Home | History | Annotate | Line # | Download | only in time
theory.html revision 1.10
      1 <!DOCTYPE html>
      2 <html lang="en">
      3 <head>
      4   <title>Theory and pragmatics of the tz code and data</title>
      5   <meta charset="UTF-8">
      6   <style>
      7     pre {margin-left: 2em; white-space: pre-wrap;}
      8   </style>
      9 </head>
     10 
     11 <body>
     12 <h1>Theory and pragmatics of the <code><abbr>tz</abbr></code> code and data</h1>
     13   <h3>Outline</h3>
     14   <nav>
     15     <ul>
     16       <li><a href="#scope">Scope of the <code><abbr>tz</abbr></code>
     17 	  database</a></li>
     18       <li><a href="#naming">Timezone identifiers</a></li>
     19       <li><a href="#abbreviations">Time zone abbreviations</a></li>
     20       <li><a href="#accuracy">Accuracy of the <code><abbr>tz</abbr></code>
     21 	  database</a></li>
     22       <li><a href="#functions">Time and date functions</a></li>
     23       <li><a href="#stability">Interface stability</a></li>
     24       <li><a href="#leapsec">Leap seconds</a></li>
     25       <li><a href="#calendar">Calendrical issues</a></li>
     26       <li><a href="#planets">Time and time zones on other planets</a></li>
     27     </ul>
     28   </nav>
     29 
     30 <section>
     31   <h2 id="scope">Scope of the <code><abbr>tz</abbr></code> database</h2>
     32 <p>
     33 The <a
     34 href="https://www.iana.org/time-zones"><code><abbr>tz</abbr></code>
     35 database</a> attempts to record the history and predicted future of
     36 civil time scales.
     37 It organizes <a href="tz-link.html">time zone and daylight saving time
     38 data</a> by partitioning the world into <a
     39 href="https://en.wikipedia.org/wiki/List_of_tz_database_time_zones"><dfn>timezones</dfn></a>
     40 whose clocks all agree about timestamps that occur after the <a
     41 href="https://en.wikipedia.org/wiki/Unix_time">POSIX Epoch</a>
     42 (1970-01-01 00:00:00 <a
     43 href="https://en.wikipedia.org/wiki/Coordinated_Universal_Time"><abbr
     44 title="Coordinated Universal Time">UTC</abbr></a>).
     45 The database labels each timezone with a notable location and
     46 records all known clock transitions for that location.
     47 Although 1970 is a somewhat-arbitrary cutoff, there are significant
     48 challenges to moving the cutoff earlier even by a decade or two, due
     49 to the wide variety of local practices before computer timekeeping
     50 became prevalent.
     51 </p>
     52 
     53 <p>
     54 Each timezone typically corresponds to a geographical region that is
     55 smaller than a traditional time zone, because clocks in a timezone
     56 all agree after 1970 whereas a traditional time zone merely
     57 specifies current standard time. For example, applications that deal
     58 with current and future timestamps in the traditional North
     59 American mountain time zone can choose from the timezones
     60 <code>America/Denver</code> which observes US-style daylight saving
     61 time, <code>America/Mazatlan</code> which observes Mexican-style DST,
     62 and <code>America/Phoenix</code> which does not observe DST.
     63 Applications that also deal with past timestamps in the mountain time
     64 zone can choose from over a dozen timezones, such as
     65 <code>America/Boise</code>, <code>America/Edmonton</code>, and
     66 <code>America/Hermosillo</code>, each of which currently uses mountain
     67 time but differs from other timezones for some timestamps after 1970.
     68 </p>
     69 
     70 <p>
     71 Clock transitions before 1970 are recorded for each timezone,
     72 because most systems support timestamps before 1970 and could
     73 misbehave if data entries were omitted for pre-1970 transitions.
     74 However, the database is not designed for and does not suffice for
     75 applications requiring accurate handling of all past times everywhere,
     76 as it would take far too much effort and guesswork to record all
     77 details of pre-1970 civil timekeeping.
     78 Although some information outside the scope of the database is
     79 collected in a file <code>backzone</code> that is distributed along
     80 with the database proper, this file is less reliable and does not
     81 necessarily follow database guidelines.
     82 </p>
     83 
     84 <p>
     85 As described below, reference source code for using the
     86 <code><abbr>tz</abbr></code> database is also available.
     87 The <code><abbr>tz</abbr></code> code is upwards compatible with <a
     88 href="https://en.wikipedia.org/wiki/POSIX">POSIX</a>, an international
     89 standard for <a
     90 href="https://en.wikipedia.org/wiki/Unix">UNIX</a>-like systems.
     91 As of this writing, the current edition of POSIX is: <a
     92 href="https://pubs.opengroup.org/onlinepubs/9699919799/"> The Open
     93 Group Base Specifications Issue 7</a>, IEEE Std 1003.1-2017, 2018
     94 Edition.
     95 Because the database's scope encompasses real-world changes to civil
     96 timekeeping, its model for describing time is more complex than the
     97 standard and daylight saving times supported by POSIX.
     98 A <code><abbr>tz</abbr></code> timezone corresponds to a ruleset that can
     99 have more than two changes per year, these changes need not merely
    100 flip back and forth between two alternatives, and the rules themselves
    101 can change at times.
    102 Whether and when a timezone changes its clock,
    103 and even the timezone's notional base offset from <abbr>UTC</abbr>,
    104 are variable.
    105 It does not always make sense to talk about a timezone's
    106 "base offset", which is not necessarily a single number.
    107 </p>
    108 
    109 </section>
    110 
    111 <section>
    112   <h2 id="naming">Timezone identifiers</h2>
    113 <p>
    114 Each timezone has a name that uniquely identifies the timezone.
    115 Inexperienced users are not expected to select these names unaided.
    116 Distributors should provide documentation and/or a simple selection
    117 interface that explains each name via a map or via descriptive text like
    118 "Czech Republic" instead of the timezone name "<code>Europe/Prague</code>".
    119 If geolocation information is available, a selection interface can
    120 locate the user on a timezone map or prioritize names that are
    121 geographically close. For an example selection interface, see the
    122 <code>tzselect</code> program in the <code><abbr>tz</abbr></code> code.
    123 The <a href="http://cldr.unicode.org">Unicode Common Locale Data
    124 Repository</a> contains data that may be useful for other selection
    125 interfaces; it maps timezone names like <code>Europe/Prague</code> to
    126 locale-dependent strings like "Prague", "Praha", "", and "".
    127 </p>
    128 
    129 <p>
    130 The naming conventions attempt to strike a balance
    131 among the following goals:
    132 </p>
    133 
    134 <ul>
    135   <li>
    136     Uniquely identify every timezone where clocks have agreed since 1970.
    137     This is essential for the intended use: static clocks keeping local
    138     civil time.
    139   </li>
    140   <li>
    141     Indicate to experts where the timezone's clocks typically are.
    142   </li>
    143   <li>
    144     Be robust in the presence of political changes.
    145     For example, names are typically not tied to countries, to avoid
    146     incompatibilities when countries change their name (e.g.,
    147     Swaziland&rarr;Eswatini) or when locations change countries (e.g., Hong
    148     Kong from UK colony to China).
    149     There is no requirement that every country or national
    150     capital must have a timezone name.
    151   </li>
    152   <li>
    153     Be portable to a wide variety of implementations.
    154   </li>
    155   <li>
    156     Use a consistent naming conventions over the entire world.
    157   </li>
    158 </ul>
    159 
    160 <p>
    161 Names normally have the form
    162 <var>AREA</var><code>/</code><var>LOCATION</var>, where
    163 <var>AREA</var> is a continent or ocean, and
    164 <var>LOCATION</var> is a specific location within the area.
    165 North and South America share the same area, '<code>America</code>'.
    166 Typical names are '<code>Africa/Cairo</code>',
    167 '<code>America/New_York</code>', and '<code>Pacific/Honolulu</code>'.
    168 Some names are further qualified to help avoid confusion; for example,
    169 '<code>America/Indiana/Petersburg</code>' distinguishes Petersburg,
    170 Indiana from other Petersburgs in America.
    171 </p>
    172 
    173 <p>
    174 Here are the general guidelines used for
    175 choosing timezone names,
    176 in decreasing order of importance:
    177 </p>
    178 
    179 <ul>
    180   <li>
    181     Use only valid POSIX file name components (i.e., the parts of
    182     names other than '<code>/</code>').
    183     Do not use the file name components '<code>.</code>' and
    184     '<code>..</code>'.
