localtime.c revision 1.91 1 /* $NetBSD: localtime.c,v 1.91 2014/10/23 18:45:58 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.91 2014/10/23 18:45:58 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE (O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static const char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 int_fast32_t tt_gmtoff; /* UT offset in seconds */
108 bool tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 bool tt_ttisstd; /* transition is std time */
111 bool tt_ttisgmt; /* transition is UT */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 int_fast64_t ls_corr; /* correction to apply */
117 };
118
119 #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
121
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX 255
127 #endif /* !defined TZNAME_MAX */
128
129 #define state __state
130 struct state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 bool goback;
136 bool goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
159 struct tm *);
160 static bool increment_overflow(int *, int);
161 static bool increment_overflow_time(time_t *, int_fast32_t);
162 static bool normalize_overflow32(int_fast32_t *, int *, int);
163 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
164 struct tm *);
165 static bool typesequiv(struct state const *, int, int);
166 static bool tzparse(char const *, struct state *, bool);
167
168 static timezone_t lclptr;
169 static timezone_t gmtptr;
170
171 #ifndef TZ_STRLEN_MAX
172 #define TZ_STRLEN_MAX 255
173 #endif /* !defined TZ_STRLEN_MAX */
174
175 static char lcl_TZname[TZ_STRLEN_MAX + 1];
176 static int lcl_is_set;
177
178 #if !defined(__LIBC12_SOURCE__)
179
180 __aconst char * tzname[2] = {
181 (__aconst char *)__UNCONST(wildabbr),
182 (__aconst char *)__UNCONST(wildabbr)
183 };
184
185 #else
186
187 extern __aconst char * tzname[2];
188
189 #endif
190
191 #ifdef _REENTRANT
192 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
193 #endif
194
195 /*
196 ** Section 4.12.3 of X3.159-1989 requires that
197 ** Except for the strftime function, these functions [asctime,
198 ** ctime, gmtime, localtime] return values in one of two static
199 ** objects: a broken-down time structure and an array of char.
200 ** Thanks to Paul Eggert for noting this.
201 */
202
203 static struct tm tm;
204
205 #ifdef USG_COMPAT
206 #if !defined(__LIBC12_SOURCE__)
207 long timezone = 0;
208 int daylight = 0;
209 #else
210 extern int daylight;
211 extern long timezone __RENAME(__timezone13);
212 #endif
213 #endif /* defined USG_COMPAT */
214
215 #ifdef ALTZONE
216 long altzone = 0;
217 #endif /* defined ALTZONE */
218
219 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
220 static void
221 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
222 {
223 s->tt_gmtoff = gmtoff;
224 s->tt_isdst = isdst;
225 s->tt_abbrind = abbrind;
226 s->tt_ttisstd = false;
227 s->tt_ttisgmt = false;
228 }
229
230 static int_fast32_t
231 detzcode(const char *const codep)
232 {
233 int_fast32_t result;
234 int i;
235
236 result = (codep[0] & 0x80) ? -1 : 0;
237 for (i = 0; i < 4; ++i)
238 result = (result << 8) | (codep[i] & 0xff);
239 return result;
240 }
241
242 static int_fast64_t
243 detzcode64(const char *const codep)
244 {
245 int_fast64_t result;
246 int i;
247
248 result = (codep[0] & 0x80) ? -1 : 0;
249 for (i = 0; i < 8; ++i)
250 result = (result << 8) | (codep[i] & 0xff);
251 return result;
252 }
253
254 const char *
255 tzgetname(const timezone_t sp, int isdst)
256 {
257 int i;
258 for (i = 0; i < sp->timecnt; ++i) {
259 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
260
261 if (ttisp->tt_isdst == isdst)
262 return &sp->chars[ttisp->tt_abbrind];
263 }
264 errno = ESRCH;
265 return NULL;
266 }
267
268 static void
269 settzname_z(timezone_t sp)
270 {
271 int i;
272
273 /*
274 ** Scrub the abbreviations.
275 ** First, replace bogus characters.
276 */
277 for (i = 0; i < sp->charcnt; ++i)
278 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
279 sp->chars[i] = TZ_ABBR_ERR_CHAR;
280 /*
281 ** Second, truncate long abbreviations.
282 */
283 for (i = 0; i < sp->typecnt; ++i) {
284 const struct ttinfo * const ttisp = &sp->ttis[i];
285 char * cp = &sp->chars[ttisp->tt_abbrind];
286
287 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
288 strcmp(cp, GRANDPARENTED) != 0)
289 *(cp + TZ_ABBR_MAX_LEN) = '\0';
290 }
291 }
292
293 static void
294 settzname(void)
295 {
296 timezone_t const sp = lclptr;
297 int i;
298
299 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
300 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
301 #ifdef USG_COMPAT
302 daylight = 0;
303 timezone = 0;
304 #endif /* defined USG_COMPAT */
305 #ifdef ALTZONE
306 altzone = 0;
307 #endif /* defined ALTZONE */
308 if (sp == NULL) {
309 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
310 return;
311 }
312 /*
313 ** And to get the latest zone names into tzname. . .
314 */
315 for (i = 0; i < sp->typecnt; ++i) {
316 const struct ttinfo * const ttisp = &sp->ttis[i];
317
318 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
319 #ifdef USG_COMPAT
320 if (ttisp->tt_isdst)
321 daylight = 1;
322 if (!ttisp->tt_isdst)
323 timezone = -(ttisp->tt_gmtoff);
324 #endif /* defined USG_COMPAT */
325 #ifdef ALTZONE
326 if (ttisp->tt_isdst)
327 altzone = -(ttisp->tt_gmtoff);
328 #endif /* defined ALTZONE */
329 }
330 settzname_z(sp);
331 }
332
333 static bool
334 differ_by_repeat(const time_t t1, const time_t t0)
335 {
336 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
337 return 0;
338 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
339 }
340
341 union input_buffer {
342 /* The first part of the buffer, interpreted as a header. */
343 struct tzhead tzhead;
344
345 /* The entire buffer. */
346 char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
347 + 4 * TZ_MAX_TIMES];
348 };
349
350 /* Local storage needed for 'tzloadbody'. */
351 union local_storage {
352 /* The file name to be opened. */
353 char fullname[FILENAME_MAX + 1];
354
355 /* The results of analyzing the file's contents after it is opened. */
356 struct {
357 /* The input buffer. */
358 union input_buffer u;
359
360 /* A temporary state used for parsing a TZ string in the file. */
361 struct state st;
362 } u;
363 };
364
365 /* Load tz data from the file named NAME into *SP. Read extended
366 format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
367 success, an errno value on failure. */
368 static int
369 tzloadbody(char const *name, struct state *sp, bool doextend,
370 union local_storage *lsp)
371 {
372 int i;
373 int fid;
374 int stored;
375 ssize_t nread;
376 bool doaccess;
377 char *fullname = lsp->fullname;
378 union input_buffer *up = &lsp->u.u;
379 size_t tzheadsize = sizeof(struct tzhead);
380
381 sp->goback = sp->goahead = false;
382
383 if (! name) {
384 name = TZDEFAULT;
385 if (! name)
386 return EINVAL;
387 }
388
389 if (name[0] == ':')
390 ++name;
391 doaccess = name[0] == '/';
392 if (!doaccess) {
393 char const *p = TZDIR;
394 if (! p)
395 return EINVAL;
396 if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
397 return ENAMETOOLONG;
398 strcpy(fullname, p);
399 strcat(fullname, "/");
400 strcat(fullname, name);
401 /* Set doaccess if '.' (as in "../") shows up in name. */
402 if (strchr(name, '.'))
