localtime.c revision 1.94 1 /* $NetBSD: localtime.c,v 1.94 2015/03/24 20:01:18 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.94 2015/03/24 20:01:18 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE (O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static const char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 int_fast32_t tt_gmtoff; /* UT offset in seconds */
108 bool tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 bool tt_ttisstd; /* transition is std time */
111 bool tt_ttisgmt; /* transition is UT */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 int_fast64_t ls_corr; /* correction to apply */
117 };
118
119 #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
121
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX 255
127 #endif /* !defined TZNAME_MAX */
128
129 #define state __state
130 struct state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 bool goback;
136 bool goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 struct rule {
147 int r_type; /* type of rule; see below */
148 int r_day; /* day number of rule */
149 int r_week; /* week number of rule */
150 int r_mon; /* month number of rule */
151 int_fast32_t r_time; /* transition time of rule */
152 };
153
154 #define JULIAN_DAY 0 /* Jn = Julian day */
155 #define DAY_OF_YEAR 1 /* n = day of year */
156 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d = month, week, day of week */
157
158 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
159 struct tm *);
160 static bool increment_overflow(int *, int);
161 static bool increment_overflow_time(time_t *, int_fast32_t);
162 static bool normalize_overflow32(int_fast32_t *, int *, int);
163 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
164 struct tm *);
165 static bool typesequiv(struct state const *, int, int);
166 static bool tzparse(char const *, struct state *, bool);
167
168 static timezone_t lclptr;
169 static timezone_t gmtptr;
170
171 #ifndef TZ_STRLEN_MAX
172 #define TZ_STRLEN_MAX 255
173 #endif /* !defined TZ_STRLEN_MAX */
174
175 static char lcl_TZname[TZ_STRLEN_MAX + 1];
176 static int lcl_is_set;
177
178 #if !defined(__LIBC12_SOURCE__)
179
180 __aconst char * tzname[2] = {
181 (__aconst char *)__UNCONST(wildabbr),
182 (__aconst char *)__UNCONST(wildabbr)
183 };
184
185 #else
186
187 extern __aconst char * tzname[2];
188
189 #endif
190
191 #ifdef _REENTRANT
192 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
193 #endif
194
195 /*
196 ** Section 4.12.3 of X3.159-1989 requires that
197 ** Except for the strftime function, these functions [asctime,
198 ** ctime, gmtime, localtime] return values in one of two static
199 ** objects: a broken-down time structure and an array of char.
200 ** Thanks to Paul Eggert for noting this.
201 */
202
203 static struct tm tm;
204
205 #ifdef USG_COMPAT
206 #if !defined(__LIBC12_SOURCE__)
207 long timezone = 0;
208 int daylight = 0;
209 #else
210 extern int daylight;
211 extern long timezone __RENAME(__timezone13);
212 #endif
213 #endif /* defined USG_COMPAT */
214
215 #ifdef ALTZONE
216 long altzone = 0;
217 #endif /* defined ALTZONE */
218
219 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
220 static void
221 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
222 {
223 s->tt_gmtoff = gmtoff;
224 s->tt_isdst = isdst;
225 s->tt_abbrind = abbrind;
226 s->tt_ttisstd = false;
227 s->tt_ttisgmt = false;
228 }
229
230 static int_fast32_t
231 detzcode(const char *const codep)
232 {
233 int_fast32_t result;
234 int i;
235
236 result = (codep[0] & 0x80) ? -1 : 0;
237 for (i = 0; i < 4; ++i)
238 result = (result << 8) | (codep[i] & 0xff);
239 return result;
240 }
241
242 static int_fast64_t
243 detzcode64(const char *const codep)
244 {
245 int_fast64_t result;
246 int i;
247
248 result = (codep[0] & 0x80) ? -1 : 0;
249 for (i = 0; i < 8; ++i)
250 result = (result << 8) | (codep[i] & 0xff);
251 return result;
252 }
253
254 const char *
255 tzgetname(const timezone_t sp, int isdst)
256 {
257 int i;
258 for (i = 0; i < sp->timecnt; ++i) {
259 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
260
261 if (ttisp->tt_isdst == isdst)
262 return &sp->chars[ttisp->tt_abbrind];
263 }
264 errno = ESRCH;
265 return NULL;
266 }
267
268 static void
269 scrub_abbrs(struct state *sp)
270 {
271 int i;
272
273 /*
274 ** First, replace bogus characters.
275 */
276 for (i = 0; i < sp->charcnt; ++i)
277 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
278 sp->chars[i] = TZ_ABBR_ERR_CHAR;
279 /*
280 ** Second, truncate long abbreviations.
281 */
282 for (i = 0; i < sp->typecnt; ++i) {
283 const struct ttinfo * const ttisp = &sp->ttis[i];
284 char * cp = &sp->chars[ttisp->tt_abbrind];
285
286 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
287 strcmp(cp, GRANDPARENTED) != 0)
288 *(cp + TZ_ABBR_MAX_LEN) = '\0';
289 }
290 }
291
292 static void
293 update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp)
294 {
295 tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
296 #ifdef USG_COMPAT
297 if (!ttisp->tt_isdst)
298 timezone = - ttisp->tt_gmtoff;
299 #endif
300 #ifdef ALTZONE
301 if (ttisp->tt_isdst)
302 altzone = - ttisp->tt_gmtoff;
303 #endif /* defined ALTZONE */
304 }
305
306 static void
307 settzname(void)
308 {
309 timezone_t const sp = lclptr;
310 int i;
311
312 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
313 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
314 #ifdef USG_COMPAT
315 daylight = 0;
316 timezone = 0;
317 #endif /* defined USG_COMPAT */
318 #ifdef ALTZONE
319 altzone = 0;
320 #endif /* defined ALTZONE */
321 if (sp == NULL) {
322 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
323 return;
324 }
325 /*
326 ** And to get the latest zone names into tzname. . .
327 */
328 for (i = 0; i < sp->typecnt; ++i)
329 update_tzname_etc(sp, &sp->ttis[i]);
330
331 for (i = 0; i < sp->timecnt; ++i) {
332 const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
333 update_tzname_etc(sp, ttisp);
334 #ifdef USG_COMPAT
335 if (ttisp->tt_isdst)
336 daylight = 1;
337 #endif /* defined USG_COMPAT */
338 }
339 }
340
341 static bool
342 differ_by_repeat(const time_t t1, const time_t t0)
343 {
344 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
345 return 0;
346 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
347 }
348
349 union input_buffer {
350 /* The first part of the buffer, interpreted as a header. */
351 struct tzhead tzhead;
352
353 /* The entire buffer. */
354 char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
355 + 4 * TZ_MAX_TIMES];
356 };
357
358 /* Local storage needed for 'tzloadbody'. */
359 union local_storage {
360 /* The file name to be opened. */
361 char fullname[FILENAME_MAX + 1];
362
363 /* The results of analyzing the file's contents after it is opened. */
364 struct {
365 /* The input buffer. */
366 union input_buffer u;
367
368 /* A temporary state used for parsing a TZ string in the file. */
369 struct state st;
370 } u;
371 };
372
373 /* Load tz data from the file named NAME into *SP. Read extended
374 format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
375 success, an errno value on failure. */
376 static int
377 tzloadbody(char const *name, struct state *sp, bool doextend,
378 union local_storage *lsp)
379 {
380 int i;
381 int fid;
382 int stored;
383 ssize_t nread;
384 bool doaccess;
385 char *fullname = lsp->fullname;
386 union input_buffer *up = &lsp->u.u;
387 size_t tzheadsize = sizeof(struct tzhead);
388
389 sp->goback = sp->goahead = false;
390
391 if (! name) {
392 name = TZDEFAULT;
393 if (! name)
394 return EINVAL;
395 }
396
397 if (name[0] == ':')
398 ++name;
399 doaccess = name[0] == '/';
400 if (!doaccess) {
401 char const *p = TZDIR;
402 if (! p)
403 return EINVAL;
404 if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
405 return ENAMETOOLONG;
406 strcpy(fullname, p);
407 strcat(fullname, "/");
408 strcat(fullname, name);
409 /* Set doaccess if '.' (as in "../") shows up in name. */
410 if (strchr(name, '.'))