    185     Within a file name component, use only <a
    186     href="https://en.wikipedia.org/wiki/ASCII">ASCII</a> letters,
    187     '<code>.</code>', '<code>-</code>' and '<code>_</code>'.
    188     Do not use digits, as that might create an ambiguity with <a
    189     href="https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03">POSIX
    190     <code>TZ</code> strings</a>.
    191     A file name component must not exceed 14 characters or start with
    192     '<code>-</code>'.
    193     E.g., prefer <code>Asia/Brunei</code> to
    194     <code>Asia/Bandar_Seri_Begawan</code>.
    195     Exceptions: see the discussion of legacy names below.
    196   </li>
    197   <li>
    198     A name must not be empty, or contain '<code>//</code>', or
    199     start or end with '<code>/</code>'.
    200   </li>
    201   <li>
    202     Do not use names that differ only in case.
    203     Although the reference implementation is case-sensitive, some
    204     other implementations are not, and they would mishandle names
    205     differing only in case.
    206   </li>
    207   <li>
    208     If one name <var>A</var> is an initial prefix of another
    209     name <var>AB</var> (ignoring case), then <var>B</var> must not
    210     start with '<code>/</code>', as a regular file cannot have the
    211     same name as a directory in POSIX.
    212     For example, <code>America/New_York</code> precludes
    213     <code>America/New_York/Bronx</code>.
    214   </li>
    215   <li>
    216     Uninhabited regions like the North Pole and Bouvet Island
    217     do not need locations, since local time is not defined there.
    218   </li>
    219   <li>
    220     If all the clocks in a timezone have agreed since 1970,
    221     do not bother to include more than one timezone
    222     even if some of the clocks disagreed before 1970.
    223     Otherwise these tables would become annoyingly large.
    224   </li>
    225   <li>
    226     If boundaries between regions are fluid, such as during a war or
    227     insurrection, do not bother to create a new timezone merely
    228     because of yet another boundary change. This helps prevent table
    229     bloat and simplifies maintenance.
    230   </li>
    231   <li>
    232     If a name is ambiguous, use a less ambiguous alternative;
    233     e.g., many cities are named San Jos and Georgetown, so
    234     prefer <code>America/Costa_Rica</code> to
    235     <code>America/San_Jose</code> and <code>America/Guyana</code>
    236     to <code>America/Georgetown</code>.
    237   </li>
    238   <li>
    239     Keep locations compact.
    240     Use cities or small islands, not countries or regions, so that any
    241     future changes do not split individual locations into different
    242     timezones.
    243     E.g., prefer <code>Europe/Paris</code> to <code>Europe/France</code>,
    244     since
    245     <a href="https://en.wikipedia.org/wiki/Time_in_France#History">France
    246     has had multiple time zones</a>.
    247   </li>
    248   <li>
    249     Use mainstream English spelling, e.g., prefer
    250     <code>Europe/Rome</code> to <code>Europa/Roma</code>, and
    251     prefer <code>Europe/Athens</code> to the Greek
    252     <code>/</code> or the Romanized
    253     <code>Evrpi/Athna</code>.
    254     The POSIX file name restrictions encourage this guideline.
    255   </li>
    256   <li>
    257     Use the most populous among locations in a region,
    258     e.g., prefer <code>Asia/Shanghai</code> to
    259     <code>Asia/Beijing</code>.
    260     Among locations with similar populations, pick the best-known
    261     location, e.g., prefer <code>Europe/Rome</code> to
    262     <code>Europe/Milan</code>.
    263   </li>
    264   <li>
    265     Use the singular form, e.g., prefer <code>Atlantic/Canary</code> to
    266     <code>Atlantic/Canaries</code>.
    267   </li>
    268   <li>
    269     Omit common suffixes like '<code>_Islands</code>' and
    270     '<code>_City</code>', unless that would lead to ambiguity.
    271     E.g., prefer <code>America/Cayman</code> to
    272     <code>America/Cayman_Islands</code> and
    273     <code>America/Guatemala</code> to
    274     <code>America/Guatemala_City</code>, but prefer
    275     <code>America/Mexico_City</code> to
    276     <code>America/Mexico</code>
    277     because <a href="https://en.wikipedia.org/wiki/Time_in_Mexico">the
    278     country of Mexico has several time zones</a>.
    279   </li>
    280   <li>
    281     Use '<code>_</code>' to represent a space.
    282   </li>
    283   <li>
    284     Omit '<code>.</code>' from abbreviations in names.
    285     E.g., prefer <code>Atlantic/St_Helena</code> to
    286     <code>Atlantic/St._Helena</code>.
    287   </li>
    288   <li>
    289     Do not change established names if they only marginally violate
    290     the above guidelines.
    291     For example, do not change the existing name <code>Europe/Rome</code> to
    292     <code>Europe/Milan</code> merely because Milan's population has grown
    293     to be somewhat greater than Rome's.
    294   </li>
    295   <li>
    296     If a name is changed, put its old spelling in the
    297     '<code>backward</code>' file.
    298     This means old spellings will continue to work.
    299     Ordinarily a name change should occur only in the rare case when
    300     a location's consensus English-language spelling changes; for example,
    301     in 2008 <code>Asia/Calcutta</code> was renamed to <code>Asia/Kolkata</code>
    302     due to long-time widespread use of the new city name instead of the old.
    303   </li>
    304 </ul>
    305 
    306 <p>
    307 Guidelines have evolved with time, and names following old versions of
    308 these guidelines might not follow the current version. When guidelines
    309 have changed, old names continue to be supported. Guideline changes
    310 have included the following:
    311 </p>
    312 
    313 <ul>
    314 <li>
    315 Older versions of this package used a different naming scheme.
    316 See the file '<code>backward</code>' for most of these older names
    317 (e.g., '<code>US/Eastern</code>' instead of '<code>America/New_York</code>').
    318 The other old-fashioned names still supported are
    319 '<code>WET</code>', '<code>CET</code>', '<code>MET</code>', and
    320 '<code>EET</code>' (see the file '<code>europe</code>').
    321 </li>
    322 
    323 <li>
    324 Older versions of this package defined legacy names that are
    325 incompatible with the first guideline of location names, but which are
    326 still supported.
    327 These legacy names are mostly defined in the file
    328 '<code>etcetera</code>'.
    329 Also, the file '<code>backward</code>' defines the legacy names
    330 '<code>GMT0</code>', '<code>GMT-0</code>' and '<code>GMT+0</code>',
    331 and the file '<code>northamerica</code>' defines the legacy names
    332 '<code>EST5EDT</code>', '<code>CST6CDT</code>',
    333 '<code>MST7MDT</code>', and '<code>PST8PDT</code>'.
    334 </li>
    335 
    336 <li>
    337 Older versions of these guidelines said that
    338 there should typically be at least one name for each <a
    339 href="https://en.wikipedia.org/wiki/ISO_3166-1"><abbr
    340 title="International Organization for Standardization">ISO</abbr>
    341 3166-1</a> officially assigned two-letter code for an inhabited
    342 country or territory.
    343 This old guideline has been dropped, as it was not needed to handle
    344 timestamps correctly and it increased maintenance burden.
    345 </li>
    346 </ul>
    347 
    348 <p>
    349 The file '<code>zone1970.tab</code>' lists geographical locations used
    350 to name timezones.
    351 It is intended to be an exhaustive list of names for geographic
    352 regions as described above; this is a subset of the timezones in the data.
    353 Although a '<code>zone1970.tab</code>' location's
    354 <a href="https://en.wikipedia.org/wiki/Longitude">longitude</a>
    355 corresponds to
    356 its <a href="https://en.wikipedia.org/wiki/Local_mean_time">local mean
    357 time (<abbr>LMT</abbr>)</a> offset with one hour for every 15&deg;
    358 east longitude, this relationship is not exact.
    359 </p>
    360 
    361 <p>
    362 Excluding '<code>backward</code>' should not affect the other data.
    363 If '<code>backward</code>' is excluded, excluding
    364 '<code>etcetera</code>' should not affect the remaining data.
    365 </p>
    366 </section>
    367 
    368 <section>
    369   <h2 id="abbreviations">Time zone abbreviations</h2>
    370 <p>
    371 When this package is installed, it generates time zone abbreviations
    372 like '<code>EST</code>' to be compatible with human tradition and POSIX.
