if (rtm == NULL)
1679 return NULL;
1680 return asctime_r(rtm, buf);
1681 }
1682
1683 char *
1684 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1685 {
1686 struct tm mytm, *rtm;
1687
1688 rtm = localtime_rz(sp, timep, &mytm);
1689 if (rtm == NULL)
1690 return NULL;
1691 return asctime_r(rtm, buf);
1692 }
1693
1694 /*
1695 ** Adapted from code provided by Robert Elz, who writes:
1696 ** The "best" way to do mktime I think is based on an idea of Bob
1697 ** Kridle's (so its said...) from a long time ago.
1698 ** It does a binary search of the time_t space. Since time_t's are
1699 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1700 ** would still be very reasonable).
1701 */
1702
1703 #ifndef WRONG
1704 #define WRONG ((time_t)-1)
1705 #endif /* !defined WRONG */
1706
1707 /*
1708 ** Normalize logic courtesy Paul Eggert.
1709 */
1710
1711 static bool
1712 increment_overflow(int *const ip, int j)
1713 {
1714 int const i = *ip;
1715
1716 /*
1717 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1718 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1719 ** If i < 0 there can only be overflow if i + j < INT_MIN
1720 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1721 */
1722 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1723 return true;
1724 *ip += j;
1725 return false;
1726 }
1727
1728 static bool
1729 increment_overflow32(int_fast32_t *const lp, int const m)
1730 {
1731 int_fast32_t const l = *lp;
1732
1733 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1734 return true;
1735 *lp += m;
1736 return false;
1737 }
1738
1739 static bool
1740 increment_overflow_time(time_t *tp, int_fast32_t j)
1741 {
1742 /*
1743 ** This is like
1744 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1745 ** except that it does the right thing even if *tp + j would overflow.
1746 */
1747 if (! (j < 0
1748 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1749 : *tp <= time_t_max - j))
1750 return true;
1751 *tp += j;
1752 return false;
1753 }
1754
1755 static bool
1756 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1757 {
1758 int tensdelta;
1759
1760 tensdelta = (*unitsptr >= 0) ?
1761 (*unitsptr / base) :
1762 (-1 - (-1 - *unitsptr) / base);
1763 *unitsptr -= tensdelta * base;
1764 return increment_overflow(tensptr, tensdelta);
1765 }
1766
1767 static bool
1768 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1769 const int base)
1770 {
1771 int tensdelta;
1772
1773 tensdelta = (*unitsptr >= 0) ?
1774 (*unitsptr / base) :
1775 (-1 - (-1 - *unitsptr) / base);
1776 *unitsptr -= tensdelta * base;
1777 return increment_overflow32(tensptr, tensdelta);
1778 }
1779
1780 static int
1781 tmcomp(const struct tm *const atmp,
1782 const struct tm *const btmp)
1783 {
1784 int result;
1785
1786 if (atmp->tm_year != btmp->tm_year)
1787 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1788 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1789 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1790 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1791 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1792 result = atmp->tm_sec - btmp->tm_sec;
1793 return result;
1794 }
1795
1796 static time_t
1797 time2sub(struct tm *const tmp,
1798 struct tm *(*funcp)(struct state const *, time_t const *,
1799 int_fast32_t, struct tm *),
1800 struct state const *sp,
1801 const int_fast32_t offset,
1802 bool *okayp,
1803 bool do_norm_secs)
1804 {
1805 int dir;
1806 int i, j;
1807 int saved_seconds;
1808 int_fast32_t li;
1809 time_t lo;
1810 time_t hi;
1811 #ifdef NO_ERROR_IN_DST_GAP
1812 time_t ilo;
1813 #endif
1814 int_fast32_t y;
1815 time_t newt;
1816 time_t t;
1817 struct tm yourtm, mytm;
1818
1819 *okayp = false;
1820 yourtm = *tmp;
1821 #ifdef NO_ERROR_IN_DST_GAP
1822 again:
1823 #endif
1824 if (do_norm_secs) {
1825 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1826 SECSPERMIN))
1827 goto overflow;
1828 }
1829 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1830 goto overflow;
1831 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1832 goto overflow;
1833 y = yourtm.tm_year;
1834 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1835 goto overflow;
1836 /*
1837 ** Turn y into an actual year number for now.
1838 ** It is converted back to an offset from TM_YEAR_BASE later.
