localtime.c revision 1.96 1 /* $NetBSD: localtime.c,v 1.96 2015/08/13 11:21:18 christos Exp $ */
2
3 /*
4 ** This file is in the public domain, so clarified as of
5 ** 1996-06-05 by Arthur David Olson.
6 */
7
8 #include <sys/cdefs.h>
9 #if defined(LIBC_SCCS) && !defined(lint)
10 #if 0
11 static char elsieid[] = "@(#)localtime.c 8.17";
12 #else
13 __RCSID("$NetBSD: localtime.c,v 1.96 2015/08/13 11:21:18 christos Exp $");
14 #endif
15 #endif /* LIBC_SCCS and not lint */
16
17 /*
18 ** Leap second handling from Bradley White.
19 ** POSIX-style TZ environment variable handling from Guy Harris.
20 */
21
22 /*LINTLIBRARY*/
23
24 #include "namespace.h"
25 #include <assert.h>
26 #define LOCALTIME_IMPLEMENTATION
27 #include "private.h"
28
29 #include "tzfile.h"
30 #include "fcntl.h"
31 #include "reentrant.h"
32
33 #if NETBSD_INSPIRED
34 # define NETBSD_INSPIRED_EXTERN
35 #else
36 # define NETBSD_INSPIRED_EXTERN static
37 #endif
38
39 #if defined(__weak_alias)
40 __weak_alias(daylight,_daylight)
41 __weak_alias(tzname,_tzname)
42 #endif
43
44 #ifndef TZ_ABBR_MAX_LEN
45 #define TZ_ABBR_MAX_LEN 16
46 #endif /* !defined TZ_ABBR_MAX_LEN */
47
48 #ifndef TZ_ABBR_CHAR_SET
49 #define TZ_ABBR_CHAR_SET \
50 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
51 #endif /* !defined TZ_ABBR_CHAR_SET */
52
53 #ifndef TZ_ABBR_ERR_CHAR
54 #define TZ_ABBR_ERR_CHAR '_'
55 #endif /* !defined TZ_ABBR_ERR_CHAR */
56
57 /*
58 ** SunOS 4.1.1 headers lack O_BINARY.
59 */
60
61 #ifdef O_BINARY
62 #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC)
63 #endif /* defined O_BINARY */
64 #ifndef O_BINARY
65 #define OPEN_MODE (O_RDONLY | O_CLOEXEC)
66 #endif /* !defined O_BINARY */
67
68 #ifndef WILDABBR
69 /*
70 ** Someone might make incorrect use of a time zone abbreviation:
71 ** 1. They might reference tzname[0] before calling tzset (explicitly
72 ** or implicitly).
73 ** 2. They might reference tzname[1] before calling tzset (explicitly
74 ** or implicitly).
75 ** 3. They might reference tzname[1] after setting to a time zone
76 ** in which Daylight Saving Time is never observed.
77 ** 4. They might reference tzname[0] after setting to a time zone
78 ** in which Standard Time is never observed.
79 ** 5. They might reference tm.TM_ZONE after calling offtime.
80 ** What's best to do in the above cases is open to debate;
81 ** for now, we just set things up so that in any of the five cases
82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
83 ** string "tzname[0] used before set", and similarly for the other cases.
84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
85 ** manual page of what this "time zone abbreviation" means (doing this so
86 ** that tzname[0] has the "normal" length of three characters).
87 */
88 #define WILDABBR " "
89 #endif /* !defined WILDABBR */
90
91 static const char wildabbr[] = WILDABBR;
92
93 static const char gmt[] = "GMT";
94
95 /*
96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
97 ** We default to US rules as of 1999-08-17.
98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
99 ** implementation dependent; for historical reasons, US rules are a
100 ** common default.
101 */
102 #ifndef TZDEFRULESTRING
103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
104 #endif /* !defined TZDEFDST */
105
106 struct ttinfo { /* time type information */
107 int_fast32_t tt_gmtoff; /* UT offset in seconds */
108 bool tt_isdst; /* used to set tm_isdst */
109 int tt_abbrind; /* abbreviation list index */
110 bool tt_ttisstd; /* transition is std time */
111 bool tt_ttisgmt; /* transition is UT */
112 };
113
114 struct lsinfo { /* leap second information */
115 time_t ls_trans; /* transition time */
116 int_fast64_t ls_corr; /* correction to apply */
117 };
118
119 #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b))
120 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
121
122 #ifdef TZNAME_MAX
123 #define MY_TZNAME_MAX TZNAME_MAX
124 #endif /* defined TZNAME_MAX */
125 #ifndef TZNAME_MAX
126 #define MY_TZNAME_MAX 255
127 #endif /* !defined TZNAME_MAX */
128
129 #define state __state
130 struct state {
131 int leapcnt;
132 int timecnt;
133 int typecnt;
134 int charcnt;
135 bool goback;
136 bool goahead;
137 time_t ats[TZ_MAX_TIMES];
138 unsigned char types[TZ_MAX_TIMES];
139 struct ttinfo ttis[TZ_MAX_TYPES];
140 char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
141 sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
142 struct lsinfo lsis[TZ_MAX_LEAPS];
143 int defaulttype; /* for early times or if no transitions */
144 };
145
146 enum r_type {
147 JULIAN_DAY, /* Jn = Julian day */
148 DAY_OF_YEAR, /* n = day of year */
149 MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */
150 };
151
152 struct rule {
153 enum r_type r_type; /* type of rule */
154 int r_day; /* day number of rule */
155 int r_week; /* week number of rule */
156 int r_mon; /* month number of rule */
157 int_fast32_t r_time; /* transition time of rule */
158 };
159
160 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
161 struct tm *);
162 static bool increment_overflow(int *, int);
163 static bool increment_overflow_time(time_t *, int_fast32_t);
164 static bool normalize_overflow32(int_fast32_t *, int *, int);
165 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
166 struct tm *);
167 static bool typesequiv(struct state const *, int, int);
168 static bool tzparse(char const *, struct state *, bool);
169
170 static timezone_t lclptr;
171 static timezone_t gmtptr;
172
173 #ifndef TZ_STRLEN_MAX
174 #define TZ_STRLEN_MAX 255
175 #endif /* !defined TZ_STRLEN_MAX */
176
177 static char lcl_TZname[TZ_STRLEN_MAX + 1];
178 static int lcl_is_set;
179
180 #if !defined(__LIBC12_SOURCE__)
181
182 __aconst char * tzname[2] = {
183 (__aconst char *)__UNCONST(wildabbr),
184 (__aconst char *)__UNCONST(wildabbr)
185 };
186
187 #else
188
189 extern __aconst char * tzname[2];
190
191 #endif
192
193 #ifdef _REENTRANT
194 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
195 #endif
196
197 /*
198 ** Section 4.12.3 of X3.159-1989 requires that
199 ** Except for the strftime function, these functions [asctime,
200 ** ctime, gmtime, localtime] return values in one of two static
201 ** objects: a broken-down time structure and an array of char.
202 ** Thanks to Paul Eggert for noting this.
203 */
204
205 static struct tm tm;
206
207 #ifdef USG_COMPAT
208 #if !defined(__LIBC12_SOURCE__)
209 long timezone = 0;
210 int daylight = 0;
211 #else
212 extern int daylight;
213 extern long timezone __RENAME(__timezone13);
214 #endif
215 #endif /* defined USG_COMPAT */
216
217 #ifdef ALTZONE
218 long altzone = 0;
219 #endif /* defined ALTZONE */
220
221 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
222 static void
223 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
224 {
225 s->tt_gmtoff = gmtoff;
226 s->tt_isdst = isdst;
227 s->tt_abbrind = abbrind;
228 s->tt_ttisstd = false;
229 s->tt_ttisgmt = false;
230 }
231
232 static int_fast32_t
233 detzcode(const char *const codep)
234 {
235 int_fast32_t result;
236 int i;
237 int_fast32_t one = 1;
238 int_fast32_t halfmaxval = one << (32 - 2);
239 int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
240 int_fast32_t minval = -1 - maxval;
241
242 result = codep[0] & 0x7f;
243 for (i = 1; i < 4; ++i)
244 result = (result << 8) | (codep[i] & 0xff);
245
246 if (codep[0] & 0x80) {
247 /* Do two's-complement negation even on non-two's-complement machines.
248 If the result would be minval - 1, return minval. */
249 result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
250 result += minval;
251 }
252 return result;
253 }
254
255 static int_fast64_t
256 detzcode64(const char *const codep)
257 {
258 int_fast64_t result;
259 int i;
260 int_fast64_t one = 1;
261 int_fast64_t halfmaxval = one << (64 - 2);
262 int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
263 int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
264
265 result = codep[0] & 0x7f;
266 for (i = 1; i < 8; ++i)
267 result = (result << 8) | (codep[i] & 0xff);
268
269 if (codep[0] & 0x80) {
270 /* Do two's-complement negation even on non-two's-complement machines.