    373 Here are the general guidelines used for choosing time zone abbreviations,
    374 in decreasing order of importance:
    375 </p>
    376 
    377 <ul>
    378   <li>
    379     Use three to six characters that are ASCII alphanumerics or
    380     '<code>+</code>' or '<code>-</code>'.
    381     Previous editions of this database also used characters like
    382     space and '<code>?</code>', but these characters have a
    383     special meaning to the
    384     <a href="https://en.wikipedia.org/wiki/Unix_shell">UNIX shell</a>
    385     and cause commands like
    386     '<code><a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set">set</a>
    387     `<a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/date.html">date</a>`</code>'
    388     to have unexpected effects.
    389     Previous editions of this guideline required upper-case letters, but the
    390     Congressman who introduced
    391     <a href="https://en.wikipedia.org/wiki/Chamorro_Time_Zone">Chamorro
    392     Standard Time</a> preferred "ChST", so lower-case letters are now
    393     allowed.
    394     Also, POSIX from 2001 on relaxed the rule to allow '<code>-</code>',
    395     '<code>+</code>', and alphanumeric characters from the portable
    396     character set in the current locale.
    397     In practice ASCII alphanumerics and '<code>+</code>' and
    398     '<code>-</code>' are safe in all locales.
    399 
    400     <p>
    401     In other words, in the C locale the POSIX extended regular
    402     expression <code>[-+[:alnum:]]{3,6}</code> should match the
    403     abbreviation.
    404     This guarantees that all abbreviations could have been specified by a
    405     POSIX <code>TZ</code> string.
    406     </p>
    407   </li>
    408   <li>
    409     Use abbreviations that are in common use among English-speakers,
    410     e.g., 'EST' for Eastern Standard Time in North America.
    411     We assume that applications translate them to other languages
    412     as part of the normal localization process; for example,
    413     a French application might translate 'EST' to 'HNE'.
    414 
    415     <p>
    416     <small>These abbreviations (for standard/daylight/etc. time) are:
    417       ACST/ACDT Australian Central,
    418       AST/ADT/APT/AWT/ADDT Atlantic,
    419       AEST/AEDT Australian Eastern,
    420       AHST/AHDT Alaska-Hawaii,
    421       AKST/AKDT Alaska,
    422       AWST/AWDT Australian Western,
    423       BST/BDT Bering,
    424       CAT/CAST Central Africa,
    425       CET/CEST/CEMT Central European,
    426       ChST Chamorro,
    427       CST/CDT/CWT/CPT/CDDT Central [North America],
    428       CST/CDT China,
    429       GMT/BST/IST/BDST Greenwich,
    430       EAT East Africa,
    431       EST/EDT/EWT/EPT/EDDT Eastern [North America],
    432       EET/EEST Eastern European,
    433       GST/GDT Guam,
    434       HST/HDT/HWT/HPT Hawaii,
    435       HKT/HKST/HKWT Hong Kong,
    436       IST India,
    437       IST/GMT Irish,
    438       IST/IDT/IDDT Israel,
    439       JST/JDT Japan,
    440       KST/KDT Korea,
    441       MET/MEST Middle European (a backward-compatibility alias for
    442 	Central European),
    443       MSK/MSD Moscow,
    444       MST/MDT/MWT/MPT/MDDT Mountain,
    445       NST/NDT/NWT/NPT/NDDT Newfoundland,
    446       NST/NDT/NWT/NPT Nome,
    447       NZMT/NZST New Zealand through 1945,
    448       NZST/NZDT New Zealand 1946&ndash;present,
    449       PKT/PKST Pakistan,
    450       PST/PDT/PWT/PPT/PDDT Pacific,
    451       PST/PDT Philippine,
    452       SAST South Africa,
    453       SST Samoa,
    454       WAT/WAST West Africa,
    455       WET/WEST/WEMT Western European,
    456       WIB Waktu Indonesia Barat,
    457       WIT Waktu Indonesia Timur,
    458       WITA Waktu Indonesia Tengah,
    459       YST/YDT/YWT/YPT/YDDT Yukon</small>.
    460     </p>
    461   </li>
    462   <li>
    463     <p>
    464     For times taken from a city's longitude, use the
    465     traditional <var>x</var>MT notation.
    466     The only abbreviation like this in current use is '<abbr>GMT</abbr>'.
    467     The others are for timestamps before 1960,
    468     except that Monrovia Mean Time persisted until 1972.
    469     Typically, numeric abbreviations (e.g., '<code>-</code>004430' for
    470     MMT) would cause trouble here, as the numeric strings would exceed
    471     the POSIX length limit.
    472     </p>
    473 
    474     <p>
    475     <small>These abbreviations are:
    476       AMT Amsterdam, Asuncin, Athens;
    477       BMT Baghdad, Bangkok, Batavia, Bern, Bogot, Bridgetown, Brussels,
    478 	Bucharest;
    479       CMT Calamarca, Caracas, Chisinau, Coln, Copenhagen, Crdoba;
    480       DMT Dublin/Dunsink;
    481       EMT Easter;
    482       FFMT Fort-de-France;
    483       FMT Funchal;
    484       GMT Greenwich;
    485       HMT Havana, Helsinki, Horta, Howrah;
    486       IMT Irkutsk, Istanbul;
    487       JMT Jerusalem;
    488       KMT Kaunas, Kiev, Kingston;
    489       LMT Lima, Lisbon, local, Luanda;
    490       MMT Macassar, Madras, Mal, Managua, Minsk, Monrovia, Montevideo,
    491 	Moratuwa, Moscow;
    492       PLMT Ph Lin;
    493       PMT Paramaribo, Paris, Perm, Pontianak, Prague;
    494       PMMT Port Moresby;
    495       QMT Quito;
    496       RMT Rangoon, Riga, Rome;
    497       SDMT Santo Domingo;
    498       SJMT San Jos;
    499       SMT Santiago, Simferopol, Singapore, Stanley;
    500       TBMT Tbilisi;
    501       TMT Tallinn, Tehran;
    502       WMT Warsaw</small>.
    503     </p>
    504 
    505     <p>
    506     <small>A few abbreviations also follow the pattern that
    507     <abbr>GMT</abbr>/<abbr>BST</abbr> established for time in the UK.
    508     They are:
    509       CMT/BST for Calamarca Mean Time and Bolivian Summer Time
    510 	1890&ndash;1932,
    511       DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time
    512 	1880&ndash;1916,
    513       MMT/MST/MDST for Moscow 1880&ndash;1919, and
    514       RMT/LST for Riga Mean Time and Latvian Summer time 1880&ndash;1926.
    515     An extra-special case is SET for Swedish Time (<em>svensk
    516     normaltid</em>) 1879&ndash;1899, 3&deg; west of the Stockholm
    517     Observatory.</small>
    518     </p>
    519   </li>
    520   <li>
    521     Use '<abbr>LMT</abbr>' for local mean time of locations before the
    522     introduction of standard time; see "<a href="#scope">Scope of the
    523     <code><abbr>tz</abbr></code> database</a>".
    524   </li>
    525   <li>
    526     If there is no common English abbreviation, use numeric offsets like
    527     <code>-</code>05 and <code>+</code>0530 that are generated
    528     by <code>zic</code>'s <code>%z</code> notation.
    529   </li>
    530   <li>
    531     Use current abbreviations for older timestamps to avoid confusion.
    532     For example, in 1910 a common English abbreviation for time
    533     in central Europe was 'MEZ' (short for both "Middle European
    534     Zone" and for "Mitteleuropische Zeit" in German).
    535     Nowadays 'CET' ("Central European Time") is more common in
    536     English, and the database uses 'CET' even for circa-1910
    537     timestamps as this is less confusing for modern users and avoids
    538     the need for determining when 'CET' supplanted 'MEZ' in common
    539     usage.
    540   </li>
    541   <li>
    542     Use a consistent style in a timezone's history.
    543     For example, if a history tends to use numeric
    544     abbreviations and a particular entry could go either way, use a
    545     numeric abbreviation.
    546   </li>
    547   <li>
    548     Use
    549     <a href="https://en.wikipedia.org/wiki/Universal_Time">Universal Time</a>
    550     (<abbr>UT</abbr>) (with time zone abbreviation '<code>-</code>00') for
    551     locations while uninhabited.
    552     The leading '<code>-</code>' is a flag that the <abbr>UT</abbr> offset is in
    553     some sense undefined; this notation is derived
    554     from <a href="https://tools.ietf.org/html/rfc3339">Internet
    555     <abbr title="Request For Comments">RFC</abbr> 3339</a>.