1839 */
1840 if (increment_overflow32(&y, TM_YEAR_BASE))
1841 goto overflow;
1842 while (yourtm.tm_mday <= 0) {
1843 if (increment_overflow32(&y, -1))
1844 goto overflow;
1845 li = y + (1 < yourtm.tm_mon);
1846 yourtm.tm_mday += year_lengths[isleap(li)];
1847 }
1848 while (yourtm.tm_mday > DAYSPERLYEAR) {
1849 li = y + (1 < yourtm.tm_mon);
1850 yourtm.tm_mday -= year_lengths[isleap(li)];
1851 if (increment_overflow32(&y, 1))
1852 goto overflow;
1853 }
1854 for ( ; ; ) {
1855 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1856 if (yourtm.tm_mday <= i)
1857 break;
1858 yourtm.tm_mday -= i;
1859 if (++yourtm.tm_mon >= MONSPERYEAR) {
1860 yourtm.tm_mon = 0;
1861 if (increment_overflow32(&y, 1))
1862 goto overflow;
1863 }
1864 }
1865 if (increment_overflow32(&y, -TM_YEAR_BASE))
1866 goto overflow;
1867 if (! (INT_MIN <= y && y <= INT_MAX))
1868 goto overflow;
1869 yourtm.tm_year = (int)y;
1870 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1871 saved_seconds = 0;
1872 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1873 /*
1874 ** We can't set tm_sec to 0, because that might push the
1875 ** time below the minimum representable time.
1876 ** Set tm_sec to 59 instead.
1877 ** This assumes that the minimum representable time is
1878 ** not in the same minute that a leap second was deleted from,
1879 ** which is a safer assumption than using 58 would be.
1880 */
1881 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1882 goto overflow;
1883 saved_seconds = yourtm.tm_sec;
1884 yourtm.tm_sec = SECSPERMIN - 1;
1885 } else {
1886 saved_seconds = yourtm.tm_sec;
1887 yourtm.tm_sec = 0;
1888 }
1889 /*
1890 ** Do a binary search (this works whatever time_t's type is).
1891 */
1892 /* LINTED const not */
1893 if (!TYPE_SIGNED(time_t)) {
1894 lo = 0;
1895 hi = lo - 1;
1896 } else {
1897 lo = 1;
1898 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1899 lo *= 2;
1900 hi = -(lo + 1);
1901 }
1902 #ifdef NO_ERROR_IN_DST_GAP
1903 ilo = lo;
1904 #endif
1905 for ( ; ; ) {
1906 t = lo / 2 + hi / 2;
1907 if (t < lo)
1908 t = lo;
1909 else if (t > hi)
1910 t = hi;
1911 if (! funcp(sp, &t, offset, &mytm)) {
1912 /*
1913 ** Assume that t is too extreme to be represented in
1914 ** a struct tm; arrange things so that it is less
1915 ** extreme on the next pass.
1916 */
1917 dir = (t > 0) ? 1 : -1;
1918 } else dir = tmcomp(&mytm, &yourtm);
1919 if (dir != 0) {
1920 if (t == lo) {
1921 if (t == time_t_max)
1922 goto overflow;
1923 ++t;
1924 ++lo;
1925 } else if (t == hi) {
1926 if (t == time_t_min)
1927 goto overflow;
1928 --t;
1929 --hi;
1930 }
1931 #ifdef NO_ERROR_IN_DST_GAP
1932 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1933 do_norm_secs) {
1934 for (i = sp->typecnt - 1; i >= 0; --i) {
1935 for (j = sp->typecnt - 1; j >= 0; --j) {
1936 time_t off;
1937 if (sp->ttis[j].tt_isdst ==
1938 sp->ttis[i].tt_isdst)
1939 continue;
1940 off = sp->ttis[j].tt_gmtoff -
1941 sp->ttis[i].tt_gmtoff;
1942 yourtm.tm_sec += off < 0 ?
1943 -off : off;
1944 goto again;
1945 }
1946 }
1947 }
1948 #endif
1949 if (lo > hi)
1950 goto invalid;
1951 if (dir > 0)
1952 hi = t;
1953 else lo = t;
1954 continue;
1955 }
1956 #if defined TM_GMTOFF && ! UNINIT_TRAP
1957 if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
1958 && (yourtm.TM_GMTOFF < 0
1959 ? (-SECSPERDAY <= yourtm.TM_GMTOFF
1960 && (mytm.TM_GMTOFF <=
1961 (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
1962 + yourtm.TM_GMTOFF)))
1963 : (yourtm.TM_GMTOFF <= SECSPERDAY
1964 && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
1965 + yourtm.TM_GMTOFF)
1966 <= mytm.TM_GMTOFF)))) {
1967 /* MYTM matches YOURTM except with the wrong UTC offset.
