Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.97
      1 /*	$NetBSD: localtime.c,v 1.97 2015/08/18 16:54:27 riz Exp $	*/
      2 
      3 /*
      4 ** This file is in the public domain, so clarified as of
      5 ** 1996-06-05 by Arthur David Olson.
      6 */
      7 
      8 #include <sys/cdefs.h>
      9 #if defined(LIBC_SCCS) && !defined(lint)
     10 #if 0
     11 static char	elsieid[] = "@(#)localtime.c	8.17";
     12 #else
     13 __RCSID("$NetBSD: localtime.c,v 1.97 2015/08/18 16:54:27 riz Exp $");
     14 #endif
     15 #endif /* LIBC_SCCS and not lint */
     16 
     17 /*
     18 ** Leap second handling from Bradley White.
     19 ** POSIX-style TZ environment variable handling from Guy Harris.
     20 */
     21 
     22 /*LINTLIBRARY*/
     23 
     24 #include "namespace.h"
     25 #include <assert.h>
     26 #define LOCALTIME_IMPLEMENTATION
     27 #include "private.h"
     28 
     29 #include "tzfile.h"
     30 #include "fcntl.h"
     31 #include "reentrant.h"
     32 
     33 #if NETBSD_INSPIRED
     34 # define NETBSD_INSPIRED_EXTERN
     35 #else
     36 # define NETBSD_INSPIRED_EXTERN static
     37 #endif
     38 
     39 #if defined(__weak_alias)
     40 __weak_alias(daylight,_daylight)
     41 __weak_alias(tzname,_tzname)
     42 #endif
     43 
     44 #ifndef TZ_ABBR_MAX_LEN
     45 #define TZ_ABBR_MAX_LEN	16
     46 #endif /* !defined TZ_ABBR_MAX_LEN */
     47 
     48 #ifndef TZ_ABBR_CHAR_SET
     49 #define TZ_ABBR_CHAR_SET \
     50 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     51 #endif /* !defined TZ_ABBR_CHAR_SET */
     52 
     53 #ifndef TZ_ABBR_ERR_CHAR
     54 #define TZ_ABBR_ERR_CHAR	'_'
     55 #endif /* !defined TZ_ABBR_ERR_CHAR */
     56 
     57 /*
     58 ** SunOS 4.1.1 headers lack O_BINARY.
     59 */
     60 
     61 #ifdef O_BINARY
     62 #define OPEN_MODE	(O_RDONLY | O_BINARY | O_CLOEXEC)
     63 #endif /* defined O_BINARY */
     64 #ifndef O_BINARY
     65 #define OPEN_MODE	(O_RDONLY | O_CLOEXEC)
     66 #endif /* !defined O_BINARY */
     67 
     68 #ifndef WILDABBR
     69 /*
     70 ** Someone might make incorrect use of a time zone abbreviation:
     71 **	1.	They might reference tzname[0] before calling tzset (explicitly
     72 **		or implicitly).
     73 **	2.	They might reference tzname[1] before calling tzset (explicitly
     74 **		or implicitly).
     75 **	3.	They might reference tzname[1] after setting to a time zone
     76 **		in which Daylight Saving Time is never observed.
     77 **	4.	They might reference tzname[0] after setting to a time zone
     78 **		in which Standard Time is never observed.
     79 **	5.	They might reference tm.TM_ZONE after calling offtime.
     80 ** What's best to do in the above cases is open to debate;
     81 ** for now, we just set things up so that in any of the five cases
     82 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     83 ** string "tzname[0] used before set", and similarly for the other cases.
     84 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     85 ** manual page of what this "time zone abbreviation" means (doing this so
     86 ** that tzname[0] has the "normal" length of three characters).
     87 */
     88 #define WILDABBR	"   "
     89 #endif /* !defined WILDABBR */
     90 
     91 static const char	wildabbr[] = WILDABBR;
     92 
     93 static const char	gmt[] = "GMT";
     94 
     95 /*
     96 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     97 ** We default to US rules as of 1999-08-17.
     98 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     99 ** implementation dependent; for historical reasons, US rules are a
    100 ** common default.
    101 */
    102 #ifndef TZDEFRULESTRING
    103 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    104 #endif /* !defined TZDEFDST */
    105 
    106 struct ttinfo {				/* time type information */
    107 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
    108 	bool		tt_isdst;	/* used to set tm_isdst */
    109 	int		tt_abbrind;	/* abbreviation list index */
    110 	bool		tt_ttisstd;	/* transition is std time */
    111 	bool		tt_ttisgmt;	/* transition is UT */
    112 };
    113 
    114 struct lsinfo {				/* leap second information */
    115 	time_t		ls_trans;	/* transition time */
    116 	int_fast64_t	ls_corr;	/* correction to apply */
    117 };
    118 
    119 #define SMALLEST(a, b)	(((a) < (b)) ? (a) : (b))
    120 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    121 
    122 #ifdef TZNAME_MAX
    123 #define MY_TZNAME_MAX	TZNAME_MAX
    124 #endif /* defined TZNAME_MAX */
    125 #ifndef TZNAME_MAX
    126 #define MY_TZNAME_MAX	255
    127 #endif /* !defined TZNAME_MAX */
    128 
    129 #define state __state
    130 struct state {
    131 	int		leapcnt;
    132 	int		timecnt;
    133 	int		typecnt;
    134 	int		charcnt;
    135 	bool		goback;
    136 	bool		goahead;
    137 	time_t		ats[TZ_MAX_TIMES];
    138 	unsigned char	types[TZ_MAX_TIMES];
    139 	struct ttinfo	ttis[TZ_MAX_TYPES];
    140 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1,
    141 				sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))];
    142 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    143 	int		defaulttype; /* for early times or if no transitions */
    144 };
    145 
    146 enum r_type {
    147   JULIAN_DAY,		/* Jn = Julian day */
    148   DAY_OF_YEAR,		/* n = day of year */
    149   MONTH_NTH_DAY_OF_WEEK	/* Mm.n.d = month, week, day of week */
    150 };
    151 
    152 struct rule {
    153 	enum r_type	r_type;		/* type of rule */
    154 	int		r_day;		/* day number of rule */
    155 	int		r_week;		/* week number of rule */
    156 	int		r_mon;		/* month number of rule */
    157 	int_fast32_t	r_time;		/* transition time of rule */
    158 };
    159 
    160 static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
    161 			 struct tm *);
    162 static bool increment_overflow(int *, int);
    163 static bool increment_overflow_time(time_t *, int_fast32_t);
    164 static bool normalize_overflow32(int_fast32_t *, int *, int);
    165 static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
    166 			  struct tm *);
    167 static bool typesequiv(struct state const *, int, int);
    168 static bool tzparse(char const *, struct state *, bool);
    169 
    170 static timezone_t lclptr;
    171 static timezone_t gmtptr;
    172 
    173 #ifndef TZ_STRLEN_MAX
    174 #define TZ_STRLEN_MAX 255
    175 #endif /* !defined TZ_STRLEN_MAX */
    176 
    177 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    178 static int		lcl_is_set;
    179 
    180 #if !defined(__LIBC12_SOURCE__)
    181 
    182 __aconst char *		tzname[2] = {
    183 	(__aconst char *)__UNCONST(wildabbr),
    184 	(__aconst char *)__UNCONST(wildabbr)
    185 };
    186 
    187 #else
    188 
    189 extern __aconst char *	tzname[2];
    190 
    191 #endif
    192 
    193 #ifdef _REENTRANT
    194 static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    195 #endif
    196 
    197 /*
    198 ** Section 4.12.3 of X3.159-1989 requires that
    199 **	Except for the strftime function, these functions [asctime,
    200 **	ctime, gmtime, localtime] return values in one of two static
    201 **	objects: a broken-down time structure and an array of char.
    202 ** Thanks to Paul Eggert for noting this.
    203 */
    204 
    205 static struct tm	tm;
    206 
    207 #ifdef USG_COMPAT
    208 #if !defined(__LIBC12_SOURCE__)
    209 long 			timezone = 0;
    210 int			daylight = 0;
    211 #else
    212 extern int		daylight;
    213 extern long		timezone __RENAME(__timezone13);
    214 #endif
    215 #endif /* defined USG_COMPAT */
    216 
    217 #ifdef ALTZONE
    218 long			altzone = 0;
    219 #endif /* defined ALTZONE */
    220 
    221 /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND.  */
    222 static void
    223 init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind)
    224 {
    225 	s->tt_gmtoff = gmtoff;
    226 	s->tt_isdst = isdst;
    227 	s->tt_abbrind = abbrind;
    228 	s->tt_ttisstd = false;
    229 	s->tt_ttisgmt = false;
    230 }
    231 
    232 static int_fast32_t
    233 detzcode(const char *const codep)
    234 {
    235 	int_fast32_t result;
    236 	int	i;
    237 	int_fast32_t one = 1;
    238 	int_fast32_t halfmaxval = one << (32 - 2);
    239 	int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
    240 	int_fast32_t minval = -1 - maxval;
    241 
    242 	result = codep[0] & 0x7f;
    243 	for (i = 1; i < 4; ++i)
    244 		result = (result << 8) | (codep[i] & 0xff);
    245 
    246 	if (codep[0] & 0x80) {
    247 	  /* Do two's-complement negation even on non-two's-complement machines.
    248 	     If the result would be minval - 1, return minval.  */
    249 	    result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
    250 	    result += minval;
    251 	}
    252  	return result;
    253 }
    254 
    255 static int_fast64_t
    256 detzcode64(const char *const codep)
    257 {
    258 	int_fast64_t result;
    259 	int	i;
    260 	int_fast64_t one = 1;
    261 	int_fast64_t halfmaxval = one << (64 - 2);
    262 	int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
    263 	int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
    264 
    265 	result = codep[0] & 0x7f;
    266 	for (i = 1; i < 8; ++i)
    267 		result = (result << 8) | (codep[i] & 0xff);
    268 
    269 	if (codep[0] & 0x80) {
    270 	  /* Do two's-complement negation even on non-two's-complement machines.