271 If the result would be minval - 1, return minval. */
272 result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
273 result += minval;
274 }
275 return result;
276 }
277
278 const char *
279 tzgetname(const timezone_t sp, int isdst)
280 {
281 int i;
282 for (i = 0; i < sp->timecnt; ++i) {
283 const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
284
285 if (ttisp->tt_isdst == isdst)
286 return &sp->chars[ttisp->tt_abbrind];
287 }
288 errno = ESRCH;
289 return NULL;
290 }
291
292 static void
293 scrub_abbrs(struct state *sp)
294 {
295 int i;
296
297 /*
298 ** First, replace bogus characters.
299 */
300 for (i = 0; i < sp->charcnt; ++i)
301 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
302 sp->chars[i] = TZ_ABBR_ERR_CHAR;
303 /*
304 ** Second, truncate long abbreviations.
305 */
306 for (i = 0; i < sp->typecnt; ++i) {
307 const struct ttinfo * const ttisp = &sp->ttis[i];
308 char * cp = &sp->chars[ttisp->tt_abbrind];
309
310 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
311 strcmp(cp, GRANDPARENTED) != 0)
312 *(cp + TZ_ABBR_MAX_LEN) = '\0';
313 }
314 }
315
316 static void
317 update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp)
318 {
319 tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
320 #ifdef USG_COMPAT
321 if (!ttisp->tt_isdst)
322 timezone = - ttisp->tt_gmtoff;
323 #endif
324 #ifdef ALTZONE
325 if (ttisp->tt_isdst)
326 altzone = - ttisp->tt_gmtoff;
327 #endif /* defined ALTZONE */
328 }
329
330 static void
331 settzname(void)
332 {
333 timezone_t const sp = lclptr;
334 int i;
335
336 tzname[0] = (__aconst char *)__UNCONST(wildabbr);
337 tzname[1] = (__aconst char *)__UNCONST(wildabbr);
338 #ifdef USG_COMPAT
339 daylight = 0;
340 timezone = 0;
341 #endif /* defined USG_COMPAT */
342 #ifdef ALTZONE
343 altzone = 0;
344 #endif /* defined ALTZONE */
345 if (sp == NULL) {
346 tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
347 return;
348 }
349 /*
350 ** And to get the latest zone names into tzname. . .
351 */
352 for (i = 0; i < sp->typecnt; ++i)
353 update_tzname_etc(sp, &sp->ttis[i]);
354
355 for (i = 0; i < sp->timecnt; ++i) {
356 const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
357 update_tzname_etc(sp, ttisp);
358 #ifdef USG_COMPAT
359 if (ttisp->tt_isdst)
360 daylight = 1;
361 #endif /* defined USG_COMPAT */
362 }
363 }
364
365 static bool
366 differ_by_repeat(const time_t t1, const time_t t0)
367 {
368 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
369 return 0;
370 return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
371 }
372
373 union input_buffer {
374 /* The first part of the buffer, interpreted as a header. */
375 struct tzhead tzhead;
376
377 /* The entire buffer. */
378 char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
379 + 4 * TZ_MAX_TIMES];
380 };
381
382 /* Local storage needed for 'tzloadbody'. */
383 union local_storage {
384 /* The file name to be opened. */
385 char fullname[FILENAME_MAX + 1];
386
387 /* The results of analyzing the file's contents after it is opened. */
388 struct {
389 /* The input buffer. */
390 union input_buffer u;
391
392 /* A temporary state used for parsing a TZ string in the file. */
393 struct state st;
394 } u;
395 };
396
397 /* Load tz data from the file named NAME into *SP. Read extended
398 format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
399 success, an errno value on failure. */
400 static int
401 tzloadbody(char const *name, struct state *sp, bool doextend,
402 union local_storage *lsp)
403 {
404 int i;
405 int fid;
406 int stored;
407 ssize_t nread;
408 bool doaccess;
409 char *fullname = lsp->fullname;
410 union input_buffer *up = &lsp->u.u;
411 size_t tzheadsize = sizeof(struct tzhead);
412
413 sp->goback = sp->goahead = false;
414
415 if (! name) {
416 name = TZDEFAULT;
417 if (! name)
418 return EINVAL;
419 }
420
421 if (name[0] == ':')
422 ++name;
423 doaccess = name[0] == '/';
424 if (!doaccess) {
425 char const *p = TZDIR;
426 if (! p)
427 return EINVAL;
428 if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
429 return ENAMETOOLONG;
430 strcpy(fullname, p);
431 strcat(fullname, "/");
432 strcat(fullname, name);
433 /* Set doaccess if '.' (as in "../") shows up in name. */
434 if (strchr(name, '.'))
435 doaccess = true;
436 name = fullname;
437 }
438 if (doaccess && access(name, R_OK) != 0)
439 return errno;
440
441 fid = open(name, OPEN_MODE);
442 if (fid < 0)
443 return errno;
444 nread = read(fid, up->buf, sizeof up->buf);
445 if (nread < (ssize_t)tzheadsize) {
446 int err = nread < 0 ? errno : EINVAL;
447 close(fid);
448 return err;
449 }
450 if (close(fid) < 0)
451 return errno;
452 for (stored = 4; stored <= 8; stored *= 2) {
453 int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
454 int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
455 int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
456 int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
457 int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
458 int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
459 char const *p = up->buf + tzheadsize;
460 if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
461 && 0 < typecnt && typecnt < TZ_MAX_TYPES
462 && 0 <= timecnt && timecnt < TZ_MAX_TIMES
463 && 0 <= charcnt && charcnt < TZ_MAX_CHARS
464 && (ttisstdcnt == typecnt || ttisstdcnt == 0)
465 && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
466 return EINVAL;
467 if ((size_t)nread
468 < (tzheadsize /* struct tzhead */
469 + timecnt * stored /* ats */
470 + timecnt /* types */
471 + typecnt * 6 /* ttinfos */
472 + charcnt /* chars */
473 + leapcnt * (stored + 4) /* lsinfos */
474 + ttisstdcnt /* ttisstds */
475 + ttisgmtcnt)) /* ttisgmts */
476 return EINVAL;
477 sp->leapcnt = leapcnt;
478 sp->timecnt = timecnt;
479 sp->typecnt = typecnt;
480 sp->charcnt = charcnt;
481
482 /* Read transitions, discarding those out of time_t range.
483 But pretend the last transition before time_t_min
484 occurred at time_t_min. */
485 timecnt = 0;
486 for (i = 0; i < sp->timecnt; ++i) {
487 int_fast64_t at
488 = stored == 4 ? detzcode(p) : detzcode64(p);
489 sp->types[i] = at <= time_t_max;
490 if (sp->types[i]) {
491 time_t attime
492 = ((TYPE_SIGNED(time_t) ?
493 at < time_t_min : at < 0)
494 ? time_t_min : (time_t)at);
495 if (timecnt && attime <= sp->ats[timecnt - 1]) {
496 if (attime < sp->ats[timecnt - 1])
497 return EINVAL;
498 sp->types[i - 1] = 0;
499 timecnt--;
500 }
501 sp->ats[timecnt++] = attime;
502 }
503 p += stored;
504 }
505
506 timecnt = 0;
507 for (i = 0; i < sp->timecnt; ++i) {
508 unsigned char typ = *p++;
509 if (sp->typecnt <= typ)
510 return EINVAL;
511 if (sp->types[i])
512 sp->types[timecnt++] = typ;
513 }
514 sp->timecnt = timecnt;
515 for (i = 0; i < sp->typecnt; ++i) {
516 struct ttinfo * ttisp;
517 unsigned char isdst, abbrind;
518
519 ttisp = &sp->ttis[i];
520 ttisp->tt_gmtoff = detzcode(p);
521 p += 4;
522 isdst = *p++;
523 if (! (isdst < 2))
524 return EINVAL;
525 ttisp->tt_isdst = isdst;
526 abbrind = *p++;
527 if (! (abbrind < sp->charcnt))
528 return EINVAL;
529 ttisp->tt_abbrind = abbrind;
530 }
531 for (i = 0; i < sp->charcnt; ++i)
532 sp->chars[i] = *p++;
533 sp->chars[i] = '\0'; /* ensure '\0' at end */
534
535 /* Read leap seconds, discarding those out of time_t range. */
536 leapcnt = 0;
537 for (i = 0; i < sp->leapcnt; ++i) {
538 int_fast64_t tr = stored == 4 ? detzcode(p) :
539 detzcode64(p);
540 int_fast32_t corr = detzcode(p + stored);
541 p += stored + 4;
542 if (tr <= time_t_max) {
543 time_t trans = ((TYPE_SIGNED(time_t) ?
544 tr < time_t_min : tr < 0)
545 ? time_t_min : (time_t)tr);
546 if (leapcnt && trans <=
547 sp->lsis[leapcnt - 1].ls_trans) {
548 if (trans <
549 sp->lsis[leapcnt - 1].ls_trans)
550 return EINVAL;
551 leapcnt--;
552 }
553 sp->lsis[leapcnt].ls_trans = trans;
554 sp->lsis[leapcnt].ls_corr = corr;
555 leapcnt++;
556 }
557 }
558 sp->leapcnt = leapcnt;
559
560 for (i = 0; i < sp->typecnt; ++i) {
561 struct ttinfo * ttisp;
562
563 ttisp = &sp->ttis[i];
564 if (ttisstdcnt == 0)
565 ttisp->tt_ttisstd = false;
566 else {
567 if (*p != true && *p != false)
568 return EINVAL;
569 ttisp->tt_ttisstd = *p++;
570 }
571 }
572 for (i = 0; i < sp->typecnt; ++i) {
573 struct ttinfo * ttisp;
574
575 ttisp = &sp->ttis[i];
576 if (ttisgmtcnt == 0)
577 ttisp->tt_ttisgmt = false;
578 else {
579 if (*p != true && *p != false)
580 return EINVAL;
581 ttisp->tt_ttisgmt = *p++;
582 }
583 }
584 /*
585 ** If this is an old file, we're done.