    556   </li>
    557 </ul>
    558 
    559 <p>
    560 Application writers should note that these abbreviations are ambiguous
    561 in practice: e.g., 'CST' means one thing in China and something else
    562 in North America, and 'IST' can refer to time in India, Ireland or
    563 Israel.
    564 To avoid ambiguity, use numeric <abbr>UT</abbr> offsets like
    565 '<code>-</code>0600' instead of time zone abbreviations like 'CST'.
    566 </p>
    567 </section>
    568 
    569 <section>
    570   <h2 id="accuracy">Accuracy of the <code><abbr>tz</abbr></code> database</h2>
    571 <p>
    572 The <code><abbr>tz</abbr></code> database is not authoritative, and it
    573 surely has errors.
    574 Corrections are welcome and encouraged; see the file <code>CONTRIBUTING</code>.
    575 Users requiring authoritative data should consult national standards
    576 bodies and the references cited in the database's comments.
    577 </p>
    578 
    579 <p>
    580 Errors in the <code><abbr>tz</abbr></code> database arise from many sources:
    581 </p>
    582 
    583 <ul>
    584   <li>
    585     The <code><abbr>tz</abbr></code> database predicts future
    586     timestamps, and current predictions
    587     will be incorrect after future governments change the rules.
    588     For example, if today someone schedules a meeting for 13:00 next
    589     October 1, Casablanca time, and tomorrow Morocco changes its
    590     daylight saving rules, software can mess up after the rule change
    591     if it blithely relies on conversions made before the change.
    592   </li>
    593   <li>
    594     The pre-1970 entries in this database cover only a tiny sliver of how
    595     clocks actually behaved; the vast majority of the necessary
    596     information was lost or never recorded.
    597     Thousands more timezones would be needed if
    598     the <code><abbr>tz</abbr></code> database's scope were extended to
    599     cover even just the known or guessed history of standard time; for
    600     example, the current single entry for France would need to split
    601     into dozens of entries, perhaps hundreds.
    602     And in most of the world even this approach would be misleading
    603     due to widespread disagreement or indifference about what times
    604     should be observed.
    605     In her 2015 book
    606     <cite><a
    607     href="http://www.hup.harvard.edu/catalog.php?isbn=9780674286146">The
    608     Global Transformation of Time, 1870&ndash;1950</a></cite>,
    609     Vanessa Ogle writes
    610     "Outside of Europe and North America there was no system of time
    611     zones at all, often not even a stable landscape of mean times,
    612     prior to the middle decades of the twentieth century".
    613     See: Timothy Shenk, <a
    614 href="https://www.dissentmagazine.org/blog/booked-a-global-history-of-time-vanessa-ogle">Booked:
    615       A Global History of Time</a>. <cite>Dissent</cite> 2015-12-17.
    616   </li>
    617   <li>
    618     Most of the pre-1970 data entries come from unreliable sources, often
    619     astrology books that lack citations and whose compilers evidently
    620     invented entries when the true facts were unknown, without
    621     reporting which entries were known and which were invented.
    622     These books often contradict each other or give implausible entries,
    623     and on the rare occasions when they are checked they are
    624     typically found to be incorrect.
    625   </li>
    626   <li>
    627     For the UK the <code><abbr>tz</abbr></code> database relies on
    628     years of first-class work done by
    629     Joseph Myers and others; see
    630     "<a href="https://www.polyomino.org.uk/british-time/">History of
    631     legal time in Britain</a>".
    632     Other countries are not done nearly as well.
    633   </li>
    634   <li>
    635     Sometimes, different people in the same city maintain clocks
    636     that differ significantly.
    637     Historically, railway time was used by railroad companies (which
    638     did not always
    639     agree with each other), church-clock time was used for birth
    640     certificates, etc.
    641     More recently, competing political groups might disagree about
    642     clock settings. Often this is merely common practice, but
    643     sometimes it is set by law.
    644     For example, from 1891 to 1911 the <abbr>UT</abbr> offset in France
    645     was legally <abbr>UT</abbr> +00:09:21 outside train stations and
    646     <abbr>UT</abbr> +00:04:21 inside. Other examples include
    647     Chillicothe in 1920, Palm Springs in 1946/7, and Jerusalem and
    648     rmqi to this day.
    649   </li>
    650   <li>
    651     Although a named location in the <code><abbr>tz</abbr></code>
    652     database stands for the containing region, its pre-1970 data
    653     entries are often accurate for only a small subset of that region.
    654     For example, <code>Europe/London</code> stands for the United
    655     Kingdom, but its pre-1847 times are valid only for locations that
    656     have London's exact meridian, and its 1847 transition
    657     to <abbr>GMT</abbr> is known to be valid only for the L&amp;NW and
    658     the Caledonian railways.
    659   </li>
    660   <li>
    661     The <code><abbr>tz</abbr></code> database does not record the
    662     earliest time for which a timezone's
    663     data entries are thereafter valid for every location in the region.
    664     For example, <code>Europe/London</code> is valid for all locations
    665     in its region after <abbr>GMT</abbr> was made the standard time,
    666     but the date of standardization (1880-08-02) is not in the
    667     <code><abbr>tz</abbr></code> database, other than in commentary.
    668     For many timezones the earliest time of
    669     validity is unknown.
    670   </li>
    671   <li>
    672     The <code><abbr>tz</abbr></code> database does not record a
    673     region's boundaries, and in many cases the boundaries are not known.
    674     For example, the timezone
    675     <code>America/Kentucky/Louisville</code> represents a region
    676     around the city of Louisville, the boundaries of which are
    677     unclear.
    678   </li>
    679   <li>
    680     Changes that are modeled as instantaneous transitions in the
    681     <code><abbr>tz</abbr></code>
    682     database were often spread out over hours, days, or even decades.
    683   </li>
    684   <li>
    685     Even if the time is specified by law, locations sometimes
    686     deliberately flout the law.
    687   </li>
    688   <li>
    689     Early timekeeping practices, even assuming perfect clocks, were
    690     often not specified to the accuracy that the
    691     <code><abbr>tz</abbr></code> database requires.
    692   </li>
    693   <li>
    694     The <code><abbr>tz</abbr></code> database cannot represent stopped clocks.
    695     However, on 1911-03-11 at 00:00, some public-facing French clocks
    696     were changed by stopping them for a few minutes to effect a transition.
    697     The <code><abbr>tz</abbr></code> database models this via a
    698     backward transition; the relevant French legislation does not
    699     specify exactly how the transition was to occur.
    700   </li>
    701   <li>
    702     Sometimes historical timekeeping was specified more precisely
    703     than what the <code><abbr>tz</abbr></code> code can handle.
    704     For example, from 1909 to 1937 <a
    705     href="https://www.staff.science.uu.nl/~gent0113/wettijd/wettijd.htm"
    706     hreflang="nl">Netherlands clocks</a> were legally Amsterdam Mean
    707     Time (estimated to be <abbr>UT</abbr>
    708     +00:19:32.13), but the <code><abbr>tz</abbr></code>
    709     code cannot represent the fractional second.
    710     In practice these old specifications were rarely if ever
    711     implemented to subsecond precision.
    712   </li>
    713   <li>
    714     Even when all the timestamp transitions recorded by the
    715     <code><abbr>tz</abbr></code> database are correct, the
    716     <code><abbr>tz</abbr></code> rules that generate them may not
    717     faithfully reflect the historical rules.
    718     For example, from 1922 until World War II the UK moved clocks
    719     forward the day following the third Saturday in April unless that
    720     was Easter, in which case it moved clocks forward the previous
    721     Sunday.
    722     Because the <code><abbr>tz</abbr></code> database has no
    723     way to specify Easter, these exceptional years are entered as
    724     separate <code><abbr>tz</abbr> Rule</code> lines, even though the
    725     legal rules did not change.
    726     When transitions are known but the historical rules behind them are not,
    727     the database contains <code>Zone</code> and <code>Rule</code>
    728     entries that are intended to represent only the generated
    729     transitions, not any underlying historical rules; however, this
    730     intent is recorded at best only in commentary.
    731   </li>
    732   <li>
    733     The <code><abbr>tz</abbr></code> database models time
    734     using the <a
    735     href="https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">proleptic
    736     Gregorian calendar</a> with days containing 24 equal-length hours
    737     numbered 00 through 23, except when clock transitions occur.