    271 	     If the result would be minval - 1, return minval.  */
    272 	  result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
    273 	  result += minval;
    274 	}
    275  	return result;
    276 }
    277 
    278 const char *
    279 tzgetname(const timezone_t sp, int isdst)
    280 {
    281 	int i;
    282 	for (i = 0; i < sp->timecnt; ++i) {
    283 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    284 
    285 		if (ttisp->tt_isdst == isdst)
    286 			return &sp->chars[ttisp->tt_abbrind];
    287 	}
    288 	errno = ESRCH;
    289 	return NULL;
    290 }
    291 
    292 static void
    293 scrub_abbrs(struct state *sp)
    294 {
    295 	int i;
    296 
    297 	/*
    298 	** First, replace bogus characters.
    299 	*/
    300 	for (i = 0; i < sp->charcnt; ++i)
    301 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    302 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    303 	/*
    304 	** Second, truncate long abbreviations.
    305 	*/
    306 	for (i = 0; i < sp->typecnt; ++i) {
    307 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    308 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    309 
    310 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    311 			strcmp(cp, GRANDPARENTED) != 0)
    312 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    313 	}
    314 }
    315 
    316 static void
    317 update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp)
    318 {
    319 	tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
    320 #ifdef USG_COMPAT
    321 	if (!ttisp->tt_isdst)
    322 		timezone = - ttisp->tt_gmtoff;
    323 #endif
    324 #ifdef ALTZONE
    325 	if (ttisp->tt_isdst)
    326 	    altzone = - ttisp->tt_gmtoff;
    327 #endif /* defined ALTZONE */
    328 }
    329 
    330 static void
    331 settzname(void)
    332 {
    333 	timezone_t const	sp = lclptr;
    334 	int			i;
    335 
    336 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    337 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    338 #ifdef USG_COMPAT
    339 	daylight = 0;
    340 	timezone = 0;
    341 #endif /* defined USG_COMPAT */
    342 #ifdef ALTZONE
    343 	altzone = 0;
    344 #endif /* defined ALTZONE */
    345 	if (sp == NULL) {
    346 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    347 		return;
    348 	}
    349 	/*
    350 	** And to get the latest zone names into tzname. . .
    351 	*/
    352 	for (i = 0; i < sp->typecnt; ++i)
    353 		update_tzname_etc(sp, &sp->ttis[i]);
    354 
    355 	for (i = 0; i < sp->timecnt; ++i) {
    356 		const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
    357 		update_tzname_etc(sp, ttisp);
    358 #ifdef USG_COMPAT
    359 		if (ttisp->tt_isdst)
    360 			daylight = 1;
    361 #endif /* defined USG_COMPAT */
    362 	}
    363 }
    364 
    365 static bool
    366 differ_by_repeat(const time_t t1, const time_t t0)
    367 {
    368 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    369 		return 0;
    370 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    371 }
    372 
    373 union input_buffer {
    374 	/* The first part of the buffer, interpreted as a header.  */
    375 	struct tzhead tzhead;
    376 
    377 	/* The entire buffer.  */
    378 	char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state)
    379 	  + 4 * TZ_MAX_TIMES];
    380 };
    381 
    382 /* Local storage needed for 'tzloadbody'.  */
    383 union local_storage {
    384 	/* The file name to be opened.  */
    385 	char fullname[FILENAME_MAX + 1];
    386 
    387 	/* The results of analyzing the file's contents after it is opened.  */
    388 	struct {
    389 		/* The input buffer.  */
    390 		union input_buffer u;
    391 
    392 		/* A temporary state used for parsing a TZ string in the file.  */
    393 		struct state st;
    394 	} u;
    395 };
    396 
    397 /* Load tz data from the file named NAME into *SP.  Read extended
    398    format if DOEXTEND.  Use *LSP for temporary storage.  Return 0 on
    399    success, an errno value on failure.  */
    400 static int
    401 tzloadbody(char const *name, struct state *sp, bool doextend,
    402   union local_storage *lsp)
    403 {
    404 	int			i;
    405 	int			fid;
    406 	int			stored;
    407 	ssize_t			nread;
    408 	bool			doaccess;
    409 	char			*fullname = lsp->fullname;
    410 	union input_buffer	*up = &lsp->u.u;
    411 	size_t			tzheadsize = sizeof(struct tzhead);
    412 
    413 	sp->goback = sp->goahead = false;
    414 
    415 	if (! name) {
    416 		name = TZDEFAULT;
    417 		if (! name)
    418 			return EINVAL;
    419 	}
    420 
    421 	if (name[0] == ':')
    422 		++name;
    423 	doaccess = name[0] == '/';
    424 	if (!doaccess) {
    425 		char const *p = TZDIR;
    426 		if (! p)
    427 			return EINVAL;
    428 		if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name))
    429 			return ENAMETOOLONG;
    430 		strcpy(fullname, p);
    431 		strcat(fullname, "/");
    432 		strcat(fullname, name);
    433 		/* Set doaccess if '.' (as in "../") shows up in name.  */
    434 		if (strchr(name, '.'))
    435 			doaccess = true;
    436 		name = fullname;
    437 	}
    438 	if (doaccess && access(name, R_OK) != 0)
    439 		return errno;
    440 
    441 	fid = open(name, OPEN_MODE);
    442 	if (fid < 0)
    443 		return errno;
    444 	nread = read(fid, up->buf, sizeof up->buf);
    445 	if (nread < (ssize_t)tzheadsize) {
    446 		int err = nread < 0 ? errno : EINVAL;
    447 		close(fid);
    448 		return err;
    449 	}
    450 	if (close(fid) < 0)
    451 		return errno;
    452 	for (stored = 4; stored <= 8; stored *= 2) {
    453 		int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
    454 		int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
    455 		int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
    456 		int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
    457 		int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
    458 		int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
    459 		char const *p = up->buf + tzheadsize;
    460 		if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
    461 		       && 0 < typecnt && typecnt < TZ_MAX_TYPES
    462 		       && 0 <= timecnt && timecnt < TZ_MAX_TIMES
    463 		       && 0 <= charcnt && charcnt < TZ_MAX_CHARS
    464 		       && (ttisstdcnt == typecnt || ttisstdcnt == 0)
    465 		       && (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
    466 		  return EINVAL;
    467 		if ((size_t)nread
    468 		    < (tzheadsize		/* struct tzhead */
    469 		       + timecnt * stored	/* ats */
    470 		       + timecnt		/* types */
    471 		       + typecnt * 6		/* ttinfos */
    472 		       + charcnt		/* chars */
    473 		       + leapcnt * (stored + 4)	/* lsinfos */
    474 		       + ttisstdcnt		/* ttisstds */
    475 		       + ttisgmtcnt))		/* ttisgmts */
    476 		  return EINVAL;
    477 		sp->leapcnt = leapcnt;
    478 		sp->timecnt = timecnt;
    479 		sp->typecnt = typecnt;
    480 		sp->charcnt = charcnt;
    481 
    482 		/* Read transitions, discarding those out of time_t range.
    483 		   But pretend the last transition before time_t_min
    484 		   occurred at time_t_min.  */
    485 		timecnt = 0;
    486 		for (i = 0; i < sp->timecnt; ++i) {
    487 			int_fast64_t at
    488 			  = stored == 4 ? detzcode(p) : detzcode64(p);
    489 			sp->types[i] = at <= time_t_max;
    490 			if (sp->types[i]) {
    491 				time_t attime
    492 				    = ((TYPE_SIGNED(time_t) ?
    493 				    at < time_t_min : at < 0)
    494 				    ? time_t_min : (time_t)at);
    495 				if (timecnt && attime <= sp->ats[timecnt - 1]) {
    496 					if (attime < sp->ats[timecnt - 1])
    497 						return EINVAL;
    498 					sp->types[i - 1] = 0;
    499 					timecnt--;
    500 				}
    501 				sp->ats[timecnt++] = attime;
    502 			}
    503 			p += stored;
    504 		}
    505 
    506 		timecnt = 0;
    507 		for (i = 0; i < sp->timecnt; ++i) {
    508 			unsigned char typ = *p++;
    509 			if (sp->typecnt <= typ)
    510 			  return EINVAL;
    511 			if (sp->types[i])
    512 				sp->types[timecnt++] = typ;
    513 		}
    514 		sp->timecnt = timecnt;
    515 		for (i = 0; i < sp->typecnt; ++i) {
    516 			struct ttinfo *	ttisp;
    517 			unsigned char isdst, abbrind;
    518 
    519 			ttisp = &sp->ttis[i];
    520 			ttisp->tt_gmtoff = detzcode(p);
    521 			p += 4;
    522 			isdst = *p++;
    523 			if (! (isdst < 2))
    524 				return EINVAL;
    525 			ttisp->tt_isdst = isdst;
    526 			abbrind = *p++;
    527 			if (! (abbrind < sp->charcnt))
    528 				return EINVAL;
    529 			ttisp->tt_abbrind = abbrind;
    530 		}
    531 		for (i = 0; i < sp->charcnt; ++i)
    532 			sp->chars[i] = *p++;
    533 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    534 
    535 		/* Read leap seconds, discarding those out of time_t range.  */
    536 		leapcnt = 0;
    537 		for (i = 0; i < sp->leapcnt; ++i) {
    538 			int_fast64_t tr = stored == 4 ? detzcode(p) :
    539 			    detzcode64(p);
    540 			int_fast32_t corr = detzcode(p + stored);
    541 			p += stored + 4;
    542 			if (tr <= time_t_max) {
    543 				time_t trans = ((TYPE_SIGNED(time_t) ?