411 doaccess = true;
412 name = fullname;
413 }
414 if (doaccess && access(name, R_OK) != 0)
415 return errno;
416
417 fid = open(name, OPEN_MODE);
418 if (fid < 0)
419 return errno;
420 nread = read(fid, up->buf, sizeof up->buf);
421 if (nread < (ssize_t)tzheadsize) {
422 int err = nread < 0 ? errno : EINVAL;
423 close(fid);
424 return err;
425 }
426 if (close(fid) < 0)
427 return errno;
428 for (stored = 4; stored <= 8; stored *= 2) {
429 int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
430 int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
431 int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
432 int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
433 int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
434 int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
435 char const *p = up->buf + tzheadsize;
436 if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
437 && 0 < typecnt && typecnt < TZ_MAX_TYPES
438 && 0 <= timecnt && timecnt < TZ_MAX_TIMES
439 && 0 <= charcnt && charcnt < TZ_MAX_CHARS
440 && (ttisstdcnt == typecnt || ttisstdcnt == 0)
441 && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
442 return EINVAL;
443 if ((size_t)nread
444 < (tzheadsize /* struct tzhead */
445 + timecnt * stored /* ats */
446 + timecnt /* types */
447 + typecnt * 6 /* ttinfos */
448 + charcnt /* chars */
449 + leapcnt * (stored + 4) /* lsinfos */
450 + ttisstdcnt /* ttisstds */
451 + ttisgmtcnt)) /* ttisgmts */
452 return EINVAL;
453 sp->leapcnt = leapcnt;
454 sp->timecnt = timecnt;
455 sp->typecnt = typecnt;
456 sp->charcnt = charcnt;
457
458 /* Read transitions, discarding those out of time_t range.
459 But pretend the last transition before time_t_min
460 occurred at time_t_min. */
461 timecnt = 0;
462 for (i = 0; i < sp->timecnt; ++i) {
463 int_fast64_t at
464 = stored == 4 ? detzcode(p) : detzcode64(p);
465 sp->types[i] = at <= time_t_max;
466 if (sp->types[i]) {
467 time_t attime
468 = ((TYPE_SIGNED(time_t) ?
469 at < time_t_min : at < 0)
470 ? time_t_min : (time_t)at);
471 if (timecnt && attime <= sp->ats[timecnt - 1]) {
472 if (attime < sp->ats[timecnt - 1])
473 return EINVAL;
474 sp->types[i - 1] = 0;
475 timecnt--;
476 }
477 sp->ats[timecnt++] = attime;
478 }
479 p += stored;
480 }
481
482 timecnt = 0;
483 for (i = 0; i < sp->timecnt; ++i) {
484 unsigned char typ = *p++;
485 if (sp->typecnt <= typ)
486 return EINVAL;
487 if (sp->types[i])
488 sp->types[timecnt++] = typ;
489 }
490 sp->timecnt = timecnt;
491 for (i = 0; i < sp->typecnt; ++i) {
492 struct ttinfo * ttisp;
493 unsigned char isdst, abbrind;
494
495 ttisp = &sp->ttis[i];
496 ttisp->tt_gmtoff = detzcode(p);
497 p += 4;
498 isdst = *p++;
499 if (! (isdst < 2))
500 return EINVAL;
501 ttisp->tt_isdst = isdst;
502 abbrind = *p++;
503 if (! (abbrind < sp->charcnt))
504 return EINVAL;
505 ttisp->tt_abbrind = abbrind;
506 }
507 for (i = 0; i < sp->charcnt; ++i)
508 sp->chars[i] = *p++;
509 sp->chars[i] = '\0'; /* ensure '\0' at end */
510
511 /* Read leap seconds, discarding those out of time_t range. */
512 leapcnt = 0;
513 for (i = 0; i < sp->leapcnt; ++i) {
514 int_fast64_t tr = stored == 4 ? detzcode(p) :
515 detzcode64(p);
516 int_fast32_t corr = detzcode(p + stored);
517 p += stored + 4;
518 if (tr <= time_t_max) {
519 time_t trans = ((TYPE_SIGNED(time_t) ?
520 tr < time_t_min : tr < 0)
521 ? time_t_min : (time_t)tr);
522 if (leapcnt && trans <=
523 sp->lsis[leapcnt - 1].ls_trans) {
524 if (trans <
525 sp->lsis[leapcnt - 1].ls_trans)
526 return EINVAL;
527 leapcnt--;
528 }
529 sp->lsis[leapcnt].ls_trans = trans;
530 sp->lsis[leapcnt].ls_corr = corr;
531 leapcnt++;
532 }
533 }
534 sp->leapcnt = leapcnt;
535
536 for (i = 0; i < sp->typecnt; ++i) {
537 struct ttinfo * ttisp;
538
539 ttisp = &sp->ttis[i];
540 if (ttisstdcnt == 0)
541 ttisp->tt_ttisstd = false;
542 else {
543 if (*p != true && *p != false)
544 return EINVAL;
545 ttisp->tt_ttisstd = *p++;
546 }
547 }
548 for (i = 0; i < sp->typecnt; ++i) {
549 struct ttinfo * ttisp;
550
551 ttisp = &sp->ttis[i];
552 if (ttisgmtcnt == 0)
553 ttisp->tt_ttisgmt = false;
554 else {
555 if (*p != true && *p != false)
556 return EINVAL;
557 ttisp->tt_ttisgmt = *p++;
558 }
559 }
560 /*
561 ** If this is an old file, we're done.
562 */
563 if (up->tzhead.tzh_version[0] == '\0')
564 break;
565 nread -= p - up->buf;
566 memmove(up->buf, p, (size_t)nread);
567 /*
568 ** If this is a signed narrow time_t system, we're done.
569 */
570 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
571 break;
572 }
573 if (doextend && nread > 2 &&
574 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
575 sp->typecnt + 2 <= TZ_MAX_TYPES) {
576 struct state *ts = &lsp->u.st;
577
578 up->buf[nread - 1] = '\0';
579 if (tzparse(&up->buf[1], ts, false)
580 && ts->typecnt == 2
581 && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
582 for (i = 0; i < 2; ++i)
583 ts->ttis[i].tt_abbrind +=
584 sp->charcnt;
585 for (i = 0; i < ts->charcnt; ++i)
586 sp->chars[sp->charcnt++] =
587 ts->chars[i];
588 i = 0;
589 while (i < ts->timecnt &&
590 ts->ats[i] <=
591 sp->ats[sp->timecnt - 1])
592 ++i;
593 while (i < ts->timecnt &&
594 sp->timecnt < TZ_MAX_TIMES) {
595 sp->ats[sp->timecnt] =
596 ts->ats[i];
597 sp->types[sp->timecnt] =
598 sp->typecnt +
599 ts->types[i];
600 ++sp->timecnt;
601 ++i;
602 }
603 sp->ttis[sp->typecnt++] = ts->ttis[0];
604 sp->ttis[sp->typecnt++] = ts->ttis[1];
605 }
606 }
607 if (sp->timecnt > 1) {
608 for (i = 1; i < sp->timecnt; ++i)
609 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
610 differ_by_repeat(sp->ats[i], sp->ats[0])) {
611 sp->goback = true;
612 break;
613 }
614 for (i = sp->timecnt - 2; i >= 0; --i)
615 if (typesequiv(sp, sp->types[sp->timecnt - 1],
616 sp->types[i]) &&
617 differ_by_repeat(sp->ats[sp->timecnt - 1],
618 sp->ats[i])) {
619 sp->goahead = true;
620 break;
621 }
622 }
623 /*
624 ** If type 0 is is unused in transitions,
625 ** it's the type to use for early times.
626 */
627 for (i = 0; i < sp->timecnt; ++i)
628 if (sp->types[i] == 0)
629 break;
630 i = i < sp->timecnt ? -1 : 0;
631 /*
632 ** Absent the above,
633 ** if there are transition times
634 ** and the first transition is to a daylight time
635 ** find the standard type less than and closest to
636 ** the type of the first transition.
637 */
638 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
639 i = sp->types[0];
640 while (--i >= 0)
641 if (!sp->ttis[i].tt_isdst)
642 break;
643 }
644 /*
645 ** If no result yet, find the first standard type.
646 ** If there is none, punt to type zero.