    738     Pre-standard time is modeled as local mean time.
    739     However, historically many people used other calendars and other timescales.
    740     For example, the Roman Empire used
    741     the <a href="https://en.wikipedia.org/wiki/Julian_calendar">Julian
    742     calendar</a>,
    743     and <a href="https://en.wikipedia.org/wiki/Roman_timekeeping">Roman
    744     timekeeping</a> had twelve varying-length daytime hours with a
    745     non-hour-based system at night.
    746     And even today, some local practices diverge from the Gregorian
    747     calendar with 24-hour days. These divergences range from
    748     relatively minor, such as Japanese bars giving times like "24:30" for the
    749     wee hours of the morning, to more-significant differences such as <a
    750     href="https://www.pri.org/stories/2015-01-30/if-you-have-meeting-ethiopia-you-better-double-check-time">the
    751     east African practice of starting the day at dawn</a>, renumbering
    752     the Western 06:00 to be 12:00. These practices are largely outside
    753     the scope of the <code><abbr>tz</abbr></code> code and data, which
    754     provide only limited support for date and time localization
    755     such as that required by POSIX. If DST is not used a different time zone
    756     can often do the trick; for example, in Kenya a <code>TZ</code> setting
    757     like <code>&lt;-03&gt;3</code> or <code>America/Cayenne</code> starts
    758     the day six hours later than <code>Africa/Nairobi</code> does.
    759   </li>
    760   <li>
    761     Early clocks were less reliable, and data entries do not represent
    762     clock error.
    763   </li>
    764   <li>
    765     The <code><abbr>tz</abbr></code> database assumes Universal Time
    766     (<abbr>UT</abbr>) as an origin, even though <abbr>UT</abbr> is not
    767     standardized for older timestamps.
    768     In the <code><abbr>tz</abbr></code> database commentary,
    769     <abbr>UT</abbr> denotes a family of time standards that includes
    770     Coordinated Universal Time (<abbr>UTC</abbr>) along with other
    771     variants such as <abbr>UT1</abbr> and <abbr>GMT</abbr>,
    772     with days starting at midnight.
    773     Although <abbr>UT</abbr> equals <abbr>UTC</abbr> for modern
    774     timestamps, <abbr>UTC</abbr> was not defined until 1960, so
    775     commentary uses the more-general abbreviation <abbr>UT</abbr> for
    776     timestamps that might predate 1960.
    777     Since <abbr>UT</abbr>, <abbr>UT1</abbr>, etc. disagree slightly,
    778     and since pre-1972 <abbr>UTC</abbr> seconds varied in length,
    779     interpretation of older timestamps can be problematic when
    780     subsecond accuracy is needed.
    781   </li>
    782   <li>
    783     Civil time was not based on atomic time before 1972, and we do not
    784     know the history of
    785     <a href="https://en.wikipedia.org/wiki/Earth's_rotation">earth's
    786     rotation</a> accurately enough to map <a
    787     href="https://en.wikipedia.org/wiki/International_System_of_Units"><abbr
    788     title="International System of Units">SI</abbr></a> seconds to
    789     historical <a href="https://en.wikipedia.org/wiki/Solar_time">solar time</a>
    790     to more than about one-hour accuracy.
    791     See: Stephenson FR, Morrison LV, Hohenkerk CY.
    792     <a href="https://dx.doi.org/10.1098/rspa.2016.0404">Measurement of
    793     the Earth's rotation: 720 BC to AD 2015</a>.
    794     <cite>Proc Royal Soc A</cite>. 2016 Dec 7;472:20160404.
    795     Also see: Espenak F. <a
    796     href="https://eclipse.gsfc.nasa.gov/SEhelp/uncertainty2004.html">Uncertainty
    797     in Delta T (T)</a>.
    798   </li>
    799   <li>
    800     The relationship between POSIX time (that is, <abbr>UTC</abbr> but
    801     ignoring <a href="https://en.wikipedia.org/wiki/Leap_second">leap
    802     seconds</a>) and <abbr>UTC</abbr> is not agreed upon after 1972.
    803     Although the POSIX
    804     clock officially stops during an inserted leap second, at least one
    805     proposed standard has it jumping back a second instead; and in
    806     practice POSIX clocks more typically either progress glacially during
    807     a leap second, or are slightly slowed while near a leap second.
    808   </li>
    809   <li>
    810     The <code><abbr>tz</abbr></code> database does not represent how
    811     uncertain its information is.
    812     Ideally it would contain information about when data entries are
    813     incomplete or dicey.
    814     Partial temporal knowledge is a field of active research, though,
    815     and it is not clear how to apply it here.
    816   </li>
    817 </ul>
    818 
    819 <p>
    820 In short, many, perhaps most, of the <code><abbr>tz</abbr></code>
    821 database's pre-1970 and future timestamps are either wrong or
    822 misleading.
    823 Any attempt to pass the
    824 <code><abbr>tz</abbr></code> database off as the definition of time
    825 should be unacceptable to anybody who cares about the facts.
    826 In particular, the <code><abbr>tz</abbr></code> database's
    827 <abbr>LMT</abbr> offsets should not be considered meaningful, and
    828 should not prompt creation of timezones
    829 merely because two locations
    830 differ in <abbr>LMT</abbr> or transitioned to standard time at
    831 different dates.
    832 </p>
    833 </section>
    834 
    835 <section>
    836   <h2 id="functions">Time and date functions</h2>
    837 <p>
    838 The <code><abbr>tz</abbr></code> code contains time and date functions
    839 that are upwards compatible with those of POSIX.
    840 Code compatible with this package is already
    841 <a href="tz-link.html#tzdb">part of many platforms</a>, where the
    842 primary use of this package is to update obsolete time-related files.
    843 To do this, you may need to compile the time zone compiler
    844 '<code>zic</code>' supplied with this package instead of using the
    845 system '<code>zic</code>', since the format of <code>zic</code>'s
    846 input is occasionally extended, and a platform may still be shipping
    847 an older <code>zic</code>.
    848 </p>
    849 
    850 <h3 id="POSIX">POSIX properties and limitations</h3>
    851 <ul>
    852   <li>
    853     <p>
    854     In POSIX, time display in a process is controlled by the
    855     environment variable <code>TZ</code>.
    856     Unfortunately, the POSIX
    857     <code>TZ</code> string takes a form that is hard to describe and
    858     is error-prone in practice.
    859     Also, POSIX <code>TZ</code> strings cannot deal with daylight
    860     saving time rules not based on the Gregorian calendar (as in
    861     Iran), or with situations where more than two time zone
    862     abbreviations or <abbr>UT</abbr> offsets are used in an area.
    863     </p>
    864 
    865     <p>
    866     The POSIX <code>TZ</code> string takes the following form:
    867     </p>
    868 
    869     <p>
    870     <var>stdoffset</var>[<var>dst</var>[<var>offset</var>][<code>,</code><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]]]
    871     </p>
    872 
    873     <p>
    874     where:
    875     </p>
    876 
    877     <dl>
    878       <dt><var>std</var> and <var>dst</var></dt><dd>
    879 	are 3 or more characters specifying the standard
    880 	and daylight saving time (<abbr>DST</abbr>) zone abbreviations.
    881 	Starting with POSIX.1-2001, <var>std</var> and <var>dst</var>
    882 	may also be in a quoted form like '<code>&lt;+09&gt;</code>';
    883 	this allows "<code>+</code>" and "<code>-</code>" in the names.
    884       </dd>
    885       <dt><var>offset</var></dt><dd>
    886 	is of the form
    887 	'<code>[&plusmn;]<var>hh</var>:[<var>mm</var>[:<var>ss</var>]]</code>'
    888 	and specifies the offset west of <abbr>UT</abbr>.
    889 	'<var>hh</var>' may be a single digit;
    890 	0&le;<var>hh</var>&le;24.
    891 	The default <abbr>DST</abbr> offset is one hour ahead of
    892 	standard time.
    893       </dd>
    894       <dt><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]</dt><dd>
    895 	specifies the beginning and end of <abbr>DST</abbr>.
    896 	If this is absent, the system supplies its own ruleset
    897 	for <abbr>DST</abbr>, and its rules can differ from year to year;
    898 	typically <abbr>US</abbr> <abbr>DST</abbr> rules are used.
    899       </dd>
    900       <dt><var>time</var></dt><dd>
    901 	takes the form
    902 	'<var>hh</var><code>:</code>[<var>mm</var>[<code>:</code><var>ss</var>]]'
    903 	and defaults to 02:00.
    904 	This is the same format as the offset, except that a
    905 	leading '<code>+</code>' or '<code>-</code>' is not allowed.