    544 				    tr < time_t_min : tr < 0)
    545 				    ? time_t_min : (time_t)tr);
    546 				if (leapcnt && trans <=
    547 				    sp->lsis[leapcnt - 1].ls_trans) {
    548 					if (trans <
    549 					    sp->lsis[leapcnt - 1].ls_trans)
    550 						return EINVAL;
    551 					leapcnt--;
    552 				}
    553 				sp->lsis[leapcnt].ls_trans = trans;
    554 				sp->lsis[leapcnt].ls_corr = corr;
    555 				leapcnt++;
    556 			}
    557 		}
    558 		sp->leapcnt = leapcnt;
    559 
    560 		for (i = 0; i < sp->typecnt; ++i) {
    561 			struct ttinfo *	ttisp;
    562 
    563 			ttisp = &sp->ttis[i];
    564 			if (ttisstdcnt == 0)
    565 				ttisp->tt_ttisstd = false;
    566 			else {
    567 				if (*p != true && *p != false)
    568 				  return EINVAL;
    569 				ttisp->tt_ttisstd = *p++;
    570 			}
    571 		}
    572 		for (i = 0; i < sp->typecnt; ++i) {
    573 			struct ttinfo *	ttisp;
    574 
    575 			ttisp = &sp->ttis[i];
    576 			if (ttisgmtcnt == 0)
    577 				ttisp->tt_ttisgmt = false;
    578 			else {
    579 				if (*p != true && *p != false)
    580 						return EINVAL;
    581 				ttisp->tt_ttisgmt = *p++;
    582 			}
    583 		}
    584 		/*
    585 		** If this is an old file, we're done.
    586 		*/
    587 		if (up->tzhead.tzh_version[0] == '\0')
    588 			break;
    589 		nread -= p - up->buf;
    590 		memmove(up->buf, p, (size_t)nread);
    591 		/*
    592 		** If this is a signed narrow time_t system, we're done.
    593 		*/
    594 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
    595 			break;
    596 	}
    597 	if (doextend && nread > 2 &&
    598 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    599 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    600 			struct state *ts = &lsp->u.st;
    601 
    602 			up->buf[nread - 1] = '\0';
    603 			if (tzparse(&up->buf[1], ts, false)
    604 			    && ts->typecnt == 2
    605 			    && sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
    606 					for (i = 0; i < 2; ++i)
    607 						ts->ttis[i].tt_abbrind +=
    608 							sp->charcnt;
    609 					for (i = 0; i < ts->charcnt; ++i)
    610 						sp->chars[sp->charcnt++] =
    611 							ts->chars[i];
    612 					i = 0;
    613 					while (i < ts->timecnt &&
    614 						ts->ats[i] <=
    615 						sp->ats[sp->timecnt - 1])
    616 							++i;
    617 					while (i < ts->timecnt &&
    618 					    sp->timecnt < TZ_MAX_TIMES) {
    619 						sp->ats[sp->timecnt] =
    620 							ts->ats[i];
    621 						sp->types[sp->timecnt] =
    622 							sp->typecnt +
    623 							ts->types[i];
    624 						++sp->timecnt;
    625 						++i;
    626 					}
    627 					sp->ttis[sp->typecnt++] = ts->ttis[0];
    628 					sp->ttis[sp->typecnt++] = ts->ttis[1];
    629 			}
    630 	}
    631 	if (sp->timecnt > 1) {
    632 		for (i = 1; i < sp->timecnt; ++i)
    633 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    634 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    635 					sp->goback = true;
    636 					break;
    637 				}
    638 		for (i = sp->timecnt - 2; i >= 0; --i)
    639 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    640 				sp->types[i]) &&
    641 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    642 				sp->ats[i])) {
    643 					sp->goahead = true;
    644 					break;
    645 		}
    646 	}
    647 	/*
    648 	** If type 0 is is unused in transitions,
    649 	** it's the type to use for early times.
    650 	*/
    651 	for (i = 0; i < sp->timecnt; ++i)
    652 		if (sp->types[i] == 0)
    653 			break;
    654 	i = i < sp->timecnt ? -1 : 0;
    655 	/*
    656 	** Absent the above,
    657 	** if there are transition times
    658 	** and the first transition is to a daylight time
    659 	** find the standard type less than and closest to
    660 	** the type of the first transition.
    661 	*/
    662 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    663 		i = sp->types[0];
    664 		while (--i >= 0)
    665 			if (!sp->ttis[i].tt_isdst)
    666 				break;
    667 	}
    668 	/*
    669 	** If no result yet, find the first standard type.
    670 	** If there is none, punt to type zero.
    671 	*/
    672 	if (i < 0) {
    673 		i = 0;
    674 		while (sp->ttis[i].tt_isdst)
    675 			if (++i >= sp->typecnt) {
    676 				i = 0;
    677 				break;
    678 			}
    679 	}
    680 	sp->defaulttype = i;
    681 	return 0;
    682 }
    683 
    684 /* Load tz data from the file named NAME into *SP.  Read extended
    685    format if DOEXTEND.  Return 0 on success, an errno value on failure.  */
    686 static int
    687 tzload(char const *name, struct state *sp, bool doextend)
    688 {
    689 	union local_storage *lsp = malloc(sizeof *lsp);
    690 	if (!lsp)
    691 		return errno;
    692 	else {
    693 		int err = tzloadbody(name, sp, doextend, lsp);
    694 		free(lsp);
    695 		return err;
    696 	}
    697 }
    698 
    699 static bool
    700 typesequiv(const struct state *sp, int a, int b)
    701 {
    702 	bool result;
    703 
    704 	if (sp == NULL ||
    705 		a < 0 || a >= sp->typecnt ||
    706 		b < 0 || b >= sp->typecnt)
    707 			result = false;
    708 	else {
    709 		const struct ttinfo *	ap = &sp->ttis[a];
    710 		const struct ttinfo *	bp = &sp->ttis[b];
    711 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    712 			ap->tt_isdst == bp->tt_isdst &&
    713 			ap->tt_ttisstd == bp->tt_ttisstd &&
    714 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    715 			strcmp(&sp->chars[ap->tt_abbrind],
    716 			&sp->chars[bp->tt_abbrind]) == 0;
    717 	}
    718 	return result;
    719 }
    720 
    721 static const int	mon_lengths[2][MONSPERYEAR] = {
    722 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    723 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    724 };
    725 
    726 static const int	year_lengths[2] = {
    727 	DAYSPERNYEAR, DAYSPERLYEAR
    728 };
    729 
    730 /*
    731 ** Given a pointer into a time zone string, scan until a character that is not
    732 ** a valid character in a zone name is found. Return a pointer to that
    733 ** character.
    734 */
    735 
    736 static const char * ATTRIBUTE_PURE
    737 getzname(const char *strp)
    738 {
    739 	char	c;
    740 
    741 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    742 		c != '+')
    743 			++strp;
    744 	return strp;
    745 }
    746 
    747 /*
    748 ** Given a pointer into an extended time zone string, scan until the ending
    749 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    750 **
    751 ** As with getzname above, the legal character set is actually quite
    752 ** restricted, with other characters producing undefined results.
    753 ** We don't do any checking here; checking is done later in common-case code.
    754 */
    755 
    756 static const char * ATTRIBUTE_PURE
    757 getqzname(const char *strp, const int delim)
    758 {
    759 	int	c;
    760 
    761 	while ((c = *strp) != '\0' && c != delim)
    762 		++strp;
    763 	return strp;
    764 }
    765 
    766 /*
    767 ** Given a pointer into a time zone string, extract a number from that string.
    768 ** Check that the number is within a specified range; if it is not, return
    769 ** NULL.
    770 ** Otherwise, return a pointer to the first character not part of the number.
    771 */
    772 
    773 static const char *
    774 getnum(const char *strp, int *const nump, const int min, const int max)
    775 {
    776 	char	c;
    777 	int	num;
    778 
    779 	if (strp == NULL || !is_digit(c = *strp)) {
    780 		errno = EINVAL;
    781 		return NULL;
    782 	}
    783 	num = 0;
    784 	do {
    785 		num = num * 10 + (c - '0');
    786 		if (num > max) {
    787 			errno = EOVERFLOW;
    788 			return NULL;	/* illegal value */
    789 		}
    790 		c = *++strp;
    791 	} while (is_digit(c));
    792 	if (num < min) {
    793 		errno = EINVAL;
    794 		return NULL;		/* illegal value */
    795 	}
    796 	*nump = num;
    797 	return strp;
    798 }
    799 
    800 /*
    801 ** Given a pointer into a time zone string, extract a number of seconds,
    802 ** in hh[:mm[:ss]] form, from the string.
    803 ** If any error occurs, return NULL.
    804 ** Otherwise, return a pointer to the first character not part of the number
    805 ** of seconds.
    806 */
    807 
    808 static const char *
    809 getsecs(const char *strp, int_fast32_t *const secsp)
    810 {
    811 	int	num;
    812 
    813 	/*
    814 	** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    815 	** "M10.4.6/26", which does not conform to Posix,
    816 	** but which specifies the equivalent of
    817 	** "02:00 on the first Sunday on or after 23 Oct".
    818 	*/
    819 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    820 	if (strp == NULL)
    821 		return NULL;
    822 	*secsp = num * (int_fast32_t) SECSPERHOUR;
    823 	if (*strp == ':') {
    824 		++strp;
    825 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    826 		if (strp == NULL)
    827 			return NULL;
    828 		*secsp += num * SECSPERMIN;
    829 		if (*strp == ':') {
    830 			++strp;
    831 			/* 'SECSPERMIN' allows for leap seconds.  */
    832 			strp = getnum(strp, &num, 0, SECSPERMIN);
    833 			if (strp == NULL)
    834 				return NULL;
    835 			*secsp += num;
    836 		}
    837 	}
    838 	return strp;
    839 }
    840 
    841 /*
    842 ** Given a pointer into a time zone string, extract an offset, in
    843 ** [+-]hh[:mm[:ss]] form, from the string.
    844 ** If any error occurs, return NULL.
    845 ** Otherwise, return a pointer to the first character not part of the time.
    846 */
    847 
    848 static const char *
    849 getoffset(const char *strp, int_fast32_t *const offsetp)
    850 {
    851 	bool neg = false;
    852 
    853 	if (*strp == '-') {
    854 		neg = true;
    855 		++strp;
    856 	} else if (*strp == '+')
    857 		++strp;
    858 	strp = getsecs(strp, offsetp);
    859 	if (strp == NULL)
    860 		return NULL;		/* illegal time */
    861 	if (neg)
    862 		*offsetp = -*offsetp;
    863 	return strp;
    864 }
    865 
    866 /*
    867 ** Given a pointer into a time zone string, extract a rule in the form
    868 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    869 ** If a valid rule is not found, return NULL.
