localtime.c revision 1.9 1 /* $NetBSD: localtime.c,v 1.9 1997/04/22 12:33:19 mrg Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** June 5, 1996 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 */
7
8 #ifndef lint
9 #ifndef NOID
10 static char elsieid[] = "@(#)localtime.c 7.58";
11 #endif /* !defined NOID */
12 #endif /* !defined lint */
13
14 /*
15 ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
16 ** POSIX-style TZ environment variable handling from Guy Harris
17 ** (guy (at) auspex.com).
18 */
19
20 /*LINTLIBRARY*/
21
22 #include "private.h"
23 #include "tzfile.h"
24 #include "fcntl.h"
25
26 /*
27 ** SunOS 4.1.1 headers lack O_BINARY.
28 */
29
30 #ifdef O_BINARY
31 #define OPEN_MODE (O_RDONLY | O_BINARY)
32 #endif /* defined O_BINARY */
33 #ifndef O_BINARY
34 #define OPEN_MODE O_RDONLY
35 #endif /* !defined O_BINARY */
36
37 #ifndef WILDABBR
38 /*
39 ** Someone might make incorrect use of a time zone abbreviation:
40 ** 1. They might reference tzname[0] before calling tzset (explicitly
41 ** or implicitly).
42 ** 2. They might reference tzname[1] before calling tzset (explicitly
43 ** or implicitly).
44 ** 3. They might reference tzname[1] after setting to a time zone
45 ** in which Daylight Saving Time is never observed.
46 ** 4. They might reference tzname[0] after setting to a time zone
47 ** in which Standard Time is never observed.
48 ** 5. They might reference tm.TM_ZONE after calling offtime.
49 ** What's best to do in the above cases is open to debate;
50 ** for now, we just set things up so that in any of the five cases
51 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
52 ** string "tzname[0] used before set", and similarly for the other cases.
53 ** And another: initialize tzname[0] to "ERA", with an explanation in the
54 ** manual page of what this "time zone abbreviation" means (doing this so
55 ** that tzname[0] has the "normal" length of three characters).
56 */
57 #define WILDABBR " "
58 #endif /* !defined WILDABBR */
59
60 static char wildabbr[] = "WILDABBR";
61
62 static const char gmt[] = "GMT";
63
64 struct ttinfo { /* time type information */
65 long tt_gmtoff; /* GMT offset in seconds */
66 int tt_isdst; /* used to set tm_isdst */
67 int tt_abbrind; /* abbreviation list index */
68 int tt_ttisstd; /* TRUE if transition is std time */
69 int tt_ttisgmt; /* TRUE if transition is GMT */
70 };
71
72 struct lsinfo { /* leap second information */
73 time_t ls_trans; /* transition time */
74 long ls_corr; /* correction to apply */
75 };
76
77 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
78
79 #ifdef TZNAME_MAX
80 #define MY_TZNAME_MAX TZNAME_MAX
81 #endif /* defined TZNAME_MAX */
82 #ifndef TZNAME_MAX
83 #define MY_TZNAME_MAX 255
84 #endif /* !defined TZNAME_MAX */
85
86 struct state {
87 int leapcnt;
88 int timecnt;
89 int typecnt;
90 int charcnt;
91 time_t ats[TZ_MAX_TIMES];
92 unsigned char types[TZ_MAX_TIMES];
93 struct ttinfo ttis[TZ_MAX_TYPES];
94 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
95 (2 * (MY_TZNAME_MAX + 1)))];
96 struct lsinfo lsis[TZ_MAX_LEAPS];
97 };
98
99 struct rule {
100 int r_type; /* type of rule--see below */
101 int r_day; /* day number of rule */
102 int r_week; /* week number of rule */
103 int r_mon; /* month number of rule */
104 long r_time; /* transition time of rule */
105 };
106
107 #define JULIAN_DAY 0 /* Jn - Julian day */
108 #define DAY_OF_YEAR 1 /* n - day of year */
109 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
110
111 /*
112 ** Prototypes for static functions.
113 */
114
115 static long detzcode P((const char * codep));
116 static const char * getzname P((const char * strp));
117 static const char * getnum P((const char * strp, int * nump, int min,
118 int max));
119 static const char * getsecs P((const char * strp, long * secsp));
120 static const char * getoffset P((const char * strp, long * offsetp));
121 static const char * getrule P((const char * strp, struct rule * rulep));
122 static void gmtload P((struct state * sp));
123 static void gmtsub P((const time_t * timep, long offset,
124 struct tm * tmp));
125 static void localsub P((const time_t * timep, long offset,
126 struct tm * tmp));
127 static int increment_overflow P((int * number, int delta));
128 static int normalize_overflow P((int * tensptr, int * unitsptr,
129 int base));
130 static void settzname P((void));
131 static time_t time1 P((struct tm * tmp,
132 void(*funcp) P((const time_t *,
133 long, struct tm *)),
134 long offset));
135 static time_t time2 P((struct tm *tmp,
136 void(*funcp) P((const time_t *,
137 long, struct tm*)),
138 long offset, int * okayp));
139 static void timesub P((const time_t * timep, long offset,
140 const struct state * sp, struct tm * tmp));
141 static int tmcomp P((const struct tm * atmp,
142 const struct tm * btmp));
143 static time_t transtime P((time_t janfirst, int year,
144 const struct rule * rulep, long offset));
145 static int tzload P((const char * name, struct state * sp));
146 static int tzparse P((const char * name, struct state * sp,
147 int lastditch));
148
149 #ifdef ALL_STATE
150 static struct state * lclptr;
151 static struct state * gmtptr;
152 #endif /* defined ALL_STATE */
153
154 #ifndef ALL_STATE
155 static struct state lclmem;
156 static struct state gmtmem;
157 #define lclptr (&lclmem)
158 #define gmtptr (&gmtmem)
159 #endif /* State Farm */
160
161 #ifndef TZ_STRLEN_MAX
162 #define TZ_STRLEN_MAX 255
163 #endif /* !defined TZ_STRLEN_MAX */
164
165 static char lcl_TZname[TZ_STRLEN_MAX + 1];
166 static int lcl_is_set;
167 static int gmt_is_set;
168
169 char * tzname[2] = {
170 wildabbr,
171 wildabbr
172 };
173
174 /*
175 ** Section 4.12.3 of X3.159-1989 requires that
176 ** Except for the strftime function, these functions [asctime,
177 ** ctime, gmtime, localtime] return values in one of two static
178 ** objects: a broken-down time structure and an array of char.