586 */
587 if (up->tzhead.tzh_version[0] == '\0')
588 break;
589 nread -= p - up->buf;
590 memmove(up->buf, p, (size_t)nread);
591 /*
592 ** If this is a signed narrow time_t system, we're done.
593 */
594 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
595 break;
596 }
597 if (doextend && nread > 2 &&
598 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
599 sp->typecnt + 2 <= TZ_MAX_TYPES) {
600 struct state *ts = &lsp->u.st;
601
602 up->buf[nread - 1] = '\0';
603 if (tzparse(&up->buf[1], ts, false)
604 && ts->typecnt == 2
605 && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
606 for (i = 0; i < 2; ++i)
607 ts->ttis[i].tt_abbrind +=
608 sp->charcnt;
609 for (i = 0; i < ts->charcnt; ++i)
610 sp->chars[sp->charcnt++] =
611 ts->chars[i];
612 i = 0;
613 while (i < ts->timecnt &&
614 ts->ats[i] <=
615 sp->ats[sp->timecnt - 1])
616 ++i;
617 while (i < ts->timecnt &&
618 sp->timecnt < TZ_MAX_TIMES) {
619 sp->ats[sp->timecnt] =
620 ts->ats[i];
621 sp->types[sp->timecnt] =
622 sp->typecnt +
623 ts->types[i];
624 ++sp->timecnt;
625 ++i;
626 }
627 sp->ttis[sp->typecnt++] = ts->ttis[0];
628 sp->ttis[sp->typecnt++] = ts->ttis[1];
629 }
630 }
631 if (sp->timecnt > 1) {
632 for (i = 1; i < sp->timecnt; ++i)
633 if (typesequiv(sp, sp->types[i], sp->types[0]) &&
634 differ_by_repeat(sp->ats[i], sp->ats[0])) {
635 sp->goback = true;
636 break;
637 }
638 for (i = sp->timecnt - 2; i >= 0; --i)
639 if (typesequiv(sp, sp->types[sp->timecnt - 1],
640 sp->types[i]) &&
641 differ_by_repeat(sp->ats[sp->timecnt - 1],
642 sp->ats[i])) {
643 sp->goahead = true;
644 break;
645 }
646 }
647 /*
648 ** If type 0 is is unused in transitions,
649 ** it's the type to use for early times.
650 */
651 for (i = 0; i < sp->timecnt; ++i)
652 if (sp->types[i] == 0)
653 break;
654 i = i < sp->timecnt ? -1 : 0;
655 /*
656 ** Absent the above,
657 ** if there are transition times
658 ** and the first transition is to a daylight time
659 ** find the standard type less than and closest to
660 ** the type of the first transition.
661 */
662 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
663 i = sp->types[0];
664 while (--i >= 0)
665 if (!sp->ttis[i].tt_isdst)
666 break;
667 }
668 /*
669 ** If no result yet, find the first standard type.
670 ** If there is none, punt to type zero.
671 */
672 if (i < 0) {
673 i = 0;
674 while (sp->ttis[i].tt_isdst)
675 if (++i >= sp->typecnt) {
676 i = 0;
677 break;
678 }
679 }
680 sp->defaulttype = i;
681 return 0;
682 }
683
684 /* Load tz data from the file named NAME into *SP. Read extended
685 format if DOEXTEND. Return 0 on success, an errno value on failure. */
686 static int
687 tzload(char const *name, struct state *sp, bool doextend)
688 {
689 union local_storage *lsp = malloc(sizeof *lsp);
690 if (!lsp)
691 return errno;
692 else {
693 int err = tzloadbody(name, sp, doextend, lsp);
694 free(lsp);
695 return err;
696 }
697 }
698
699 static bool
700 typesequiv(const struct state *sp, int a, int b)
701 {
702 bool result;
703
704 if (sp == NULL ||
705 a < 0 || a >= sp->typecnt ||
706 b < 0 || b >= sp->typecnt)
707 result = false;
708 else {
709 const struct ttinfo * ap = &sp->ttis[a];
710 const struct ttinfo * bp = &sp->ttis[b];
711 result = ap->tt_gmtoff == bp->tt_gmtoff &&
712 ap->tt_isdst == bp->tt_isdst &&
713 ap->tt_ttisstd == bp->tt_ttisstd &&
714 ap->tt_ttisgmt == bp->tt_ttisgmt &&
715 strcmp(&sp->chars[ap->tt_abbrind],
716 &sp->chars[bp->tt_abbrind]) == 0;
717 }
718 return result;
719 }
720
721 static const int mon_lengths[2][MONSPERYEAR] = {
722 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
723 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
724 };
725
726 static const int year_lengths[2] = {
727 DAYSPERNYEAR, DAYSPERLYEAR
728 };
729
730 /*
731 ** Given a pointer into a time zone string, scan until a character that is not
732 ** a valid character in a zone name is found. Return a pointer to that
733 ** character.
734 */
735
736 static const char * ATTRIBUTE_PURE
737 getzname(const char *strp)
738 {
739 char c;
740
741 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
742 c != '+')
743 ++strp;
744 return strp;
745 }
746
747 /*
748 ** Given a pointer into an extended time zone string, scan until the ending
749 ** delimiter of the zone name is located. Return a pointer to the delimiter.
750 **
751 ** As with getzname above, the legal character set is actually quite
752 ** restricted, with other characters producing undefined results.
753 ** We don't do any checking here; checking is done later in common-case code.
754 */
755
756 static const char * ATTRIBUTE_PURE
757 getqzname(const char *strp, const int delim)
758 {
759 int c;
760
761 while ((c = *strp) != '\0' && c != delim)
762 ++strp;
763 return strp;
764 }
765
766 /*
767 ** Given a pointer into a time zone string, extract a number from that string.
768 ** Check that the number is within a specified range; if it is not, return
769 ** NULL.
770 ** Otherwise, return a pointer to the first character not part of the number.
771 */
772
773 static const char *
774 getnum(const char *strp, int *const nump, const int min, const int max)
775 {
776 char c;
777 int num;
778
779 if (strp == NULL || !is_digit(c = *strp)) {
780 errno = EINVAL;
781 return NULL;
782 }
783 num = 0;
784 do {
785 num = num * 10 + (c - '0');
786 if (num > max) {
787 errno = EOVERFLOW;
788 return NULL; /* illegal value */
789 }
790 c = *++strp;
791 } while (is_digit(c));
792 if (num < min) {
793 errno = EINVAL;
794 return NULL; /* illegal value */
795 }
796 *nump = num;
797 return strp;
798 }
799
800 /*
801 ** Given a pointer into a time zone string, extract a number of seconds,
802 ** in hh[:mm[:ss]] form, from the string.
803 ** If any error occurs, return NULL.
804 ** Otherwise, return a pointer to the first character not part of the number
805 ** of seconds.
806 */
807
808 static const char *
809 getsecs(const char *strp, int_fast32_t *const secsp)
810 {
811 int num;
812
813 /*
814 ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
815 ** "M10.4.6/26", which does not conform to Posix,
816 ** but which specifies the equivalent of
817 ** "02:00 on the first Sunday on or after 23 Oct".
818 */
819 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
820 if (strp == NULL)
821 return NULL;
822 *secsp = num * (int_fast32_t) SECSPERHOUR;
823 if (*strp == ':') {
824 ++strp;
825 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
826 if (strp == NULL)
827 return NULL;
828 *secsp += num * SECSPERMIN;
829 if (*strp == ':') {
830 ++strp;
831 /* 'SECSPERMIN' allows for leap seconds. */
832 strp = getnum(strp, &num, 0, SECSPERMIN);
833 if (strp == NULL)
834 return NULL;
835 *secsp += num;
836 }
837 }
838 return strp;
839 }
840
841 /*
842 ** Given a pointer into a time zone string, extract an offset, in
843 ** [+-]hh[:mm[:ss]] form, from the string.
844 ** If any error occurs, return NULL.
845 ** Otherwise, return a pointer to the first character not part of the time.
846 */
847
848 static const char *
849 getoffset(const char *strp, int_fast32_t *const offsetp)
850 {
851 bool neg = false;
852
853 if (*strp == '-') {
854 neg = true;
855 ++strp;
856 } else if (*strp == '+')
857 ++strp;
858 strp = getsecs(strp, offsetp);
859 if (strp == NULL)
860 return NULL; /* illegal time */
861 if (neg)
862 *offsetp = -*offsetp;
863 return strp;
864 }
865
866 /*
867 ** Given a pointer into a time zone string, extract a rule in the form
868 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
869 ** If a valid rule is not found, return NULL.