647 */
648 if (i < 0) {
649 i = 0;
650 while (sp->ttis[i].tt_isdst)
651 if (++i >= sp->typecnt) {
652 i = 0;
653 break;
654 }
655 }
656 sp->defaulttype = i;
657 return 0;
658 }
659
660 /* Load tz data from the file named NAME into *SP. Read extended
661 format if DOEXTEND. Return 0 on success, an errno value on failure. */
662 static int
663 tzload(char const *name, struct state *sp, bool doextend)
664 {
665 union local_storage *lsp = malloc(sizeof *lsp);
666 if (!lsp)
667 return errno;
668 else {
669 int err = tzloadbody(name, sp, doextend, lsp);
670 free(lsp);
671 return err;
672 }
673 }
674
675 static bool
676 typesequiv(struct state const *sp, int a, int b)
677 {
678 bool result;
679
680 if (sp == NULL ||
681 a < 0 || a >= sp->typecnt ||
682 b < 0 || b >= sp->typecnt)
683 result = false;
684 else {
685 const struct ttinfo * ap = &sp->ttis[a];
686 const struct ttinfo * bp = &sp->ttis[b];
687 result = ap->tt_gmtoff == bp->tt_gmtoff &&
688 ap->tt_isdst == bp->tt_isdst &&
689 ap->tt_ttisstd == bp->tt_ttisstd &&
690 ap->tt_ttisgmt == bp->tt_ttisgmt &&
691 strcmp(&sp->chars[ap->tt_abbrind],
692 &sp->chars[bp->tt_abbrind]) == 0;
693 }
694 return result;
695 }
696
697 static const int mon_lengths[2][MONSPERYEAR] = {
698 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
699 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
700 };
701
702 static const int year_lengths[2] = {
703 DAYSPERNYEAR, DAYSPERLYEAR
704 };
705
706 /*
707 ** Given a pointer into a time zone string, scan until a character that is not
708 ** a valid character in a zone name is found. Return a pointer to that
709 ** character.
710 */
711
712 static const char * ATTRIBUTE_PURE
713 getzname(const char *strp)
714 {
715 char c;
716
717 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
718 c != '+')
719 ++strp;
720 return strp;
721 }
722
723 /*
724 ** Given a pointer into an extended time zone string, scan until the ending
725 ** delimiter of the zone name is located. Return a pointer to the delimiter.
726 **
727 ** As with getzname above, the legal character set is actually quite
728 ** restricted, with other characters producing undefined results.
729 ** We don't do any checking here; checking is done later in common-case code.
730 */
731
732 static const char * ATTRIBUTE_PURE
733 getqzname(const char *strp, const int delim)
734 {
735 int c;
736
737 while ((c = *strp) != '\0' && c != delim)
738 ++strp;
739 return strp;
740 }
741
742 /*
743 ** Given a pointer into a time zone string, extract a number from that string.
744 ** Check that the number is within a specified range; if it is not, return
745 ** NULL.
746 ** Otherwise, return a pointer to the first character not part of the number.
747 */
748
749 static const char *
750 getnum(const char *strp, int *const nump, const int min, const int max)
751 {
752 char c;
753 int num;
754
755 if (strp == NULL || !is_digit(c = *strp)) {
756 errno = EINVAL;
757 return NULL;
758 }
759 num = 0;
760 do {
761 num = num * 10 + (c - '0');
762 if (num > max) {
763 errno = EOVERFLOW;
764 return NULL; /* illegal value */
765 }
766 c = *++strp;
767 } while (is_digit(c));
768 if (num < min) {
769 errno = EINVAL;
770 return NULL; /* illegal value */
771 }
772 *nump = num;
773 return strp;
774 }
775
776 /*
777 ** Given a pointer into a time zone string, extract a number of seconds,
778 ** in hh[:mm[:ss]] form, from the string.
779 ** If any error occurs, return NULL.
780 ** Otherwise, return a pointer to the first character not part of the number
781 ** of seconds.
782 */
783
784 static const char *
785 getsecs(const char *strp, int_fast32_t *const secsp)
786 {
787 int num;
788
789 /*
790 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
791 ** "M10.4.6/26", which does not conform to Posix,
792 ** but which specifies the equivalent of
793 ** "02:00 on the first Sunday on or after 23 Oct".
794 */
795 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
796 if (strp == NULL)
797 return NULL;
798 *secsp = num * (int_fast32_t) SECSPERHOUR;
799 if (*strp == ':') {
800 ++strp;
801 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
802 if (strp == NULL)
803 return NULL;
804 *secsp += num * SECSPERMIN;
805 if (*strp == ':') {
806 ++strp;
807 /* 'SECSPERMIN' allows for leap seconds. */
808 strp = getnum(strp, &num, 0, SECSPERMIN);
809 if (strp == NULL)
810 return NULL;
811 *secsp += num;
812 }
813 }
814 return strp;
815 }
816
817 /*
818 ** Given a pointer into a time zone string, extract an offset, in
819 ** [+-]hh[:mm[:ss]] form, from the string.
820 ** If any error occurs, return NULL.
821 ** Otherwise, return a pointer to the first character not part of the time.
822 */
823
824 static const char *
825 getoffset(const char *strp, int_fast32_t *const offsetp)
826 {
827 bool neg = false;
828
829 if (*strp == '-') {
830 neg = true;
831 ++strp;
832 } else if (*strp == '+')
833 ++strp;
834 strp = getsecs(strp, offsetp);
835 if (strp == NULL)
836 return NULL; /* illegal time */
837 if (neg)
838 *offsetp = -*offsetp;
839 return strp;
840 }
841
842 /*
843 ** Given a pointer into a time zone string, extract a rule in the form
844 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
845 ** If a valid rule is not found, return NULL.
846 ** Otherwise, return a pointer to the first character not part of the rule.
847 */
848
849 static const char *
850 getrule(const char *strp, struct rule *const rulep)
851 {
852 if (*strp == 'J') {
853 /*
854 ** Julian day.
855 */
856 rulep->r_type = JULIAN_DAY;
857 ++strp;
858 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
859 } else if (*strp == 'M') {
860 /*
861 ** Month, week, day.
862 */
863 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
864 ++strp;
865 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
866 if (strp == NULL)
867 return NULL;
868 if (*strp++ != '.')
869 return NULL;
870 strp = getnum(strp, &rulep->r_week, 1, 5);
871 if (strp == NULL)
872 return NULL;
873 if (*strp++ != '.')
874 return NULL;
875 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
876 } else if (is_digit(*strp)) {
877 /*
878 ** Day of year.
879 */
880 rulep->r_type = DAY_OF_YEAR;
881 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
882 } else return NULL; /* invalid format */
883 if (strp == NULL)
884 return NULL;
885 if (*strp == '/') {
886 /*
887 ** Time specified.
888 */
889 ++strp;
890 strp = getoffset(strp, &rulep->r_time);
891 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
892 return strp;
893 }
894
895 /*
896 ** Given a year, a rule, and the offset from UT at the time that rule takes
897 ** effect, calculate the year-relative time that rule takes effect.
898 */
899
900 static int_fast32_t ATTRIBUTE_PURE
901 transtime(const int year, const struct rule *const rulep,
902 const int_fast32_t offset)
903 {
904 bool leapyear;
905 int_fast32_t value;
906 int i;
907 int d, m1, yy0, yy1, yy2, dow;
908
909 INITIALIZE(value);
910 leapyear = isleap(year);
911 switch (rulep->r_type) {
912
913 case JULIAN_DAY:
914 /*
915 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
916 ** years.
917 ** In non-leap years, or if the day number is 59 or less, just
918 ** add SECSPERDAY times the day number-1 to the time of
919 ** January 1, midnight, to get the day.
920 */
921 value = (rulep->r_day - 1) * SECSPERDAY;
922 if (leapyear && rulep->r_day >= 60)
923 value += SECSPERDAY;
924 break;
925
926 case DAY_OF_YEAR:
927 /*
928 ** n - day of year.
929 ** Just add SECSPERDAY times the day number to the time of
930 ** January 1, midnight, to get the day.
931 */
932 value = rulep->r_day * SECSPERDAY;
933 break;
934
935 case MONTH_NTH_DAY_OF_WEEK:
936 /*
937 ** Mm.n.d - nth "dth day" of month m.
938 */
939
940 /*
941 ** Use Zeller's Congruence to get day-of-week of first day of
942 ** month.
943 */
944 m1 = (rulep->r_mon + 9) % 12 + 1;
945 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
946 yy1 = yy0 / 100;
947 yy2 = yy0 % 100;
948 dow = ((26 * m1 - 2) / 10 +
949 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
950 if (dow < 0)
951 dow += DAYSPERWEEK;
952
953 /*
954 ** "dow" is the day-of-week of the first day of the month. Get
955 ** the day-of-month (zero-origin) of the first "dow" day of the
956 ** month.