179 ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
180 */
181
182 static struct tm tm;
183
184 #ifdef USG_COMPAT
185 time_t timezone = 0;
186 int daylight = 0;
187 #endif /* defined USG_COMPAT */
188
189 #ifdef ALTZONE
190 time_t altzone = 0;
191 #endif /* defined ALTZONE */
192
193 static long
194 detzcode(codep)
195 const char * const codep;
196 {
197 register long result;
198
199 /*
200 ** The first character must be sign extended on systems with >32bit
201 ** longs. This was solved differently in the master tzcode sources
202 ** (the fix first appeared in tzcode95c.tar.gz). But I believe
203 ** that this implementation is superior.
204 */
205
206 #ifdef __STDC__
207 #define SIGN_EXTEND_CHAR(x) ((signed char) x)
208 #else
209 #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
210 #endif
211
212 result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
213 | (codep[1] & 0xff) << 16 \
214 | (codep[2] & 0xff) << 8
215 | (codep[3] & 0xff);
216 return result;
217 }
218
219 static void
220 settzname P((void))
221 {
222 register struct state * const sp = lclptr;
223 register int i;
224
225 tzname[0] = wildabbr;
226 tzname[1] = wildabbr;
227 #ifdef USG_COMPAT
228 daylight = 0;
229 timezone = 0;
230 #endif /* defined USG_COMPAT */
231 #ifdef ALTZONE
232 altzone = 0;
233 #endif /* defined ALTZONE */
234 #ifdef ALL_STATE
235 if (sp == NULL) {
236 tzname[0] = tzname[1] = gmt;
237 return;
238 }
239 #endif /* defined ALL_STATE */
240 for (i = 0; i < sp->typecnt; ++i) {
241 register const struct ttinfo * const ttisp = &sp->ttis[i];
242
243 tzname[ttisp->tt_isdst] =
244 &sp->chars[ttisp->tt_abbrind];
245 #ifdef USG_COMPAT
246 if (ttisp->tt_isdst)
247 daylight = 1;
248 if (i == 0 || !ttisp->tt_isdst)
249 timezone = -(ttisp->tt_gmtoff);
250 #endif /* defined USG_COMPAT */
251 #ifdef ALTZONE
252 if (i == 0 || ttisp->tt_isdst)
253 altzone = -(ttisp->tt_gmtoff);
254 #endif /* defined ALTZONE */
255 }
256 /*
257 ** And to get the latest zone names into tzname. . .
258 */
259 for (i = 0; i < sp->timecnt; ++i) {
260 register const struct ttinfo * const ttisp =
261 &sp->ttis[
262 sp->types[i]];
263
264 tzname[ttisp->tt_isdst] =
265 &sp->chars[ttisp->tt_abbrind];
266 }
267 }
268
269 static int
270 tzload(name, sp)
271 register const char * name;
272 register struct state * const sp;
273 {
274 register const char * p;
275 register int i;
276 register int fid;
277
278 if (name == NULL && (name = TZDEFAULT) == NULL)
279 return -1;
280
281 {
282 register int doaccess;
283 /*
284 ** Section 4.9.1 of the C standard says that
285 ** "FILENAME_MAX expands to an integral constant expression
286 ** that is the sie needed for an array of char large enough
287 ** to hold the longest file name string that the implementation
288 ** guarantees can be opened."
289 */
290 char fullname[FILENAME_MAX + 1];
291
292 if (name[0] == ':')
293 ++name;
294 doaccess = name[0] == '/';
295 if (!doaccess) {
296 if ((p = TZDIR) == NULL)
297 return -1;
298 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
299 return -1;
300 (void) strcpy(fullname, p); /* XXX strcpy is safe */
301 (void) strcat(fullname, "/"); /* XXX strcat is safe */
302 (void) strcat(fullname, name); /* XXX strcat is safe */
303 /*
304 ** Set doaccess if '.' (as in "../") shows up in name.
305 */
306 if (strchr(name, '.') != NULL)
307 doaccess = TRUE;
308 name = fullname;
309 }
310 if (doaccess && access(name, R_OK) != 0)
311 return -1;
312 /*
313 * XXX potential security problem here if user of a set-id
314 * program has set TZ (which is passed in as name) here,
315 * and uses a race condition trick to defeat the access(2)
316 * above.
317 */
318 if ((fid = open(name, OPEN_MODE)) == -1)
319 return -1;
320 }
321 {
322 struct tzhead * tzhp;
323 char buf[sizeof *sp + sizeof *tzhp];
324 int ttisstdcnt;
325 int ttisgmtcnt;
326
327 i = read(fid, buf, sizeof buf);
328 if (close(fid) != 0)
329 return -1;
330 p = buf;
331 p += sizeof tzhp->tzh_reserved;
332 ttisstdcnt = (int) detzcode(p);
333 p += 4;
334 ttisgmtcnt = (int) detzcode(p);
335 p += 4;
336 sp->leapcnt = (int) detzcode(p);
337 p += 4;
338 sp->timecnt = (int) detzcode(p);
339 p += 4;
340 sp->typecnt = (int) detzcode(p);
341 p += 4;
342 sp->charcnt = (int) detzcode(p);
343 p += 4;
344 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
345 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
346 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
347 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
348 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
349 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
350 return -1;
351 if (i - (p - buf) < sp->timecnt * 4 + /* ats */
352 sp->timecnt + /* types */
353 sp->typecnt * (4 + 2) + /* ttinfos */
354 sp->charcnt + /* chars */
355 sp->leapcnt * (4 + 4) + /* lsinfos */
356 ttisstdcnt + /* ttisstds */
357 ttisgmtcnt) /* ttisgmts */
358 return -1;
359 for (i = 0; i < sp->timecnt; ++i) {
360 sp->ats[i] = detzcode(p);
361 p += 4;
362 }
363 for (i = 0; i < sp->timecnt; ++i) {
364 sp->types[i] = (unsigned char) *p++;
365 if (sp->types[i] >= sp->typecnt)
366 return -1;
367 }
368 for (i = 0; i < sp->typecnt; ++i) {
369 register struct ttinfo * ttisp;
370
371 ttisp = &sp->ttis[i];
372 ttisp->tt_gmtoff = detzcode(p);
373 p += 4;
374 ttisp->tt_isdst = (unsigned char) *p++;
375 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
376 return -1;
377 ttisp->tt_abbrind = (unsigned char) *p++;
378 if (ttisp->tt_abbrind < 0 ||
379 ttisp->tt_abbrind > sp->charcnt)
380 return -1;
381 }