1968 YOURTM.TM_GMTOFF is plausible, so try it instead.
1969 It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
1970 since the guess gets checked. */
1971 time_t altt = t;
1972 int_fast32_t diff = (int_fast32_t)
1973 (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
1974 if (!increment_overflow_time(&altt, diff)) {
1975 struct tm alttm;
1976 if (! funcp(sp, &altt, offset, &alttm)
1977 && alttm.tm_isdst == mytm.tm_isdst
1978 && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
1979 && tmcomp(&alttm, &yourtm)) {
1980 t = altt;
1981 mytm = alttm;
1982 }
1983 }
1984 }
1985 #endif
1986 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1987 break;
1988 /*
1989 ** Right time, wrong type.
1990 ** Hunt for right time, right type.
1991 ** It's okay to guess wrong since the guess
1992 ** gets checked.
1993 */
1994 if (sp == NULL)
1995 goto invalid;
1996 for (i = sp->typecnt - 1; i >= 0; --i) {
1997 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1998 continue;
1999 for (j = sp->typecnt - 1; j >= 0; --j) {
2000 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2001 continue;
2002 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2003 sp->ttis[i].tt_gmtoff);
2004 if (! funcp(sp, &newt, offset, &mytm))
2005 continue;
2006 if (tmcomp(&mytm, &yourtm) != 0)
2007 continue;
2008 if (mytm.tm_isdst != yourtm.tm_isdst)
2009 continue;
2010 /*
2011 ** We have a match.
2012 */
2013 t = newt;
2014 goto label;
2015 }
2016 }
2017 goto invalid;
2018 }
2019 label:
2020 newt = t + saved_seconds;
2021 if ((newt < t) != (saved_seconds < 0))
2022 goto overflow;
2023 t = newt;
2024 if (funcp(sp, &t, offset, tmp)) {
2025 *okayp = true;
2026 return t;
2027 }
2028 overflow:
2029 errno = EOVERFLOW;
2030 return WRONG;
2031 invalid:
2032 errno = EINVAL;
2033 return WRONG;
2034 }
2035
2036 static time_t
2037 time2(struct tm * const tmp,
2038 struct tm *(*funcp)(struct state const *, time_t const *,
2039 int_fast32_t, struct tm *),
2040 struct state const *sp,
2041 const int_fast32_t offset,
2042 bool *okayp)
2043 {
2044 time_t t;
2045
2046 /*
2047 ** First try without normalization of seconds
2048 ** (in case tm_sec contains a value associated with a leap second).
2049 ** If that fails, try with normalization of seconds.
2050 */
2051 t = time2sub(tmp, funcp, sp, offset, okayp, false);
2052 return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2053 }
2054
2055 static time_t
2056 time1(struct tm *const tmp,
2057 struct tm *(*funcp) (struct state const *, time_t const *,
2058 int_fast32_t, struct tm *),
2059 struct state const *sp,
2060 const int_fast32_t offset)
2061 {
2062 time_t t;
2063 int samei, otheri;
2064 int sameind, otherind;
2065 int i;
2066 int nseen;
2067 char seen[TZ_MAX_TYPES];
2068 unsigned char types[TZ_MAX_TYPES];
2069 bool okay;
2070
2071 if (tmp == NULL) {
2072 errno = EINVAL;
2073 return WRONG;
2074 }
2075 if (tmp->tm_isdst > 1)
2076 tmp->tm_isdst = 1;
2077 t = time2(tmp, funcp, sp, offset, &okay);
2078 if (okay)
2079 return t;
2080 if (tmp->tm_isdst < 0)
2081 #ifdef PCTS
2082 /*
2083 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2084 */
2085 tmp->tm_isdst = 0; /* reset to std and try again */
2086 #else
2087 return t;
2088 #endif /* !defined PCTS */
2089 /*
2090 ** We're supposed to assume that somebody took a time of one type
2091 ** and did some math on it that yielded a "struct tm" that's bad.
2092 ** We try to divine the type they started from and adjust to the
2093 ** type they need.