957 */
958 d = rulep->r_day - dow;
959 if (d < 0)
960 d += DAYSPERWEEK;
961 for (i = 1; i < rulep->r_week; ++i) {
962 if (d + DAYSPERWEEK >=
963 mon_lengths[leapyear][rulep->r_mon - 1])
964 break;
965 d += DAYSPERWEEK;
966 }
967
968 /*
969 ** "d" is the day-of-month (zero-origin) of the day we want.
970 */
971 value = d * SECSPERDAY;
972 for (i = 0; i < rulep->r_mon - 1; ++i)
973 value += mon_lengths[leapyear][i] * SECSPERDAY;
974 break;
975 }
976
977 /*
978 ** "value" is the year-relative time of 00:00:00 UT on the day in
979 ** question. To get the year-relative time of the specified local
980 ** time on that day, add the transition time and the current offset
981 ** from UT.
982 */
983 return value + rulep->r_time + offset;
984 }
985
986 /*
987 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
988 ** appropriate.
989 */
990
991 static bool
992 tzparse(const char *name, timezone_t sp,
993 bool lastditch)
994 {
995 const char * stdname;
996 const char * dstname;
997 size_t stdlen;
998 size_t dstlen;
999 int_fast32_t stdoffset;
1000 int_fast32_t dstoffset;
1001 char * cp;
1002 bool load_ok;
1003
1004 dstname = NULL; /* XXX gcc */
1005 stdname = name;
1006 if (lastditch) {
1007 stdlen = strlen(name); /* length of standard zone name */
1008 name += stdlen;
1009 if (stdlen >= sizeof sp->chars)
1010 stdlen = (sizeof sp->chars) - 1;
1011 stdoffset = 0;
1012 } else {
1013 if (*name == '<') {
1014 name++;
1015 stdname = name;
1016 name = getqzname(name, '>');
1017 if (*name != '>')
1018 return false;
1019 stdlen = name - stdname;
1020 name++;
1021 } else {
1022 name = getzname(name);
1023 stdlen = name - stdname;
1024 }
1025 if (*name == '\0')
1026 return false;
1027 name = getoffset(name, &stdoffset);
1028 if (name == NULL)
1029 return false;
1030 }
1031 load_ok = tzload(TZDEFRULES, sp, false) == 0;
1032 if (!load_ok)
1033 sp->leapcnt = 0; /* so, we're off a little */
1034 if (*name != '\0') {
1035 if (*name == '<') {
1036 dstname = ++name;
1037 name = getqzname(name, '>');
1038 if (*name != '>')
1039 return false;
1040 dstlen = name - dstname;
1041 name++;
1042 } else {
1043 dstname = name;
1044 name = getzname(name);
1045 dstlen = name - dstname; /* length of DST zone name */
1046 }
1047 if (*name != '\0' && *name != ',' && *name != ';') {
1048 name = getoffset(name, &dstoffset);
1049 if (name == NULL)
1050 return false;
1051 } else dstoffset = stdoffset - SECSPERHOUR;
1052 if (*name == '\0' && !load_ok)
1053 name = TZDEFRULESTRING;
1054 if (*name == ',' || *name == ';') {
1055 struct rule start;
1056 struct rule end;
1057 int year;
1058 int yearlim;
1059 int timecnt;
1060 time_t janfirst;
1061
1062 ++name;
1063 if ((name = getrule(name, &start)) == NULL)
1064 return false;
1065 if (*name++ != ',')
1066 return false;
1067 if ((name = getrule(name, &end)) == NULL)
1068 return false;
1069 if (*name != '\0')
1070 return false;
1071 sp->typecnt = 2; /* standard time and DST */
1072 /*
1073 ** Two transitions per year, from EPOCH_YEAR forward.
1074 */
1075 init_ttinfo(&sp->ttis[0], -dstoffset, true,
1076 (int)(stdlen + 1));
1077 init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
1078 sp->defaulttype = 0;
1079 timecnt = 0;
1080 janfirst = 0;
1081 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1082 for (year = EPOCH_YEAR; year < yearlim; year++) {
1083 int_fast32_t
1084 starttime = transtime(year, &start, stdoffset),
1085 endtime = transtime(year, &end, dstoffset);
1086 int_fast32_t
1087 yearsecs = (year_lengths[isleap(year)]
1088 * SECSPERDAY);
1089 bool reversed = endtime < starttime;
1090 if (reversed) {
1091 int_fast32_t swap = starttime;
1092 starttime = endtime;
1093 endtime = swap;
1094 }
1095 if (reversed
1096 || (starttime < endtime
1097 && (endtime - starttime
1098 < (yearsecs
1099 + (stdoffset - dstoffset))))) {
1100 if (TZ_MAX_TIMES - 2 < timecnt)
1101 break;
1102 yearlim = year + YEARSPERREPEAT + 1;
1103 sp->ats[timecnt] = janfirst;
1104 if (increment_overflow_time
1105 (&sp->ats[timecnt], starttime))
1106 break;
1107 sp->types[timecnt++] = reversed;
1108 sp->ats[timecnt] = janfirst;
1109 if (increment_overflow_time
1110 (&sp->ats[timecnt], endtime))
1111 break;
1112 sp->types[timecnt++] = !reversed;
1113 }
1114 if (increment_overflow_time(&janfirst, yearsecs))
1115 break;
1116 }
1117 sp->timecnt = timecnt;
1118 if (!timecnt)
1119 sp->typecnt = 1; /* Perpetual DST. */
1120 } else {
1121 int_fast32_t theirstdoffset;
1122 int_fast32_t theirdstoffset;
1123 int_fast32_t theiroffset;
1124 bool isdst;
1125 int i;
1126 int j;
1127
1128 if (*name != '\0')
1129 return false;
1130 /*
1131 ** Initial values of theirstdoffset and theirdstoffset.
1132 */
1133 theirstdoffset = 0;
1134 for (i = 0; i < sp->timecnt; ++i) {
1135 j = sp->types[i];
1136 if (!sp->ttis[j].tt_isdst) {
1137 theirstdoffset =
1138 -sp->ttis[j].tt_gmtoff;
1139 break;
1140 }
1141 }
1142 theirdstoffset = 0;
1143 for (i = 0; i < sp->timecnt; ++i) {
1144 j = sp->types[i];
1145 if (sp->ttis[j].tt_isdst) {
1146 theirdstoffset =
1147 -sp->ttis[j].tt_gmtoff;
1148 break;
1149 }
1150 }
1151 /*
1152 ** Initially we're assumed to be in standard time.
1153 */
1154 isdst = false;
1155 theiroffset = theirstdoffset;
1156 /*
1157 ** Now juggle transition times and types
1158 ** tracking offsets as you do.
1159 */
1160 for (i = 0; i < sp->timecnt; ++i) {
1161 j = sp->types[i];
1162 sp->types[i] = sp->ttis[j].tt_isdst;
1163 if (sp->ttis[j].tt_ttisgmt) {
1164 /* No adjustment to transition time */
1165 } else {
1166 /*
1167 ** If summer time is in effect, and the
1168 ** transition time was not specified as
1169 ** standard time, add the summer time
1170 ** offset to the transition time;
1171 ** otherwise, add the standard time
1172 ** offset to the transition time.
1173 */
1174 /*
1175 ** Transitions from DST to DDST
1176 ** will effectively disappear since
1177 ** POSIX provides for only one DST
1178 ** offset.
1179 */
1180 if (isdst && !sp->ttis[j].tt_ttisstd) {
1181 sp->ats[i] += (time_t)
1182 (dstoffset - theirdstoffset);
1183 } else {
1184 sp->ats[i] += (time_t)
1185 (stdoffset - theirstdoffset);
1186 }
1187 }
1188 theiroffset = -sp->ttis[j].tt_gmtoff;
1189 if (sp->ttis[j].tt_isdst)
1190 theirstdoffset = theiroffset;
1191 else theirdstoffset = theiroffset;
1192 }
1193 /*
1194 ** Finally, fill in ttis.