382 for (i = 0; i < sp->charcnt; ++i)
383 sp->chars[i] = *p++;
384 sp->chars[i] = '\0'; /* ensure '\0' at end */
385 for (i = 0; i < sp->leapcnt; ++i) {
386 register struct lsinfo * lsisp;
387
388 lsisp = &sp->lsis[i];
389 lsisp->ls_trans = detzcode(p);
390 p += 4;
391 lsisp->ls_corr = detzcode(p);
392 p += 4;
393 }
394 for (i = 0; i < sp->typecnt; ++i) {
395 register struct ttinfo * ttisp;
396
397 ttisp = &sp->ttis[i];
398 if (ttisstdcnt == 0)
399 ttisp->tt_ttisstd = FALSE;
400 else {
401 ttisp->tt_ttisstd = *p++;
402 if (ttisp->tt_ttisstd != TRUE &&
403 ttisp->tt_ttisstd != FALSE)
404 return -1;
405 }
406 }
407 for (i = 0; i < sp->typecnt; ++i) {
408 register struct ttinfo * ttisp;
409
410 ttisp = &sp->ttis[i];
411 if (ttisgmtcnt == 0)
412 ttisp->tt_ttisgmt = FALSE;
413 else {
414 ttisp->tt_ttisgmt = *p++;
415 if (ttisp->tt_ttisgmt != TRUE &&
416 ttisp->tt_ttisgmt != FALSE)
417 return -1;
418 }
419 }
420 }
421 return 0;
422 }
423
424 static const int mon_lengths[2][MONSPERYEAR] = {
425 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
426 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
427 };
428
429 static const int year_lengths[2] = {
430 DAYSPERNYEAR, DAYSPERLYEAR
431 };
432
433 /*
434 ** Given a pointer into a time zone string, scan until a character that is not
435 ** a valid character in a zone name is found. Return a pointer to that
436 ** character.
437 */
438
439 static const char *
440 getzname(strp)
441 register const char * strp;
442 {
443 register char c;
444
445 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
446 c != '+')
447 ++strp;
448 return strp;
449 }
450
451 /*
452 ** Given a pointer into a time zone string, extract a number from that string.
453 ** Check that the number is within a specified range; if it is not, return
454 ** NULL.
455 ** Otherwise, return a pointer to the first character not part of the number.
456 */
457
458 static const char *
459 getnum(strp, nump, min, max)
460 register const char * strp;
461 int * const nump;
462 const int min;
463 const int max;
464 {
465 register char c;
466 register int num;
467
468 if (strp == NULL || !is_digit(c = *strp))
469 return NULL;
470 num = 0;
471 do {
472 num = num * 10 + (c - '0');
473 if (num > max)
474 return NULL; /* illegal value */
475 c = *++strp;
476 } while (is_digit(c));
477 if (num < min)
478 return NULL; /* illegal value */
479 *nump = num;
480 return strp;
481 }
482
483 /*
484 ** Given a pointer into a time zone string, extract a number of seconds,
485 ** in hh[:mm[:ss]] form, from the string.
486 ** If any error occurs, return NULL.
487 ** Otherwise, return a pointer to the first character not part of the number
488 ** of seconds.
489 */
490
491 static const char *
492 getsecs(strp, secsp)
493 register const char * strp;
494 long * const secsp;
495 {
496 int num;
497
498 /*
499 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
500 ** "M10.4.6/26", which does not conform to Posix,
501 ** but which specifies the equivalent of
502 ** ``02:00 on the first Sunday on or after 23 Oct''.
503 */
504 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
505 if (strp == NULL)
506 return NULL;
507 *secsp = num * (long) SECSPERHOUR;
508 if (*strp == ':') {
509 ++strp;
510 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
511 if (strp == NULL)
512 return NULL;
513 *secsp += num * SECSPERMIN;
514 if (*strp == ':') {
515 ++strp;
516 /* `SECSPERMIN' allows for leap seconds. */
517 strp = getnum(strp, &num, 0, SECSPERMIN);
518 if (strp == NULL)
519 return NULL;
520 *secsp += num;
521 }
522 }
523 return strp;
524 }
525
526 /*
527 ** Given a pointer into a time zone string, extract an offset, in
528 ** [+-]hh[:mm[:ss]] form, from the string.
529 ** If any error occurs, return NULL.
530 ** Otherwise, return a pointer to the first character not part of the time.
531 */
532
533 static const char *
534 getoffset(strp, offsetp)
535 register const char * strp;
536 long * const offsetp;
537 {
538 register int neg = 0;
539
540 if (*strp == '-') {
541 neg = 1;
542 ++strp;
543 } else if (*strp == '+')
544 ++strp;
545 strp = getsecs(strp, offsetp);
546 if (strp == NULL)
547 return NULL; /* illegal time */
548 if (neg)
549 *offsetp = -*offsetp;
550 return strp;
551 }
552
553 /*
554 ** Given a pointer into a time zone string, extract a rule in the form
555 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
556 ** If a valid rule is not found, return NULL.
557 ** Otherwise, return a pointer to the first character not part of the rule.
558 */
559
560 static const char *
561 getrule(strp, rulep)
562 const char * strp;
563 register struct rule * const rulep;
564 {
565 if (*strp == 'J') {
566 /*
567 ** Julian day.
568 */
569 rulep->r_type = JULIAN_DAY;
570 ++strp;
571 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
572 } else if (*strp == 'M') {
573 /*
574 ** Month, week, day.
575 */
576 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
577 ++strp;
578 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
579 if (strp == NULL)
580 return NULL;
581 if (*strp++ != '.')
582 return NULL;
583 strp = getnum(strp, &rulep->r_week, 1, 5);
584 if (strp == NULL)
585 return NULL;
586 if (*strp++ != '.')
587 return NULL;
588 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
589 } else if (is_digit(*strp)) {
590 /*
591 ** Day of year.
592 */
593 rulep->r_type = DAY_OF_YEAR;
594 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
595 } else return NULL; /* invalid format */
596 if (strp == NULL)
597 return NULL;
598 if (*strp == '/') {
599 /*
600 ** Time specified.