    870 ** Otherwise, return a pointer to the first character not part of the rule.
    871 */
    872 
    873 static const char *
    874 getrule(const char *strp, struct rule *const rulep)
    875 {
    876 	if (*strp == 'J') {
    877 		/*
    878 		** Julian day.
    879 		*/
    880 		rulep->r_type = JULIAN_DAY;
    881 		++strp;
    882 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    883 	} else if (*strp == 'M') {
    884 		/*
    885 		** Month, week, day.
    886 		*/
    887 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    888 		++strp;
    889 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    890 		if (strp == NULL)
    891 			return NULL;
    892 		if (*strp++ != '.')
    893 			return NULL;
    894 		strp = getnum(strp, &rulep->r_week, 1, 5);
    895 		if (strp == NULL)
    896 			return NULL;
    897 		if (*strp++ != '.')
    898 			return NULL;
    899 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    900 	} else if (is_digit(*strp)) {
    901 		/*
    902 		** Day of year.
    903 		*/
    904 		rulep->r_type = DAY_OF_YEAR;
    905 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    906 	} else	return NULL;		/* invalid format */
    907 	if (strp == NULL)
    908 		return NULL;
    909 	if (*strp == '/') {
    910 		/*
    911 		** Time specified.
    912 		*/
    913 		++strp;
    914 		strp = getoffset(strp, &rulep->r_time);
    915 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    916 	return strp;
    917 }
    918 
    919 /*
    920 ** Given a year, a rule, and the offset from UT at the time that rule takes
    921 ** effect, calculate the year-relative time that rule takes effect.
    922 */
    923 
    924 static int_fast32_t ATTRIBUTE_PURE
    925 transtime(const int year, const struct rule *const rulep,
    926 	  const int_fast32_t offset)
    927 {
    928 	bool	leapyear;
    929 	int_fast32_t value;
    930 	int	i;
    931 	int		d, m1, yy0, yy1, yy2, dow;
    932 
    933 	INITIALIZE(value);
    934 	leapyear = isleap(year);
    935 	switch (rulep->r_type) {
    936 
    937 	case JULIAN_DAY:
    938 		/*
    939 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    940 		** years.
    941 		** In non-leap years, or if the day number is 59 or less, just
    942 		** add SECSPERDAY times the day number-1 to the time of
    943 		** January 1, midnight, to get the day.
    944 		*/
    945 		value = (rulep->r_day - 1) * SECSPERDAY;
    946 		if (leapyear && rulep->r_day >= 60)
    947 			value += SECSPERDAY;
    948 		break;
    949 
    950 	case DAY_OF_YEAR:
    951 		/*
    952 		** n - day of year.
    953 		** Just add SECSPERDAY times the day number to the time of
    954 		** January 1, midnight, to get the day.
    955 		*/
    956 		value = rulep->r_day * SECSPERDAY;
    957 		break;
    958 
    959 	case MONTH_NTH_DAY_OF_WEEK:
    960 		/*
    961 		** Mm.n.d - nth "dth day" of month m.
    962 		*/
    963 
    964 		/*
    965 		** Use Zeller's Congruence to get day-of-week of first day of
    966 		** month.
    967 		*/
    968 		m1 = (rulep->r_mon + 9) % 12 + 1;
    969 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    970 		yy1 = yy0 / 100;
    971 		yy2 = yy0 % 100;
    972 		dow = ((26 * m1 - 2) / 10 +
    973 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    974 		if (dow < 0)
    975 			dow += DAYSPERWEEK;
    976 
    977 		/*
    978 		** "dow" is the day-of-week of the first day of the month. Get
    979 		** the day-of-month (zero-origin) of the first "dow" day of the
    980 		** month.
    981 		*/
    982 		d = rulep->r_day - dow;
    983 		if (d < 0)
    984 			d += DAYSPERWEEK;
    985 		for (i = 1; i < rulep->r_week; ++i) {
    986 			if (d + DAYSPERWEEK >=
    987 				mon_lengths[leapyear][rulep->r_mon - 1])
    988 					break;
    989 			d += DAYSPERWEEK;
    990 		}
    991 
    992 		/*
    993 		** "d" is the day-of-month (zero-origin) of the day we want.
    994 		*/
    995 		value = d * SECSPERDAY;
    996 		for (i = 0; i < rulep->r_mon - 1; ++i)
    997 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    998 		break;
    999 	}
   1000 
   1001 	/*
   1002 	** "value" is the year-relative time of 00:00:00 UT on the day in
   1003 	** question. To get the year-relative time of the specified local
   1004 	** time on that day, add the transition time and the current offset
   1005 	** from UT.
   1006 	*/
   1007 	return value + rulep->r_time + offset;
   1008 }
   1009 
   1010 /*
   1011 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
   1012 ** appropriate.
   1013 */
   1014 
   1015 static bool
   1016 tzparse(const char *name, struct state *sp, bool lastditch)
   1017 {
   1018 	const char *	stdname;
   1019 	const char *	dstname;
   1020 	size_t		stdlen;
   1021 	size_t		dstlen;
   1022 	size_t		charcnt;
   1023 	int_fast32_t	stdoffset;
   1024 	int_fast32_t	dstoffset;
   1025 	char *		cp;
   1026 	bool		load_ok;
   1027 
   1028 	dstname = NULL; /* XXX gcc */
   1029 	stdname = name;
   1030 	if (lastditch) {
   1031 		stdlen = sizeof gmt - 1;
   1032 		name += stdlen;
   1033 		stdoffset = 0;
   1034 	} else {
   1035 		if (*name == '<') {
   1036 			name++;
   1037 			stdname = name;
   1038 			name = getqzname(name, '>');
   1039 			if (*name != '>')
   1040 			  return false;
   1041 			stdlen = name - stdname;
   1042 			name++;
   1043 		} else {
   1044 			name = getzname(name);
   1045 			stdlen = name - stdname;
   1046 		}
   1047 		if (!stdlen)
   1048 			return false;
   1049 		name = getoffset(name, &stdoffset);
   1050 		if (name == NULL)
   1051 			return false;
   1052 	}
   1053 	charcnt = stdlen + 1;
   1054 	if (sizeof sp->chars < charcnt)
   1055 		return false;
   1056 	load_ok = tzload(TZDEFRULES, sp, false) == 0;
   1057 	if (!load_ok)
   1058 		sp->leapcnt = 0;		/* so, we're off a little */
   1059 	if (*name != '\0') {
   1060 		if (*name == '<') {
   1061 			dstname = ++name;
   1062 			name = getqzname(name, '>');
   1063 			if (*name != '>')
   1064 				return false;
   1065 			dstlen = name - dstname;
   1066 			name++;
   1067 		} else {
   1068 			dstname = name;
   1069 			name = getzname(name);
   1070 			dstlen = name - dstname; /* length of DST zone name */
   1071 		}
   1072 		if (!dstlen)
   1073 		  return false;
   1074 		charcnt += dstlen + 1;
   1075 		if (sizeof sp->chars < charcnt)
   1076 		  return false;
   1077 		if (*name != '\0' && *name != ',' && *name != ';') {
   1078 			name = getoffset(name, &dstoffset);
   1079 			if (name == NULL)
   1080 			  return false;
   1081 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1082 		if (*name == '\0' && !load_ok)
   1083 			name = TZDEFRULESTRING;
   1084 		if (*name == ',' || *name == ';') {
   1085 			struct rule	start;
   1086 			struct rule	end;
   1087 			int		year;
   1088 			int		yearlim;
   1089 			int		timecnt;
   1090 			time_t		janfirst;
   1091 
   1092 			++name;
   1093 			if ((name = getrule(name, &start)) == NULL)
   1094 				return false;
   1095 			if (*name++ != ',')
   1096 				return false;
   1097 			if ((name = getrule(name, &end)) == NULL)
   1098 				return false;
   1099 			if (*name != '\0')
   1100 				return false;
   1101 			sp->typecnt = 2;	/* standard time and DST */
   1102 			/*
   1103 			** Two transitions per year, from EPOCH_YEAR forward.
   1104 			*/
   1105 			init_ttinfo(&sp->ttis[0], -dstoffset, true,
   1106 			    (int)(stdlen + 1));
   1107 			init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
   1108 			sp->defaulttype = 0;
   1109 			timecnt = 0;
   1110 			janfirst = 0;
   1111 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
   1112 			for (year = EPOCH_YEAR; year < yearlim; year++) {
   1113 				int_fast32_t
   1114 				  starttime = transtime(year, &start, stdoffset),
   1115 				  endtime = transtime(year, &end, dstoffset);
   1116 				int_fast32_t
   1117 				  yearsecs = (year_lengths[isleap(year)]
   1118 					      * SECSPERDAY);
   1119 				bool reversed = endtime < starttime;
   1120 				if (reversed) {
   1121 					int_fast32_t swap = starttime;
   1122 					starttime = endtime;
   1123 					endtime = swap;
   1124 				}
   1125 				if (reversed
   1126 				    || (starttime < endtime
   1127 					&& (endtime - starttime
   1128 					    < (yearsecs
   1129 					       + (stdoffset - dstoffset))))) {
   1130 					if (TZ_MAX_TIMES - 2 < timecnt)
   1131 						break;
   1132 					yearlim = year + YEARSPERREPEAT + 1;
   1133 					sp->ats[timecnt] = janfirst;
   1134 					if (increment_overflow_time
   1135 					    (&sp->ats[timecnt], starttime))
   1136 						break;
   1137 					sp->types[timecnt++] = reversed;
   1138 					sp->ats[timecnt] = janfirst;
   1139 					if (increment_overflow_time
   1140 					    (&sp->ats[timecnt], endtime))
   1141 						break;
   1142 					sp->types[timecnt++] = !reversed;
   1143 				}
   1144 				if (increment_overflow_time(&janfirst, yearsecs))
   1145 					break;
   1146 			}
   1147 			sp->timecnt = timecnt;
   1148 			if (!timecnt)
   1149 				sp->typecnt = 1;	/* Perpetual DST.  */
   1150 		} else {
   1151 			int_fast32_t	theirstdoffset;
   1152 			int_fast32_t	theirdstoffset;
   1153 			int_fast32_t	theiroffset;
   1154 			bool		isdst;
   1155 			int		i;
   1156 			int		j;
   1157 
   1158 			if (*name != '\0')
   1159 				return false;
   1160 			/*
   1161 			** Initial values of theirstdoffset and theirdstoffset.