1195 */
1196 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1197 init_ttinfo(&sp->ttis[1], -dstoffset, true,
1198 (int)(stdlen + 1));
1199 sp->typecnt = 2;
1200 sp->defaulttype = 0;
1201 }
1202 } else {
1203 dstlen = 0;
1204 sp->typecnt = 1; /* only standard time */
1205 sp->timecnt = 0;
1206 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1207 init_ttinfo(&sp->ttis[1], 0, false, 0);
1208 sp->defaulttype = 0;
1209 }
1210 sp->charcnt = (int)(stdlen + 1);
1211 if (dstlen != 0)
1212 sp->charcnt += (int)(dstlen + 1);
1213 if ((size_t) sp->charcnt > sizeof sp->chars)
1214 return false;
1215 cp = sp->chars;
1216 (void) memcpy(cp, stdname, stdlen);
1217 cp += stdlen;
1218 *cp++ = '\0';
1219 if (dstlen != 0) {
1220 (void) memcpy(cp, dstname, dstlen);
1221 *(cp + dstlen) = '\0';
1222 }
1223 return true;
1224 }
1225
1226 static void
1227 gmtload(struct state *const sp)
1228 {
1229 if (tzload(gmt, sp, true) != 0)
1230 (void) tzparse(gmt, sp, true);
1231 }
1232
1233 static int
1234 zoneinit(struct state *sp, char const *name)
1235 {
1236 if (name && ! name[0]) {
1237 /*
1238 ** User wants it fast rather than right.
1239 */
1240 sp->leapcnt = 0; /* so, we're off a little */
1241 sp->timecnt = 0;
1242 sp->typecnt = 0;
1243 sp->charcnt = 0;
1244 sp->goback = sp->goahead = false;
1245 init_ttinfo(&sp->ttis[0], 0, false, 0);
1246 strcpy(sp->chars, gmt);
1247 sp->defaulttype = 0;
1248 return 0;
1249 } else {
1250 int err = tzload(name, sp, true);
1251 if (err != 0 && name && name[0] != ':' &&
1252 tzparse(name, sp, false))
1253 err = 0;
1254 if (err == 0)
1255 scrub_abbrs(sp);
1256 return err;
1257 }
1258 }
1259
1260 static void
1261 tzsetlcl(char const *name)
1262 {
1263 struct state *sp = lclptr;
1264 int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1265 if (lcl < 0 ? lcl_is_set < 0
1266 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1267 return;
1268
1269 if (! sp)
1270 lclptr = sp = malloc(sizeof *lclptr);
1271 if (sp) {
1272 if (zoneinit(sp, name) != 0)
1273 zoneinit(sp, "");
1274 if (0 < lcl)
1275 strcpy(lcl_TZname, name);
1276 }
1277 settzname();
1278 lcl_is_set = lcl;
1279 }
1280
1281 #ifdef STD_INSPIRED
1282 void
1283 tzsetwall(void)
1284 {
1285 rwlock_wrlock(&lcl_lock);
1286 tzsetlcl(NULL);
1287 rwlock_unlock(&lcl_lock);
1288 }
1289 #endif
1290
1291 static void
1292 tzset_unlocked(void)
1293 {
1294 tzsetlcl(getenv("TZ"));
1295 }
1296
1297 void
1298 tzset(void)
1299 {
1300 rwlock_wrlock(&lcl_lock);
1301 tzset_unlocked();
1302 rwlock_unlock(&lcl_lock);
1303 }
1304
1305 static void
1306 gmtcheck(void)
1307 {
1308 static bool gmt_is_set;
1309 rwlock_wrlock(&lcl_lock);
1310 if (! gmt_is_set) {
1311 gmtptr = malloc(sizeof *gmtptr);
1312 if (gmtptr)
1313 gmtload(gmtptr);
1314 gmt_is_set = true;
1315 }
1316 rwlock_unlock(&lcl_lock);
1317 }
1318
1319 #if NETBSD_INSPIRED
1320
1321 timezone_t
1322 tzalloc(const char *name)
1323 {
1324 timezone_t sp = malloc(sizeof *sp);
1325 if (sp) {
1326 int err = zoneinit(sp, name);
1327 if (err != 0) {
1328 free(sp);
1329 errno = err;
1330 return NULL;
1331 }
1332 }
1333 return sp;
1334 }
1335
1336 void
1337 tzfree(timezone_t sp)
1338 {
1339 free(sp);
1340 }
1341
1342 /*
1343 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1344 ** ctime_r are obsolescent and have potential security problems that
1345 ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1346 **
1347 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1348 ** in zones with three or more time zone abbreviations.
1349 ** Callers can instead use localtime_rz + strftime.
1350 */
1351
1352 #endif
1353
1354 /*
1355 ** The easy way to behave "as if no library function calls" localtime
1356 ** is to not call it, so we drop its guts into "localsub", which can be
1357 ** freely called. (And no, the PANS doesn't require the above behavior,
1358 ** but it *is* desirable.)
1359 **
1360 ** If successful and SETNAME is nonzero,
1361 ** set the applicable parts of tzname, timezone and altzone;
1362 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
1363 ** since in that case tzset should have already done this step correctly.
1364 ** SETNAME's type is intfast32_t for compatibility with gmtsub,
1365 ** but it is actually a boolean and its value should be 0 or 1.
1366 */
1367
1368 /*ARGSUSED*/
1369 static struct tm *
1370 localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
1371 struct tm *const tmp)
1372 {
1373 const struct ttinfo * ttisp;
1374 int i;
1375 struct tm * result;
1376 const time_t t = *timep;
1377
1378 if (sp == NULL) {
1379 /* Don't bother to set tzname etc.; tzset has already done it. */
1380 return gmtsub(gmtptr, timep, 0, tmp);
1381 }
1382 if ((sp->goback && t < sp->ats[0]) ||
1383 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1384 time_t newt = t;
1385 time_t seconds;
1386 time_t years;
1387
1388 if (t < sp->ats[0])
1389 seconds = sp->ats[0] - t;
1390 else seconds = t - sp->ats[sp->timecnt - 1];
1391 --seconds;
1392 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1393 seconds = (time_t)(years * AVGSECSPERYEAR);
1394 if (t < sp->ats[0])
1395 newt += seconds;
1396 else newt -= seconds;
1397 if (newt < sp->ats[0] ||
1398 newt > sp->ats[sp->timecnt - 1]) {
1399 errno = EINVAL;
1400 return NULL; /* "cannot happen" */
1401 }
1402 result = localsub(sp, &newt, setname, tmp);
1403 if (result) {
1404 int_fast64_t newy;
1405
1406 newy = result->tm_year;
1407 if (t < sp->ats[0])
1408 newy -= years;
1409 else newy += years;
1410 if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1411 errno = EOVERFLOW;
1412 return NULL;
1413 }
1414 result->tm_year = (int)newy;
1415 }
1416 return result;
1417 }
1418 if (sp->timecnt == 0 || t < sp->ats[0]) {
1419 i = sp->defaulttype;
1420 } else {
1421 int lo = 1;
1422 int hi = sp->timecnt;
1423
1424 while (lo < hi) {
1425 int mid = (lo + hi) / 2;
1426
1427 if (t < sp->ats[mid])
1428 hi = mid;
1429 else lo = mid + 1;
1430 }
1431 i = (int) sp->types[lo - 1];
1432 }
1433 ttisp = &sp->ttis[i];
1434 /*
1435 ** To get (wrong) behavior that's compatible with System V Release 2.0
1436 ** you'd replace the statement below with
1437 ** t += ttisp->tt_gmtoff;
1438 ** timesub(&t, 0L, sp, tmp);
1439 */
1440 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1441 if (result) {
1442 result->tm_isdst = ttisp->tt_isdst;
1443 #ifdef TM_ZONE
1444 result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1445 #endif /* defined TM_ZONE */
1446 if (setname)
1447 update_tzname_etc(sp, ttisp);
1448 }
1449 return result;
1450 }
1451
1452 #if NETBSD_INSPIRED
1453
1454 struct tm *
1455 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1456 {
1457 return localsub(sp, timep, 0, tmp);
1458 }
1459
1460 #endif
1461
1462 static struct tm *
1463 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1464 {
1465 rwlock_wrlock(&lcl_lock);
1466 if (setname || !lcl_is_set)
1467 tzset_unlocked();
1468 tmp = localsub(lclptr, timep, setname, tmp);
1469 rwlock_unlock(&lcl_lock);
1470 return tmp;
1471 }
1472
1473 struct tm *
1474 localtime(const time_t *const timep)
1475 {
1476 return localtime_tzset(timep, &tm, true);
1477 }
1478
1479 struct tm *
1480 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1481 {
1482 return localtime_tzset(timep, tmp, false);
1483 }
1484
1485 /*
1486 ** gmtsub is to gmtime as localsub is to localtime.