601 */
602 ++strp;
603 strp = getsecs(strp, &rulep->r_time);
604 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
605 return strp;
606 }
607
608 /*
609 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
610 ** year, a rule, and the offset from GMT at the time that rule takes effect,
611 ** calculate the Epoch-relative time that rule takes effect.
612 */
613
614 static time_t
615 transtime(janfirst, year, rulep, offset)
616 const time_t janfirst;
617 const int year;
618 register const struct rule * const rulep;
619 const long offset;
620 {
621 register int leapyear;
622 register time_t value;
623 register int i;
624 int d, m1, yy0, yy1, yy2, dow;
625
626 INITIALIZE(value);
627 leapyear = isleap(year);
628 switch (rulep->r_type) {
629
630 case JULIAN_DAY:
631 /*
632 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
633 ** years.
634 ** In non-leap years, or if the day number is 59 or less, just
635 ** add SECSPERDAY times the day number-1 to the time of
636 ** January 1, midnight, to get the day.
637 */
638 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
639 if (leapyear && rulep->r_day >= 60)
640 value += SECSPERDAY;
641 break;
642
643 case DAY_OF_YEAR:
644 /*
645 ** n - day of year.
646 ** Just add SECSPERDAY times the day number to the time of
647 ** January 1, midnight, to get the day.
648 */
649 value = janfirst + rulep->r_day * SECSPERDAY;
650 break;
651
652 case MONTH_NTH_DAY_OF_WEEK:
653 /*
654 ** Mm.n.d - nth "dth day" of month m.
655 */
656 value = janfirst;
657 for (i = 0; i < rulep->r_mon - 1; ++i)
658 value += mon_lengths[leapyear][i] * SECSPERDAY;
659
660 /*
661 ** Use Zeller's Congruence to get day-of-week of first day of
662 ** month.
663 */
664 m1 = (rulep->r_mon + 9) % 12 + 1;
665 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
666 yy1 = yy0 / 100;
667 yy2 = yy0 % 100;
668 dow = ((26 * m1 - 2) / 10 +
669 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
670 if (dow < 0)
671 dow += DAYSPERWEEK;
672
673 /*
674 ** "dow" is the day-of-week of the first day of the month. Get
675 ** the day-of-month (zero-origin) of the first "dow" day of the
676 ** month.
677 */
678 d = rulep->r_day - dow;
679 if (d < 0)
680 d += DAYSPERWEEK;
681 for (i = 1; i < rulep->r_week; ++i) {
682 if (d + DAYSPERWEEK >=
683 mon_lengths[leapyear][rulep->r_mon - 1])
684 break;
685 d += DAYSPERWEEK;
686 }
687
688 /*
689 ** "d" is the day-of-month (zero-origin) of the day we want.
690 */
691 value += d * SECSPERDAY;
692 break;
693 }
694
695 /*
696 ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
697 ** question. To get the Epoch-relative time of the specified local
698 ** time on that day, add the transition time and the current offset
699 ** from GMT.
700 */
701 return value + rulep->r_time + offset;
702 }
703
704 /*
705 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
706 ** appropriate.
707 */
708
709 static int
710 tzparse(name, sp, lastditch)
711 const char * name;
712 register struct state * const sp;
713 const int lastditch;
714 {
715 const char * stdname;
716 const char * dstname;
717 size_t stdlen;
718 size_t dstlen;
719 long stdoffset;
720 long dstoffset;
721 register time_t * atp;
722 register unsigned char * typep;
723 register char * cp;
724 register int load_result;
725
726 INITIALIZE(dstname);
727 stdname = name;
728 if (lastditch) {
729 stdlen = strlen(name); /* length of standard zone name */
730 name += stdlen;
731 if (stdlen >= sizeof sp->chars)
732 stdlen = (sizeof sp->chars) - 1;
733 } else {
734 name = getzname(name);
735 stdlen = name - stdname;
736 if (stdlen < 3)
737 return -1;
738 }
739 if (*name == '\0')
740 return -1; /* was "stdoffset = 0;" */
741 else {
742 name = getoffset(name, &stdoffset);
743 if (name == NULL)
744 return -1;
745 }
746 load_result = tzload(TZDEFRULES, sp);
747 if (load_result != 0)
748 sp->leapcnt = 0; /* so, we're off a little */
749 if (*name != '\0') {
750 dstname = name;
751 name = getzname(name);
752 dstlen = name - dstname; /* length of DST zone name */
753 if (dstlen < 3)
754 return -1;
755 if (*name != '\0' && *name != ',' && *name != ';') {
756 name = getoffset(name, &dstoffset);
757 if (name == NULL)
758 return -1;
759 } else dstoffset = stdoffset - SECSPERHOUR;
760 if (*name == ',' || *name == ';') {
761 struct rule start;
762 struct rule end;
763 register int year;
764 register time_t janfirst;
765 time_t starttime;
766 time_t endtime;
767
768 ++name;
769 if ((name = getrule(name, &start)) == NULL)
770 return -1;
771 if (*name++ != ',')
772 return -1;
773 if ((name = getrule(name, &end)) == NULL)
774 return -1;
775 if (*name != '\0')
776 return -1;
777 sp->typecnt = 2; /* standard time and DST */
778 /*
779 ** Two transitions per year, from EPOCH_YEAR to 2037.
780 */
781 sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
782 if (sp->timecnt > TZ_MAX_TIMES)
783 return -1;
784 sp->ttis[0].tt_gmtoff = -dstoffset;
785 sp->ttis[0].tt_isdst = 1;
786 sp->ttis[0].tt_abbrind = stdlen + 1;
787 sp->ttis[1].tt_gmtoff = -stdoffset;
788 sp->ttis[1].tt_isdst = 0;
789 sp->ttis[1].tt_abbrind = 0;
790 atp = sp->ats;
791 typep = sp->types;
792 janfirst = 0;
793 for (year = EPOCH_YEAR; year <= 2037; ++year) {
794 starttime = transtime(janfirst, year, &start,
795 stdoffset);
796 endtime = transtime(janfirst, year, &end,
797 dstoffset);
798 if (starttime > endtime) {
799 *atp++ = endtime;
800 *typep++ = 1; /* DST ends */
801 *atp++ = starttime;
802 *typep++ = 0; /* DST begins */
803 } else {
804 *atp++ = starttime;
805 *typep++ = 0; /* DST begins */
806 *atp++ = endtime;
807 *typep++ = 1; /* DST ends */
808 }
809 janfirst += year_lengths[isleap(year)] *
810 SECSPERDAY;
811 }
812 } else {
813 register long theirstdoffset;
814 register long theirdstoffset;
815 register long theiroffset;
816 register int isdst;
817 register int i;
818 register int j;
819
820 if (*name != '\0')
821 return -1;
822 if (load_result != 0)
823 return -1;
824 /*
825 ** Initial values of theirstdoffset and theirdstoffset.