870 ** Otherwise, return a pointer to the first character not part of the rule.
871 */
872
873 static const char *
874 getrule(const char *strp, struct rule *const rulep)
875 {
876 if (*strp == 'J') {
877 /*
878 ** Julian day.
879 */
880 rulep->r_type = JULIAN_DAY;
881 ++strp;
882 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
883 } else if (*strp == 'M') {
884 /*
885 ** Month, week, day.
886 */
887 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
888 ++strp;
889 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
890 if (strp == NULL)
891 return NULL;
892 if (*strp++ != '.')
893 return NULL;
894 strp = getnum(strp, &rulep->r_week, 1, 5);
895 if (strp == NULL)
896 return NULL;
897 if (*strp++ != '.')
898 return NULL;
899 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
900 } else if (is_digit(*strp)) {
901 /*
902 ** Day of year.
903 */
904 rulep->r_type = DAY_OF_YEAR;
905 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
906 } else return NULL; /* invalid format */
907 if (strp == NULL)
908 return NULL;
909 if (*strp == '/') {
910 /*
911 ** Time specified.
912 */
913 ++strp;
914 strp = getoffset(strp, &rulep->r_time);
915 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
916 return strp;
917 }
918
919 /*
920 ** Given a year, a rule, and the offset from UT at the time that rule takes
921 ** effect, calculate the year-relative time that rule takes effect.
922 */
923
924 static int_fast32_t ATTRIBUTE_PURE
925 transtime(const int year, const struct rule *const rulep,
926 const int_fast32_t offset)
927 {
928 bool leapyear;
929 int_fast32_t value;
930 int i;
931 int d, m1, yy0, yy1, yy2, dow;
932
933 INITIALIZE(value);
934 leapyear = isleap(year);
935 switch (rulep->r_type) {
936
937 case JULIAN_DAY:
938 /*
939 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
940 ** years.
941 ** In non-leap years, or if the day number is 59 or less, just
942 ** add SECSPERDAY times the day number-1 to the time of
943 ** January 1, midnight, to get the day.
944 */
945 value = (rulep->r_day - 1) * SECSPERDAY;
946 if (leapyear && rulep->r_day >= 60)
947 value += SECSPERDAY;
948 break;
949
950 case DAY_OF_YEAR:
951 /*
952 ** n - day of year.
953 ** Just add SECSPERDAY times the day number to the time of
954 ** January 1, midnight, to get the day.
955 */
956 value = rulep->r_day * SECSPERDAY;
957 break;
958
959 case MONTH_NTH_DAY_OF_WEEK:
960 /*
961 ** Mm.n.d - nth "dth day" of month m.
962 */
963
964 /*
965 ** Use Zeller's Congruence to get day-of-week of first day of
966 ** month.
967 */
968 m1 = (rulep->r_mon + 9) % 12 + 1;
969 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
970 yy1 = yy0 / 100;
971 yy2 = yy0 % 100;
972 dow = ((26 * m1 - 2) / 10 +
973 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
974 if (dow < 0)
975 dow += DAYSPERWEEK;
976
977 /*
978 ** "dow" is the day-of-week of the first day of the month. Get
979 ** the day-of-month (zero-origin) of the first "dow" day of the
980 ** month.
981 */
982 d = rulep->r_day - dow;
983 if (d < 0)
984 d += DAYSPERWEEK;
985 for (i = 1; i < rulep->r_week; ++i) {
986 if (d + DAYSPERWEEK >=
987 mon_lengths[leapyear][rulep->r_mon - 1])
988 break;
989 d += DAYSPERWEEK;
990 }
991
992 /*
993 ** "d" is the day-of-month (zero-origin) of the day we want.
994 */
995 value = d * SECSPERDAY;
996 for (i = 0; i < rulep->r_mon - 1; ++i)
997 value += mon_lengths[leapyear][i] * SECSPERDAY;
998 break;
999 }
1000
1001 /*
1002 ** "value" is the year-relative time of 00:00:00 UT on the day in
1003 ** question. To get the year-relative time of the specified local
1004 ** time on that day, add the transition time and the current offset
1005 ** from UT.
1006 */
1007 return value + rulep->r_time + offset;
1008 }
1009
1010 /*
1011 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
1012 ** appropriate.
1013 */
1014
1015 static bool
1016 tzparse(const char *name, struct state *sp, bool lastditch)
1017 {
1018 const char * stdname;
1019 const char * dstname;
1020 size_t stdlen;
1021 size_t dstlen;
1022 size_t charcnt;
1023 int_fast32_t stdoffset;
1024 int_fast32_t dstoffset;
1025 char * cp;
1026 bool load_ok;
1027
1028 dstname = NULL; /* XXX gcc */
1029 stdname = name;
1030 if (lastditch) {
1031 stdlen = sizeof gmt - 1;
1032 name += stdlen;
1033 stdoffset = 0;
1034 } else {
1035 if (*name == '<') {
1036 name++;
1037 stdname = name;
1038 name = getqzname(name, '>');
1039 if (*name != '>')
1040 return false;
1041 stdlen = name - stdname;
1042 name++;
1043 } else {
1044 name = getzname(name);
1045 stdlen = name - stdname;
1046 }
1047 if (!stdlen)
1048 return false;
1049 name = getoffset(name, &stdoffset);
1050 if (name == NULL)
1051 return false;
1052 }
1053 charcnt = stdlen + 1;
1054 if (sizeof sp->chars < charcnt)
1055 return false;
1056 load_ok = tzload(TZDEFRULES, sp, false) == 0;
1057 if (!load_ok)
1058 sp->leapcnt = 0; /* so, we're off a little */
1059 if (*name != '\0') {
1060 if (*name == '<') {
1061 dstname = ++name;
1062 name = getqzname(name, '>');
1063 if (*name != '>')
1064 return false;
1065 dstlen = name - dstname;
1066 name++;
1067 } else {
1068 dstname = name;
1069 name = getzname(name);
1070 dstlen = name - dstname; /* length of DST zone name */
1071 }
1072 if (!dstlen)
1073 return false;
1074 charcnt += dstlen + 1;
1075 if (sizeof sp->chars < charcnt)
1076 return false;
1077 if (*name != '\0' && *name != ',' && *name != ';') {
1078 name = getoffset(name, &dstoffset);
1079 if (name == NULL)
1080 return false;
1081 } else dstoffset = stdoffset - SECSPERHOUR;
1082 if (*name == '\0' && !load_ok)
1083 name = TZDEFRULESTRING;
1084 if (*name == ',' || *name == ';') {
1085 struct rule start;
1086 struct rule end;
1087 int year;
1088 int yearlim;
1089 int timecnt;
1090 time_t janfirst;
1091
1092 ++name;
1093 if ((name = getrule(name, &start)) == NULL)
1094 return false;
1095 if (*name++ != ',')
1096 return false;
1097 if ((name = getrule(name, &end)) == NULL)
1098 return false;
1099 if (*name != '\0')
1100 return false;
1101 sp->typecnt = 2; /* standard time and DST */
1102 /*
1103 ** Two transitions per year, from EPOCH_YEAR forward.
1104 */
1105 init_ttinfo(&sp->ttis[0], -dstoffset, true,
1106 (int)(stdlen + 1));
1107 init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
1108 sp->defaulttype = 0;
1109 timecnt = 0;
1110 janfirst = 0;
1111 yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1112 for (year = EPOCH_YEAR; year < yearlim; year++) {
1113 int_fast32_t
1114 starttime = transtime(year, &start, stdoffset),
1115 endtime = transtime(year, &end, dstoffset);
1116 int_fast32_t
1117 yearsecs = (year_lengths[isleap(year)]
1118 * SECSPERDAY);
1119 bool reversed = endtime < starttime;
1120 if (reversed) {
1121 int_fast32_t swap = starttime;
1122 starttime = endtime;
1123 endtime = swap;
1124 }
1125 if (reversed
1126 || (starttime < endtime
1127 && (endtime - starttime
1128 < (yearsecs
1129 + (stdoffset - dstoffset))))) {
1130 if (TZ_MAX_TIMES - 2 < timecnt)
1131 break;
1132 yearlim = year + YEARSPERREPEAT + 1;
1133 sp->ats[timecnt] = janfirst;
1134 if (increment_overflow_time
1135 (&sp->ats[timecnt], starttime))
1136 break;
1137 sp->types[timecnt++] = reversed;
1138 sp->ats[timecnt] = janfirst;
1139 if (increment_overflow_time
1140 (&sp->ats[timecnt], endtime))
1141 break;
1142 sp->types[timecnt++] = !reversed;
1143 }
1144 if (increment_overflow_time(&janfirst, yearsecs))
1145 break;
1146 }
1147 sp->timecnt = timecnt;
1148 if (!timecnt)
1149 sp->typecnt = 1; /* Perpetual DST. */
1150 } else {
1151 int_fast32_t theirstdoffset;
1152 int_fast32_t theirdstoffset;
1153 int_fast32_t theiroffset;
1154 bool isdst;
1155 int i;
1156 int j;
1157
1158 if (*name != '\0')
1159 return false;
1160 /*
1161 ** Initial values of theirstdoffset and theirdstoffset.