    906       </dd>
    907       <dt><var>date</var></dt><dd>
    908 	takes one of the following forms:
    909 	<dl>
    910 	  <dt>J<var>n</var> (1&le;<var>n</var>&le;365)</dt><dd>
    911 	    origin-1 day number not counting February 29
    912 	  </dd>
    913 	  <dt><var>n</var> (0&le;<var>n</var>&le;365)</dt><dd>
    914 	    origin-0 day number counting February 29 if present
    915 	  </dd>
    916 	  <dt><code>M</code><var>m</var><code>.</code><var>n</var><code>.</code><var>d</var>
    917 	    (0[Sunday]&le;<var>d</var>&le;6[Saturday], 1&le;<var>n</var>&le;5,
    918 	    1&le;<var>m</var>&le;12)</dt><dd>
    919 	    for the <var>d</var>th day of week <var>n</var> of
    920 	    month <var>m</var> of the year, where week 1 is the first
    921 	    week in which day <var>d</var> appears, and
    922 	    '<code>5</code>' stands for the last week in which
    923 	    day <var>d</var> appears (which may be either the 4th or
    924 	    5th week).
    925 	    Typically, this is the only useful form; the <var>n</var>
    926 	    and <code>J</code><var>n</var> forms are rarely used.
    927 	  </dd>
    928 	</dl>
    929       </dd>
    930     </dl>
    931 
    932     <p>
    933     Here is an example POSIX <code>TZ</code> string for New
    934     Zealand after 2007.
    935     It says that standard time (<abbr>NZST</abbr>) is 12 hours ahead
    936     of <abbr>UT</abbr>, and that daylight saving time
    937     (<abbr>NZDT</abbr>) is observed from September's last Sunday at
    938     02:00 until April's first Sunday at 03:00:
    939     </p>
    940 
    941     <pre><code>TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'</code></pre>
    942 
    943     <p>
    944     This POSIX <code>TZ</code> string is hard to remember, and
    945     mishandles some timestamps before 2008.
    946     With this package you can use this instead:
    947     </p>
    948 
    949     <pre><code>TZ='Pacific/Auckland'</code></pre>
    950   </li>
    951   <li>
    952     POSIX does not define the <abbr>DST</abbr> transitions
    953     for <code>TZ</code> values like
    954     "<code>EST5EDT</code>".
    955     Traditionally the current <abbr>US</abbr> <abbr>DST</abbr> rules
    956     were used to interpret such values, but this meant that the
    957     <abbr>US</abbr> <abbr>DST</abbr> rules were compiled into each
    958     program that did time conversion. This meant that when
    959     <abbr>US</abbr> time conversion rules changed (as in the United
    960     States in 1987), all programs that did time conversion had to be
    961     recompiled to ensure proper results.
    962   </li>
    963   <li>
    964     The <code>TZ</code> environment variable is process-global, which
    965     makes it hard to write efficient, thread-safe applications that
    966     need access to multiple timezones.
    967   </li>
    968   <li>
    969     In POSIX, there is no tamper-proof way for a process to learn the
    970     system's best idea of local (wall clock) time.
    971     This is important for applications that an administrator wants
    972     used only at certain times &ndash; without regard to whether the
    973     user has fiddled the
    974     <code>TZ</code> environment variable.
    975     While an administrator can "do everything in <abbr>UT</abbr>" to
    976     get around the problem, doing so is inconvenient and precludes
    977     handling daylight saving time shifts &ndash; as might be required to
    978     limit phone calls to off-peak hours.
    979   </li>
    980   <li>
    981     POSIX provides no convenient and efficient way to determine
    982     the <abbr>UT</abbr> offset and time zone abbreviation of arbitrary
    983     timestamps, particularly for timezones
    984     that do not fit into the POSIX model.
    985   </li>
    986   <li>
    987     POSIX requires that <code>time_t</code> clock counts exclude leap
    988     seconds.
    989   </li>
    990   <li>
    991     The <code><abbr>tz</abbr></code> code attempts to support all the
    992     <code>time_t</code> implementations allowed by POSIX.
    993     The <code>time_t</code> type represents a nonnegative count of seconds
    994     since 1970-01-01 00:00:00 <abbr>UTC</abbr>, ignoring leap seconds.
    995     In practice, <code>time_t</code> is usually a signed 64- or 32-bit
    996     integer; 32-bit signed <code>time_t</code> values stop working after
    997     2038-01-19 03:14:07 <abbr>UTC</abbr>, so new implementations these
    998     days typically use a signed 64-bit integer.
    999     Unsigned 32-bit integers are used on one or two platforms, and 36-bit
   1000     and 40-bit integers are also used occasionally.
   1001     Although earlier POSIX versions allowed <code>time_t</code> to be a
   1002     floating-point type, this was not supported by any practical system,
   1003     and POSIX.1-2013 and the <code><abbr>tz</abbr></code> code both
   1004     require <code>time_t</code> to be an integer type.
   1005   </li>
   1006 </ul>
   1007 
   1008 <h3 id="POSIX-extensions">Extensions to POSIX in the
   1009 <code><abbr>tz</abbr></code> code</h3>
   1010 <ul>
   1011   <li>
   1012     <p>
   1013     The <code>TZ</code> environment variable is used in generating
   1014     the name of a file from which time-related information is read
   1015     (or is interpreted  la POSIX); <code>TZ</code> is no longer
   1016     constrained to be a string containing abbreviations
   1017     and numeric data as described <a href="#POSIX">above</a>.
   1018     The file's format is <dfn><abbr>TZif</abbr></dfn>,
   1019     a timezone information format that contains binary data; see
   1020     <a href="https://tools.ietf.org/html/8536">Internet
   1021     <abbr>RFC</abbr> 8536</a>.
   1022     The daylight saving time rules to be used for a
   1023     particular timezone are encoded in the
   1024     <abbr>TZif</abbr> file; the format of the file allows <abbr>US</abbr>,
   1025     Australian, and other rules to be encoded, and
   1026     allows for situations where more than two time zone
   1027     abbreviations are used.
   1028     </p>
   1029     <p>
   1030     It was recognized that allowing the <code>TZ</code> environment
   1031     variable to take on values such as '<code>America/New_York</code>'
   1032     might cause "old" programs (that expect <code>TZ</code> to have a
   1033     certain form) to operate incorrectly; consideration was given to using
   1034     some other environment variable (for example, <code>TIMEZONE</code>)
   1035     to hold the string used to generate the <abbr>TZif</abbr> file's name.
   1036     In the end, however, it was decided to continue using
   1037     <code>TZ</code>: it is widely used for time zone purposes;
   1038     separately maintaining both <code>TZ</code>
   1039     and <code>TIMEZONE</code> seemed a nuisance; and systems where
   1040     "new" forms of <code>TZ</code> might cause problems can simply
   1041     use legacy <code>TZ</code> values such as "<code>EST5EDT</code>" which
   1042     can be used by "new" programs as well as by "old" programs that
   1043     assume pre-POSIX <code>TZ</code> values.
   1044     </p>
   1045   </li>
   1046   <li>
   1047     The code supports platforms with a <abbr>UT</abbr> offset member
   1048     in <code>struct tm</code>, e.g., <code>tm_gmtoff</code>.
   1049   </li>
   1050   <li>
   1051     The code supports platforms with a time zone abbreviation member in
   1052     <code>struct tm</code>, e.g., <code>tm_zone</code>.
   1053   </li>
   1054   <li>
   1055     Functions <code>tzalloc</code>, <code>tzfree</code>,
   1056     <code>localtime_rz</code>, and <code>mktime_z</code> for
   1057     more-efficient thread-safe applications that need to use multiple
   1058     timezones.
   1059     The <code>tzalloc</code> and <code>tzfree</code> functions
   1060     allocate and free objects of type <code>timezone_t</code>,
   1061     and <code>localtime_rz</code> and <code>mktime_z</code> are
   1062     like <code>localtime_r</code> and <code>mktime</code> with an
   1063     extra <code>timezone_t</code> argument.
   1064     The functions were inspired by <a href="https://netbsd.org/">NetBSD</a>.
   1065   </li>
   1066   <li>
   1067     Negative <code>time_t</code> values are supported, on systems
   1068     where <code>time_t</code> is signed.
   1069   </li>
   1070   <li>
   1071     These functions can account for leap seconds;
   1072     see <a href="#leapsec">Leap seconds</a> below.