826 */
827 theirstdoffset = 0;
828 for (i = 0; i < sp->timecnt; ++i) {
829 j = sp->types[i];
830 if (!sp->ttis[j].tt_isdst) {
831 theirstdoffset =
832 -sp->ttis[j].tt_gmtoff;
833 break;
834 }
835 }
836 theirdstoffset = 0;
837 for (i = 0; i < sp->timecnt; ++i) {
838 j = sp->types[i];
839 if (sp->ttis[j].tt_isdst) {
840 theirdstoffset =
841 -sp->ttis[j].tt_gmtoff;
842 break;
843 }
844 }
845 /*
846 ** Initially we're assumed to be in standard time.
847 */
848 isdst = FALSE;
849 theiroffset = theirstdoffset;
850 /*
851 ** Now juggle transition times and types
852 ** tracking offsets as you do.
853 */
854 for (i = 0; i < sp->timecnt; ++i) {
855 j = sp->types[i];
856 sp->types[i] = sp->ttis[j].tt_isdst;
857 if (sp->ttis[j].tt_ttisgmt) {
858 /* No adjustment to transition time */
859 } else {
860 /*
861 ** If summer time is in effect, and the
862 ** transition time was not specified as
863 ** standard time, add the summer time
864 ** offset to the transition time;
865 ** otherwise, add the standard time
866 ** offset to the transition time.
867 */
868 /*
869 ** Transitions from DST to DDST
870 ** will effectively disappear since
871 ** POSIX provides for only one DST
872 ** offset.
873 */
874 if (isdst && !sp->ttis[j].tt_ttisstd) {
875 sp->ats[i] += dstoffset -
876 theirdstoffset;
877 } else {
878 sp->ats[i] += stdoffset -
879 theirstdoffset;
880 }
881 }
882 theiroffset = -sp->ttis[j].tt_gmtoff;
883 if (sp->ttis[j].tt_isdst)
884 theirdstoffset = theiroffset;
885 else theirstdoffset = theiroffset;
886 }
887 /*
888 ** Finally, fill in ttis.
889 ** ttisstd and ttisgmt need not be handled.
890 */
891 sp->ttis[0].tt_gmtoff = -stdoffset;
892 sp->ttis[0].tt_isdst = FALSE;
893 sp->ttis[0].tt_abbrind = 0;
894 sp->ttis[1].tt_gmtoff = -dstoffset;
895 sp->ttis[1].tt_isdst = TRUE;
896 sp->ttis[1].tt_abbrind = stdlen + 1;
897 sp->typecnt = 2;
898 }
899 } else {
900 dstlen = 0;
901 sp->typecnt = 1; /* only standard time */
902 sp->timecnt = 0;
903 sp->ttis[0].tt_gmtoff = -stdoffset;
904 sp->ttis[0].tt_isdst = 0;
905 sp->ttis[0].tt_abbrind = 0;
906 }
907 sp->charcnt = stdlen + 1;
908 if (dstlen != 0)
909 sp->charcnt += dstlen + 1;
910 if (sp->charcnt > sizeof sp->chars)
911 return -1;
912 cp = sp->chars;
913 (void) strncpy(cp, stdname, stdlen);
914 cp += stdlen;
915 *cp++ = '\0';
916 if (dstlen != 0) {
917 (void) strncpy(cp, dstname, dstlen);
918 *(cp + dstlen) = '\0';
919 }
920 return 0;
921 }
922
923 static void
924 gmtload(sp)
925 struct state * const sp;
926 {
927 if (tzload(gmt, sp) != 0)
928 (void) tzparse(gmt, sp, TRUE);
929 }
930
931 #ifndef STD_INSPIRED
932 /*
933 ** A non-static declaration of tzsetwall in a system header file
934 ** may cause a warning about this upcoming static declaration...
935 */
936 static
937 #endif /* !defined STD_INSPIRED */
938 void
939 tzsetwall P((void))
940 {
941 if (lcl_is_set < 0)
942 return;
943 lcl_is_set = -1;
944
945 #ifdef ALL_STATE
946 if (lclptr == NULL) {
947 lclptr = (struct state *) malloc(sizeof *lclptr);
948 if (lclptr == NULL) {
949 settzname(); /* all we can do */
950 return;
951 }
952 }
953 #endif /* defined ALL_STATE */
954 if (tzload((char *) NULL, lclptr) != 0)
955 gmtload(lclptr);
956 settzname();
957 }
958
959 void
960 tzset P((void))
961 {
962 register const char * name;
963
964 name = getenv("TZ");
965 if (name == NULL) {
966 tzsetwall();
967 return;
968 }
969
970 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
971 return;
972 lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
973 if (lcl_is_set)
974 (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
975
976 #ifdef ALL_STATE
977 if (lclptr == NULL) {
978 lclptr = (struct state *) malloc(sizeof *lclptr);
979 if (lclptr == NULL) {
980 settzname(); /* all we can do */
981 return;
982 }
983 }
984 #endif /* defined ALL_STATE */
985 if (*name == '\0') {
986 /*
987 ** User wants it fast rather than right.
988 */
989 lclptr->leapcnt = 0; /* so, we're off a little */
990 lclptr->timecnt = 0;
991 lclptr->ttis[0].tt_gmtoff = 0;
992 lclptr->ttis[0].tt_abbrind = 0;
993 (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
994 } else if (tzload(name, lclptr) != 0)
995 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
996 (void) gmtload(lclptr);
997 settzname();
998 }
999
1000 /*
1001 ** The easy way to behave "as if no library function calls" localtime
1002 ** is to not call it--so we drop its guts into "localsub", which can be
1003 ** freely called. (And no, the PANS doesn't require the above behavior--
1004 ** but it *is* desirable.)
1005 **
1006 ** The unused offset argument is for the benefit of mktime variants.