   1162 			*/
   1163 			theirstdoffset = 0;
   1164 			for (i = 0; i < sp->timecnt; ++i) {
   1165 				j = sp->types[i];
   1166 				if (!sp->ttis[j].tt_isdst) {
   1167 					theirstdoffset =
   1168 						-sp->ttis[j].tt_gmtoff;
   1169 					break;
   1170 				}
   1171 			}
   1172 			theirdstoffset = 0;
   1173 			for (i = 0; i < sp->timecnt; ++i) {
   1174 				j = sp->types[i];
   1175 				if (sp->ttis[j].tt_isdst) {
   1176 					theirdstoffset =
   1177 						-sp->ttis[j].tt_gmtoff;
   1178 					break;
   1179 				}
   1180 			}
   1181 			/*
   1182 			** Initially we're assumed to be in standard time.
   1183 			*/
   1184 			isdst = false;
   1185 			theiroffset = theirstdoffset;
   1186 			/*
   1187 			** Now juggle transition times and types
   1188 			** tracking offsets as you do.
   1189 			*/
   1190 			for (i = 0; i < sp->timecnt; ++i) {
   1191 				j = sp->types[i];
   1192 				sp->types[i] = sp->ttis[j].tt_isdst;
   1193 				if (sp->ttis[j].tt_ttisgmt) {
   1194 					/* No adjustment to transition time */
   1195 				} else {
   1196 					/*
   1197 					** If summer time is in effect, and the
   1198 					** transition time was not specified as
   1199 					** standard time, add the summer time
   1200 					** offset to the transition time;
   1201 					** otherwise, add the standard time
   1202 					** offset to the transition time.
   1203 					*/
   1204 					/*
   1205 					** Transitions from DST to DDST
   1206 					** will effectively disappear since
   1207 					** POSIX provides for only one DST
   1208 					** offset.
   1209 					*/
   1210 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1211 						sp->ats[i] += (time_t)
   1212 						    (dstoffset - theirdstoffset);
   1213 					} else {
   1214 						sp->ats[i] += (time_t)
   1215 						    (stdoffset - theirstdoffset);
   1216 					}
   1217 				}
   1218 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1219 				if (sp->ttis[j].tt_isdst)
   1220 					theirstdoffset = theiroffset;
   1221 				else	theirdstoffset = theiroffset;
   1222 			}
   1223 			/*
   1224 			** Finally, fill in ttis.
   1225 			*/
   1226 			init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
   1227 			init_ttinfo(&sp->ttis[1], -dstoffset, true,
   1228 			    (int)(stdlen + 1));
   1229 			sp->typecnt = 2;
   1230 			sp->defaulttype = 0;
   1231 		}
   1232 	} else {
   1233 		dstlen = 0;
   1234 		sp->typecnt = 1;		/* only standard time */
   1235 		sp->timecnt = 0;
   1236 		init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
   1237 		init_ttinfo(&sp->ttis[1], 0, false, 0);
   1238 		sp->defaulttype = 0;
   1239 	}
   1240 	sp->charcnt = charcnt;
   1241 	cp = sp->chars;
   1242 	(void) memcpy(cp, stdname, stdlen);
   1243 	cp += stdlen;
   1244 	*cp++ = '\0';
   1245 	if (dstlen != 0) {
   1246 		(void) memcpy(cp, dstname, dstlen);
   1247 		*(cp + dstlen) = '\0';
   1248 	}
   1249 	return true;
   1250 }
   1251 
   1252 static void
   1253 gmtload(struct state *const sp)
   1254 {
   1255 	if (tzload(gmt, sp, true) != 0)
   1256 		(void) tzparse(gmt, sp, true);
   1257 }
   1258 
   1259 static int
   1260 zoneinit(struct state *sp, char const *name)
   1261 {
   1262 	if (name && ! name[0]) {
   1263 		/*
   1264 		** User wants it fast rather than right.
   1265 		*/
   1266 		sp->leapcnt = 0;		/* so, we're off a little */
   1267 		sp->timecnt = 0;
   1268 		sp->typecnt = 0;
   1269 		sp->charcnt = 0;
   1270 		sp->goback = sp->goahead = false;
   1271 		init_ttinfo(&sp->ttis[0], 0, false, 0);
   1272 		strcpy(sp->chars, gmt);
   1273 		sp->defaulttype = 0;
   1274 		return 0;
   1275 	} else {
   1276 		int err = tzload(name, sp, true);
   1277 		if (err != 0 && name && name[0] != ':' &&
   1278 		    tzparse(name, sp, false))
   1279 			err = 0;
   1280 		if (err == 0)
   1281 			scrub_abbrs(sp);
   1282 		return err;
   1283 	}
   1284 }
   1285 
   1286 static void
   1287 tzsetlcl(char const *name)
   1288 {
   1289 	struct state *sp = lclptr;
   1290 	int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
   1291 	if (lcl < 0 ? lcl_is_set < 0
   1292 	    : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
   1293 		return;
   1294 
   1295 	if (! sp)
   1296 		lclptr = sp = malloc(sizeof *lclptr);
   1297 	if (sp) {
   1298 		if (zoneinit(sp, name) != 0)
   1299 			zoneinit(sp, "");
   1300 		if (0 < lcl)
   1301 			strcpy(lcl_TZname, name);
   1302 	}
   1303 	settzname();
   1304 	lcl_is_set = lcl;
   1305 }
   1306 
   1307 #ifdef STD_INSPIRED
   1308 void
   1309 tzsetwall(void)
   1310 {
   1311 	rwlock_wrlock(&lcl_lock);
   1312 	tzsetlcl(NULL);
   1313 	rwlock_unlock(&lcl_lock);
   1314 }
   1315 #endif
   1316 
   1317 static void
   1318 tzset_unlocked(void)
   1319 {
   1320 	tzsetlcl(getenv("TZ"));
   1321 }
   1322 
   1323 void
   1324 tzset(void)
   1325 {
   1326 	rwlock_wrlock(&lcl_lock);
   1327 	tzset_unlocked();
   1328 	rwlock_unlock(&lcl_lock);
   1329 }
   1330 
   1331 static void
   1332 gmtcheck(void)
   1333 {
   1334 	static bool gmt_is_set;
   1335 	rwlock_wrlock(&lcl_lock);
   1336 	if (! gmt_is_set) {
   1337 		gmtptr = malloc(sizeof *gmtptr);
   1338 		if (gmtptr)
   1339 			gmtload(gmtptr);
   1340 		gmt_is_set = true;
   1341 	}
   1342 	rwlock_unlock(&lcl_lock);
   1343 }
   1344 
   1345 #if NETBSD_INSPIRED
   1346 
   1347 timezone_t
   1348 tzalloc(const char *name)
   1349 {
   1350 	timezone_t sp = malloc(sizeof *sp);
   1351 	if (sp) {
   1352 		int err = zoneinit(sp, name);
   1353 		if (err != 0) {
   1354 			free(sp);
   1355 			errno = err;
   1356 			return NULL;
   1357 		}
   1358 	}
   1359 	return sp;
   1360 }
   1361 
   1362 void
   1363 tzfree(timezone_t sp)
   1364 {
   1365 	free(sp);
   1366 }
   1367 
   1368 /*
   1369 ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
   1370 ** ctime_r are obsolescent and have potential security problems that
   1371 ** ctime_rz would share.  Callers can instead use localtime_rz + strftime.
   1372 **
   1373 ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
   1374 ** in zones with three or more time zone abbreviations.
   1375 ** Callers can instead use localtime_rz + strftime.
   1376 */
   1377 
   1378 #endif
   1379 
   1380 /*
   1381 ** The easy way to behave "as if no library function calls" localtime
   1382 ** is to not call it, so we drop its guts into "localsub", which can be
   1383 ** freely called. (And no, the PANS doesn't require the above behavior,
   1384 ** but it *is* desirable.)
   1385 **
   1386 ** If successful and SETNAME is nonzero,
   1387 ** set the applicable parts of tzname, timezone and altzone;
   1388 ** however, it's OK to omit this step if the time zone is POSIX-compatible,
   1389 ** since in that case tzset should have already done this step correctly.
   1390 ** SETNAME's type is intfast32_t for compatibility with gmtsub,
   1391 ** but it is actually a boolean and its value should be 0 or 1.