2094 */
2095 if (sp == NULL) {
2096 errno = EINVAL;
2097 return WRONG;
2098 }
2099 for (i = 0; i < sp->typecnt; ++i)
2100 seen[i] = false;
2101 nseen = 0;
2102 for (i = sp->timecnt - 1; i >= 0; --i)
2103 if (!seen[sp->types[i]]) {
2104 seen[sp->types[i]] = true;
2105 types[nseen++] = sp->types[i];
2106 }
2107 for (sameind = 0; sameind < nseen; ++sameind) {
2108 samei = types[sameind];
2109 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2110 continue;
2111 for (otherind = 0; otherind < nseen; ++otherind) {
2112 otheri = types[otherind];
2113 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2114 continue;
2115 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2116 sp->ttis[samei].tt_gmtoff);
2117 tmp->tm_isdst = !tmp->tm_isdst;
2118 t = time2(tmp, funcp, sp, offset, &okay);
2119 if (okay)
2120 return t;
2121 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2122 sp->ttis[samei].tt_gmtoff);
2123 tmp->tm_isdst = !tmp->tm_isdst;
2124 }
2125 }
2126 errno = EOVERFLOW;
2127 return WRONG;
2128 }
2129
2130 static time_t
2131 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2132 {
2133 if (sp)
2134 /*###2133 [lint] warning argument has incompatible pointer type, arg #2 (pointer to function != pointer to function) [153]%%%*/
2135 return time1(tmp, localsub, sp, setname);
2136 else {
2137 gmtcheck();
2138 return time1(tmp, gmtsub, gmtptr, 0);
2139 }
2140 }
2141
2142 #if NETBSD_INSPIRED
2143
2144 time_t
2145 mktime_z(timezone_t sp, struct tm *const tmp)
2146 {
2147 return mktime_tzname(sp, tmp, false);
2148 }
2149
2150 #endif
2151
2152 time_t
2153 mktime(struct tm *const tmp)
2154 {
2155 time_t t;
2156
2157 rwlock_wrlock(&lcl_lock);
2158 tzset_unlocked();
2159 t = mktime_tzname(lclptr, tmp, true);
2160 rwlock_unlock(&lcl_lock);
2161 return t;
2162 }
2163
2164 #ifdef STD_INSPIRED
2165
2166 time_t
2167 timelocal_z(const timezone_t sp, struct tm *const tmp)
2168 {
2169 if (tmp != NULL)
2170 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2171 return mktime_z(sp, tmp);
2172 }
2173
2174 time_t
2175 timelocal(struct tm *const tmp)
2176 {
2177 if (tmp != NULL)
2178 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2179 return mktime(tmp);
2180 }
2181
2182 time_t
2183 timegm(struct tm *const tmp)
2184 {
2185
2186 return timeoff(tmp, 0);
2187 }
2188
2189 time_t
2190 timeoff(struct tm *const tmp, long offset)
2191 {
2192 if (tmp)
2193 tmp->tm_isdst = 0;
2194 gmtcheck();
2195 return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2196 }
2197
2198 #endif /* defined STD_INSPIRED */
2199
2200 /*
2201 ** XXX--is the below the right way to conditionalize??
2202 */
2203
2204 #ifdef STD_INSPIRED
2205
2206 /*
2207 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2208 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2209 ** is not the case if we are accounting for leap seconds.
2210 ** So, we provide the following conversion routines for use
2211 ** when exchanging timestamps with POSIX conforming systems.
2212 */
2213
2214 static int_fast64_t
2215 leapcorr(const timezone_t sp, time_t t)
2216 {
2217 struct lsinfo const * lp;
2218 int i;
2219
2220 i = sp->leapcnt;
2221 while (--i >= 0) {
2222 lp = &sp->lsis[i];
2223 if (t >= lp->ls_trans)
2224 return lp->ls_corr;
2225 }
2226 return 0;
2227 }
2228
2229 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2230 time2posix_z(timezone_t sp, time_t t)
2231 {
2232 return (time_t)(t - leapcorr(sp, t));
2233 }
2234
2235 time_t
2236 time2posix(time_t t)
2237 {
2238 rwlock_wrlock(&lcl_lock);
2239 if (!lcl_is_set)
2240 tzset_unlocked();
2241 if (lclptr)
2242 t = (time_t)(t - leapcorr(lclptr, t));
2243 rwlock_unlock(&lcl_lock);
2244 return t;
2245 }
2246
2247 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2248 posix2time_z(timezone_t sp, time_t t)
2249 {
2250 time_t x;
2251 time_t y;
2252
2253 /*
2254 ** For a positive leap second hit, the result
2255 ** is not unique. For a negative leap second
2256 ** hit, the corresponding time doesn't exist,
2257 ** so we return an adjacent second.
2258 */
2259 x = (time_t)(t + leapcorr(sp, t));
2260 y = (time_t)(x - leapcorr(sp, x));
2261 if (y < t) {
2262 do {
2263 x++;
2264 y = (time_t)(x - leapcorr(sp, x));
2265 } while (y < t);
2266 x -= y != t;
2267 } else if (y > t) {
2268 do {
2269 --x;
2270 y = (time_t)(x - leapcorr(sp, x));
2271 } while (y > t);
2272 x += y != t;
2273 }
2274 return x;
2275 }
2276
2277 time_t
2278 posix2time(time_t t)
2279 {
2280 rwlock_wrlock(&lcl_lock);
2281 if (!lcl_is_set)
2282 tzset_unlocked();
2283 if (lclptr)
2284 t = posix2time_z(lclptr, t);
2285 rwlock_unlock(&lcl_lock);
2286 return t;
2287 }
2288
2289 #endif /* defined STD_INSPIRED */
2290