1007 */
1008
1009 /*ARGSUSED*/
1010 static void
1011 localsub(timep, offset, tmp)
1012 const time_t * const timep;
1013 const long offset;
1014 struct tm * const tmp;
1015 {
1016 register struct state * sp;
1017 register const struct ttinfo * ttisp;
1018 register int i;
1019 const time_t t = *timep;
1020
1021 sp = lclptr;
1022 #ifdef ALL_STATE
1023 if (sp == NULL) {
1024 gmtsub(timep, offset, tmp);
1025 return;
1026 }
1027 #endif /* defined ALL_STATE */
1028 if (sp->timecnt == 0 || t < sp->ats[0]) {
1029 i = 0;
1030 while (sp->ttis[i].tt_isdst)
1031 if (++i >= sp->typecnt) {
1032 i = 0;
1033 break;
1034 }
1035 } else {
1036 for (i = 1; i < sp->timecnt; ++i)
1037 if (t < sp->ats[i])
1038 break;
1039 i = sp->types[i - 1];
1040 }
1041 ttisp = &sp->ttis[i];
1042 /*
1043 ** To get (wrong) behavior that's compatible with System V Release 2.0
1044 ** you'd replace the statement below with
1045 ** t += ttisp->tt_gmtoff;
1046 ** timesub(&t, 0L, sp, tmp);
1047 */
1048 timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1049 tmp->tm_isdst = ttisp->tt_isdst;
1050 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1051 #ifdef TM_ZONE
1052 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1053 #endif /* defined TM_ZONE */
1054 }
1055
1056 struct tm *
1057 localtime(timep)
1058 const time_t * const timep;
1059 {
1060 tzset();
1061 localsub(timep, 0L, &tm);
1062 return &tm;
1063 }
1064
1065 /*
1066 ** gmtsub is to gmtime as localsub is to localtime.
1067 */
1068
1069 static void
1070 gmtsub(timep, offset, tmp)
1071 const time_t * const timep;
1072 const long offset;
1073 struct tm * const tmp;
1074 {
1075 if (!gmt_is_set) {
1076 gmt_is_set = TRUE;
1077 #ifdef ALL_STATE
1078 gmtptr = (struct state *) malloc(sizeof *gmtptr);
1079 if (gmtptr != NULL)
1080 #endif /* defined ALL_STATE */
1081 gmtload(gmtptr);
1082 }
1083 timesub(timep, offset, gmtptr, tmp);
1084 #ifdef TM_ZONE
1085 /*
1086 ** Could get fancy here and deliver something such as
1087 ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1088 ** but this is no time for a treasure hunt.
1089 */
1090 if (offset != 0)
1091 tmp->TM_ZONE = wildabbr;
1092 else {
1093 #ifdef ALL_STATE
1094 if (gmtptr == NULL)
1095 tmp->TM_ZONE = gmt;
1096 else tmp->TM_ZONE = gmtptr->chars;
1097 #endif /* defined ALL_STATE */
1098 #ifndef ALL_STATE
1099 tmp->TM_ZONE = gmtptr->chars;
1100 #endif /* State Farm */
1101 }
1102 #endif /* defined TM_ZONE */
1103 }
1104
1105 struct tm *
1106 gmtime(timep)
1107 const time_t * const timep;
1108 {
1109 gmtsub(timep, 0L, &tm);
1110 return &tm;
1111 }
1112
1113 #ifdef STD_INSPIRED
1114
1115 struct tm *
1116 offtime(timep, offset)
1117 const time_t * const timep;
1118 const long offset;
1119 {
1120 gmtsub(timep, offset, &tm);
1121 return &tm;
1122 }
1123
1124 #endif /* defined STD_INSPIRED */
1125
1126 static void
1127 timesub(timep, offset, sp, tmp)
1128 const time_t * const timep;
1129 const long offset;
1130 register const struct state * const sp;
1131 register struct tm * const tmp;
1132 {
1133 register const struct lsinfo * lp;
1134 register long days;
1135 register long rem;
1136 register int y;
1137 register int yleap;
1138 register const int * ip;
1139 register long corr;
1140 register int hit;
1141 register int i;
1142
1143 corr = 0;
1144 hit = 0;
1145 #ifdef ALL_STATE
1146 i = (sp == NULL) ? 0 : sp->leapcnt;
1147 #endif /* defined ALL_STATE */
1148 #ifndef ALL_STATE
1149 i = sp->leapcnt;
1150 #endif /* State Farm */
1151 while (--i >= 0) {
1152 lp = &sp->lsis[i];
1153 if (*timep >= lp->ls_trans) {
1154 if (*timep == lp->ls_trans) {
1155 hit = ((i == 0 && lp->ls_corr > 0) ||
1156 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1157 if (hit)
1158 while (i > 0 &&
1159 sp->lsis[i].ls_trans ==
1160 sp->lsis[i - 1].ls_trans + 1 &&
1161 sp->lsis[i].ls_corr ==
1162 sp->lsis[i - 1].ls_corr + 1) {
1163 ++hit;
1164 --i;
1165 }
1166 }
1167 corr = lp->ls_corr;
1168 break;
1169 }
1170 }
1171 days = *timep / SECSPERDAY;
1172 rem = *timep % SECSPERDAY;
1173 #ifdef mc68k
1174 if (*timep == 0x80000000) {
1175 /*
1176 ** A 3B1 muffs the division on the most negative number.
1177 */
1178 days = -24855;
1179 rem = -11648;
1180 }
1181 #endif /* defined mc68k */
1182 rem += (offset - corr);
1183 while (rem < 0) {
1184 rem += SECSPERDAY;
1185 --days;
1186 }
1187 while (rem >= SECSPERDAY) {
1188 rem -= SECSPERDAY;
1189 ++days;
1190 }
1191 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1192 rem = rem % SECSPERHOUR;
1193 tmp->tm_min = (int) (rem / SECSPERMIN);
1194 /*
1195 ** A positive leap second requires a special
1196 ** representation. This uses "... ??:59:60" et seq.