1162 */
1163 theirstdoffset = 0;
1164 for (i = 0; i < sp->timecnt; ++i) {
1165 j = sp->types[i];
1166 if (!sp->ttis[j].tt_isdst) {
1167 theirstdoffset =
1168 -sp->ttis[j].tt_gmtoff;
1169 break;
1170 }
1171 }
1172 theirdstoffset = 0;
1173 for (i = 0; i < sp->timecnt; ++i) {
1174 j = sp->types[i];
1175 if (sp->ttis[j].tt_isdst) {
1176 theirdstoffset =
1177 -sp->ttis[j].tt_gmtoff;
1178 break;
1179 }
1180 }
1181 /*
1182 ** Initially we're assumed to be in standard time.
1183 */
1184 isdst = false;
1185 theiroffset = theirstdoffset;
1186 /*
1187 ** Now juggle transition times and types
1188 ** tracking offsets as you do.
1189 */
1190 for (i = 0; i < sp->timecnt; ++i) {
1191 j = sp->types[i];
1192 sp->types[i] = sp->ttis[j].tt_isdst;
1193 if (sp->ttis[j].tt_ttisgmt) {
1194 /* No adjustment to transition time */
1195 } else {
1196 /*
1197 ** If summer time is in effect, and the
1198 ** transition time was not specified as
1199 ** standard time, add the summer time
1200 ** offset to the transition time;
1201 ** otherwise, add the standard time
1202 ** offset to the transition time.
1203 */
1204 /*
1205 ** Transitions from DST to DDST
1206 ** will effectively disappear since
1207 ** POSIX provides for only one DST
1208 ** offset.
1209 */
1210 if (isdst && !sp->ttis[j].tt_ttisstd) {
1211 sp->ats[i] += (time_t)
1212 (dstoffset - theirdstoffset);
1213 } else {
1214 sp->ats[i] += (time_t)
1215 (stdoffset - theirstdoffset);
1216 }
1217 }
1218 theiroffset = -sp->ttis[j].tt_gmtoff;
1219 if (sp->ttis[j].tt_isdst)
1220 theirstdoffset = theiroffset;
1221 else theirdstoffset = theiroffset;
1222 }
1223 /*
1224 ** Finally, fill in ttis.
1225 */
1226 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1227 init_ttinfo(&sp->ttis[1], -dstoffset, true,
1228 (int)(stdlen + 1));
1229 sp->typecnt = 2;
1230 sp->defaulttype = 0;
1231 }
1232 } else {
1233 dstlen = 0;
1234 sp->typecnt = 1; /* only standard time */
1235 sp->timecnt = 0;
1236 init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1237 init_ttinfo(&sp->ttis[1], 0, false, 0);
1238 sp->defaulttype = 0;
1239 }
1240 sp->charcnt = charcnt;
1241 cp = sp->chars;
1242 (void) memcpy(cp, stdname, stdlen);
1243 cp += stdlen;
1244 *cp++ = '\0';
1245 if (dstlen != 0) {
1246 (void) memcpy(cp, dstname, dstlen);
1247 *(cp + dstlen) = '\0';
1248 }
1249 return true;
1250 }
1251
1252 static void
1253 gmtload(struct state *const sp)
1254 {
1255 if (tzload(gmt, sp, true) != 0)
1256 (void) tzparse(gmt, sp, true);
1257 }
1258
1259 static int
1260 zoneinit(struct state *sp, char const *name)
1261 {
1262 if (name && ! name[0]) {
1263 /*
1264 ** User wants it fast rather than right.
1265 */
1266 sp->leapcnt = 0; /* so, we're off a little */
1267 sp->timecnt = 0;
1268 sp->typecnt = 0;
1269 sp->charcnt = 0;
1270 sp->goback = sp->goahead = false;
1271 init_ttinfo(&sp->ttis[0], 0, false, 0);
1272 strcpy(sp->chars, gmt);
1273 sp->defaulttype = 0;
1274 return 0;
1275 } else {
1276 int err = tzload(name, sp, true);
1277 if (err != 0 && name && name[0] != ':' &&
1278 tzparse(name, sp, false))
1279 err = 0;
1280 if (err == 0)
1281 scrub_abbrs(sp);
1282 return err;
1283 }
1284 }
1285
1286 static void
1287 tzsetlcl(char const *name)
1288 {
1289 struct state *sp = lclptr;
1290 int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1291 if (lcl < 0 ? lcl_is_set < 0
1292 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1293 return;
1294
1295 if (! sp)
1296 lclptr = sp = malloc(sizeof *lclptr);
1297 if (sp) {
1298 if (zoneinit(sp, name) != 0)
1299 zoneinit(sp, "");
1300 if (0 < lcl)
1301 strcpy(lcl_TZname, name);
1302 }
1303 settzname();
1304 lcl_is_set = lcl;
1305 }
1306
1307 #ifdef STD_INSPIRED
1308 void
1309 tzsetwall(void)
1310 {
1311 rwlock_wrlock(&lcl_lock);
1312 tzsetlcl(NULL);
1313 rwlock_unlock(&lcl_lock);
1314 }
1315 #endif
1316
1317 static void
1318 tzset_unlocked(void)
1319 {
1320 tzsetlcl(getenv("TZ"));
1321 }
1322
1323 void
1324 tzset(void)
1325 {
1326 rwlock_wrlock(&lcl_lock);
1327 tzset_unlocked();
1328 rwlock_unlock(&lcl_lock);
1329 }
1330
1331 static void
1332 gmtcheck(void)
1333 {
1334 static bool gmt_is_set;
1335 rwlock_wrlock(&lcl_lock);
1336 if (! gmt_is_set) {
1337 gmtptr = malloc(sizeof *gmtptr);
1338 if (gmtptr)
1339 gmtload(gmtptr);
1340 gmt_is_set = true;
1341 }
1342 rwlock_unlock(&lcl_lock);
1343 }
1344
1345 #if NETBSD_INSPIRED
1346
1347 timezone_t
1348 tzalloc(const char *name)
1349 {
1350 timezone_t sp = malloc(sizeof *sp);
1351 if (sp) {
1352 int err = zoneinit(sp, name);
1353 if (err != 0) {
1354 free(sp);
1355 errno = err;
1356 return NULL;
1357 }
1358 }
1359 return sp;
1360 }
1361
1362 void
1363 tzfree(timezone_t sp)
1364 {
1365 free(sp);
1366 }
1367
1368 /*
1369 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1370 ** ctime_r are obsolescent and have potential security problems that
1371 ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1372 **
1373 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1374 ** in zones with three or more time zone abbreviations.
1375 ** Callers can instead use localtime_rz + strftime.
1376 */
1377
1378 #endif
1379
1380 /*
1381 ** The easy way to behave "as if no library function calls" localtime
1382 ** is to not call it, so we drop its guts into "localsub", which can be
1383 ** freely called. (And no, the PANS doesn't require the above behavior,
1384 ** but it *is* desirable.)
1385 **
1386 ** If successful and SETNAME is nonzero,
1387 ** set the applicable parts of tzname, timezone and altzone;
1388 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
1389 ** since in that case tzset should have already done this step correctly.
1390 ** SETNAME's type is intfast32_t for compatibility with gmtsub,
1391 ** but it is actually a boolean and its value should be 0 or 1.