403 doaccess = true;
404 name = fullname;
405 }
406 if (doaccess && access(name, R_OK) != 0)
407 return errno;
408
409 fid = open(name, OPEN_MODE);
410 if (fid < 0)
411 return errno;
412 nread = read(fid, up->buf, sizeof up->buf);
413 if (nread < (ssize_t)tzheadsize) {
414 int err = nread < 0 ? errno : EINVAL;
415 close(fid);
416 return err;
417 }
418 if (close(fid) < 0)
419 return errno;
420 for (stored = 4; stored <= 8; stored *= 2) {
421 int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
422 int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
423 int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
424 int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
425 int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
426 int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
427 char const *p = up->buf + tzheadsize;
428 if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
429 && 0 < typecnt && typecnt < TZ_MAX_TYPES
430 && 0 <= timecnt && timecnt < TZ_MAX_TIMES
431 && 0 <= charcnt && charcnt < TZ_MAX_CHARS
432 && (ttisstdcnt == typecnt || ttisstdcnt == 0)
433 && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
434 return EINVAL;
435 if ((size_t)nread
436 < (tzheadsize /* struct tzhead */
437 + timecnt * stored /* ats */
438 + timecnt /* types */
439 + typecnt * 6 /* ttinfos */
440 + charcnt /* chars */
441 + leapcnt * (stored + 4) /* lsinfos */
442 + ttisstdcnt /* ttisstds */
443 + ttisgmtcnt)) /* ttisgmts */
444 return EINVAL;
445 sp->leapcnt = leapcnt;
446 sp->timecnt = timecnt;
447 sp->typecnt = typecnt;
448 sp->charcnt = charcnt;
449
450 /* Read transitions, discarding those out of time_t range.
451 But pretend the last transition before time_t_min
452 occurred at time_t_min. */
453 timecnt = 0;
454 for (i = 0; i < sp->timecnt; ++i) {
455 int_fast64_t at
456 = stored == 4 ? detzcode(p) : detzcode64(p);
457 sp->types[i] = at <= time_t_max;
458 if (sp->types[i]) {
459 time_t attime
460 = ((TYPE_SIGNED(time_t) ?
461 at < time_t_min : at < 0)
462 ? time_t_min : (time_t)at);
463 if (timecnt && attime <= sp->ats[timecnt - 1]) {
464 if (attime < sp->ats[timecnt - 1])
465 return EINVAL;
466 sp->types[i - 1] = 0;
467 timecnt--;
468 }
469 sp->ats[timecnt++] = attime;
470 }
471 p += stored;
472 }
473
474 timecnt = 0;
475 for (i = 0; i < sp->timecnt; ++i) {
476 unsigned char typ = *p++;
477 if (sp->typecnt <= typ)
478 return EINVAL;
479 if (sp->types[i])
480 sp->types[timecnt++] = typ;
481 }
482 sp->timecnt = timecnt;
483 for (i = 0; i < sp->typecnt; ++i) {
484 struct ttinfo * ttisp;
485 unsigned char isdst, abbrind;
486
487 ttisp = &sp->ttis[i];
488 ttisp->tt_gmtoff = detzcode(p);
489 p += 4;
490 isdst = *p++;
491 if (! (isdst < 2))
492 return EINVAL;
493 ttisp->tt_isdst = isdst;
494 abbrind = *p++;
495 if (! (abbrind < sp->charcnt))
496 return EINVAL;
497 ttisp->tt_abbrind = abbrind;
498 }
499 for (i = 0; i < sp->charcnt; ++i)
500 sp->chars[i] = *p++;
501 sp->chars[i] = '\0'; /* ensure '\0' at end */
502
503 /* Read leap seconds, discarding those out of time_t range. */
504 leapcnt = 0;
505 for (i = 0; i < sp->leapcnt; ++i) {
506 int_fast64_t tr = stored == 4 ? detzcode(p) :
507 detzcode64(p);
508 int_fast32_t corr = detzcode(p + stored);
509 p += stored + 4;
510 if (tr <= time_t_max) {
511 time_t trans = ((TYPE_SIGNED(time_t) ?
512 tr < time_t_min : tr < 0)
513 ? time_t_min : (time_t)tr);
514 if (leapcnt && trans <=
515 sp->lsis[leapcnt - 1].ls_trans) {
516 if (trans <
517 sp->lsis[leapcnt - 1].ls_trans)
518 return EINVAL;
519 leapcnt--;
520 }
521 sp->lsis[leapcnt].ls_trans = trans;
522 sp->lsis[leapcnt].ls_corr = corr;
523 leapcnt++;
524 }
525 }
526 sp->leapcnt = leapcnt;
527
528 for (i = 0; i < sp->typecnt; ++i) {
529 struct ttinfo * ttisp;
530
531 ttisp = &sp->ttis[i];
532 if (ttisstdcnt == 0)
533 ttisp->tt_ttisstd = false;
534 else {
535 if (*p != true && *p != false)
536 return EINVAL;
537 ttisp->tt_ttisstd = *p++;
538 }
539 }
540 for (i = 0; i < sp->typecnt; ++i) {
541 struct ttinfo * ttisp;
542
543 ttisp = &sp->ttis[i];
544 if (ttisgmtcnt == 0)
545 ttisp->tt_ttisgmt = false;
546 else {
547 if (*p != true && *p != false)
548 return EINVAL;
549 ttisp->tt_ttisgmt = *p++;
550 }
551 }
552 /*
553 ** If this is an old file, we're done.
554 */
555 if (up->tzhead.tzh_version[0] == '\0')
556 break;
557 nread -= p - up->buf;
558 memmove(up->buf, p, (size_t)nread);
559 /*
560 ** If this is a signed narrow time_t system, we're done.
561 */
562 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
563 break;
564 }
565 if (doextend && nread > 2 &&
566 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
567 sp->typecnt + 2 <= TZ_MAX_TYPES) {
568 struct state *ts = &lsp->u.st;
569
570 up->buf[nread - 1] = '\0';
571 if (tzparse(&up->buf[1], ts, false)
572 && ts->typecnt == 2
573 && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
574 for (i = 0; i < 2; ++i)
575 ts->ttis[i].tt_abbrind +=
576 sp->charcnt;
577 for (i = 0; i < ts->charcnt; ++i)
578 sp->chars[sp->charcnt++] =
579 ts->chars[i];
580 i = 0;
581 while (i < ts->timecnt &&
582 ts->ats[i] <=
583 sp->ats[sp->timecnt - 1])
584 ++i;
585 while (i < ts->timecnt &&
586 sp->timecnt < TZ_MAX_TIMES) {
587 sp->ats[sp->timecnt] =
588 ts->ats[i];
589 sp->types[sp->timecnt] =
590 sp->typecnt +
591 ts->types[i];
592 ++sp->timecnt;
593 ++i;
594 }
595 sp->ttis[sp->typecnt++] = ts->ttis[0];
596 sp->ttis[sp->typecnt++] = ts->ttis[1];
597 }
598 }
599 if (sp->timecnt > 1) {
600 for (i = 1; i < sp->timecnt; ++i)
601 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
602 differ_by_repeat(sp->ats[i], sp->ats[0])) {
603 sp->goback = true;
604 break;
605 }
606 for (i = sp->timecnt - 2; i >= 0; --i)
607 if (typesequiv(sp, sp->types[sp->timecnt - 1],
608 sp->types[i]) &&
609 differ_by_repeat(sp->ats[sp->timecnt - 1],
610 sp->ats[i])) {
611 sp->goahead = true;
612 break;
613 }
614 }
615 /*
616 ** If type 0 is is unused in transitions,
617 ** it's the type to use for early times.
618 */
619 for (i = 0; i < sp->timecnt; ++i)
620 if (sp->types[i] == 0)
621 break;
622 i = i < sp->timecnt ? -1 : 0;
623 /*
624 ** Absent the above,
625 ** if there are transition times
626 ** and the first transition is to a daylight time
627 ** find the standard type less than and closest to
628 ** the type of the first transition.
629 */
630 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
631 i = sp->types[0];
632 while (--i >= 0)
633 if (!sp->ttis[i].tt_isdst)
634 break;
635 }
636 /*
637 ** If no result yet, find the first standard type.
638 ** If there is none, punt to type zero.
639 */
640 if (i < 0) {
641 i = 0;
642 while (sp->ttis[i].tt_isdst)
643 if (++i >= sp->typecnt) {
644 i = 0;
645 break;
646 }
647 }
648 sp->defaulttype = i;
649 return 0;
650 }
651
652 /* Load tz data from the file named NAME into *SP. Read extended
653 format if DOEXTEND. Return 0 on success, an errno value on failure. */
654 static int
655 tzload(char const *name, struct state *sp, bool doextend)
656 {
657 union local_storage *lsp = malloc(sizeof *lsp);
658 if (!lsp)
659 return errno;
660 else {
661 int err = tzloadbody(name, sp, doextend, lsp);
662 free(lsp);
663 return err;
664 }
665 }
666
667 static bool
668 typesequiv(struct state const *sp, int a, int b)
669 {
670 bool result;
671
672 if (sp == NULL ||
673 a < 0 || a >= sp->typecnt ||
674 b < 0 || b >= sp->typecnt)
675 result = false;
676 else {
677 const struct ttinfo * ap = &sp->ttis[a];
678 const struct ttinfo * bp = &sp->ttis[b];
679 result = ap->tt_gmtoff == bp->tt_gmtoff &&
680 ap->tt_isdst == bp->tt_isdst &&
681 ap->tt_ttisstd == bp->tt_ttisstd &&
682 ap->tt_ttisgmt == bp->tt_ttisgmt &&
683 strcmp(&sp->chars[ap->tt_abbrind],
684 &sp->chars[bp->tt_abbrind]) == 0;
685 }
686 return result;
687 }
688
689 static const int mon_lengths[2][MONSPERYEAR] = {
690 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
691 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
692 };
693
694 static const int year_lengths[2] = {
695 DAYSPERNYEAR, DAYSPERLYEAR
696 };
697
698 /*
699 ** Given a pointer into a time zone string, scan until a character that is not
700 ** a valid character in a zone name is found. Return a pointer to that
701 ** character.