1197 */
1198 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1199 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1200 if (tmp->tm_wday < 0)
1201 tmp->tm_wday += DAYSPERWEEK;
1202 y = EPOCH_YEAR;
1203 #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1204 while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1205 register int newy;
1206
1207 newy = y + days / DAYSPERNYEAR;
1208 if (days < 0)
1209 --newy;
1210 days -= (newy - y) * DAYSPERNYEAR +
1211 LEAPS_THRU_END_OF(newy - 1) -
1212 LEAPS_THRU_END_OF(y - 1);
1213 y = newy;
1214 }
1215 tmp->tm_year = y - TM_YEAR_BASE;
1216 tmp->tm_yday = (int) days;
1217 ip = mon_lengths[yleap];
1218 for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1219 days = days - (long) ip[tmp->tm_mon];
1220 tmp->tm_mday = (int) (days + 1);
1221 tmp->tm_isdst = 0;
1222 #ifdef TM_GMTOFF
1223 tmp->TM_GMTOFF = offset;
1224 #endif /* defined TM_GMTOFF */
1225 }
1226
1227 char *
1228 ctime(timep)
1229 const time_t * const timep;
1230 {
1231 /*
1232 ** Section 4.12.3.2 of X3.159-1989 requires that
1233 ** The ctime funciton converts the calendar time pointed to by timer
1234 ** to local time in the form of a string. It is equivalent to
1235 ** asctime(localtime(timer))
1236 */
1237 return asctime(localtime(timep));
1238 }
1239
1240 /*
1241 ** Adapted from code provided by Robert Elz, who writes:
1242 ** The "best" way to do mktime I think is based on an idea of Bob
1243 ** Kridle's (so its said...) from a long time ago.
1244 ** [kridle (at) xinet.com as of 1996-01-16.]
1245 ** It does a binary search of the time_t space. Since time_t's are
1246 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1247 ** would still be very reasonable).
1248 */
1249
1250 #ifndef WRONG
1251 #define WRONG (-1)
1252 #endif /* !defined WRONG */
1253
1254 /*
1255 ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1256 */
1257
1258 static int
1259 increment_overflow(number, delta)
1260 int * number;
1261 int delta;
1262 {
1263 int number0;
1264
1265 number0 = *number;
1266 *number += delta;
1267 return (*number < number0) != (delta < 0);
1268 }
1269
1270 static int
1271 normalize_overflow(tensptr, unitsptr, base)
1272 int * const tensptr;
1273 int * const unitsptr;
1274 const int base;
1275 {
1276 register int tensdelta;
1277
1278 tensdelta = (*unitsptr >= 0) ?
1279 (*unitsptr / base) :
1280 (-1 - (-1 - *unitsptr) / base);
1281 *unitsptr -= tensdelta * base;
1282 return increment_overflow(tensptr, tensdelta);
1283 }
1284
1285 static int
1286 tmcomp(atmp, btmp)
1287 register const struct tm * const atmp;
1288 register const struct tm * const btmp;
1289 {
1290 register int result;
1291
1292 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1293 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1294 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1295 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1296 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1297 result = atmp->tm_sec - btmp->tm_sec;
1298 return result;
1299 }
1300
1301 static time_t
1302 time2(tmp, funcp, offset, okayp)
1303 struct tm * const tmp;
1304 void (* const funcp) P((const time_t*, long, struct tm*));
1305 const long offset;
1306 int * const okayp;
1307 {
1308 register const struct state * sp;
1309 register int dir;
1310 register int bits;
1311 register int i, j ;
1312 register int saved_seconds;
1313 time_t newt;
1314 time_t t;
1315 struct tm yourtm, mytm;
1316
1317 *okayp = FALSE;
1318 yourtm = *tmp;
1319 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1320 return WRONG;
1321 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1322 return WRONG;
1323 if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1324 return WRONG;
1325 /*
1326 ** Turn yourtm.tm_year into an actual year number for now.
1327 ** It is converted back to an offset from TM_YEAR_BASE later.
1328 */
1329 if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1330 return WRONG;
1331 while (yourtm.tm_mday <= 0) {
1332 if (increment_overflow(&yourtm.tm_year, -1))
1333 return WRONG;
1334 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1335 yourtm.tm_mday += year_lengths[isleap(i)];
1336 }
1337 while (yourtm.tm_mday > DAYSPERLYEAR) {
1338 i = yourtm.tm_year + (1 < yourtm.tm_mon);
1339 yourtm.tm_mday -= year_lengths[isleap(i)];
1340 if (increment_overflow(&yourtm.tm_year, 1))
1341 return WRONG;
1342 }
1343 for ( ; ; ) {
1344 i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1345 if (yourtm.tm_mday <= i)
1346 break;
1347 yourtm.tm_mday -= i;
1348 if (++yourtm.tm_mon >= MONSPERYEAR) {
1349 yourtm.tm_mon = 0;
1350 if (increment_overflow(&yourtm.tm_year, 1))
1351 return WRONG;
1352 }
1353 }
1354 if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1355 return WRONG;
1356 if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1357 /*
1358 ** We can't set tm_sec to 0, because that might push the
1359 ** time below the minimum representable time.
1360 ** Set tm_sec to 59 instead.
1361 ** This assumes that the minimum representable time is
1362 ** not in the same minute that a leap second was deleted from,
1363 ** which is a safer assumption than using 58 would be.
1364 */
1365 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1366 return WRONG;
1367 saved_seconds = yourtm.tm_sec;
1368 yourtm.tm_sec = SECSPERMIN - 1;
1369 } else {
1370 saved_seconds = yourtm.tm_sec;
1371 yourtm.tm_sec = 0;
1372 }
1373 /*
1374 ** Divide the search space in half
1375 ** (this works whether time_t is signed or unsigned).
1376 */
1377 bits = TYPE_BIT(time_t) - 1;
1378 /*
1379 ** If time_t is signed, then 0 is just above the median,
1380 ** assuming two's complement arithmetic.
1381 ** If time_t is unsigned, then (1 << bits) is just above the median.
1382 */
1383 t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1384 for ( ; ; ) {
1385 (*funcp)(&t, offset, &mytm);
1386 dir = tmcomp(&mytm, &yourtm);
1387 if (dir != 0) {
1388 if (bits-- < 0)
1389 return WRONG;
1390 if (bits < 0)
1391 --t; /* may be needed if new t is minimal */
1392 else if (dir > 0)
1393 t -= ((time_t) 1) << bits;
1394 else t += ((time_t) 1) << bits;
1395 continue;
1396 }
1397 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1398 break;
1399 /*
1400 ** Right time, wrong type.
1401 ** Hunt for right time, right type.
1402 ** It's okay to guess wrong since the guess
1403 ** gets checked.
1404 */
1405 /*
1406 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1407 */
1408 sp = (const struct state *)
1409 (((void *) funcp == (void *) localsub) ?