1487 */
1488
1489 static struct tm *
1490 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1491 struct tm *tmp)
1492 {
1493 struct tm * result;
1494
1495 result = timesub(timep, offset, gmtptr, tmp);
1496 #ifdef TM_ZONE
1497 /*
1498 ** Could get fancy here and deliver something such as
1499 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1500 ** but this is no time for a treasure hunt.
1501 */
1502 if (result)
1503 result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1504 gmtptr->chars : __UNCONST(gmt);
1505 #endif /* defined TM_ZONE */
1506 return result;
1507 }
1508
1509 struct tm *
1510 gmtime(const time_t *const timep)
1511 {
1512 return gmtime_r(timep, &tm);
1513 }
1514
1515 /*
1516 ** Re-entrant version of gmtime.
1517 */
1518
1519 struct tm *
1520 gmtime_r(const time_t * const timep, struct tm *tmp)
1521 {
1522 gmtcheck();
1523 return gmtsub(NULL, timep, 0, tmp);
1524 }
1525
1526 #ifdef STD_INSPIRED
1527
1528 struct tm *
1529 offtime(const time_t *const timep, long offset)
1530 {
1531 gmtcheck();
1532 return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1533 }
1534
1535 struct tm *
1536 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1537 {
1538 gmtcheck();
1539 return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1540 }
1541
1542 #endif /* defined STD_INSPIRED */
1543
1544 /*
1545 ** Return the number of leap years through the end of the given year
1546 ** where, to make the math easy, the answer for year zero is defined as zero.
1547 */
1548
1549 static int ATTRIBUTE_PURE
1550 leaps_thru_end_of(const int y)
1551 {
1552 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1553 -(leaps_thru_end_of(-(y + 1)) + 1);
1554 }
1555
1556 static struct tm *
1557 timesub(time_t const *timep, int_fast32_t offset, struct state const *sp,
1558 struct tm *tmp)
1559 {
1560 const struct lsinfo * lp;
1561 time_t tdays;
1562 int idays; /* unsigned would be so 2003 */
1563 int_fast64_t rem;
1564 int y;
1565 const int * ip;
1566 int_fast64_t corr;
1567 bool hit;
1568 int i;
1569
1570 corr = 0;
1571 hit = false;
1572 i = (sp == NULL) ? 0 : sp->leapcnt;
1573 while (--i >= 0) {
1574 lp = &sp->lsis[i];
1575 if (*timep >= lp->ls_trans) {
1576 if (*timep == lp->ls_trans) {
1577 hit = ((i == 0 && lp->ls_corr > 0) ||
1578 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1579 if (hit)
1580 while (i > 0 &&
1581 sp->lsis[i].ls_trans ==
1582 sp->lsis[i - 1].ls_trans + 1 &&
1583 sp->lsis[i].ls_corr ==
1584 sp->lsis[i - 1].ls_corr + 1) {
1585 ++hit;
1586 --i;
1587 }
1588 }
1589 corr = lp->ls_corr;
1590 break;
1591 }
1592 }
1593 y = EPOCH_YEAR;
1594 tdays = (time_t)(*timep / SECSPERDAY);
1595 rem = (int_fast64_t) (*timep - tdays * SECSPERDAY);
1596 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1597 int newy;
1598 time_t tdelta;
1599 int idelta;
1600 int leapdays;
1601
1602 tdelta = tdays / DAYSPERLYEAR;
1603 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1604 && tdelta <= INT_MAX))
1605 goto out_of_range;
1606 _DIAGASSERT(__type_fit(int, tdelta));
1607 idelta = (int)tdelta;
1608 if (idelta == 0)
1609 idelta = (tdays < 0) ? -1 : 1;
1610 newy = y;
1611 if (increment_overflow(&newy, idelta))
1612 goto out_of_range;
1613 leapdays = leaps_thru_end_of(newy - 1) -
1614 leaps_thru_end_of(y - 1);
1615 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1616 tdays -= leapdays;
1617 y = newy;
1618 }
1619 {
1620 int_fast32_t seconds;
1621
1622 seconds = (int_fast32_t)(tdays * SECSPERDAY);
1623 tdays = (time_t)(seconds / SECSPERDAY);
1624 rem += (int_fast64_t)(seconds - tdays * SECSPERDAY);
1625 }
1626 /*
1627 ** Given the range, we can now fearlessly cast...
1628 */
1629 idays = (int) tdays;
1630 rem += offset - corr;
1631 while (rem < 0) {
1632 rem += SECSPERDAY;
1633 --idays;
1634 }
1635 while (rem >= SECSPERDAY) {
1636 rem -= SECSPERDAY;
1637 ++idays;
1638 }
1639 while (idays < 0) {
1640 if (increment_overflow(&y, -1))
1641 goto out_of_range;
1642 idays += year_lengths[isleap(y)];
1643 }
1644 while (idays >= year_lengths[isleap(y)]) {
1645 idays -= year_lengths[isleap(y)];
1646 if (increment_overflow(&y, 1))
1647 goto out_of_range;
1648 }
1649 tmp->tm_year = y;
1650 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1651 goto out_of_range;
1652 tmp->tm_yday = idays;
1653 /*
1654 ** The "extra" mods below avoid overflow problems.
1655 */
1656 tmp->tm_wday = EPOCH_WDAY +
1657 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1658 (DAYSPERNYEAR % DAYSPERWEEK) +
1659 leaps_thru_end_of(y - 1) -
1660 leaps_thru_end_of(EPOCH_YEAR - 1) +
1661 idays;
1662 tmp->tm_wday %= DAYSPERWEEK;
1663 if (tmp->tm_wday < 0)
1664 tmp->tm_wday += DAYSPERWEEK;
1665 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1666 rem %= SECSPERHOUR;
1667 tmp->tm_min = (int) (rem / SECSPERMIN);
1668 /*
1669 ** A positive leap second requires a special
1670 ** representation. This uses "... ??:59:60" et seq.
1671 */
1672 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1673 ip = mon_lengths[isleap(y)];
1674 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1675 idays -= ip[tmp->tm_mon];
1676 tmp->tm_mday = (int) (idays + 1);
1677 tmp->tm_isdst = 0;
1678 #ifdef TM_GMTOFF
1679 tmp->TM_GMTOFF = offset;
1680 #endif /* defined TM_GMTOFF */
1681 return tmp;
1682 out_of_range:
1683 errno = EOVERFLOW;
1684 return NULL;
1685 }
1686
1687 char *
1688 ctime(const time_t *const timep)
1689 {
1690 /*
1691 ** Section 4.12.3.2 of X3.159-1989 requires that
1692 ** The ctime function converts the calendar time pointed to by timer
1693 ** to local time in the form of a string. It is equivalent to
1694 ** asctime(localtime(timer))
1695 */
1696 struct tm *tmp = localtime(timep);
1697 return tmp ? asctime(tmp) : NULL;
1698 }
1699
1700 char *
1701 ctime_r(const time_t *const timep, char *buf)
1702 {
1703 struct tm mytm;
1704 struct tm *tmp = localtime_r(timep, &mytm);
1705 return tmp ? asctime_r(tmp, buf) : NULL;
1706 }
1707
1708 char *
1709 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1710 {
1711 struct tm mytm, *rtm;
1712
1713 rtm = localtime_rz(sp, timep, &mytm);
1714 if (rtm == NULL)
1715 return NULL;
1716 return asctime_r(rtm, buf);
1717 }
1718
1719 /*
1720 ** Adapted from code provided by Robert Elz, who writes:
1721 ** The "best" way to do mktime I think is based on an idea of Bob
1722 ** Kridle's (so its said...) from a long time ago.
1723 ** It does a binary search of the time_t space. Since time_t's are
1724 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1725 ** would still be very reasonable).
1726 */
1727
1728 #ifndef WRONG
1729 #define WRONG ((time_t)-1)
1730 #endif /* !defined WRONG */
1731
1732 /*
1733 ** Normalize logic courtesy Paul Eggert.
1734 */
1735
1736 static bool
1737 increment_overflow(int *const ip, int j)
1738 {
1739 int const i = *ip;
1740
1741 /*
1742 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1743 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1744 ** If i < 0 there can only be overflow if i + j < INT_MIN
1745 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1746 */
1747 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1748 return true;
1749 *ip += j;
1750 return false;
1751 }
1752
1753 static bool
1754 increment_overflow32(int_fast32_t *const lp, int const m)
1755 {
1756 int_fast32_t const l = *lp;
1757
1758 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1759 return true;
1760 *lp += m;
1761 return false;
1762 }
1763
1764 static bool
1765 increment_overflow_time(time_t *tp, int_fast32_t j)
1766 {
1767 /*
1768 ** This is like
1769 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1770 ** except that it does the right thing even if *tp + j would overflow.