702 */
703
704 static const char * ATTRIBUTE_PURE
705 getzname(const char *strp)
706 {
707 char c;
708
709 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
710 c != '+')
711 ++strp;
712 return strp;
713 }
714
715 /*
716 ** Given a pointer into an extended time zone string, scan until the ending
717 ** delimiter of the zone name is located. Return a pointer to the delimiter.
718 **
719 ** As with getzname above, the legal character set is actually quite
720 ** restricted, with other characters producing undefined results.
721 ** We don't do any checking here; checking is done later in common-case code.
722 */
723
724 static const char * ATTRIBUTE_PURE
725 getqzname(const char *strp, const int delim)
726 {
727 int c;
728
729 while ((c = *strp) != '\0' && c != delim)
730 ++strp;
731 return strp;
732 }
733
734 /*
735 ** Given a pointer into a time zone string, extract a number from that string.
736 ** Check that the number is within a specified range; if it is not, return
737 ** NULL.
738 ** Otherwise, return a pointer to the first character not part of the number.
739 */
740
741 static const char *
742 getnum(const char *strp, int *const nump, const int min, const int max)
743 {
744 char c;
745 int num;
746
747 if (strp == NULL || !is_digit(c = *strp)) {
748 errno = EINVAL;
749 return NULL;
750 }
751 num = 0;
752 do {
753 num = num * 10 + (c - '0');
754 if (num > max) {
755 errno = EOVERFLOW;
756 return NULL; /* illegal value */
757 }
758 c = *++strp;
759 } while (is_digit(c));
760 if (num < min) {
761 errno = EINVAL;
762 return NULL; /* illegal value */
763 }
764 *nump = num;
765 return strp;
766 }
767
768 /*
769 ** Given a pointer into a time zone string, extract a number of seconds,
770 ** in hh[:mm[:ss]] form, from the string.
771 ** If any error occurs, return NULL.
772 ** Otherwise, return a pointer to the first character not part of the number
773 ** of seconds.
774 */
775
776 static const char *
777 getsecs(const char *strp, int_fast32_t *const secsp)
778 {
779 int num;
780
781 /*
782 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
783 ** "M10.4.6/26", which does not conform to Posix,
784 ** but which specifies the equivalent of
785 ** "02:00 on the first Sunday on or after 23 Oct".
786 */
787 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
788 if (strp == NULL)
789 return NULL;
790 *secsp = num * (int_fast32_t) SECSPERHOUR;
791 if (*strp == ':') {
792 ++strp;
793 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
794 if (strp == NULL)
795 return NULL;
796 *secsp += num * SECSPERMIN;
797 if (*strp == ':') {
798 ++strp;
799 /* 'SECSPERMIN' allows for leap seconds. */
800 strp = getnum(strp, &num, 0, SECSPERMIN);
801 if (strp == NULL)
802 return NULL;
803 *secsp += num;
804 }
805 }
806 return strp;
807 }
808
809 /*
810 ** Given a pointer into a time zone string, extract an offset, in
811 ** [+-]hh[:mm[:ss]] form, from the string.
812 ** If any error occurs, return NULL.
813 ** Otherwise, return a pointer to the first character not part of the time.
814 */
815
816 static const char *
817 getoffset(const char *strp, int_fast32_t *const offsetp)
818 {
819 bool neg = false;
820
821 if (*strp == '-') {
822 neg = true;
823 ++strp;
824 } else if (*strp == '+')
825 ++strp;
826 strp = getsecs(strp, offsetp);
827 if (strp == NULL)
828 return NULL; /* illegal time */
829 if (neg)
830 *offsetp = -*offsetp;
831 return strp;
832 }
833
834 /*
835 ** Given a pointer into a time zone string, extract a rule in the form
836 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
837 ** If a valid rule is not found, return NULL.
838 ** Otherwise, return a pointer to the first character not part of the rule.
839 */
840
841 static const char *
842 getrule(const char *strp, struct rule *const rulep)
843 {
844 if (*strp == 'J') {
845 /*
846 ** Julian day.
847 */
848 rulep->r_type = JULIAN_DAY;
849 ++strp;
850 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
851 } else if (*strp == 'M') {
852 /*
853 ** Month, week, day.
854 */
855 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
856 ++strp;
857 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
858 if (strp == NULL)
859 return NULL;
860 if (*strp++ != '.')
861 return NULL;
862 strp = getnum(strp, &rulep->r_week, 1, 5);
863 if (strp == NULL)
864 return NULL;
865 if (*strp++ != '.')
866 return NULL;
867 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
868 } else if (is_digit(*strp)) {
869 /*
870 ** Day of year.
871 */
872 rulep->r_type = DAY_OF_YEAR;
873 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
874 } else return NULL; /* invalid format */
875 if (strp == NULL)
876 return NULL;
877 if (*strp == '/') {
878 /*
879 ** Time specified.
880 */
881 ++strp;
882 strp = getoffset(strp, &rulep->r_time);
883 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
884 return strp;
885 }
886
887 /*
888 ** Given a year, a rule, and the offset from UT at the time that rule takes
889 ** effect, calculate the year-relative time that rule takes effect.
890 */
891
892 static int_fast32_t ATTRIBUTE_PURE
893 transtime(const int year, const struct rule *const rulep,
894 const int_fast32_t offset)
895 {
896 bool leapyear;
897 int_fast32_t value;
898 int i;
899 int d, m1, yy0, yy1, yy2, dow;
900
901 INITIALIZE(value);
902 leapyear = isleap(year);
903 switch (rulep->r_type) {
904
905 case JULIAN_DAY:
906 /*
907 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
908 ** years.
909 ** In non-leap years, or if the day number is 59 or less, just
910 ** add SECSPERDAY times the day number-1 to the time of
911 ** January 1, midnight, to get the day.
912 */
913 value = (rulep->r_day - 1) * SECSPERDAY;
914 if (leapyear && rulep->r_day >= 60)
915 value += SECSPERDAY;
916 break;
917
918 case DAY_OF_YEAR:
919 /*
920 ** n - day of year.
921 ** Just add SECSPERDAY times the day number to the time of
922 ** January 1, midnight, to get the day.
923 */
924 value = rulep->r_day * SECSPERDAY;
925 break;
926
927 case MONTH_NTH_DAY_OF_WEEK:
928 /*
929 ** Mm.n.d - nth "dth day" of month m.
930 */
931
932 /*
933 ** Use Zeller's Congruence to get day-of-week of first day of
934 ** month.
935 */
936 m1 = (rulep->r_mon + 9) % 12 + 1;
937 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
938 yy1 = yy0 / 100;
939 yy2 = yy0 % 100;
940 dow = ((26 * m1 - 2) / 10 +
941 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
942 if (dow < 0)
943 dow += DAYSPERWEEK;
944
945 /*
946 ** "dow" is the day-of-week of the first day of the month. Get
947 ** the day-of-month (zero-origin) of the first "dow" day of the
948 ** month.
949 */
950 d = rulep->r_day - dow;
951 if (d < 0)
952 d += DAYSPERWEEK;
953 for (i = 1; i < rulep->r_week; ++i) {
954 if (d + DAYSPERWEEK >=
955 mon_lengths[leapyear][rulep->r_mon - 1])
956 break;
957 d += DAYSPERWEEK;
958 }
959
960 /*
961 ** "d" is the day-of-month (zero-origin) of the day we want.