1410 lclptr : gmtptr);
1411 #ifdef ALL_STATE
1412 if (sp == NULL)
1413 return WRONG;
1414 #endif /* defined ALL_STATE */
1415 for (i = sp->typecnt - 1; i >= 0; --i) {
1416 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1417 continue;
1418 for (j = sp->typecnt - 1; j >= 0; --j) {
1419 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1420 continue;
1421 newt = t + sp->ttis[j].tt_gmtoff -
1422 sp->ttis[i].tt_gmtoff;
1423 (*funcp)(&newt, offset, &mytm);
1424 if (tmcomp(&mytm, &yourtm) != 0)
1425 continue;
1426 if (mytm.tm_isdst != yourtm.tm_isdst)
1427 continue;
1428 /*
1429 ** We have a match.
1430 */
1431 t = newt;
1432 goto label;
1433 }
1434 }
1435 return WRONG;
1436 }
1437 label:
1438 newt = t + saved_seconds;
1439 if ((newt < t) != (saved_seconds < 0))
1440 return WRONG;
1441 t = newt;
1442 (*funcp)(&t, offset, tmp);
1443 *okayp = TRUE;
1444 return t;
1445 }
1446
1447 static time_t
1448 time1(tmp, funcp, offset)
1449 struct tm * const tmp;
1450 void (* const funcp) P((const time_t *, long, struct tm *));
1451 const long offset;
1452 {
1453 register time_t t;
1454 register const struct state * sp;
1455 register int samei, otheri;
1456 int okay;
1457
1458 if (tmp->tm_isdst > 1)
1459 tmp->tm_isdst = 1;
1460 t = time2(tmp, funcp, offset, &okay);
1461 #ifdef PCTS
1462 /*
1463 ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1464 */
1465 if (okay)
1466 return t;
1467 if (tmp->tm_isdst < 0)
1468 tmp->tm_isdst = 0; /* reset to std and try again */
1469 #endif /* defined PCTS */
1470 #ifndef PCTS
1471 if (okay || tmp->tm_isdst < 0)
1472 return t;
1473 #endif /* !defined PCTS */
1474 /*
1475 ** We're supposed to assume that somebody took a time of one type
1476 ** and did some math on it that yielded a "struct tm" that's bad.
1477 ** We try to divine the type they started from and adjust to the
1478 ** type they need.
1479 */
1480 /*
1481 ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1482 */
1483 sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1484 lclptr : gmtptr);
1485 #ifdef ALL_STATE
1486 if (sp == NULL)
1487 return WRONG;
1488 #endif /* defined ALL_STATE */
1489 for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1490 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1491 continue;
1492 for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1493 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1494 continue;
1495 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1496 sp->ttis[samei].tt_gmtoff;
1497 tmp->tm_isdst = !tmp->tm_isdst;
1498 t = time2(tmp, funcp, offset, &okay);
1499 if (okay)
1500 return t;
1501 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1502 sp->ttis[samei].tt_gmtoff;
1503 tmp->tm_isdst = !tmp->tm_isdst;
1504 }
1505 }
1506 return WRONG;
1507 }
1508
1509 time_t
1510 mktime(tmp)
1511 struct tm * const tmp;
1512 {
1513 tzset();
1514 return time1(tmp, localsub, 0L);
1515 }
1516
1517 #ifdef STD_INSPIRED
1518
1519 time_t
1520 timelocal(tmp)
1521 struct tm * const tmp;
1522 {
1523 tmp->tm_isdst = -1; /* in case it wasn't initialized */
1524 return mktime(tmp);
1525 }
1526
1527 time_t
1528 timegm(tmp)
1529 struct tm * const tmp;
1530 {
1531 tmp->tm_isdst = 0;
1532 return time1(tmp, gmtsub, 0L);
1533 }
1534
1535 time_t
1536 timeoff(tmp, offset)
1537 struct tm * const tmp;
1538 const long offset;
1539 {
1540 tmp->tm_isdst = 0;
1541 return time1(tmp, gmtsub, offset);
1542 }
1543
1544 #endif /* defined STD_INSPIRED */
1545
1546 #ifdef CMUCS
1547
1548 /*
1549 ** The following is supplied for compatibility with
1550 ** previous versions of the CMUCS runtime library.
1551 */
1552
1553 long
1554 gtime(tmp)
1555 struct tm * const tmp;
1556 {
1557 const time_t t = mktime(tmp);
1558
1559 if (t == WRONG)
1560 return -1;
1561 return t;
1562 }
1563
1564 #endif /* defined CMUCS */
1565
1566 /*
1567 ** XXX--is the below the right way to conditionalize??
1568 */
1569
1570 #ifdef STD_INSPIRED
1571
1572 /*
1573 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1574 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1575 ** is not the case if we are accounting for leap seconds.
1576 ** So, we provide the following conversion routines for use
1577 ** when exchanging timestamps with POSIX conforming systems.
1578 */
1579
1580 static long
1581 leapcorr(timep)
1582 time_t * timep;
1583 {
1584 register struct state * sp;
1585 register struct lsinfo * lp;
1586 register int i;
1587
1588 sp = lclptr;
1589 i = sp->leapcnt;
1590 while (--i >= 0) {
1591 lp = &sp->lsis[i];
1592 if (*timep >= lp->ls_trans)
1593 return lp->ls_corr;
1594 }
1595 return 0;
1596 }
1597
1598 time_t
1599 time2posix(t)
1600 time_t t;
1601 {
1602 tzset();
1603 return t - leapcorr(&t);
1604 }
1605
1606 time_t
1607 posix2time(t)
1608 time_t t;
1609 {
1610 time_t x;
1611 time_t y;
1612
1613 tzset();
1614 /*
1615 ** For a positive leap second hit, the result
1616 ** is not unique. For a negative leap second
1617 ** hit, the corresponding time doesn't exist,
1618 ** so we return an adjacent second.
1619 */
1620 x = t + leapcorr(&t);
1621 y = x - leapcorr(&x);
1622 if (y < t) {
1623 do {
1624 x++;
1625 y = x - leapcorr(&x);
1626 } while (y < t);
1627 if (t != y)
1628 return x - 1;
1629 } else if (y > t) {
1630 do {
1631 --x;
1632 y = x - leapcorr(&x);
1633 } while (y > t);
1634 if (t != y)
1635 return x + 1;
1636 }
1637 return x;
1638 }
1639
1640 #endif /* defined STD_INSPIRED */
1641