   1073   </li>
   1074 </ul>
   1075 
   1076 <h3 id="vestigial">POSIX features no longer needed</h3>
   1077 <p>
   1078 POSIX and <a href="https://en.wikipedia.org/wiki/ISO_C"><abbr>ISO</abbr> C</a>
   1079 define some <a href="https://en.wikipedia.org/wiki/API"><abbr
   1080 title="application programming interface">API</abbr>s</a> that are vestigial:
   1081 they are not needed, and are relics of a too-simple model that does
   1082 not suffice to handle many real-world timestamps.
   1083 Although the <code><abbr>tz</abbr></code> code supports these
   1084 vestigial <abbr>API</abbr>s for backwards compatibility, they should
   1085 be avoided in portable applications.
   1086 The vestigial <abbr>API</abbr>s are:
   1087 </p>
   1088 <ul>
   1089   <li>
   1090     The POSIX <code>tzname</code> variable does not suffice and is no
   1091     longer needed.
   1092     To get a timestamp's time zone abbreviation, consult
   1093     the <code>tm_zone</code> member if available; otherwise,
   1094     use <code>strftime</code>'s <code>"%Z"</code> conversion
   1095     specification.
   1096   </li>
   1097   <li>
   1098     The POSIX <code>daylight</code> and <code>timezone</code>
   1099     variables do not suffice and are no longer needed.
   1100     To get a timestamp's <abbr>UT</abbr> offset, consult
   1101     the <code>tm_gmtoff</code> member if available; otherwise,
   1102     subtract values returned by <code>localtime</code>
   1103     and <code>gmtime</code> using the rules of the Gregorian calendar,
   1104     or use <code>strftime</code>'s <code>"%z"</code> conversion
   1105     specification if a string like <code>"+0900"</code> suffices.
   1106   </li>
   1107   <li>
   1108     The <code>tm_isdst</code> member is almost never needed and most of
   1109     its uses should be discouraged in favor of the abovementioned
   1110     <abbr>API</abbr>s.
   1111     Although it can still be used in arguments to
   1112     <code>mktime</code> to disambiguate timestamps near
   1113     a <abbr>DST</abbr> transition when the clock jumps back, this
   1114     disambiguation does not work when standard time itself jumps back,
   1115     which can occur when a location changes to a time zone with a
   1116     lesser <abbr>UT</abbr> offset.
   1117   </li>
   1118 </ul>
   1119 
   1120 <h3 id="other-portability">Other portability notes</h3>
   1121 <ul>
   1122   <li>
   1123     The <a href="https://en.wikipedia.org/wiki/Version_7_Unix">7th Edition
   1124     UNIX</a> <code>timezone</code> function is not present in this
   1125     package; it is impossible to reliably map <code>timezone</code>'s
   1126     arguments (a "minutes west of <abbr>GMT</abbr>" value and a
   1127     "daylight saving time in effect" flag) to a time zone
   1128     abbreviation, and we refuse to guess.
   1129     Programs that in the past used the <code>timezone</code> function
   1130     may now examine <code>localtime(&amp;clock)-&gt;tm_zone</code>
   1131     (if <code>TM_ZONE</code> is defined) or
   1132     <code>tzname[localtime(&amp;clock)-&gt;tm_isdst]</code>
   1133     (if <code>HAVE_TZNAME</code> is nonzero) to learn the correct time
   1134     zone abbreviation to use.
   1135   </li>
   1136   <li>
   1137     The <a
   1138     href="https://en.wikipedia.org/wiki/History_of_the_Berkeley_Software_Distribution#4.2BSD"><abbr>4.2BSD</abbr></a>
   1139     <code>gettimeofday</code> function is not
   1140     used in this package.
   1141     This formerly let users obtain the current <abbr>UTC</abbr> offset
   1142     and <abbr>DST</abbr> flag, but this functionality was removed in
   1143     later versions of <abbr>BSD</abbr>.
   1144   </li>
   1145   <li>
   1146     In <abbr>SVR2</abbr>, time conversion fails for near-minimum or
   1147     near-maximum <code>time_t</code> values when doing conversions
   1148     for places that do not use <abbr>UT</abbr>.
   1149     This package takes care to do these conversions correctly.
   1150     A comment in the source code tells how to get compatibly wrong
   1151     results.
   1152   </li>
   1153   <li>
   1154     The functions that are conditionally compiled
   1155     if <code>STD_INSPIRED</code> is defined should, at this point, be
   1156     looked on primarily as food for thought.
   1157     They are not in any sense "standard compatible" &ndash; some are
   1158     not, in fact, specified in <em>any</em> standard.
   1159     They do, however, represent responses of various authors to
   1160     standardization proposals.
   1161   </li>
   1162   <li>
   1163     Other time conversion proposals, in particular those supported by the
   1164     <a href="https://howardhinnant.github.io/date/tz.html">Time Zone
   1165     Database Parser</a>, offer a wider selection of functions
   1166     that provide capabilities beyond those provided here.
   1167     The absence of such functions from this package is not meant to
   1168     discourage the development, standardization, or use of such
   1169     functions.
   1170     Rather, their absence reflects the decision to make this package
   1171     contain valid extensions to POSIX, to ensure its broad
   1172     acceptability.
   1173     If more powerful time conversion functions can be standardized, so
   1174     much the better.
   1175   </li>
   1176 </ul>
   1177 </section>
   1178 
   1179 <section>
   1180   <h2 id="stability">Interface stability</h2>
   1181 <p>
   1182 The <code><abbr>tz</abbr></code> code and data supply the following interfaces:
   1183 </p>
   1184 
   1185 <ul>
   1186   <li>
   1187     A set of timezone names as per
   1188       "<a href="#naming">Timezone identifiers</a>" above.
   1189   </li>
   1190   <li>
   1191     Library functions described in "<a href="#functions">Time and date
   1192       functions</a>" above.
   1193   </li>
   1194   <li>
   1195     The programs <code>tzselect</code>, <code>zdump</code>,
   1196     and <code>zic</code>, documented in their man pages.
   1197   </li>
   1198   <li>
   1199     The format of <code>zic</code> input files, documented in
   1200     the <code>zic</code> man page.
   1201   </li>
   1202   <li>
   1203     The format of <code>zic</code> output files, documented in
   1204     the <code>tzfile</code> man page.
   1205   </li>
   1206   <li>
   1207     The format of zone table files, documented in <code>zone1970.tab</code>.
   1208   </li>
   1209   <li>
   1210     The format of the country code file, documented in <code>iso3166.tab</code>.
   1211   </li>
   1212   <li>
   1213     The version number of the code and data, as the first line of
   1214     the text file '<code>version</code>' in each release.
   1215   </li>
   1216 </ul>
   1217 
   1218 <p>
   1219 Interface changes in a release attempt to preserve compatibility with
   1220 recent releases.
   1221 For example, <code><abbr>tz</abbr></code> data files typically do not
   1222 rely on recently-added <code>zic</code> features, so that users can
   1223 run older <code>zic</code> versions to process newer data files.
   1224 <a href="tz-link.html#download">Downloading
   1225 the <code><abbr>tz</abbr></code> database</a> describes how releases
   1226 are tagged and distributed.
   1227 </p>
   1228 
   1229 <p>
   1230 Interfaces not listed above are less stable.
   1231 For example, users should not rely on particular <abbr>UT</abbr>
   1232 offsets or abbreviations for timestamps, as data entries are often
   1233 based on guesswork and these guesses may be corrected or improved.
   1234 </p>
   1235 
   1236 <p>
   1237 Timezone boundaries are not part of the stable interface.
   1238 For example, even though the <samp>Asia/Bangkok</samp> timezone
   1239 currently includes Chang Mai, Hanoi, and Phnom Penh, this is not part
   1240 of the stable interface and the timezone can split at any time.
   1241 If a calendar application records a future event in some location other
   1242 than Bangkok by putting "<samp>Asia/Bangkok</samp>" in the event's record,
   1243 the application should be robust in the presence of timezone splits
   1244 between now and the future time.
   1245 </p>
   1246 </section>
   1247 
   1248 <section>
   1249   <h2 id="leapsec">Leap seconds</h2>
   1250 <p>
   1251 The <code><abbr>tz</abbr></code> code and data can account for leap seconds,
   1252 thanks to code contributed by Bradley White.
   1253 However, the leap second support of this package is rarely used directly
   1254 because POSIX requires leap seconds to be excluded and many
   1255 software packages would mishandle leap seconds if they were present.