962 */
963 value = d * SECSPERDAY;
964 for (i = 0; i < rulep->r_mon - 1; ++i)
965 value += mon_lengths[leapyear][i] * SECSPERDAY;
966 break;
967 }
968
969 /*
970 ** "value" is the year-relative time of 00:00:00 UT on the day in
971 ** question. To get the year-relative time of the specified local
972 ** time on that day, add the transition time and the current offset
973 ** from UT.
974 */
975 return value + rulep->r_time + offset;
976 }
977
978 /*
979 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
980 ** appropriate.
981 */
982
983 static bool
984 tzparse(const char *name, timezone_t sp,
985 bool lastditch)
986 {
987 const char * stdname;
988 const char * dstname;
989 size_t stdlen;
990 size_t dstlen;
991 int_fast32_t stdoffset;
992 int_fast32_t dstoffset;
993 char * cp;
994 bool load_ok;
995
996 dstname = NULL; /* XXX gcc */
997 stdname = name;
998 if (lastditch) {
999 stdlen = strlen(name); /* length of standard zone name */
1000 name += stdlen;
1001 if (stdlen >= sizeof sp->chars)
1002 stdlen = (sizeof sp->chars) - 1;
1003 stdoffset = 0;
1004 } else {
1005 if (*name == '<') {
1006 name++;
1007 stdname = name;
1008 name = getqzname(name, '>');
1009 if (*name != '>')
1010 return false;
1011 stdlen = name - stdname;
1012 name++;
1013 } else {
1014 name = getzname(name);
1015 stdlen = name - stdname;
1016 }
1017 if (*name == '\0')
1018 return false;
1019 name = getoffset(name, &stdoffset);
1020 if (name == NULL)
1021 return false;
1022 }
1023 load_ok = tzload(TZDEFRULES, sp, false) == 0;
1024 if (!load_ok)
1025 sp->leapcnt = 0; /* so, we're off a little */
1026 if (*name != '\0') {
1027 if (*name == '<') {
1028 dstname = ++name;
1029 name = getqzname(name, '>');
1030 if (*name != '>')
1031 return false;
1032 dstlen = name - dstname;
1033 name++;
1034 } else {
1035 dstname = name;
1036 name = getzname(name);
1037 dstlen = name - dstname; /* length of DST zone name */
1038 }
1039 if (*name != '\0' && *name != ',' && *name != ';') {
1040 name = getoffset(name, &dstoffset);
1041 if (name == NULL)
1042 return false;
1043 } else dstoffset = stdoffset - SECSPERHOUR;
1044 if (*name == '\0' && !load_ok)
1045 name = TZDEFRULESTRING;
1046 if (*name == ',' || *name == ';') {
1047 struct rule start;
1048 struct rule end;
1049 int year;
1050 int yearlim;
1051 int timecnt;
1052 time_t janfirst;
1053
1054 ++name;
1055 if ((name = getrule(name, &start)) == NULL)
1056 return false;
1057 if (*name++ != ',')
1058 return false;
1059 if ((name = getrule(name, &end)) == NULL)
1060 return false;
1061 if (*name != '\0')
1062 return false;
1063 sp->typecnt = 2; /* standard time and DST */
1064 /*
1065 ** Two transitions per year, from EPOCH_YEAR forward.
1066 */
1067 init_ttinfo(&sp->ttis[0], -dstoffset, true,
1068 (int)(stdlen + 1));
1069 init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
1070 sp->defaulttype = 0;
1071 timecnt = 0;
1072 janfirst = 0;
1073 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1074 for (year = EPOCH_YEAR; year < yearlim; year++) {
1075 int_fast32_t
1076 starttime = transtime(year, &start, stdoffset),
1077 endtime = transtime(year, &end, dstoffset);
1078 int_fast32_t
1079 yearsecs = (year_lengths[isleap(year)]
1080 * SECSPERDAY);
1081 bool reversed = endtime < starttime;
1082 if (reversed) {
1083 int_fast32_t swap = starttime;
1084 starttime = endtime;
1085 endtime = swap;
1086 }
1087 if (reversed
1088 || (starttime < endtime
1089 && (endtime - starttime
1090 < (yearsecs
1091 + (stdoffset - dstoffset))))) {
1092 if (TZ_MAX_TIMES - 2 < timecnt)
1093 break;
1094 yearlim = year + YEARSPERREPEAT + 1;
1095 sp->ats[timecnt] = janfirst;
1096 if (increment_overflow_time
1097 (&sp->ats[timecnt], starttime))
1098 break;
1099 sp->types[timecnt++] = reversed;
1100 sp->ats[timecnt] = janfirst;
1101 if (increment_overflow_time
1102 (&sp->ats[timecnt], endtime))
1103 break;
1104 sp->types[timecnt++] = !reversed;
1105 }
1106 if (increment_overflow_time(&janfirst, yearsecs))
1107 break;
1108 }
1109 sp->timecnt = timecnt;
1110 if (!timecnt)
1111 sp->typecnt = 1; /* Perpetual DST. */
1112 } else {
1113 int_fast32_t theirstdoffset;
1114 int_fast32_t theirdstoffset;
1115 int_fast32_t theiroffset;
1116 bool isdst;
1117 int i;
1118 int j;
1119
1120 if (*name != '\0')
1121 return false;
1122 /*
1123 ** Initial values of theirstdoffset and theirdstoffset.
1124 */
1125 theirstdoffset = 0;
1126 for (i = 0; i < sp->timecnt; ++i) {
1127 j = sp->types[i];
1128 if (!sp->ttis[j].tt_isdst) {
1129 theirstdoffset =
1130 -sp->ttis[j].tt_gmtoff;
1131 break;
1132 }
1133 }
1134 theirdstoffset = 0;
1135 for (i = 0; i < sp->timecnt; ++i) {
1136 j = sp->types[i];
1137 if (sp->ttis[j].tt_isdst) {
1138 theirdstoffset =
1139 -sp->ttis[j].tt_gmtoff;
1140 break;
1141 }
1142 }
1143 /*
1144 ** Initially we're assumed to be in standard time.
1145 */
1146 isdst = false;
1147 theiroffset = theirstdoffset;
1148 /*
1149 ** Now juggle transition times and types
1150 ** tracking offsets as you do.
1151 */
1152 for (i = 0; i < sp->timecnt; ++i) {
1153 j = sp->types[i];
1154 sp->types[i] = sp->ttis[j].tt_isdst;
1155 if (sp->ttis[j].tt_ttisgmt) {
1156 /* No adjustment to transition time */
1157 } else {
1158 /*
1159 ** If summer time is in effect, and the
1160 ** transition time was not specified as
1161 ** standard time, add the summer time
1162 ** offset to the transition time;
1163 ** otherwise, add the standard time
1164 ** offset to the transition time.
1165 */
1166 /*
1167 ** Transitions from DST to DDST
1168 ** will effectively disappear since
1169 ** POSIX provides for only one DST
1170 ** offset.
1171 */
1172 if (isdst && !sp->ttis[j].tt_ttisstd) {
1173 sp->ats[i] += (time_t)
1174 (dstoffset - theirdstoffset);
1175 } else {
1176 sp->ats[i] += (time_t)
1177 (stdoffset - theirstdoffset);
1178 }
1179 }
1180 theiroffset = -sp->ttis[j].tt_gmtoff;
1181 if (sp->ttis[j].tt_isdst)
1182 theirstdoffset = theiroffset;
1183 else theirdstoffset = theiroffset;
1184 }
1185 /*
1186 ** Finally, fill in ttis.
1187 */
1188 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1189 init_ttinfo(&sp->ttis[1], -dstoffset, true,
1190 (int)(stdlen + 1));
1191 sp->typecnt = 2;
1192 sp->defaulttype = 0;
1193 }
1194 } else {
1195 dstlen = 0;
1196 sp->typecnt = 1; /* only standard time */
1197 sp->timecnt = 0;
1198 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1199 init_ttinfo(&sp->ttis[1], 0, false, 0);
1200 sp->defaulttype = 0;
1201 }
1202 sp->charcnt = (int)(stdlen + 1);
1203 if (dstlen != 0)
1204 sp->charcnt += (int)(dstlen + 1);
1205 if ((size_t) sp->charcnt > sizeof sp->chars)
1206 return false;
1207 cp = sp->chars;
1208 (void) memcpy(cp, stdname, stdlen);
1209 cp += stdlen;
1210 *cp++ = '\0';
1211 if (dstlen != 0) {
1212 (void) memcpy(cp, dstname, dstlen);
1213 *(cp + dstlen) = '\0';
1214 }
1215 return true;
1216 }
1217
1218 static void
1219 gmtload(struct state *const sp)
1220 {
1221 if (tzload(gmt, sp, true) != 0)
1222 (void) tzparse(gmt, sp, true);
1223 }
1224
1225 static int
1226 zoneinit(struct state *sp, char const *name)
1227 {
1228 if (name && ! name[0]) {
1229 /*
1230 ** User wants it fast rather than right.