1771 */
1772 if (! (j < 0
1773 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1774 : *tp <= time_t_max - j))
1775 return true;
1776 *tp += j;
1777 return false;
1778 }
1779
1780 static bool
1781 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1782 {
1783 int tensdelta;
1784
1785 tensdelta = (*unitsptr >= 0) ?
1786 (*unitsptr / base) :
1787 (-1 - (-1 - *unitsptr) / base);
1788 *unitsptr -= tensdelta * base;
1789 return increment_overflow(tensptr, tensdelta);
1790 }
1791
1792 static bool
1793 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
1794 const int base)
1795 {
1796 int tensdelta;
1797
1798 tensdelta = (*unitsptr >= 0) ?
1799 (*unitsptr / base) :
1800 (-1 - (-1 - *unitsptr) / base);
1801 *unitsptr -= tensdelta * base;
1802 return increment_overflow32(tensptr, tensdelta);
1803 }
1804
1805 static int
1806 tmcomp(const struct tm *const atmp,
1807 const struct tm *const btmp)
1808 {
1809 int result;
1810
1811 if (atmp->tm_year != btmp->tm_year)
1812 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1813 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1814 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1815 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1816 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1817 result = atmp->tm_sec - btmp->tm_sec;
1818 return result;
1819 }
1820
1821 static time_t
1822 time2sub(struct tm *const tmp,
1823 struct tm *(*funcp)(struct state const *, time_t const *,
1824 int_fast32_t, struct tm *),
1825 struct state const *sp,
1826 const int_fast32_t offset,
1827 bool *okayp,
1828 bool do_norm_secs)
1829 {
1830 int dir;
1831 int i, j;
1832 int saved_seconds;
1833 int_fast32_t li;
1834 time_t lo;
1835 time_t hi;
1836 #ifdef NO_ERROR_IN_DST_GAP
1837 time_t ilo;
1838 #endif
1839 int_fast32_t y;
1840 time_t newt;
1841 time_t t;
1842 struct tm yourtm, mytm;
1843
1844 *okayp = false;
1845 yourtm = *tmp;
1846 #ifdef NO_ERROR_IN_DST_GAP
1847 again:
1848 #endif
1849 if (do_norm_secs) {
1850 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1851 SECSPERMIN))
1852 goto out_of_range;
1853 }
1854 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1855 goto out_of_range;
1856 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1857 goto out_of_range;
1858 y = yourtm.tm_year;
1859 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1860 goto out_of_range;
1861 /*
1862 ** Turn y into an actual year number for now.
1863 ** It is converted back to an offset from TM_YEAR_BASE later.
1864 */
1865 if (increment_overflow32(&y, TM_YEAR_BASE))
1866 goto out_of_range;
1867 while (yourtm.tm_mday <= 0) {
1868 if (increment_overflow32(&y, -1))
1869 goto out_of_range;
1870 li = y + (1 < yourtm.tm_mon);
1871 yourtm.tm_mday += year_lengths[isleap(li)];
1872 }
1873 while (yourtm.tm_mday > DAYSPERLYEAR) {
1874 li = y + (1 < yourtm.tm_mon);
1875 yourtm.tm_mday -= year_lengths[isleap(li)];
1876 if (increment_overflow32(&y, 1))
1877 goto out_of_range;
1878 }
1879 for ( ; ; ) {
1880 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1881 if (yourtm.tm_mday <= i)
1882 break;
1883 yourtm.tm_mday -= i;
1884 if (++yourtm.tm_mon >= MONSPERYEAR) {
1885 yourtm.tm_mon = 0;
1886 if (increment_overflow32(&y, 1))
1887 goto out_of_range;
1888 }
1889 }
1890 if (increment_overflow32(&y, -TM_YEAR_BASE))
1891 goto out_of_range;
1892 if (! (INT_MIN <= y && y <= INT_MAX))
1893 goto out_of_range;
1894 yourtm.tm_year = (int)y;
1895 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1896 saved_seconds = 0;
1897 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1898 /*
1899 ** We can't set tm_sec to 0, because that might push the
1900 ** time below the minimum representable time.
1901 ** Set tm_sec to 59 instead.
1902 ** This assumes that the minimum representable time is
1903 ** not in the same minute that a leap second was deleted from,
1904 ** which is a safer assumption than using 58 would be.
1905 */
1906 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1907 goto out_of_range;
1908 saved_seconds = yourtm.tm_sec;
1909 yourtm.tm_sec = SECSPERMIN - 1;
1910 } else {
1911 saved_seconds = yourtm.tm_sec;
1912 yourtm.tm_sec = 0;
1913 }
1914 /*
1915 ** Do a binary search (this works whatever time_t's type is).
1916 */
1917 lo = time_t_min;
1918 hi = time_t_max;
1919 #ifdef NO_ERROR_IN_DST_GAP
1920 ilo = lo;
1921 #endif
1922 for ( ; ; ) {
1923 t = lo / 2 + hi / 2;
1924 if (t < lo)
1925 t = lo;
1926 else if (t > hi)
1927 t = hi;
1928 if (! funcp(sp, &t, offset, &mytm)) {
1929 /*
1930 ** Assume that t is too extreme to be represented in
1931 ** a struct tm; arrange things so that it is less
1932 ** extreme on the next pass.
1933 */
1934 dir = (t > 0) ? 1 : -1;
1935 } else dir = tmcomp(&mytm, &yourtm);
1936 if (dir != 0) {
1937 if (t == lo) {
1938 if (t == time_t_max)
1939 goto out_of_range;
1940 ++t;
1941 ++lo;
1942 } else if (t == hi) {
1943 if (t == time_t_min)
1944 goto out_of_range;
1945 --t;
1946 --hi;
1947 }
1948 #ifdef NO_ERROR_IN_DST_GAP
1949 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1950 do_norm_secs) {
1951 for (i = sp->typecnt - 1; i >= 0; --i) {
1952 for (j = sp->typecnt - 1; j >= 0; --j) {
1953 time_t off;
1954 if (sp->ttis[j].tt_isdst ==
1955 sp->ttis[i].tt_isdst)
1956 continue;
1957 off = sp->ttis[j].tt_gmtoff -
1958 sp->ttis[i].tt_gmtoff;
1959 yourtm.tm_sec += off < 0 ?
1960 -off : off;
1961 goto again;
1962 }
1963 }
1964 }
1965 #endif
1966 if (lo > hi)
1967 goto invalid;
1968 if (dir > 0)
1969 hi = t;
1970 else lo = t;
1971 continue;
1972 }
1973 #if defined TM_GMTOFF && ! UNINIT_TRAP
1974 if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
1975 && (yourtm.TM_GMTOFF < 0
1976 ? (-SECSPERDAY <= yourtm.TM_GMTOFF
1977 && (mytm.TM_GMTOFF <=
1978 (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
1979 + yourtm.TM_GMTOFF)))
1980 : (yourtm.TM_GMTOFF <= SECSPERDAY
1981 && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
1982 + yourtm.TM_GMTOFF)
1983 <= mytm.TM_GMTOFF)))) {
1984 /* MYTM matches YOURTM except with the wrong UTC offset.
1985 YOURTM.TM_GMTOFF is plausible, so try it instead.
1986 It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
1987 since the guess gets checked. */
1988 time_t altt = t;
1989 int_fast32_t diff = (int_fast32_t)
1990 (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
1991 if (!increment_overflow_time(&altt, diff)) {
1992 struct tm alttm;
1993 if (! funcp(sp, &altt, offset, &alttm)
1994 && alttm.tm_isdst == mytm.tm_isdst
1995 && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
1996 && tmcomp(&alttm, &yourtm)) {
1997 t = altt;
1998 mytm = alttm;
1999 }
2000 }
2001 }
2002 #endif
2003 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2004 break;
2005 /*
2006 ** Right time, wrong type.
2007 ** Hunt for right time, right type.
2008 ** It's okay to guess wrong since the guess
2009 ** gets checked.
2010 */
2011 if (sp == NULL)
2012 goto invalid;
2013 for (i = sp->typecnt - 1; i >= 0; --i) {
2014 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2015 continue;
2016 for (j = sp->typecnt - 1; j >= 0; --j) {
2017 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2018 continue;
2019 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2020 sp->ttis[i].tt_gmtoff);
2021 if (! funcp(sp, &newt, offset, &mytm))
2022 continue;
2023 if (tmcomp(&mytm, &yourtm) != 0)
2024 continue;
2025 if (mytm.tm_isdst != yourtm.tm_isdst)
2026 continue;
2027 /*
2028 ** We have a match.