1392 */
1393
1394 /*ARGSUSED*/
1395 static struct tm *
1396 localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
1397 struct tm *const tmp)
1398 {
1399 const struct ttinfo * ttisp;
1400 int i;
1401 struct tm * result;
1402 const time_t t = *timep;
1403
1404 if (sp == NULL) {
1405 /* Don't bother to set tzname etc.; tzset has already done it. */
1406 return gmtsub(gmtptr, timep, 0, tmp);
1407 }
1408 if ((sp->goback && t < sp->ats[0]) ||
1409 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1410 time_t newt = t;
1411 time_t seconds;
1412 time_t years;
1413
1414 if (t < sp->ats[0])
1415 seconds = sp->ats[0] - t;
1416 else seconds = t - sp->ats[sp->timecnt - 1];
1417 --seconds;
1418 years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
1419 seconds = (time_t)(years * AVGSECSPERYEAR);
1420 if (t < sp->ats[0])
1421 newt += seconds;
1422 else newt -= seconds;
1423 if (newt < sp->ats[0] ||
1424 newt > sp->ats[sp->timecnt - 1]) {
1425 errno = EINVAL;
1426 return NULL; /* "cannot happen" */
1427 }
1428 result = localsub(sp, &newt, setname, tmp);
1429 if (result) {
1430 int_fast64_t newy;
1431
1432 newy = result->tm_year;
1433 if (t < sp->ats[0])
1434 newy -= years;
1435 else newy += years;
1436 if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1437 errno = EOVERFLOW;
1438 return NULL;
1439 }
1440 result->tm_year = (int)newy;
1441 }
1442 return result;
1443 }
1444 if (sp->timecnt == 0 || t < sp->ats[0]) {
1445 i = sp->defaulttype;
1446 } else {
1447 int lo = 1;
1448 int hi = sp->timecnt;
1449
1450 while (lo < hi) {
1451 int mid = (lo + hi) / 2;
1452
1453 if (t < sp->ats[mid])
1454 hi = mid;
1455 else lo = mid + 1;
1456 }
1457 i = (int) sp->types[lo - 1];
1458 }
1459 ttisp = &sp->ttis[i];
1460 /*
1461 ** To get (wrong) behavior that's compatible with System V Release 2.0
1462 ** you'd replace the statement below with
1463 ** t += ttisp->tt_gmtoff;
1464 ** timesub(&t, 0L, sp, tmp);
1465 */
1466 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1467 if (result) {
1468 result->tm_isdst = ttisp->tt_isdst;
1469 #ifdef TM_ZONE
1470 result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
1471 #endif /* defined TM_ZONE */
1472 if (setname)
1473 update_tzname_etc(sp, ttisp);
1474 }
1475 return result;
1476 }
1477
1478 #if NETBSD_INSPIRED
1479
1480 struct tm *
1481 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
1482 {
1483 return localsub(sp, timep, 0, tmp);
1484 }
1485
1486 #endif
1487
1488 static struct tm *
1489 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1490 {
1491 rwlock_wrlock(&lcl_lock);
1492 if (setname || !lcl_is_set)
1493 tzset_unlocked();
1494 tmp = localsub(lclptr, timep, setname, tmp);
1495 rwlock_unlock(&lcl_lock);
1496 return tmp;
1497 }
1498
1499 struct tm *
1500 localtime(const time_t *timep)
1501 {
1502 return localtime_tzset(timep, &tm, true);
1503 }
1504
1505 struct tm *
1506 localtime_r(const time_t * __restrict timep, struct tm *tmp)
1507 {
1508 return localtime_tzset(timep, tmp, false);
1509 }
1510
1511 /*
1512 ** gmtsub is to gmtime as localsub is to localtime.
1513 */
1514
1515 static struct tm *
1516 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
1517 struct tm *tmp)
1518 {
1519 struct tm * result;
1520
1521 result = timesub(timep, offset, gmtptr, tmp);
1522 #ifdef TM_ZONE
1523 /*
1524 ** Could get fancy here and deliver something such as
1525 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1526 ** but this is no time for a treasure hunt.
1527 */
1528 if (result)
1529 result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1530 gmtptr->chars : __UNCONST(gmt);
1531 #endif /* defined TM_ZONE */
1532 return result;
1533 }
1534
1535
1536 /*
1537 ** Re-entrant version of gmtime.
1538 */
1539
1540 struct tm *
1541 gmtime_r(const time_t *timep, struct tm *tmp)
1542 {
1543 gmtcheck();
1544 return gmtsub(NULL, timep, 0, tmp);
1545 }
1546
1547 struct tm *
1548 gmtime(const time_t *timep)
1549 {
1550 return gmtime_r(timep, &tm);
1551 }
1552 #ifdef STD_INSPIRED
1553
1554 struct tm *
1555 offtime(const time_t *timep, long offset)
1556 {
1557 gmtcheck();
1558 return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1559 }
1560
1561 struct tm *
1562 offtime_r(const time_t *timep, long offset, struct tm *tmp)
1563 {
1564 gmtcheck();
1565 return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1566 }
1567
1568 #endif /* defined STD_INSPIRED */
1569
1570 /*
1571 ** Return the number of leap years through the end of the given year
1572 ** where, to make the math easy, the answer for year zero is defined as zero.
1573 */
1574
1575 static int ATTRIBUTE_PURE
1576 leaps_thru_end_of(const int y)
1577 {
1578 return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1579 -(leaps_thru_end_of(-(y + 1)) + 1);
1580 }
1581
1582 static struct tm *
1583 timesub(const time_t *timep, int_fast32_t offset,
1584 const struct state const *sp, struct tm *tmp)
1585 {
1586 const struct lsinfo * lp;
1587 time_t tdays;
1588 int idays; /* unsigned would be so 2003 */
1589 int_fast64_t rem;
1590 int y;
1591 const int * ip;
1592 int_fast64_t corr;
1593 bool hit;
1594 int i;
1595
1596 corr = 0;
1597 hit = false;
1598 i = (sp == NULL) ? 0 : sp->leapcnt;
1599 while (--i >= 0) {
1600 lp = &sp->lsis[i];
1601 if (*timep >= lp->ls_trans) {
1602 if (*timep == lp->ls_trans) {
1603 hit = ((i == 0 && lp->ls_corr > 0) ||
1604 lp->ls_corr > sp->lsis[i - 1].ls_corr);
1605 if (hit)
1606 while (i > 0 &&
1607 sp->lsis[i].ls_trans ==
1608 sp->lsis[i - 1].ls_trans + 1 &&
1609 sp->lsis[i].ls_corr ==
1610 sp->lsis[i - 1].ls_corr + 1) {
1611 ++hit;
1612 --i;
1613 }
1614 }
1615 corr = lp->ls_corr;
1616 break;
1617 }
1618 }
1619 y = EPOCH_YEAR;
1620 tdays = (time_t)(*timep / SECSPERDAY);
1621 rem = *timep % SECSPERDAY;
1622 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1623 int newy;
1624 time_t tdelta;
1625 int idelta;
1626 int leapdays;
1627
1628 tdelta = tdays / DAYSPERLYEAR;
1629 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1630 && tdelta <= INT_MAX))
1631 goto out_of_range;
1632 _DIAGASSERT(__type_fit(int, tdelta));
1633 idelta = (int)tdelta;
1634 if (idelta == 0)
1635 idelta = (tdays < 0) ? -1 : 1;
1636 newy = y;
1637 if (increment_overflow(&newy, idelta))
1638 goto out_of_range;
1639 leapdays = leaps_thru_end_of(newy - 1) -
1640 leaps_thru_end_of(y - 1);
1641 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1642 tdays -= leapdays;
1643 y = newy;
1644 }
1645 /*
1646 ** Given the range, we can now fearlessly cast...
1647 */
1648 idays = (int) tdays;
1649 rem += offset - corr;
1650 while (rem < 0) {
1651 rem += SECSPERDAY;
1652 --idays;
1653 }
1654 while (rem >= SECSPERDAY) {
1655 rem -= SECSPERDAY;
1656 ++idays;
1657 }
1658 while (idays < 0) {
1659 if (increment_overflow(&y, -1))
1660 goto out_of_range;
1661 idays += year_lengths[isleap(y)];
1662 }
1663 while (idays >= year_lengths[isleap(y)]) {
1664 idays -= year_lengths[isleap(y)];
1665 if (increment_overflow(&y, 1))
1666 goto out_of_range;
1667 }
1668 tmp->tm_year = y;
1669 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1670 goto out_of_range;
1671 tmp->tm_yday = idays;
1672 /*
1673 ** The "extra" mods below avoid overflow problems.
1674 */
1675 tmp->tm_wday = EPOCH_WDAY +
1676 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1677 (DAYSPERNYEAR % DAYSPERWEEK) +
1678 leaps_thru_end_of(y - 1) -
1679 leaps_thru_end_of(EPOCH_YEAR - 1) +
1680 idays;
1681 tmp->tm_wday %= DAYSPERWEEK;
1682 if (tmp->tm_wday < 0)
1683 tmp->tm_wday += DAYSPERWEEK;
1684 tmp->tm_hour = (int) (rem / SECSPERHOUR);
1685 rem %= SECSPERHOUR;
1686 tmp->tm_min = (int) (rem / SECSPERMIN);
1687 /*
1688 ** A positive leap second requires a special
1689 ** representation. This uses "... ??:59:60" et seq.
1690 */
1691 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1692 ip = mon_lengths[isleap(y)];
1693 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1694 idays -= ip[tmp->tm_mon];
1695 tmp->tm_mday = (int) (idays + 1);
1696 tmp->tm_isdst = 0;
1697 #ifdef TM_GMTOFF
1698 tmp->TM_GMTOFF = offset;
1699 #endif /* defined TM_GMTOFF */
1700 return tmp;
1701 out_of_range:
1702 errno = EOVERFLOW;
1703 return NULL;
1704 }
1705
1706 char *
1707 ctime(const time_t *timep)
1708 {
1709 /*
1710 ** Section 4.12.3.2 of X3.159-1989 requires that
1711 ** The ctime function converts the calendar time pointed to by timer
1712 ** to local time in the form of a string. It is equivalent to
1713 ** asctime(localtime(timer))
1714 */
1715 struct tm *tmp = localtime(timep);
1716 return tmp ? asctime(tmp) : NULL;
1717 }
1718
1719 char *
1720 ctime_r(const time_t *timep, char *buf)
1721 {
1722 struct tm mytm;
1723 struct tm *tmp = localtime_r(timep, &mytm);
1724 return tmp ? asctime_r(tmp, buf) : NULL;
1725 }
1726
1727 char *
1728 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
1729 {
1730 struct tm mytm, *rtm;
1731
1732 rtm = localtime_rz(sp, timep, &mytm);
1733 if (rtm == NULL)
1734 return NULL;
1735 return asctime_r(rtm, buf);
1736 }
1737
1738 /*
1739 ** Adapted from code provided by Robert Elz, who writes:
1740 ** The "best" way to do mktime I think is based on an idea of Bob
1741 ** Kridle's (so its said...) from a long time ago.