1231 */
1232 sp->leapcnt = 0; /* so, we're off a little */
1233 sp->timecnt = 0;
1234 sp->typecnt = 0;
1235 sp->charcnt = 0;
1236 sp->goback = sp->goahead = false;
1237 init_ttinfo(&sp->ttis[0], 0, false, 0);
1238 strcpy(sp->chars, gmt);
1239 sp->defaulttype = 0;
1240 return 0;
1241 } else {
1242 int err = tzload(name, sp, true);
1243 if (err != 0 && name && name[0] != ':' &&
1244 tzparse(name, sp, false))
1245 return 0;
1246 return err;
1247 }
1248 }
1249
1250 static void
1251 tzsetlcl(char const *name)
1252 {
1253 struct state *sp = lclptr;
1254 int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1255 if (lcl < 0 ? lcl_is_set < 0
1256 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1257 return;
1258
1259 if (! sp)
1260 lclptr = sp = malloc(sizeof *lclptr);
1261 if (sp) {
1262 if (zoneinit(sp, name) != 0)
1263 zoneinit(sp, "");
1264 if (0 < lcl)
1265 strcpy(lcl_TZname, name);
1266 }
1267 settzname();
1268 lcl_is_set = lcl;
1269 }
1270
1271 #ifdef STD_INSPIRED
1272 void
1273 tzsetwall(void)
1274 {
1275 rwlock_wrlock(&lcl_lock);
1276 tzsetlcl(NULL);
1277 rwlock_unlock(&lcl_lock);
1278 }
1279 #endif
1280
1281 static void
1282 tzset_unlocked(void)
1283 {
1284 tzsetlcl(getenv("TZ"));
1285 }
1286
1287 void
1288 tzset(void)
1289 {
1290 rwlock_wrlock(&lcl_lock);
1291 tzset_unlocked();
1292 rwlock_unlock(&lcl_lock);
1293 }
1294
1295 static void
1296 gmtcheck(void)
1297 {
1298 static bool gmt_is_set;
1299 rwlock_wrlock(&lcl_lock);
1300 if (! gmt_is_set) {
1301 gmtptr = malloc(sizeof *gmtptr);
1302 if (gmtptr)
1303 gmtload(gmtptr);
1304 gmt_is_set = true;
1305 }
1306 rwlock_unlock(&lcl_lock);
1307 }
1308
1309 #if NETBSD_INSPIRED
1310
1311 timezone_t
1312 tzalloc(const char *name)
1313 {
1314 timezone_t sp = malloc(sizeof *sp);
1315 if (sp) {
1316 int err = zoneinit(sp, name);
1317 if (err != 0) {
1318 free(sp);
1319 errno = err;
1320 return NULL;
1321 }
1322 }
1323 return sp;
1324 }
1325
1326 void
1327 tzfree(timezone_t sp)
1328 {
1329 free(sp);
1330 }
1331
1332 /*
1333 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1334 ** ctime_r are obsolescent and have potential security problems that
1335 ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1336 **
1337 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1338 ** in zones with three or more time zone abbreviations.
1339 ** Callers can instead use localtime_rz + strftime.
1340 */
1341
1342 #endif
1343
1344 /*
1345 ** The easy way to behave "as if no library function calls" localtime
1346 ** is to not call it, so we drop its guts into "localsub", which can be
1347 ** freely called. (And no, the PANS doesn't require the above behavior,
1348 ** but it *is* desirable.)
1349 **
1350 ** If successful and OFFSET is nonzero,
1351 ** set the applicable parts of tzname, timezone and altzone;
1352 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
1353 ** since in that case tzset should have already done this step correctly.
1354 ** OFFSET's type is intfast32_t for compatibility with gmtsub.
1355 */
1356
1357 /*ARGSUSED*/
1358 static struct tm *
1359 localsub(struct state const *sp, time_t const *timep, int_fast32_t offset,
1360 struct tm *const tmp)
1361 {
1362 const struct ttinfo * ttisp;
1363 int i;
1364 struct tm * result;
1365 const time_t t = *timep;
1366
1367 if (sp == NULL) {
1368 /* Don't bother to set tzname etc.; tzset has already done it. */
1369 return gmtsub(gmtptr, timep, 0, tmp);
1370 }
1371 if ((sp->goback && t < sp->ats[0]) ||
1372 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1373 time_t newt = t;
1374 time_t seconds;
1375 time_t years;
1376
1377 if (t < sp->ats[0])
1378 seconds = sp->ats[0] - t;
1379 else seconds = t - sp->ats[sp->timecnt - 1];
1380 --seconds;
1381 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1382 seconds = (time_t)(years * AVGSECSPERYEAR);
1383 if (t < sp->ats[0])
1384 newt += seconds;
1385 else newt -= seconds;
1386 if (newt < sp->ats[0] ||
1387 newt > sp->ats[sp->timecnt - 1]) {
1388 errno = EINVAL;
1389 return NULL; /* "cannot happen" */
1390 }
1391 result = localsub(sp, &newt, offset, tmp);
1392 if (result) {
1393 int_fast64_t newy;
1394
1395 newy = result->tm_year;
1396 if (t < sp->ats[0])
1397 newy -= years;
1398 else newy += years;
1399 if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1400 errno = EOVERFLOW;
1401 return NULL;
1402 }
1403 result->tm_year = (int)newy;
1404 }
1405 return result;
1406 }
1407 if (sp->timecnt == 0 || t < sp->ats[0]) {
1408 i = sp->defaulttype;
1409 } else {
1410 int lo = 1;
1411 int hi = sp->timecnt;
1412
1413 while (lo < hi) {
1414 int mid = (lo + hi) / 2;
1415
1416 if (t < sp->ats[mid])
1417 hi = mid;
1418 else lo = mid + 1;
1419 }
1420 i = (int) sp->types[lo - 1];
1421 }
1422 ttisp = &sp->ttis[i];
1423 /*
1424 ** To get (wrong) behavior that's compatible with System V Release 2.0
1425 ** you'd replace the statement below with
1426 ** t += ttisp->tt_gmtoff;
1427 ** timesub(&t, 0L, sp, tmp);
1428 */
1429 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1430 if (result) {
1431 bool tm_isdst = ttisp->tt_isdst;
1432 char *tm_zone = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1433 result->tm_isdst = tm_isdst;
1434 if (offset) {
1435 /* Always set the tzname etc. vars whose values can easily
1436 be determined, as it's too much trouble to tell whether
1437 tzset has already done it correctly. */
1438 tzname[tm_isdst] = tm_zone;
1439 #ifdef USG_COMPAT
1440 if (!tm_isdst)
1441 timezone = - ttisp->tt_gmtoff;
1442 #endif
1443 #ifdef ALTZONE
1444 if (tm_isdst)
1445 altzone = - ttisp->tt_gmtoff;
1446 #endif
1447 }
1448 }
1449 return result;
1450 }
1451
1452 #if NETBSD_INSPIRED
1453
1454 struct tm *
1455 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1456 {
1457 return localsub(sp, timep, 0, tmp);
1458 }
1459
1460 #endif
1461
1462 static struct tm *
1463 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1464 {
1465 rwlock_wrlock(&lcl_lock);
1466 if (setname || !lcl_is_set)
1467 tzset_unlocked();
1468 tmp = localsub(lclptr, timep, setname, tmp);
1469 rwlock_unlock(&lcl_lock);
1470 return tmp;
1471 }
1472
1473 struct tm *
1474 localtime(const time_t *const timep)
1475 {
1476 return localtime_tzset(timep, &tm, true);
1477 }
1478
1479 struct tm *
1480 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1481 {
1482 return localtime_tzset(timep, tmp, false);
1483 }
1484
1485 /*
1486 ** gmtsub is to gmtime as localsub is to localtime.
1487 */
1488
1489 static struct tm *
1490 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1491 struct tm *tmp)
1492 {
1493 struct tm * result;
1494
1495 result = timesub(timep, offset, gmtptr, tmp);
1496 #ifdef TM_ZONE
1497 /*
1498 ** Could get fancy here and deliver something such as
1499 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1500 ** but this is no time for a treasure hunt.