2029 */
2030 t = newt;
2031 goto label;
2032 }
2033 }
2034 goto invalid;
2035 }
2036 label:
2037 newt = t + saved_seconds;
2038 if ((newt < t) != (saved_seconds < 0))
2039 goto out_of_range;
2040 t = newt;
2041 if (funcp(sp, &t, offset, tmp)) {
2042 *okayp = true;
2043 return t;
2044 }
2045 out_of_range:
2046 errno = EOVERFLOW;
2047 return WRONG;
2048 invalid:
2049 errno = EINVAL;
2050 return WRONG;
2051 }
2052
2053 static time_t
2054 time2(struct tm * const tmp,
2055 struct tm *(*funcp)(struct state const *, time_t const *,
2056 int_fast32_t, struct tm *),
2057 struct state const *sp,
2058 const int_fast32_t offset,
2059 bool *okayp)
2060 {
2061 time_t t;
2062
2063 /*
2064 ** First try without normalization of seconds
2065 ** (in case tm_sec contains a value associated with a leap second).
2066 ** If that fails, try with normalization of seconds.
2067 */
2068 t = time2sub(tmp, funcp, sp, offset, okayp, false);
2069 return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2070 }
2071
2072 static time_t
2073 time1(struct tm *const tmp,
2074 struct tm *(*funcp) (struct state const *, time_t const *,
2075 int_fast32_t, struct tm *),
2076 struct state const *sp,
2077 const int_fast32_t offset)
2078 {
2079 time_t t;
2080 int samei, otheri;
2081 int sameind, otherind;
2082 int i;
2083 int nseen;
2084 int save_errno;
2085 char seen[TZ_MAX_TYPES];
2086 unsigned char types[TZ_MAX_TYPES];
2087 bool okay;
2088
2089 if (tmp == NULL) {
2090 errno = EINVAL;
2091 return WRONG;
2092 }
2093 if (tmp->tm_isdst > 1)
2094 tmp->tm_isdst = 1;
2095 save_errno = errno;
2096 t = time2(tmp, funcp, sp, offset, &okay);
2097 if (okay) {
2098 errno = save_errno;
2099 return t;
2100 }
2101 if (tmp->tm_isdst < 0)
2102 #ifdef PCTS
2103 /*
2104 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2105 */
2106 tmp->tm_isdst = 0; /* reset to std and try again */
2107 #else
2108 return t;
2109 #endif /* !defined PCTS */
2110 /*
2111 ** We're supposed to assume that somebody took a time of one type
2112 ** and did some math on it that yielded a "struct tm" that's bad.
2113 ** We try to divine the type they started from and adjust to the
2114 ** type they need.
2115 */
2116 if (sp == NULL) {
2117 errno = EINVAL;
2118 return WRONG;
2119 }
2120 for (i = 0; i < sp->typecnt; ++i)
2121 seen[i] = false;
2122 nseen = 0;
2123 for (i = sp->timecnt - 1; i >= 0; --i)
2124 if (!seen[sp->types[i]]) {
2125 seen[sp->types[i]] = true;
2126 types[nseen++] = sp->types[i];
2127 }
2128 for (sameind = 0; sameind < nseen; ++sameind) {
2129 samei = types[sameind];
2130 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2131 continue;
2132 for (otherind = 0; otherind < nseen; ++otherind) {
2133 otheri = types[otherind];
2134 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2135 continue;
2136 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2137 sp->ttis[samei].tt_gmtoff);
2138 tmp->tm_isdst = !tmp->tm_isdst;
2139 t = time2(tmp, funcp, sp, offset, &okay);
2140 if (okay) {
2141 errno = save_errno;
2142 return t;
2143 }
2144 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2145 sp->ttis[samei].tt_gmtoff);
2146 tmp->tm_isdst = !tmp->tm_isdst;
2147 }
2148 }
2149 errno = EOVERFLOW;
2150 return WRONG;
2151 }
2152
2153 static time_t
2154 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2155 {
2156 if (sp)
2157 return time1(tmp, localsub, sp, setname);
2158 else {
2159 gmtcheck();
2160 return time1(tmp, gmtsub, gmtptr, 0);
2161 }
2162 }
2163
2164 #if NETBSD_INSPIRED
2165
2166 time_t
2167 mktime_z(timezone_t sp, struct tm *const tmp)
2168 {
2169 return mktime_tzname(sp, tmp, false);
2170 }
2171
2172 #endif
2173
2174 time_t
2175 mktime(struct tm *const tmp)
2176 {
2177 time_t t;
2178
2179 rwlock_wrlock(&lcl_lock);
2180 tzset_unlocked();
2181 t = mktime_tzname(lclptr, tmp, true);
2182 rwlock_unlock(&lcl_lock);
2183 return t;
2184 }
2185
2186 #ifdef STD_INSPIRED
2187
2188 time_t
2189 timelocal_z(const timezone_t sp, struct tm *const tmp)
2190 {
2191 if (tmp != NULL)
2192 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2193 return mktime_z(sp, tmp);
2194 }
2195
2196 time_t
2197 timelocal(struct tm *const tmp)
2198 {
2199 if (tmp != NULL)
2200 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2201 return mktime(tmp);
2202 }
2203
2204 time_t
2205 timegm(struct tm *const tmp)
2206 {
2207
2208 return timeoff(tmp, 0);
2209 }
2210
2211 time_t
2212 timeoff(struct tm *const tmp, long offset)
2213 {
2214 if (tmp)
2215 tmp->tm_isdst = 0;
2216 gmtcheck();
2217 return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2218 }
2219
2220 #endif /* defined STD_INSPIRED */
2221
2222 /*
2223 ** XXX--is the below the right way to conditionalize??
2224 */
2225
2226 #ifdef STD_INSPIRED
2227
2228 /*
2229 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2230 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2231 ** is not the case if we are accounting for leap seconds.
2232 ** So, we provide the following conversion routines for use
2233 ** when exchanging timestamps with POSIX conforming systems.
2234 */
2235
2236 static int_fast64_t
2237 leapcorr(const timezone_t sp, time_t t)
2238 {
2239 struct lsinfo const * lp;
2240 int i;
2241
2242 i = sp->leapcnt;
2243 while (--i >= 0) {
2244 lp = &sp->lsis[i];
2245 if (t >= lp->ls_trans)
2246 return lp->ls_corr;
2247 }
2248 return 0;
2249 }
2250
2251 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2252 time2posix_z(timezone_t sp, time_t t)
2253 {
2254 return (time_t)(t - leapcorr(sp, t));
2255 }
2256
2257 time_t
2258 time2posix(time_t t)
2259 {
2260 rwlock_wrlock(&lcl_lock);
2261 if (!lcl_is_set)
2262 tzset_unlocked();
2263 if (lclptr)
2264 t = (time_t)(t - leapcorr(lclptr, t));
2265 rwlock_unlock(&lcl_lock);
2266 return t;
2267 }
2268
2269 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2270 posix2time_z(timezone_t sp, time_t t)
2271 {
2272 time_t x;
2273 time_t y;
2274
2275 /*
2276 ** For a positive leap second hit, the result
2277 ** is not unique. For a negative leap second
2278 ** hit, the corresponding time doesn't exist,
2279 ** so we return an adjacent second.
2280 */
2281 x = (time_t)(t + leapcorr(sp, t));
2282 y = (time_t)(x - leapcorr(sp, x));
2283 if (y < t) {
2284 do {
2285 x++;
2286 y = (time_t)(x - leapcorr(sp, x));
2287 } while (y < t);
2288 x -= y != t;
2289 } else if (y > t) {
2290 do {
2291 --x;
2292 y = (time_t)(x - leapcorr(sp, x));
2293 } while (y > t);
2294 x += y != t;
2295 }
2296 return x;
2297 }
2298
2299 time_t
2300 posix2time(time_t t)
2301 {
2302 rwlock_wrlock(&lcl_lock);
2303 if (!lcl_is_set)
2304 tzset_unlocked();
2305 if (lclptr)
2306 t = posix2time_z(lclptr, t);
2307 rwlock_unlock(&lcl_lock);
2308 return t;
2309 }
2310
2311 #endif /* defined STD_INSPIRED */
2312