   1392 */
   1393 
   1394 /*ARGSUSED*/
   1395 static struct tm *
   1396 localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
   1397 	 struct tm *const tmp)
   1398 {
   1399 	const struct ttinfo *	ttisp;
   1400 	int			i;
   1401 	struct tm *		result;
   1402 	const time_t			t = *timep;
   1403 
   1404 	if (sp == NULL) {
   1405 		/* Don't bother to set tzname etc.; tzset has already done it.  */
   1406 		return gmtsub(gmtptr, timep, 0, tmp);
   1407 	}
   1408 	if ((sp->goback && t < sp->ats[0]) ||
   1409 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1410 			time_t			newt = t;
   1411 			time_t		seconds;
   1412 			time_t		years;
   1413 
   1414 			if (t < sp->ats[0])
   1415 				seconds = sp->ats[0] - t;
   1416 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1417 			--seconds;
   1418 			years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT);
   1419 			seconds = (time_t)(years * AVGSECSPERYEAR);
   1420 			if (t < sp->ats[0])
   1421 				newt += seconds;
   1422 			else	newt -= seconds;
   1423 			if (newt < sp->ats[0] ||
   1424 				newt > sp->ats[sp->timecnt - 1]) {
   1425 				errno = EINVAL;
   1426 				return NULL;	/* "cannot happen" */
   1427 			}
   1428 			result = localsub(sp, &newt, setname, tmp);
   1429 			if (result) {
   1430 				int_fast64_t newy;
   1431 
   1432 				newy = result->tm_year;
   1433 				if (t < sp->ats[0])
   1434 					newy -= years;
   1435 				else	newy += years;
   1436 				if (! (INT_MIN <= newy && newy <= INT_MAX)) {
   1437 					errno = EOVERFLOW;
   1438 					return NULL;
   1439 				}
   1440 				result->tm_year = (int)newy;
   1441 			}
   1442 			return result;
   1443 	}
   1444 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1445 		i = sp->defaulttype;
   1446 	} else {
   1447 		int	lo = 1;
   1448 		int	hi = sp->timecnt;
   1449 
   1450 		while (lo < hi) {
   1451 			int	mid = (lo + hi) / 2;
   1452 
   1453 			if (t < sp->ats[mid])
   1454 				hi = mid;
   1455 			else	lo = mid + 1;
   1456 		}
   1457 		i = (int) sp->types[lo - 1];
   1458 	}
   1459 	ttisp = &sp->ttis[i];
   1460 	/*
   1461 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1462 	** you'd replace the statement below with
   1463 	**	t += ttisp->tt_gmtoff;
   1464 	**	timesub(&t, 0L, sp, tmp);
   1465 	*/
   1466 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1467 	if (result) {
   1468 		result->tm_isdst = ttisp->tt_isdst;
   1469 #ifdef TM_ZONE
   1470 		result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]);
   1471 #endif /* defined TM_ZONE */
   1472 		if (setname)
   1473 			update_tzname_etc(sp, ttisp);
   1474 	}
   1475 	return result;
   1476 }
   1477 
   1478 #if NETBSD_INSPIRED
   1479 
   1480 struct tm *
   1481 localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
   1482 {
   1483 	return localsub(sp, timep, 0, tmp);
   1484 }
   1485 
   1486 #endif
   1487 
   1488 static struct tm *
   1489 localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
   1490 {
   1491 	rwlock_wrlock(&lcl_lock);
   1492 	if (setname || !lcl_is_set)
   1493 		tzset_unlocked();
   1494 	tmp = localsub(lclptr, timep, setname, tmp);
   1495 	rwlock_unlock(&lcl_lock);
   1496 	return tmp;
   1497 }
   1498 
   1499 struct tm *
   1500 localtime(const time_t *timep)
   1501 {
   1502 	return localtime_tzset(timep, &tm, true);
   1503 }
   1504 
   1505 struct tm *
   1506 localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1507 {
   1508 	return localtime_tzset(timep, tmp, false);
   1509 }
   1510 
   1511 /*
   1512 ** gmtsub is to gmtime as localsub is to localtime.
   1513 */
   1514 
   1515 static struct tm *
   1516 gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset,
   1517        struct tm *tmp)
   1518 {
   1519 	struct tm *	result;
   1520 
   1521 	result = timesub(timep, offset, gmtptr, tmp);
   1522 #ifdef TM_ZONE
   1523 	/*
   1524 	** Could get fancy here and deliver something such as
   1525 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
   1526 	** but this is no time for a treasure hunt.
   1527 	*/
   1528 	if (result)
   1529 		result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
   1530 		    gmtptr->chars : __UNCONST(gmt);
   1531 #endif /* defined TM_ZONE */
   1532 	return result;
   1533 }
   1534 
   1535 
   1536 /*
   1537 ** Re-entrant version of gmtime.
   1538 */
   1539 
   1540 struct tm *
   1541 gmtime_r(const time_t *timep, struct tm *tmp)
   1542 {
   1543 	gmtcheck();
   1544 	return gmtsub(NULL, timep, 0, tmp);
   1545 }
   1546 
   1547 struct tm *
   1548 gmtime(const time_t *timep)
   1549 {
   1550 	return gmtime_r(timep, &tm);
   1551 }
   1552 #ifdef STD_INSPIRED
   1553 
   1554 struct tm *
   1555 offtime(const time_t *timep, long offset)
   1556 {
   1557 	gmtcheck();
   1558 	return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
   1559 }
   1560 
   1561 struct tm *
   1562 offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1563 {
   1564 	gmtcheck();
   1565 	return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
   1566 }
   1567 
   1568 #endif /* defined STD_INSPIRED */
   1569 
   1570 /*
   1571 ** Return the number of leap years through the end of the given year
   1572 ** where, to make the math easy, the answer for year zero is defined as zero.
   1573 */
   1574 
   1575 static int ATTRIBUTE_PURE
   1576 leaps_thru_end_of(const int y)
   1577 {
   1578 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1579 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1580 }
   1581 
   1582 static struct tm *
   1583 timesub(const time_t *timep, int_fast32_t offset,
   1584     const struct state *sp, struct tm *tmp)
   1585 {
   1586 	const struct lsinfo *	lp;
   1587 	time_t			tdays;
   1588 	int			idays;	/* unsigned would be so 2003 */
   1589 	int_fast64_t		rem;
   1590 	int			y;
   1591 	const int *		ip;
   1592 	int_fast64_t		corr;
   1593 	bool			hit;
   1594 	int			i;
   1595 
   1596 	corr = 0;
   1597 	hit = false;
   1598 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1599 	while (--i >= 0) {
   1600 		lp = &sp->lsis[i];
   1601 		if (*timep >= lp->ls_trans) {
   1602 			if (*timep == lp->ls_trans) {
   1603 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1604 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1605 				if (hit)
   1606 					while (i > 0 &&
   1607 						sp->lsis[i].ls_trans ==
   1608 						sp->lsis[i - 1].ls_trans + 1 &&
   1609 						sp->lsis[i].ls_corr ==
   1610 						sp->lsis[i - 1].ls_corr + 1) {
   1611 							++hit;
   1612 							--i;
   1613 					}
   1614 			}
   1615 			corr = lp->ls_corr;
   1616 			break;
   1617 		}
   1618 	}
   1619 	y = EPOCH_YEAR;
   1620 	tdays = (time_t)(*timep / SECSPERDAY);
   1621 	rem = *timep % SECSPERDAY;
   1622 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1623 		int		newy;
   1624 		time_t	tdelta;
   1625 		int	idelta;
   1626 		int	leapdays;
   1627 
   1628 		tdelta = tdays / DAYSPERLYEAR;
   1629 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
   1630 		       && tdelta <= INT_MAX))
   1631 			goto out_of_range;
   1632 		_DIAGASSERT(__type_fit(int, tdelta));
   1633 		idelta = (int)tdelta;
   1634 		if (idelta == 0)
   1635 			idelta = (tdays < 0) ? -1 : 1;
   1636 		newy = y;
   1637 		if (increment_overflow(&newy, idelta))
   1638 			goto out_of_range;
   1639 		leapdays = leaps_thru_end_of(newy - 1) -
   1640 			leaps_thru_end_of(y - 1);
   1641 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1642 		tdays -= leapdays;
   1643 		y = newy;
   1644 	}
   1645 	/*
   1646 	** Given the range, we can now fearlessly cast...
   1647 	*/
   1648 	idays = (int) tdays;
   1649 	rem += offset - corr;
   1650 	while (rem < 0) {
   1651 		rem += SECSPERDAY;
   1652 		--idays;
   1653 	}
   1654 	while (rem >= SECSPERDAY) {
   1655 		rem -= SECSPERDAY;
   1656 		++idays;
   1657 	}
   1658 	while (idays < 0) {
   1659 		if (increment_overflow(&y, -1))
   1660 			goto out_of_range;
   1661 		idays += year_lengths[isleap(y)];
   1662 	}
   1663 	while (idays >= year_lengths[isleap(y)]) {
   1664 		idays -= year_lengths[isleap(y)];
   1665 		if (increment_overflow(&y, 1))
   1666 			goto out_of_range;
   1667 	}
   1668 	tmp->tm_year = y;
   1669 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1670 		goto out_of_range;
   1671 	tmp->tm_yday = idays;
   1672 	/*
   1673 	** The "extra" mods below avoid overflow problems.
   1674 	*/
   1675 	tmp->tm_wday = EPOCH_WDAY +
   1676 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1677 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1678 		leaps_thru_end_of(y - 1) -
   1679 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1680 		idays;
   1681 	tmp->tm_wday %= DAYSPERWEEK;
   1682 	if (tmp->tm_wday < 0)
   1683 		tmp->tm_wday += DAYSPERWEEK;
   1684 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1685 	rem %= SECSPERHOUR;
   1686 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1687 	/*
   1688 	** A positive leap second requires a special
   1689 	** representation. This uses "... ??:59:60" et seq.
   1690 	*/
   1691 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1692 	ip = mon_lengths[isleap(y)];
   1693 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1694 		idays -= ip[tmp->tm_mon];
   1695 	tmp->tm_mday = (int) (idays + 1);
   1696 	tmp->tm_isdst = 0;
   1697 #ifdef TM_GMTOFF
   1698 	tmp->TM_GMTOFF = offset;
   1699 #endif /* defined TM_GMTOFF */
   1700 	return tmp;
   1701 out_of_range:
   1702 	errno = EOVERFLOW;
   1703 	return NULL;
   1704 }
   1705 
   1706 char *
   1707 ctime(const time_t *timep)
   1708 {
   1709 /*
   1710 ** Section 4.12.3.2 of X3.159-1989 requires that
   1711 **	The ctime function converts the calendar time pointed to by timer
   1712 **	to local time in the form of a string. It is equivalent to
   1713 **		asctime(localtime(timer))
   1714 */
   1715 	struct tm *tmp = localtime(timep);
   1716 	return tmp ? asctime(tmp) : NULL;
   1717 }
   1718 
   1719 char *
   1720 ctime_r(const time_t *timep, char *buf)
   1721 {
   1722 	struct tm mytm;
   1723 	struct tm *tmp = localtime_r(timep, &mytm);
   1724 	return tmp ? asctime_r(tmp, buf) : NULL;
   1725 }
   1726 
   1727 char *
   1728 ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1729 {
   1730 	struct tm	mytm, *rtm;
   1731 
   1732 	rtm = localtime_rz(sp, timep, &mytm);
   1733 	if (rtm == NULL)
   1734 		return NULL;
   1735 	return asctime_r(rtm, buf);
   1736 }
   1737 
   1738 /*
   1739 ** Adapted from code provided by Robert Elz, who writes:
   1740 **	The "best" way to do mktime I think is based on an idea of Bob
   1741 **	Kridle's (so its said...) from a long time ago.