1501 */
1502 if (result)
1503 result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1504 gmtptr->chars : __UNCONST(gmt);
1505 #endif /* defined TM_ZONE */
1506 return result;
1507 }
1508
1509 struct tm *
1510 gmtime(const time_t *const timep)
1511 {
1512 return gmtime_r(timep, &tm);
1513 }
1514
1515 /*
1516 ** Re-entrant version of gmtime.
1517 */
1518
1519 struct tm *
1520 gmtime_r(const time_t * const timep, struct tm *tmp)
1521 {
1522 gmtcheck();
1523 return gmtsub(NULL, timep, 0, tmp);
1524 }
1525
1526 #ifdef STD_INSPIRED
1527
1528 struct tm *
1529 offtime(const time_t *const timep, long offset)
1530 {
1531 gmtcheck();
1532 return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1533 }
1534
1535 struct tm *
1536 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1537 {
1538 gmtcheck();
1539 return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1540 }
1541
1542 #endif /* defined STD_INSPIRED */
1543
1544 /*
1545 ** Return the number of leap years through the end of the given year
1546 ** where, to make the math easy, the answer for year zero is defined as zero.
1547 */
1548
1549 static int ATTRIBUTE_PURE
1550 leaps_thru_end_of(const int y)
1551 {
1552 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1553 -(leaps_thru_end_of(-(y + 1)) + 1);
1554 }
1555
1556 static struct tm *
1557 timesub(time_t const *timep, int_fast32_t offset, struct state const *sp,
1558 struct tm *tmp)
1559 {
1560 const struct lsinfo * lp;
1561 time_t tdays;
1562 int idays; /* unsigned would be so 2003 */
1563 int_fast64_t rem;
1564 int y;
1565 const int * ip;
1566 int_fast64_t corr;
1567 bool hit;
1568 int i;
1569
1570 corr = 0;
1571 hit = false;
1572 i = (sp == NULL) ? 0 : sp->leapcnt;
1573 while (--i >= 0) {
1574 lp = &sp->lsis[i];
1575 if (*timep >= lp->ls_trans) {
1576 if (*timep == lp->ls_trans) {
1577 hit = ((i == 0 && lp->ls_corr > 0) ||
1578 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1579 if (hit)
1580 while (i > 0 &&
1581 sp->lsis[i].ls_trans ==
1582 sp->lsis[i - 1].ls_trans + 1 &&
1583 sp->lsis[i].ls_corr ==
1584 sp->lsis[i - 1].ls_corr + 1) {
1585 ++hit;
1586 --i;
1587 }
1588 }
1589 corr = lp->ls_corr;
1590 break;
1591 }
1592 }
1593 y = EPOCH_YEAR;
1594 tdays = (time_t)(*timep / SECSPERDAY);
1595 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1596 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1597 int newy;
1598 time_t tdelta;
1599 int idelta;
1600 int leapdays;
1601
1602 tdelta = tdays / DAYSPERLYEAR;
1603 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1604 && tdelta <= INT_MAX))
1605 goto out_of_range;
1606 _DIAGASSERT(__type_fit(int, tdelta));
1607 idelta = (int)tdelta;
1608 if (idelta == 0)
1609 idelta = (tdays < 0) ? -1 : 1;
1610 newy = y;
1611 if (increment_overflow(&newy, idelta))
1612 goto out_of_range;
1613 leapdays = leaps_thru_end_of(newy - 1) -
1614 leaps_thru_end_of(y - 1);
1615 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1616 tdays -= leapdays;
1617 y = newy;
1618 }
1619 {
1620 int_fast32_t seconds;
1621
1622 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1623 tdays = (time_t)(seconds / SECSPERDAY);
1624 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1625 }
1626 /*
1627 ** Given the range, we can now fearlessly cast...
1628 */
1629 idays = (int) tdays;
1630 rem += offset - corr;
1631 while (rem < 0) {
1632 rem += SECSPERDAY;
1633 --idays;
1634 }
1635 while (rem >= SECSPERDAY) {
1636 rem -= SECSPERDAY;
1637 ++idays;
1638 }
1639 while (idays < 0) {
1640 if (increment_overflow(&y, -1))
1641 goto out_of_range;
1642 idays += year_lengths[isleap(y)];
1643 }
1644 while (idays >= year_lengths[isleap(y)]) {
1645 idays -= year_lengths[isleap(y)];
1646 if (increment_overflow(&y, 1))
1647 goto out_of_range;
1648 }
1649 tmp->tm_year = y;
1650 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1651 goto out_of_range;
1652 tmp->tm_yday = idays;
1653 /*
1654 ** The "extra" mods below avoid overflow problems.
1655 */
1656 tmp->tm_wday = EPOCH_WDAY +
1657 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1658 (DAYSPERNYEAR % DAYSPERWEEK) +
1659 leaps_thru_end_of(y - 1) -
1660 leaps_thru_end_of(EPOCH_YEAR - 1) +
1661 idays;
1662 tmp->tm_wday %= DAYSPERWEEK;
1663 if (tmp->tm_wday < 0)
1664 tmp->tm_wday += DAYSPERWEEK;
1665 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1666 rem %= SECSPERHOUR;
1667 tmp->tm_min = (int) (rem / SECSPERMIN);
1668 /*
1669 ** A positive leap second requires a special
1670 ** representation. This uses "... ??:59:60" et seq.
1671 */
1672 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1673 ip = mon_lengths[isleap(y)];
1674 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1675 idays -= ip[tmp->tm_mon];
1676 tmp->tm_mday = (int) (idays + 1);
1677 tmp->tm_isdst = 0;
1678 #ifdef TM_GMTOFF
1679 tmp->TM_GMTOFF = offset;
1680 #endif /* defined TM_GMTOFF */
1681 return tmp;
1682 out_of_range:
1683 errno = EOVERFLOW;
1684 return NULL;
1685 }
1686
1687 char *
1688 ctime(const time_t *const timep)
1689 {
1690 /*
1691 ** Section 4.12.3.2 of X3.159-1989 requires that
1692 ** The ctime function converts the calendar time pointed to by timer
1693 ** to local time in the form of a string. It is equivalent to
1694 ** asctime(localtime(timer))
1695 */
1696 struct tm *tmp = localtime(timep);
1697 return tmp ? asctime(tmp) : NULL;
1698 }
1699
1700 char *
1701 ctime_r(const time_t *const timep, char *buf)
1702 {
1703 struct tm mytm;
1704 struct tm *tmp = localtime_r(timep, &mytm);
1705 return tmp ? asctime_r(tmp, buf) : NULL;
1706 }
1707
1708 char *
1709 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1710 {
1711 struct tm mytm, *rtm;
1712
1713 rtm = localtime_rz(sp, timep, &mytm);
1714 if (rtm == NULL)
1715 return NULL;
1716 return asctime_r(rtm, buf);
1717 }
1718
1719 /*
1720 ** Adapted from code provided by Robert Elz, who writes:
1721 ** The "best" way to do mktime I think is based on an idea of Bob
1722 ** Kridle's (so its said...) from a long time ago.
1723 ** It does a binary search of the time_t space. Since time_t's are
1724 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1725 ** would still be very reasonable).
1726 */
1727
1728 #ifndef WRONG
1729 #define WRONG ((time_t)-1)
1730 #endif /* !defined WRONG */
1731
1732 /*
1733 ** Normalize logic courtesy Paul Eggert.
1734 */
1735
1736 static bool
1737 increment_overflow(int *const ip, int j)
1738 {
1739 int const i = *ip;
1740
1741 /*
1742 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1743 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1744 ** If i < 0 there can only be overflow if i + j < INT_MIN
1745 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1746 */
1747 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1748 return true;
1749 *ip += j;
1750 return false;
1751 }
1752
1753 static bool
1754 increment_overflow32(int_fast32_t *const lp, int const m)
1755 {
1756 int_fast32_t const l = *lp;
1757
1758 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1759 return true;
1760 *lp += m;
1761 return false;
1762 }
1763
1764 static bool
1765 increment_overflow_time(time_t *tp, int_fast32_t j)
1766 {
1767 /*
1768 ** This is like
1769 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1770 ** except that it does the right thing even if *tp + j would overflow.