1742 ** It does a binary search of the time_t space. Since time_t's are
1743 ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1744 ** would still be very reasonable).
1745 */
1746
1747 #ifndef WRONG
1748 #define WRONG ((time_t)-1)
1749 #endif /* !defined WRONG */
1750
1751 /*
1752 ** Normalize logic courtesy Paul Eggert.
1753 */
1754
1755 static bool
1756 increment_overflow(int *ip, int j)
1757 {
1758 int const i = *ip;
1759
1760 /*
1761 ** If i >= 0 there can only be overflow if i + j > INT_MAX
1762 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1763 ** If i < 0 there can only be overflow if i + j < INT_MIN
1764 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1765 */
1766 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1767 return true;
1768 *ip += j;
1769 return false;
1770 }
1771
1772 static bool
1773 increment_overflow32(int_fast32_t *const lp, int const m)
1774 {
1775 int_fast32_t const l = *lp;
1776
1777 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1778 return true;
1779 *lp += m;
1780 return false;
1781 }
1782
1783 static bool
1784 increment_overflow_time(time_t *tp, int_fast32_t j)
1785 {
1786 /*
1787 ** This is like
1788 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1789 ** except that it does the right thing even if *tp + j would overflow.
1790 */
1791 if (! (j < 0
1792 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1793 : *tp <= time_t_max - j))
1794 return true;
1795 *tp += j;
1796 return false;
1797 }
1798
1799 static bool
1800 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1801 {
1802 int tensdelta;
1803
1804 tensdelta = (*unitsptr >= 0) ?
1805 (*unitsptr / base) :
1806 (-1 - (-1 - *unitsptr) / base);
1807 *unitsptr -= tensdelta * base;
1808 return increment_overflow(tensptr, tensdelta);
1809 }
1810
1811 static bool
1812 normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
1813 {
1814 int tensdelta;
1815
1816 tensdelta = (*unitsptr >= 0) ?
1817 (*unitsptr / base) :
1818 (-1 - (-1 - *unitsptr) / base);
1819 *unitsptr -= tensdelta * base;
1820 return increment_overflow32(tensptr, tensdelta);
1821 }
1822
1823 static int
1824 tmcomp(const struct tm *const atmp,
1825 const struct tm *const btmp)
1826 {
1827 int result;
1828
1829 if (atmp->tm_year != btmp->tm_year)
1830 return atmp->tm_year < btmp->tm_year ? -1 : 1;
1831 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1832 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1833 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1834 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1835 result = atmp->tm_sec - btmp->tm_sec;
1836 return result;
1837 }
1838
1839 static time_t
1840 time2sub(struct tm *const tmp,
1841 struct tm *(*funcp)(struct state const *, time_t const *,
1842 int_fast32_t, struct tm *),
1843 struct state const *sp,
1844 const int_fast32_t offset,
1845 bool *okayp,
1846 bool do_norm_secs)
1847 {
1848 int dir;
1849 int i, j;
1850 int saved_seconds;
1851 int_fast32_t li;
1852 time_t lo;
1853 time_t hi;
1854 #ifdef NO_ERROR_IN_DST_GAP
1855 time_t ilo;
1856 #endif
1857 int_fast32_t y;
1858 time_t newt;
1859 time_t t;
1860 struct tm yourtm, mytm;
1861
1862 *okayp = false;
1863 yourtm = *tmp;
1864 #ifdef NO_ERROR_IN_DST_GAP
1865 again:
1866 #endif
1867 if (do_norm_secs) {
1868 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1869 SECSPERMIN))
1870 goto out_of_range;
1871 }
1872 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1873 goto out_of_range;
1874 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1875 goto out_of_range;
1876 y = yourtm.tm_year;
1877 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1878 goto out_of_range;
1879 /*
1880 ** Turn y into an actual year number for now.
1881 ** It is converted back to an offset from TM_YEAR_BASE later.
1882 */
1883 if (increment_overflow32(&y, TM_YEAR_BASE))
1884 goto out_of_range;
1885 while (yourtm.tm_mday <= 0) {
1886 if (increment_overflow32(&y, -1))
1887 goto out_of_range;
1888 li = y + (1 < yourtm.tm_mon);
1889 yourtm.tm_mday += year_lengths[isleap(li)];
1890 }
1891 while (yourtm.tm_mday > DAYSPERLYEAR) {
1892 li = y + (1 < yourtm.tm_mon);
1893 yourtm.tm_mday -= year_lengths[isleap(li)];
1894 if (increment_overflow32(&y, 1))
1895 goto out_of_range;
1896 }
1897 for ( ; ; ) {
1898 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1899 if (yourtm.tm_mday <= i)
1900 break;
1901 yourtm.tm_mday -= i;
1902 if (++yourtm.tm_mon >= MONSPERYEAR) {
1903 yourtm.tm_mon = 0;
1904 if (increment_overflow32(&y, 1))
1905 goto out_of_range;
1906 }
1907 }
1908 if (increment_overflow32(&y, -TM_YEAR_BASE))
1909 goto out_of_range;
1910 if (! (INT_MIN <= y && y <= INT_MAX))
1911 goto out_of_range;
1912 yourtm.tm_year = (int)y;
1913 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1914 saved_seconds = 0;
1915 else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1916 /*
1917 ** We can't set tm_sec to 0, because that might push the
1918 ** time below the minimum representable time.
1919 ** Set tm_sec to 59 instead.
1920 ** This assumes that the minimum representable time is
1921 ** not in the same minute that a leap second was deleted from,
1922 ** which is a safer assumption than using 58 would be.
1923 */
1924 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1925 goto out_of_range;
1926 saved_seconds = yourtm.tm_sec;
1927 yourtm.tm_sec = SECSPERMIN - 1;
1928 } else {
1929 saved_seconds = yourtm.tm_sec;
1930 yourtm.tm_sec = 0;
1931 }
1932 /*
1933 ** Do a binary search (this works whatever time_t's type is).
1934 */
1935 lo = time_t_min;
1936 hi = time_t_max;
1937 #ifdef NO_ERROR_IN_DST_GAP
1938 ilo = lo;
1939 #endif
1940 for ( ; ; ) {
1941 t = lo / 2 + hi / 2;
1942 if (t < lo)
1943 t = lo;
1944 else if (t > hi)
1945 t = hi;
1946 if (! funcp(sp, &t, offset, &mytm)) {
1947 /*
1948 ** Assume that t is too extreme to be represented in
1949 ** a struct tm; arrange things so that it is less
1950 ** extreme on the next pass.
1951 */
1952 dir = (t > 0) ? 1 : -1;
1953 } else dir = tmcomp(&mytm, &yourtm);
1954 if (dir != 0) {
1955 if (t == lo) {
1956 if (t == time_t_max)
1957 goto out_of_range;
1958 ++t;
1959 ++lo;
1960 } else if (t == hi) {
1961 if (t == time_t_min)
1962 goto out_of_range;
1963 --t;
1964 --hi;
1965 }
1966 #ifdef NO_ERROR_IN_DST_GAP
1967 if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
1968 do_norm_secs) {
1969 for (i = sp->typecnt - 1; i >= 0; --i) {
1970 for (j = sp->typecnt - 1; j >= 0; --j) {
1971 time_t off;
1972 if (sp->ttis[j].tt_isdst ==
1973 sp->ttis[i].tt_isdst)
1974 continue;
1975 off = sp->ttis[j].tt_gmtoff -
1976 sp->ttis[i].tt_gmtoff;
1977 yourtm.tm_sec += off < 0 ?
1978 -off : off;
1979 goto again;
1980 }
1981 }
1982 }
1983 #endif
1984 if (lo > hi)
1985 goto invalid;
1986 if (dir > 0)
1987 hi = t;
1988 else lo = t;
1989 continue;
1990 }
1991 #if defined TM_GMTOFF && ! UNINIT_TRAP
1992 if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
1993 && (yourtm.TM_GMTOFF < 0
1994 ? (-SECSPERDAY <= yourtm.TM_GMTOFF
1995 && (mytm.TM_GMTOFF <=
1996 (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
1997 + yourtm.TM_GMTOFF)))
1998 : (yourtm.TM_GMTOFF <= SECSPERDAY
1999 && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
2000 + yourtm.TM_GMTOFF)
2001 <= mytm.TM_GMTOFF)))) {
2002 /* MYTM matches YOURTM except with the wrong UTC offset.
2003 YOURTM.TM_GMTOFF is plausible, so try it instead.
2004 It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
2005 since the guess gets checked. */
2006 time_t altt = t;
2007 int_fast32_t diff = (int_fast32_t)
2008 (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
2009 if (!increment_overflow_time(&altt, diff)) {
2010 struct tm alttm;
2011 if (! funcp(sp, &altt, offset, &alttm)
2012 && alttm.tm_isdst == mytm.tm_isdst
2013 && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
2014 && tmcomp(&alttm, &yourtm)) {
2015 t = altt;
2016 mytm = alttm;
2017 }
2018 }
2019 }
2020 #endif
2021 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2022 break;
2023 /*
2024 ** Right time, wrong type.