   1742 **	It does a binary search of the time_t space. Since time_t's are
   1743 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1744 **	would still be very reasonable).
   1745 */
   1746 
   1747 #ifndef WRONG
   1748 #define WRONG	((time_t)-1)
   1749 #endif /* !defined WRONG */
   1750 
   1751 /*
   1752 ** Normalize logic courtesy Paul Eggert.
   1753 */
   1754 
   1755 static bool
   1756 increment_overflow(int *ip, int j)
   1757 {
   1758 	int const	i = *ip;
   1759 
   1760 	/*
   1761 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1762 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1763 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1764 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1765 	*/
   1766 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1767 		return true;
   1768 	*ip += j;
   1769 	return false;
   1770 }
   1771 
   1772 static bool
   1773 increment_overflow32(int_fast32_t *const lp, int const m)
   1774 {
   1775 	int_fast32_t const l = *lp;
   1776 
   1777 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   1778 		return true;
   1779 	*lp += m;
   1780 	return false;
   1781 }
   1782 
   1783 static bool
   1784 increment_overflow_time(time_t *tp, int_fast32_t j)
   1785 {
   1786 	/*
   1787 	** This is like
   1788 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
   1789 	** except that it does the right thing even if *tp + j would overflow.
   1790 	*/
   1791 	if (! (j < 0
   1792 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
   1793 	       : *tp <= time_t_max - j))
   1794 		return true;
   1795 	*tp += j;
   1796 	return false;
   1797 }
   1798 
   1799 static bool
   1800 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1801 {
   1802 	int	tensdelta;
   1803 
   1804 	tensdelta = (*unitsptr >= 0) ?
   1805 		(*unitsptr / base) :
   1806 		(-1 - (-1 - *unitsptr) / base);
   1807 	*unitsptr -= tensdelta * base;
   1808 	return increment_overflow(tensptr, tensdelta);
   1809 }
   1810 
   1811 static bool
   1812 normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
   1813 {
   1814 	int	tensdelta;
   1815 
   1816 	tensdelta = (*unitsptr >= 0) ?
   1817 		(*unitsptr / base) :
   1818 		(-1 - (-1 - *unitsptr) / base);
   1819 	*unitsptr -= tensdelta * base;
   1820 	return increment_overflow32(tensptr, tensdelta);
   1821 }
   1822 
   1823 static int
   1824 tmcomp(const struct tm *const atmp,
   1825        const struct tm *const btmp)
   1826 {
   1827 	int	result;
   1828 
   1829 	if (atmp->tm_year != btmp->tm_year)
   1830 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
   1831 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1832 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1833 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1834 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1835 			result = atmp->tm_sec - btmp->tm_sec;
   1836 	return result;
   1837 }
   1838 
   1839 static time_t
   1840 time2sub(struct tm *const tmp,
   1841 	 struct tm *(*funcp)(struct state const *, time_t const *,
   1842 			     int_fast32_t, struct tm *),
   1843 	 struct state const *sp,
   1844  	 const int_fast32_t offset,
   1845 	 bool *okayp,
   1846 	 bool do_norm_secs)
   1847 {
   1848 	int			dir;
   1849 	int			i, j;
   1850 	int			saved_seconds;
   1851 	int_fast32_t		li;
   1852 	time_t			lo;
   1853 	time_t			hi;
   1854 #ifdef NO_ERROR_IN_DST_GAP
   1855 	time_t			ilo;
   1856 #endif
   1857 	int_fast32_t		y;
   1858 	time_t			newt;
   1859 	time_t			t;
   1860 	struct tm		yourtm, mytm;
   1861 
   1862 	*okayp = false;
   1863 	yourtm = *tmp;
   1864 #ifdef NO_ERROR_IN_DST_GAP
   1865 again:
   1866 #endif
   1867 	if (do_norm_secs) {
   1868 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1869 		    SECSPERMIN))
   1870 			goto out_of_range;
   1871 	}
   1872 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1873 		goto out_of_range;
   1874 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1875 		goto out_of_range;
   1876 	y = yourtm.tm_year;
   1877 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   1878 		goto out_of_range;
   1879 	/*
   1880 	** Turn y into an actual year number for now.
   1881 	** It is converted back to an offset from TM_YEAR_BASE later.
   1882 	*/
   1883 	if (increment_overflow32(&y, TM_YEAR_BASE))
   1884 		goto out_of_range;
   1885 	while (yourtm.tm_mday <= 0) {
   1886 		if (increment_overflow32(&y, -1))
   1887 			goto out_of_range;
   1888 		li = y + (1 < yourtm.tm_mon);
   1889 		yourtm.tm_mday += year_lengths[isleap(li)];
   1890 	}
   1891 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1892 		li = y + (1 < yourtm.tm_mon);
   1893 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1894 		if (increment_overflow32(&y, 1))
   1895 			goto out_of_range;
   1896 	}
   1897 	for ( ; ; ) {
   1898 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1899 		if (yourtm.tm_mday <= i)
   1900 			break;
   1901 		yourtm.tm_mday -= i;
   1902 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1903 			yourtm.tm_mon = 0;
   1904 			if (increment_overflow32(&y, 1))
   1905 				goto out_of_range;
   1906 		}
   1907 	}
   1908 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   1909 		goto out_of_range;
   1910 	if (! (INT_MIN <= y && y <= INT_MAX))
   1911 		goto out_of_range;
   1912 	yourtm.tm_year = (int)y;
   1913 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1914 		saved_seconds = 0;
   1915 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1916 		/*
   1917 		** We can't set tm_sec to 0, because that might push the
   1918 		** time below the minimum representable time.
   1919 		** Set tm_sec to 59 instead.
   1920 		** This assumes that the minimum representable time is
   1921 		** not in the same minute that a leap second was deleted from,
   1922 		** which is a safer assumption than using 58 would be.
   1923 		*/
   1924 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1925 			goto out_of_range;
   1926 		saved_seconds = yourtm.tm_sec;
   1927 		yourtm.tm_sec = SECSPERMIN - 1;
   1928 	} else {
   1929 		saved_seconds = yourtm.tm_sec;
   1930 		yourtm.tm_sec = 0;
   1931 	}
   1932 	/*
   1933 	** Do a binary search (this works whatever time_t's type is).
   1934 	*/
   1935 	lo = time_t_min;
   1936 	hi = time_t_max;
   1937 #ifdef NO_ERROR_IN_DST_GAP
   1938 	ilo = lo;
   1939 #endif
   1940 	for ( ; ; ) {
   1941 		t = lo / 2 + hi / 2;
   1942 		if (t < lo)
   1943 			t = lo;
   1944 		else if (t > hi)
   1945 			t = hi;
   1946 		if (! funcp(sp, &t, offset, &mytm)) {
   1947 			/*
   1948 			** Assume that t is too extreme to be represented in
   1949 			** a struct tm; arrange things so that it is less
   1950 			** extreme on the next pass.
   1951 			*/
   1952 			dir = (t > 0) ? 1 : -1;
   1953 		} else	dir = tmcomp(&mytm, &yourtm);
   1954 		if (dir != 0) {
   1955 			if (t == lo) {
   1956 				if (t == time_t_max)
   1957 					goto out_of_range;
   1958 				++t;
   1959 				++lo;
   1960 			} else if (t == hi) {
   1961 				if (t == time_t_min)
   1962 					goto out_of_range;
   1963 				--t;
   1964 				--hi;
   1965 			}
   1966 #ifdef NO_ERROR_IN_DST_GAP
   1967 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   1968 			    do_norm_secs) {
   1969 				for (i = sp->typecnt - 1; i >= 0; --i) {
   1970 					for (j = sp->typecnt - 1; j >= 0; --j) {
   1971 						time_t off;
   1972 						if (sp->ttis[j].tt_isdst ==
   1973 						    sp->ttis[i].tt_isdst)
   1974 							continue;
   1975 						off = sp->ttis[j].tt_gmtoff -
   1976 						    sp->ttis[i].tt_gmtoff;
   1977 						yourtm.tm_sec += off < 0 ?
   1978 						    -off : off;
   1979 						goto again;
   1980 					}
   1981 				}
   1982 			}
   1983 #endif
   1984 			if (lo > hi)
   1985 				goto invalid;
   1986 			if (dir > 0)
   1987 				hi = t;
   1988 			else	lo = t;
   1989 			continue;
   1990 		}
   1991 #if defined TM_GMTOFF && ! UNINIT_TRAP
   1992 		if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
   1993 		    && (yourtm.TM_GMTOFF < 0
   1994 			? (-SECSPERDAY <= yourtm.TM_GMTOFF
   1995 			   && (mytm.TM_GMTOFF <=
   1996 			       (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX)
   1997 				+ yourtm.TM_GMTOFF)))
   1998 			: (yourtm.TM_GMTOFF <= SECSPERDAY
   1999 			   && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN)
   2000 				+ yourtm.TM_GMTOFF)
   2001 			       <= mytm.TM_GMTOFF)))) {
   2002 		  /* MYTM matches YOURTM except with the wrong UTC offset.
   2003 		     YOURTM.TM_GMTOFF is plausible, so try it instead.
   2004 		     It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
   2005 		     since the guess gets checked.  */
   2006 		  time_t altt = t;
   2007 		  int_fast32_t diff = (int_fast32_t)
   2008 		      (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
   2009 		  if (!increment_overflow_time(&altt, diff)) {
   2010 		    struct tm alttm;
   2011 		    if (! funcp(sp, &altt, offset, &alttm)
   2012 			&& alttm.tm_isdst == mytm.tm_isdst
   2013 			&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
   2014 			&& tmcomp(&alttm, &yourtm)) {
   2015 		      t = altt;
   2016 		      mytm = alttm;
   2017 		    }
   2018 		  }
   2019 		}
   2020 #endif
   2021 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   2022 			break;
   2023 		/*
   2024 		** Right time, wrong type.
   2025 		** Hunt for right time, right type.