1771 */
1772 if (! (j < 0
1773 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1774 : *tp <= time_t_max - j))
1775 return true;
1776 *tp += j;
1777 return false;
1778 }
1779
1780 static bool
1781 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1782 {
1783 int tensdelta;
1784
1785 tensdelta = (*unitsptr >= 0) ?
1786 (*unitsptr / base) :
1787 (-1 - (-1 - *unitsptr) / base);
1788 *unitsptr -= tensdelta * base;
1789 return increment_overflow(tensptr, tensdelta);
1790 }
1791
1792 static bool
1793 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1794 const int base)
1795 {
1796 int tensdelta;
1797
1798 tensdelta = (*unitsptr >= 0) ?
1799 (*unitsptr / base) :
1800 (-1 - (-1 - *unitsptr) / base);
1801 *unitsptr -= tensdelta * base;
1802 return increment_overflow32(tensptr, tensdelta);
1803 }
1804
1805 static int
1806 tmcomp(const struct tm *const atmp,
1807 const struct tm *const btmp)
1808 {
1809 int result;
1810
1811 if (atmp->tm_year != btmp->tm_year)
1812 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1813 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1814 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1815 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1816 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1817 result = atmp->tm_sec - btmp->tm_sec;
1818 return result;
1819 }
1820
1821 static time_t
1822 time2sub(struct tm *const tmp,
1823 struct tm *(*funcp)(struct state const *, time_t const *,
1824 int_fast32_t, struct tm *),
1825 struct state const *sp,
1826 const int_fast32_t offset,
1827 bool *okayp,
1828 bool do_norm_secs)
1829 {
1830 int dir;
1831 int i, j;
1832 int saved_seconds;
1833 int_fast32_t li;
1834 time_t lo;
1835 time_t hi;
1836 #ifdef NO_ERROR_IN_DST_GAP
1837 time_t ilo;
1838 #endif
1839 int_fast32_t y;
1840 time_t newt;
1841 time_t t;
1842 struct tm yourtm, mytm;
1843
1844 *okayp = false;
1845 yourtm = *tmp;
1846 #ifdef NO_ERROR_IN_DST_GAP
1847 again:
1848 #endif
1849 if (do_norm_secs) {
1850 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1851 SECSPERMIN))
1852 goto out_of_range;
1853 }
1854 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1855 goto out_of_range;
1856 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1857 goto out_of_range;
1858 y = yourtm.tm_year;
1859 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1860 goto out_of_range;
1861 /*
1862 ** Turn y into an actual year number for now.
1863 ** It is converted back to an offset from TM_YEAR_BASE later.
1864 */
1865 if (increment_overflow32(&y, TM_YEAR_BASE))
1866 goto out_of_range;
1867 while (yourtm.tm_mday <= 0) {
1868 if (increment_overflow32(&y, -1))
1869 goto out_of_range;
1870 li = y + (1 < yourtm.tm_mon);
1871 yourtm.tm_mday += year_lengths[isleap(li)];
1872 }
1873 while (yourtm.tm_mday > DAYSPERLYEAR) {
1874 li = y + (1 < yourtm.tm_mon);
1875 yourtm.tm_mday -= year_lengths[isleap(li)];
1876 if (increment_overflow32(&y, 1))
1877 goto out_of_range;
1878 }
1879 for ( ; ; ) {
1880 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1881 if (yourtm.tm_mday <= i)
1882 break;
1883 yourtm.tm_mday -= i;
1884 if (++yourtm.tm_mon >= MONSPERYEAR) {
1885 yourtm.tm_mon = 0;
1886 if (increment_overflow32(&y, 1))
1887 goto out_of_range;
1888 }
1889 }
1890 if (increment_overflow32(&y, -TM_YEAR_BASE))
1891 goto out_of_range;
1892 if (! (INT_MIN <= y && y <= INT_MAX))
1893 goto out_of_range;
1894 yourtm.tm_year = (int)y;
1895 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1896 saved_seconds = 0;
1897 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1898 /*
1899 ** We can't set tm_sec to 0, because that might push the
1900 ** time below the minimum representable time.
1901 ** Set tm_sec to 59 instead.
1902 ** This assumes that the minimum representable time is
1903 ** not in the same minute that a leap second was deleted from,
1904 ** which is a safer assumption than using 58 would be.
1905 */
1906 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1907 goto out_of_range;
1908 saved_seconds = yourtm.tm_sec;
1909 yourtm.tm_sec = SECSPERMIN - 1;
1910 } else {
1911 saved_seconds = yourtm.tm_sec;
1912 yourtm.tm_sec = 0;
1913 }
1914 /*
1915 ** Do a binary search (this works whatever time_t's type is).
1916 */
1917 /* LINTED const not */
1918 if (!TYPE_SIGNED(time_t)) {
1919 lo = 0;
1920 hi = lo - 1;
1921 } else {
1922 lo = 1;
1923 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1924 lo *= 2;
1925 hi = -(lo + 1);
1926 }
1927 #ifdef NO_ERROR_IN_DST_GAP
1928 ilo = lo;
1929 #endif
1930 for ( ; ; ) {
1931 t = lo / 2 + hi / 2;
1932 if (t < lo)
1933 t = lo;
1934 else if (t > hi)
1935 t = hi;
1936 if (! funcp(sp, &t, offset, &mytm)) {
1937 /*
1938 ** Assume that t is too extreme to be represented in
1939 ** a struct tm; arrange things so that it is less
1940 ** extreme on the next pass.
1941 */
1942 dir = (t > 0) ? 1 : -1;
1943 } else dir = tmcomp(&mytm, &yourtm);
1944 if (dir != 0) {
1945 if (t == lo) {
1946 if (t == time_t_max)
1947 goto out_of_range;
1948 ++t;
1949 ++lo;
1950 } else if (t == hi) {
1951 if (t == time_t_min)
1952 goto out_of_range;
1953 --t;
1954 --hi;
1955 }
1956 #ifdef NO_ERROR_IN_DST_GAP
1957 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1958 do_norm_secs) {
1959 for (i = sp->typecnt - 1; i >= 0; --i) {
1960 for (j = sp->typecnt - 1; j >= 0; --j) {
1961 time_t off;
1962 if (sp->ttis[j].tt_isdst ==
1963 sp->ttis[i].tt_isdst)
1964 continue;
1965 off = sp->ttis[j].tt_gmtoff -
1966 sp->ttis[i].tt_gmtoff;
1967 yourtm.tm_sec += off < 0 ?
1968 -off : off;
1969 goto again;
1970 }
1971 }
1972 }
1973 #endif
1974 if (lo > hi)
1975 goto invalid;
1976 if (dir > 0)
1977 hi = t;
1978 else lo = t;
1979 continue;
1980 }
1981 #if defined TM_GMTOFF && ! UNINIT_TRAP
1982 if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
1983 && (yourtm.TM_GMTOFF < 0
1984 ? (-SECSPERDAY <= yourtm.TM_GMTOFF
1985 && (mytm.TM_GMTOFF <=
1986 (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
1987 + yourtm.TM_GMTOFF)))
1988 : (yourtm.TM_GMTOFF <= SECSPERDAY
1989 && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
1990 + yourtm.TM_GMTOFF)
1991 <= mytm.TM_GMTOFF)))) {
1992 /* MYTM matches YOURTM except with the wrong UTC offset.
1993 YOURTM.TM_GMTOFF is plausible, so try it instead.
1994 It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
1995 since the guess gets checked. */
1996 time_t altt = t;
1997 int_fast32_t diff = (int_fast32_t)
1998 (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
1999 if (!increment_overflow_time(&altt, diff)) {
2000 struct tm alttm;
2001 if (! funcp(sp, &altt, offset, &alttm)
2002 && alttm.tm_isdst == mytm.tm_isdst
2003 && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
2004 && tmcomp(&alttm, &yourtm)) {
2005 t = altt;
2006 mytm = alttm;
2007 }
2008 }
2009 }
2010 #endif
2011 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2012 break;
2013 /*
2014 ** Right time, wrong type.
2015 ** Hunt for right time, right type.
2016 ** It's okay to guess wrong since the guess
2017 ** gets checked.
2018 */
2019 if (sp == NULL)
2020 goto invalid;
2021 for (i = sp->typecnt - 1; i >= 0; --i) {
2022 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2023 continue;
2024 for (j = sp->typecnt - 1; j >= 0; --j) {
2025 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2026 continue;
2027 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2028 sp->ttis[i].tt_gmtoff);
2029 if (! funcp(sp, &newt, offset, &mytm))
2030 continue;
2031 if (tmcomp(&mytm, &yourtm) != 0)
2032 continue;
2033 if (mytm.tm_isdst != yourtm.tm_isdst)
2034 continue;
2035 /*
2036 ** We have a match.