2025 ** Hunt for right time, right type.
2026 ** It's okay to guess wrong since the guess
2027 ** gets checked.
2028 */
2029 if (sp == NULL)
2030 goto invalid;
2031 for (i = sp->typecnt - 1; i >= 0; --i) {
2032 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2033 continue;
2034 for (j = sp->typecnt - 1; j >= 0; --j) {
2035 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2036 continue;
2037 newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
2038 sp->ttis[i].tt_gmtoff);
2039 if (! funcp(sp, &newt, offset, &mytm))
2040 continue;
2041 if (tmcomp(&mytm, &yourtm) != 0)
2042 continue;
2043 if (mytm.tm_isdst != yourtm.tm_isdst)
2044 continue;
2045 /*
2046 ** We have a match.
2047 */
2048 t = newt;
2049 goto label;
2050 }
2051 }
2052 goto invalid;
2053 }
2054 label:
2055 newt = t + saved_seconds;
2056 if ((newt < t) != (saved_seconds < 0))
2057 goto out_of_range;
2058 t = newt;
2059 if (funcp(sp, &t, offset, tmp)) {
2060 *okayp = true;
2061 return t;
2062 }
2063 out_of_range:
2064 errno = EOVERFLOW;
2065 return WRONG;
2066 invalid:
2067 errno = EINVAL;
2068 return WRONG;
2069 }
2070
2071 static time_t
2072 time2(struct tm * const tmp,
2073 struct tm *(*funcp)(struct state const *, time_t const *,
2074 int_fast32_t, struct tm *),
2075 struct state const *sp,
2076 const int_fast32_t offset,
2077 bool *okayp)
2078 {
2079 time_t t;
2080
2081 /*
2082 ** First try without normalization of seconds
2083 ** (in case tm_sec contains a value associated with a leap second).
2084 ** If that fails, try with normalization of seconds.
2085 */
2086 t = time2sub(tmp, funcp, sp, offset, okayp, false);
2087 return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2088 }
2089
2090 static time_t
2091 time1(struct tm *const tmp,
2092 struct tm *(*funcp) (struct state const *, time_t const *,
2093 int_fast32_t, struct tm *),
2094 struct state const *sp,
2095 const int_fast32_t offset)
2096 {
2097 time_t t;
2098 int samei, otheri;
2099 int sameind, otherind;
2100 int i;
2101 int nseen;
2102 int save_errno;
2103 char seen[TZ_MAX_TYPES];
2104 unsigned char types[TZ_MAX_TYPES];
2105 bool okay;
2106
2107 if (tmp == NULL) {
2108 errno = EINVAL;
2109 return WRONG;
2110 }
2111 if (tmp->tm_isdst > 1)
2112 tmp->tm_isdst = 1;
2113 save_errno = errno;
2114 t = time2(tmp, funcp, sp, offset, &okay);
2115 if (okay) {
2116 errno = save_errno;
2117 return t;
2118 }
2119 if (tmp->tm_isdst < 0)
2120 #ifdef PCTS
2121 /*
2122 ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2123 */
2124 tmp->tm_isdst = 0; /* reset to std and try again */
2125 #else
2126 return t;
2127 #endif /* !defined PCTS */
2128 /*
2129 ** We're supposed to assume that somebody took a time of one type
2130 ** and did some math on it that yielded a "struct tm" that's bad.
2131 ** We try to divine the type they started from and adjust to the
2132 ** type they need.
2133 */
2134 if (sp == NULL) {
2135 errno = EINVAL;
2136 return WRONG;
2137 }
2138 for (i = 0; i < sp->typecnt; ++i)
2139 seen[i] = false;
2140 nseen = 0;
2141 for (i = sp->timecnt - 1; i >= 0; --i)
2142 if (!seen[sp->types[i]]) {
2143 seen[sp->types[i]] = true;
2144 types[nseen++] = sp->types[i];
2145 }
2146 for (sameind = 0; sameind < nseen; ++sameind) {
2147 samei = types[sameind];
2148 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2149 continue;
2150 for (otherind = 0; otherind < nseen; ++otherind) {
2151 otheri = types[otherind];
2152 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2153 continue;
2154 tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
2155 sp->ttis[samei].tt_gmtoff);
2156 tmp->tm_isdst = !tmp->tm_isdst;
2157 t = time2(tmp, funcp, sp, offset, &okay);
2158 if (okay) {
2159 errno = save_errno;
2160 return t;
2161 }
2162 tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
2163 sp->ttis[samei].tt_gmtoff);
2164 tmp->tm_isdst = !tmp->tm_isdst;
2165 }
2166 }
2167 errno = EOVERFLOW;
2168 return WRONG;
2169 }
2170
2171 static time_t
2172 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2173 {
2174 if (sp)
2175 return time1(tmp, localsub, sp, setname);
2176 else {
2177 gmtcheck();
2178 return time1(tmp, gmtsub, gmtptr, 0);
2179 }
2180 }
2181
2182 #if NETBSD_INSPIRED
2183
2184 time_t
2185 mktime_z(timezone_t sp, struct tm *const tmp)
2186 {
2187 return mktime_tzname(sp, tmp, false);
2188 }
2189
2190 #endif
2191
2192 time_t
2193 mktime(struct tm *tmp)
2194 {
2195 time_t t;
2196
2197 rwlock_wrlock(&lcl_lock);
2198 tzset_unlocked();
2199 t = mktime_tzname(lclptr, tmp, true);
2200 rwlock_unlock(&lcl_lock);
2201 return t;
2202 }
2203
2204 #ifdef STD_INSPIRED
2205
2206 time_t
2207 timelocal_z(const timezone_t sp, struct tm *const tmp)
2208 {
2209 if (tmp != NULL)
2210 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2211 return mktime_z(sp, tmp);
2212 }
2213
2214 time_t
2215 timelocal(struct tm *tmp)
2216 {
2217 if (tmp != NULL)
2218 tmp->tm_isdst = -1; /* in case it wasn't initialized */
2219 return mktime(tmp);
2220 }
2221
2222 time_t
2223 timegm(struct tm *tmp)
2224 {
2225
2226 return timeoff(tmp, 0);
2227 }
2228
2229 time_t
2230 timeoff(struct tm *tmp, long offset)
2231 {
2232 if (tmp)
2233 tmp->tm_isdst = 0;
2234 gmtcheck();
2235 return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2236 }
2237
2238 #endif /* defined STD_INSPIRED */
2239
2240 /*
2241 ** XXX--is the below the right way to conditionalize??
2242 */
2243
2244 #ifdef STD_INSPIRED
2245
2246 /*
2247 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2248 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2249 ** is not the case if we are accounting for leap seconds.
2250 ** So, we provide the following conversion routines for use
2251 ** when exchanging timestamps with POSIX conforming systems.
2252 */
2253
2254 static int_fast64_t
2255 leapcorr(const timezone_t sp, time_t t)
2256 {
2257 struct lsinfo const * lp;
2258 int i;
2259
2260 i = sp->leapcnt;
2261 while (--i >= 0) {
2262 lp = &sp->lsis[i];
2263 if (t >= lp->ls_trans)
2264 return lp->ls_corr;
2265 }
2266 return 0;
2267 }
2268
2269 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2270 time2posix_z(timezone_t sp, time_t t)
2271 {
2272 return (time_t)(t - leapcorr(sp, t));
2273 }
2274
2275 time_t
2276 time2posix(time_t t)
2277 {
2278 rwlock_wrlock(&lcl_lock);
2279 if (!lcl_is_set)
2280 tzset_unlocked();
2281 if (lclptr)
2282 t = (time_t)(t - leapcorr(lclptr, t));
2283 rwlock_unlock(&lcl_lock);
2284 return t;
2285 }
2286
2287 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
2288 posix2time_z(timezone_t sp, time_t t)
2289 {
2290 time_t x;
2291 time_t y;
2292
2293 /*
2294 ** For a positive leap second hit, the result
2295 ** is not unique. For a negative leap second
2296 ** hit, the corresponding time doesn't exist,
2297 ** so we return an adjacent second.
2298 */
2299 x = (time_t)(t + leapcorr(sp, t));
2300 y = (time_t)(x - leapcorr(sp, x));
2301 if (y < t) {
2302 do {
2303 x++;
2304 y = (time_t)(x - leapcorr(sp, x));
2305 } while (y < t);
2306 x -= y != t;
2307 } else if (y > t) {
2308 do {
2309 --x;
2310 y = (time_t)(x - leapcorr(sp, x));
2311 } while (y > t);
2312 x += y != t;
2313 }
2314 return x;
2315 }
2316
2317 time_t
2318 posix2time(time_t t)
2319 {
2320 rwlock_wrlock(&lcl_lock);
2321 if (!lcl_is_set)
2322 tzset_unlocked();
2323 if (lclptr)
2324 t = posix2time_z(lclptr, t);
2325 rwlock_unlock(&lcl_lock);
2326 return t;
2327 }
2328
2329 #endif /* defined STD_INSPIRED */
2330