   2026 		** It's okay to guess wrong since the guess
   2027 		** gets checked.
   2028 		*/
   2029 		if (sp == NULL)
   2030 			goto invalid;
   2031 		for (i = sp->typecnt - 1; i >= 0; --i) {
   2032 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   2033 				continue;
   2034 			for (j = sp->typecnt - 1; j >= 0; --j) {
   2035 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   2036 					continue;
   2037 				newt = (time_t)(t + sp->ttis[j].tt_gmtoff -
   2038 				    sp->ttis[i].tt_gmtoff);
   2039 				if (! funcp(sp, &newt, offset, &mytm))
   2040 					continue;
   2041 				if (tmcomp(&mytm, &yourtm) != 0)
   2042 					continue;
   2043 				if (mytm.tm_isdst != yourtm.tm_isdst)
   2044 					continue;
   2045 				/*
   2046 				** We have a match.
   2047 				*/
   2048 				t = newt;
   2049 				goto label;
   2050 			}
   2051 		}
   2052 		goto invalid;
   2053 	}
   2054 label:
   2055 	newt = t + saved_seconds;
   2056 	if ((newt < t) != (saved_seconds < 0))
   2057 		goto out_of_range;
   2058 	t = newt;
   2059 	if (funcp(sp, &t, offset, tmp)) {
   2060 		*okayp = true;
   2061 		return t;
   2062 	}
   2063 out_of_range:
   2064 	errno = EOVERFLOW;
   2065 	return WRONG;
   2066 invalid:
   2067 	errno = EINVAL;
   2068 	return WRONG;
   2069 }
   2070 
   2071 static time_t
   2072 time2(struct tm * const	tmp,
   2073       struct tm *(*funcp)(struct state const *, time_t const *,
   2074 			  int_fast32_t, struct tm *),
   2075       struct state const *sp,
   2076       const int_fast32_t offset,
   2077       bool *okayp)
   2078 {
   2079 	time_t	t;
   2080 
   2081 	/*
   2082 	** First try without normalization of seconds
   2083 	** (in case tm_sec contains a value associated with a leap second).
   2084 	** If that fails, try with normalization of seconds.
   2085 	*/
   2086 	t = time2sub(tmp, funcp, sp, offset, okayp, false);
   2087 	return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
   2088 }
   2089 
   2090 static time_t
   2091 time1(struct tm *const tmp,
   2092       struct tm *(*funcp) (struct state const *, time_t const *,
   2093 			   int_fast32_t, struct tm *),
   2094       struct state const *sp,
   2095       const int_fast32_t offset)
   2096 {
   2097 	time_t			t;
   2098 	int			samei, otheri;
   2099 	int			sameind, otherind;
   2100 	int			i;
   2101 	int			nseen;
   2102 	int			save_errno;
   2103 	char				seen[TZ_MAX_TYPES];
   2104 	unsigned char			types[TZ_MAX_TYPES];
   2105 	bool				okay;
   2106 
   2107 	if (tmp == NULL) {
   2108 		errno = EINVAL;
   2109 		return WRONG;
   2110 	}
   2111 	if (tmp->tm_isdst > 1)
   2112 		tmp->tm_isdst = 1;
   2113 	save_errno = errno;
   2114 	t = time2(tmp, funcp, sp, offset, &okay);
   2115 	if (okay) {
   2116 		errno = save_errno;
   2117 		return t;
   2118 	}
   2119 	if (tmp->tm_isdst < 0)
   2120 #ifdef PCTS
   2121 		/*
   2122 		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
   2123 		*/
   2124 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2125 #else
   2126 		return t;
   2127 #endif /* !defined PCTS */
   2128 	/*
   2129 	** We're supposed to assume that somebody took a time of one type
   2130 	** and did some math on it that yielded a "struct tm" that's bad.
   2131 	** We try to divine the type they started from and adjust to the
   2132 	** type they need.
   2133 	*/
   2134 	if (sp == NULL) {
   2135 		errno = EINVAL;
   2136 		return WRONG;
   2137 	}
   2138 	for (i = 0; i < sp->typecnt; ++i)
   2139 		seen[i] = false;
   2140 	nseen = 0;
   2141 	for (i = sp->timecnt - 1; i >= 0; --i)
   2142 		if (!seen[sp->types[i]]) {
   2143 			seen[sp->types[i]] = true;
   2144 			types[nseen++] = sp->types[i];
   2145 		}
   2146 	for (sameind = 0; sameind < nseen; ++sameind) {
   2147 		samei = types[sameind];
   2148 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2149 			continue;
   2150 		for (otherind = 0; otherind < nseen; ++otherind) {
   2151 			otheri = types[otherind];
   2152 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2153 				continue;
   2154 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2155 					sp->ttis[samei].tt_gmtoff);
   2156 			tmp->tm_isdst = !tmp->tm_isdst;
   2157 			t = time2(tmp, funcp, sp, offset, &okay);
   2158 			if (okay) {
   2159 				errno = save_errno;
   2160 				return t;
   2161 			}
   2162 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2163 					sp->ttis[samei].tt_gmtoff);
   2164 			tmp->tm_isdst = !tmp->tm_isdst;
   2165 		}
   2166 	}
   2167 	errno = EOVERFLOW;
   2168 	return WRONG;
   2169 }
   2170 
   2171 static time_t
   2172 mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
   2173 {
   2174 	if (sp)
   2175 		return time1(tmp, localsub, sp, setname);
   2176 	else {
   2177 		gmtcheck();
   2178 		return time1(tmp, gmtsub, gmtptr, 0);
   2179 	}
   2180 }
   2181 
   2182 #if NETBSD_INSPIRED
   2183 
   2184 time_t
   2185 mktime_z(timezone_t sp, struct tm *const tmp)
   2186 {
   2187 	return mktime_tzname(sp, tmp, false);
   2188 }
   2189 
   2190 #endif
   2191 
   2192 time_t
   2193 mktime(struct tm *tmp)
   2194 {
   2195 	time_t t;
   2196 
   2197 	rwlock_wrlock(&lcl_lock);
   2198 	tzset_unlocked();
   2199 	t = mktime_tzname(lclptr, tmp, true);
   2200 	rwlock_unlock(&lcl_lock);
   2201 	return t;
   2202 }
   2203 
   2204 #ifdef STD_INSPIRED
   2205 
   2206 time_t
   2207 timelocal_z(const timezone_t sp, struct tm *const tmp)
   2208 {
   2209 	if (tmp != NULL)
   2210 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2211 	return mktime_z(sp, tmp);
   2212 }
   2213 
   2214 time_t
   2215 timelocal(struct tm *tmp)
   2216 {
   2217 	if (tmp != NULL)
   2218 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2219 	return mktime(tmp);
   2220 }
   2221 
   2222 time_t
   2223 timegm(struct tm *tmp)
   2224 {
   2225 
   2226 	return timeoff(tmp, 0);
   2227 }
   2228 
   2229 time_t
   2230 timeoff(struct tm *tmp, long offset)
   2231 {
   2232 	if (tmp)
   2233 		tmp->tm_isdst = 0;
   2234 	gmtcheck();
   2235 	return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
   2236 }
   2237 
   2238 #endif /* defined STD_INSPIRED */
   2239 
   2240 /*
   2241 ** XXX--is the below the right way to conditionalize??
   2242 */
   2243 
   2244 #ifdef STD_INSPIRED
   2245 
   2246 /*
   2247 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2248 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2249 ** is not the case if we are accounting for leap seconds.
   2250 ** So, we provide the following conversion routines for use
   2251 ** when exchanging timestamps with POSIX conforming systems.
   2252 */
   2253 
   2254 static int_fast64_t
   2255 leapcorr(const timezone_t sp, time_t t)
   2256 {
   2257 	struct lsinfo const * lp;
   2258 	int		i;
   2259 
   2260 	i = sp->leapcnt;
   2261 	while (--i >= 0) {
   2262 		lp = &sp->lsis[i];
   2263 		if (t >= lp->ls_trans)
   2264 			return lp->ls_corr;
   2265 	}
   2266 	return 0;
   2267 }
   2268 
   2269 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
   2270 time2posix_z(timezone_t sp, time_t t)
   2271 {
   2272 	return (time_t)(t - leapcorr(sp, t));
   2273 }
   2274 
   2275 time_t
   2276 time2posix(time_t t)
   2277 {
   2278 	rwlock_wrlock(&lcl_lock);
   2279 	if (!lcl_is_set)
   2280 		tzset_unlocked();
   2281 	if (lclptr)
   2282 		t = (time_t)(t - leapcorr(lclptr, t));
   2283 	rwlock_unlock(&lcl_lock);
   2284 	return t;
   2285 }
   2286 
   2287 NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE
   2288 posix2time_z(timezone_t sp, time_t t)
   2289 {
   2290 	time_t	x;
   2291 	time_t	y;
   2292 
   2293 	/*
   2294 	** For a positive leap second hit, the result
   2295 	** is not unique. For a negative leap second
   2296 	** hit, the corresponding time doesn't exist,
   2297 	** so we return an adjacent second.
   2298 	*/
   2299 	x = (time_t)(t + leapcorr(sp, t));
   2300 	y = (time_t)(x - leapcorr(sp, x));
   2301 	if (y < t) {
   2302 		do {
   2303 			x++;
   2304 			y = (time_t)(x - leapcorr(sp, x));
   2305 		} while (y < t);
   2306 		x -= y != t;
   2307 	} else if (y > t) {
   2308 		do {
   2309 			--x;
   2310 			y = (time_t)(x - leapcorr(sp, x));
   2311 		} while (y > t);
   2312 		x += y != t;
   2313 	}
   2314 	return x;
   2315 }
   2316 
   2317 time_t
   2318 posix2time(time_t t)
   2319 {
   2320 	rwlock_wrlock(&lcl_lock);
   2321 	if (!lcl_is_set)
   2322 		tzset_unlocked();
   2323 	if (lclptr)
   2324 		t = posix2time_z(lclptr, t);
   2325 	rwlock_unlock(&lcl_lock);
   2326 	return t;
   2327 }
   2328 
   2329 #endif /* defined STD_INSPIRED */
   2330