2037 */
2038 t = newt;
2039 goto label;
2040 }
2041 }
2042 goto invalid;
2043 }
2044 label:
2045 newt = t + saved_seconds;
2046 if ((newt < t) != (saved_seconds < 0))
2047 goto out_of_range;
2048 t = newt;
2049 if (funcp(sp, &t, offset, tmp)) {
2050 *okayp = true;
2051 return t;
2052 }
2053 out_of_range:
2054 errno = EOVERFLOW;
2055 return WRONG;
2056 invalid:
2057 errno = EINVAL;
2058 return WRONG;
2059 }
2060
2061 static time_t
2062 time2(struct tm * const tmp,
2063 struct tm *(*funcp)(struct state const *, time_t const *,
2064 int_fast32_t, struct tm *),
2065 struct state const *sp,
2066 const int_fast32_t offset,
2067 bool *okayp)
2068 {
2069 time_t t;
2070
2071 /*
2072 ** First try without normalization of seconds
2073 ** (in case tm_sec contains a value associated with a leap second).
2074 ** If that fails, try with normalization of seconds.
2075 */
2076 t = time2sub(tmp, funcp, sp, offset, okayp, false);
2077 return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2078 }
2079
2080 static time_t
2081 time1(struct tm *const tmp,
2082 struct tm *(*funcp) (struct state const *, time_t const *,
2083 int_fast32_t, struct tm *),
2084 struct state const *sp,
2085 const int_fast32_t offset)
2086 {
2087 time_t t;
2088 int samei, otheri;
2089 int sameind, otherind;
2090 int i;
2091 int nseen;
2092 int save_errno;
2093 char seen[TZ_MAX_TYPES];
2094 unsigned char types[TZ_MAX_TYPES];
2095 bool okay;
2096
2097 if (tmp == NULL) {
2098 errno = EINVAL;
2099 return WRONG;
2100 }
2101 if (tmp->tm_isdst > 1)
2102 tmp->tm_isdst = 1;
2103 save_errno = errno;
2104 t = time2(tmp, funcp, sp, offset, &okay);
2105 if (okay) {
2106 errno = save_errno;
2107 return t;
2108 }
2109 if (tmp->tm_isdst < 0)
2110 #ifdef PCTS
2111 /*
2112 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2113 */
2114 tmp->tm_isdst = 0; /* reset to std and try again */
2115 #else
2116 return t;
2117 #endif /* !defined PCTS */
2118 /*
2119 ** We're supposed to assume that somebody took a time of one type
2120 ** and did some math on it that yielded a "struct tm" that's bad.
2121 ** We try to divine the type they started from and adjust to the
2122 ** type they need.
2123 */
2124 if (sp == NULL) {
2125 errno = EINVAL;
2126 return WRONG;
2127 }
2128 for (i = 0; i < sp->typecnt; ++i)
2129 seen[i] = false;
2130 nseen = 0;
2131 for (i = sp->timecnt - 1; i >= 0; --i)
2132 if (!seen[sp->types[i]]) {
2133 seen[sp->types[i]] = true;
2134 types[nseen++] = sp->types[i];
2135 }
2136 for (sameind = 0; sameind < nseen; ++sameind) {
2137 samei = types[sameind];
2138 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2139 continue;
2140 for (otherind = 0; otherind < nseen; ++otherind) {
2141 otheri = types[otherind];
2142 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2143 continue;
2144 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2145 sp->ttis[samei].tt_gmtoff);
2146 tmp->tm_isdst = !tmp->tm_isdst;
2147 t = time2(tmp, funcp, sp, offset, &okay);
2148 if (okay) {
2149 errno = save_errno;
2150 return t;
2151 }
2152 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2153 sp->ttis[samei].tt_gmtoff);
2154 tmp->tm_isdst = !tmp->tm_isdst;
2155 }
2156 }
2157 errno = EOVERFLOW;
2158 return WRONG;
2159 }
2160
2161 static time_t
2162 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2163 {
2164 if (sp)
2165 return time1(tmp, localsub, sp, setname);
2166 else {
2167 gmtcheck();
2168 return time1(tmp, gmtsub, gmtptr, 0);
2169 }
2170 }
2171
2172 #if NETBSD_INSPIRED
2173
2174 time_t
2175 mktime_z(timezone_t sp, struct tm *const tmp)
2176 {
2177 return mktime_tzname(sp, tmp, false);
2178 }
2179
2180 #endif
2181
2182 time_t
2183 mktime(struct tm *const tmp)
2184 {
2185 time_t t;
2186
2187 rwlock_wrlock(&lcl_lock);
2188 tzset_unlocked();
2189 t = mktime_tzname(lclptr, tmp, true);
2190 rwlock_unlock(&lcl_lock);
2191 return t;
2192 }
2193
2194 #ifdef STD_INSPIRED
2195
2196 time_t
2197 timelocal_z(const timezone_t sp, struct tm *const tmp)
2198 {
2199 if (tmp != NULL)
2200 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2201 return mktime_z(sp, tmp);
2202 }
2203
2204 time_t
2205 timelocal(struct tm *const tmp)
2206 {
2207 if (tmp != NULL)
2208 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2209 return mktime(tmp);
2210 }
2211
2212 time_t
2213 timegm(struct tm *const tmp)
2214 {
2215
2216 return timeoff(tmp, 0);
2217 }
2218
2219 time_t
2220 timeoff(struct tm *const tmp, long offset)
2221 {
2222 if (tmp)
2223 tmp->tm_isdst = 0;
2224 gmtcheck();
2225 return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2226 }
2227
2228 #endif /* defined STD_INSPIRED */
2229
2230 /*
2231 ** XXX--is the below the right way to conditionalize??
2232 */
2233
2234 #ifdef STD_INSPIRED
2235
2236 /*
2237 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2238 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2239 ** is not the case if we are accounting for leap seconds.
2240 ** So, we provide the following conversion routines for use
2241 ** when exchanging timestamps with POSIX conforming systems.
2242 */
2243
2244 static int_fast64_t
2245 leapcorr(const timezone_t sp, time_t t)
2246 {
2247 struct lsinfo const * lp;
2248 int i;
2249
2250 i = sp->leapcnt;
2251 while (--i >= 0) {
2252 lp = &sp->lsis[i];
2253 if (t >= lp->ls_trans)
2254 return lp->ls_corr;
2255 }
2256 return 0;
2257 }
2258
2259 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2260 time2posix_z(timezone_t sp, time_t t)
2261 {
2262 return (time_t)(t - leapcorr(sp, t));
2263 }
2264
2265 time_t
2266 time2posix(time_t t)
2267 {
2268 rwlock_wrlock(&lcl_lock);
2269 if (!lcl_is_set)
2270 tzset_unlocked();
2271 if (lclptr)
2272 t = (time_t)(t - leapcorr(lclptr, t));
2273 rwlock_unlock(&lcl_lock);
2274 return t;
2275 }
2276
2277 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2278 posix2time_z(timezone_t sp, time_t t)
2279 {
2280 time_t x;
2281 time_t y;
2282
2283 /*
2284 ** For a positive leap second hit, the result
2285 ** is not unique. For a negative leap second
2286 ** hit, the corresponding time doesn't exist,
2287 ** so we return an adjacent second.
2288 */
2289 x = (time_t)(t + leapcorr(sp, t));
2290 y = (time_t)(x - leapcorr(sp, x));
2291 if (y < t) {
2292 do {
2293 x++;
2294 y = (time_t)(x - leapcorr(sp, x));
2295 } while (y < t);
2296 x -= y != t;
2297 } else if (y > t) {
2298 do {
2299 --x;
2300 y = (time_t)(x - leapcorr(sp, x));
2301 } while (y > t);
2302 x += y != t;
2303 }
2304 return x;
2305 }
2306
2307 time_t
2308 posix2time(time_t t)
2309 {
2310 rwlock_wrlock(&lcl_lock);
2311 if (!lcl_is_set)
2312 tzset_unlocked();
2313 if (lclptr)
2314 t = posix2time_z(lclptr, t);
2315 rwlock_unlock(&lcl_lock);
2316 return t;
2317 }
2318
2319 #endif /* defined STD_INSPIRED */
2320