   1256 Instead, leap seconds are more commonly handled by occasionally adjusting
   1257 the operating system kernel clock as described in
   1258 <a href="tz-link.html#precision">Precision timekeeping</a>,
   1259 and this package by default installs a <samp>leapseconds</samp> file
   1260 commonly used by
   1261 <a href="http://www.ntp.org"><abbr title="Network Time Protocol">NTP</abbr></a>
   1262 software that adjusts the kernel clock.
   1263 However, kernel-clock twiddling approximates UTC only roughly,
   1264 and systems needing more-precise UTC can use this package's leap
   1265 second support directly.
   1266 </p>
   1267 
   1268 <p>
   1269 The directly-supported mechanism assumes that <code>time_t</code>
   1270 counts of seconds since the POSIX epoch normally include leap seconds,
   1271 as opposed to POSIX <code>time_t</code> counts which exclude leap seconds.
   1272 This modified timescale is converted to <abbr>UTC</abbr>
   1273 at the same point that time zone and DST adjustments are applied &ndash;
   1274 namely, at calls to <code>localtime</code> and analogous functions &ndash;
   1275 and the process is driven by leap second information
   1276 stored in alternate versions of the <abbr>TZif</abbr> files.
   1277 Because a leap second adjustment may be needed even
   1278 if no time zone correction is desired,
   1279 calls to <code>gmtime</code>-like functions
   1280 also need to consult a <abbr>TZif</abbr> file,
   1281 conventionally named <samp><abbr>GMT</abbr></samp>,
   1282 to see whether leap second corrections are needed.
   1283 To convert an application's <code>time_t</code> timestamps to or from
   1284 POSIX <code>time_t</code> timestamps (for use when, say,
   1285 embedding or interpreting timestamps in portable
   1286 <a href="https://en.wikipedia.org/wiki/Tar_(computing)"><code>tar</code></a>
   1287 files),
   1288 the application can call the utility functions
   1289 <code>time2posix</code> and <code>posix2time</code>
   1290 included with this package.
   1291 </p>
   1292 
   1293 <p>
   1294 If the POSIX-compatible <abbr>TZif</abbr> file set is installed
   1295 in a directory whose basename is <samp>zoneinfo</samp>, the
   1296 leap-second-aware file set is by default installed in a separate
   1297 directory <samp>zoneinfo-leaps</samp>.
   1298 Although each process can have its own time zone by setting
   1299 its <code>TZ</code> environment variable, there is no support for some
   1300 processes being leap-second aware while other processes are
   1301 POSIX-compatible; the leap-second choice is system-wide.
   1302 So if you configure your kernel to count leap seconds, you should also
   1303 discard <samp>zoneinfo</samp> and rename <samp>zoneinfo-leaps</samp>
   1304 to <samp>zoneinfo</samp>.
   1305 Alternatively, you can install just one set of <abbr>TZif</abbr> files
   1306 in the first place; see the <code>REDO</code> variable in this package's
   1307 <a href="https://en.wikipedia.org/wiki/Makefile">makefile</a>.
   1308 </p>
   1309 </section>
   1310 
   1311 <section>
   1312   <h2 id="calendar">Calendrical issues</h2>
   1313 <p>
   1314 Calendrical issues are a bit out of scope for a time zone database,
   1315 but they indicate the sort of problems that we would run into if we
   1316 extended the time zone database further into the past.
   1317 An excellent resource in this area is Edward M. Reingold
   1318 and Nachum Dershowitz, <cite><a
   1319 href="https://www.cambridge.org/fr/academic/subjects/computer-science/computing-general-interest/calendrical-calculations-ultimate-edition-4th-edition">Calendrical
   1320 Calculations: The Ultimate Edition</a></cite>, Cambridge University Press (2018).
   1321 Other information and sources are given in the file '<code>calendars</code>'
   1322 in the <code><abbr>tz</abbr></code> distribution.
   1323 They sometimes disagree.
   1324 </p>
   1325 </section>
   1326 
   1327 <section>
   1328   <h2 id="planets">Time and time zones on other planets</h2>
   1329 <p>
   1330 Some people's work schedules have used
   1331 <a href="https://en.wikipedia.org/wiki/Timekeeping_on_Mars">Mars time</a>.
   1332 Jet Propulsion Laboratory (JPL) coordinators kept Mars time on
   1333 and off during the
   1334 <a href="https://en.wikipedia.org/wiki/Mars_Pathfinder">Mars
   1335 Pathfinder</a> mission (1997).
   1336 Some of their family members also adapted to Mars time.
   1337 Dozens of special Mars watches were built for JPL workers who kept
   1338 Mars time during the
   1339 <a href="https://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars
   1340 Exploration Rovers (MER)</a> mission (2004&ndash;2018).
   1341 These timepieces looked like normal Seikos and Citizens but were adjusted
   1342 to use Mars seconds rather than terrestrial seconds, although
   1343 unfortunately the adjusted watches were unreliable and appear to have
   1344 had only limited use.
   1345 </p>
   1346 
   1347 <p>
   1348 A Mars solar day is called a "sol" and has a mean period equal to
   1349 about 24 hours 39 minutes 35.244 seconds in terrestrial time.
   1350 It is divided into a conventional 24-hour clock, so each Mars second
   1351 equals about 1.02749125 terrestrial seconds.
   1352 (One MER worker noted, "If I am working Mars hours, and Mars hours are
   1353 2.5% more than Earth hours, shouldn't I get an extra 2.5% pay raise?")
   1354 </p>
   1355 
   1356 <p>
   1357 The <a href="https://en.wikipedia.org/wiki/Prime_meridian">prime
   1358 meridian</a> of Mars goes through the center of the crater
   1359 <a href="https://en.wikipedia.org/wiki/Airy-0">Airy-0</a>, named in
   1360 honor of the British astronomer who built the Greenwich telescope that
   1361 defines Earth's prime meridian.
   1362 Mean solar time on the Mars prime meridian is
   1363 called Mars Coordinated Time (<abbr>MTC</abbr>).
   1364 </p>
   1365 
   1366 <p>
   1367 Each landed mission on Mars has adopted a different reference for
   1368 solar timekeeping, so there is no real standard for Mars time zones.
   1369 For example, the MER mission defined two time zones "Local
   1370 Solar Time A" and "Local Solar Time B" for its two missions, each zone
   1371 designed so that its time equals local true solar time at
   1372 approximately the middle of the nominal mission.
   1373 The A and B zones differ enough so that an MER worker assigned to
   1374 the A zone might suffer "Mars lag" when switching to work in the B zone.
   1375 Such a "time zone" is not particularly suited for any application
   1376 other than the mission itself.
   1377 </p>
   1378 
   1379 <p>
   1380 Many calendars have been proposed for Mars, but none have achieved
   1381 wide acceptance.
   1382 Astronomers often use Mars Sol Date (<abbr>MSD</abbr>) which is a
   1383 sequential count of Mars solar days elapsed since about 1873-12-29
   1384 12:00 <abbr>GMT</abbr>.
   1385 </p>
   1386 
   1387 <p>
   1388 In our solar system, Mars is the planet with time and calendar most
   1389 like Earth's.
   1390 On other planets, Sun-based time and calendars would work quite
   1391 differently.
   1392 For example, although Mercury's
   1393 <a href="https://en.wikipedia.org/wiki/Rotation_period">sidereal
   1394 rotation period</a> is 58.646 Earth days, Mercury revolves around the
   1395 Sun so rapidly that an observer on Mercury's equator would see a
   1396 sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a
   1397 Mercury day.
   1398 Venus is more complicated, partly because its rotation is slightly
   1399 <a href="https://en.wikipedia.org/wiki/Retrograde_motion">retrograde</a>:
   1400 its year is 1.92 of its days.
   1401 Gas giants like Jupiter are trickier still, as their polar and
   1402 equatorial regions rotate at different rates, so that the length of a
   1403 day depends on latitude.
   1404 This effect is most pronounced on Neptune, where the day is about 12
   1405 hours at the poles and 18 hours at the equator.
   1406 </p>
   1407 
   1408 <p>
   1409 Although the <code><abbr>tz</abbr></code> database does not support
   1410 time on other planets, it is documented here in the hopes that support
   1411 will be added eventually.
   1412 </p>
   1413 
   1414 <p>
   1415 Sources for time on other planets:
   1416 </p>
   1417 
   1418 <ul>
   1419   <li>
   1420     Michael Allison and Robert Schmunk,
   1421     "<a href="https://www.giss.nasa.gov/tools/mars24/help/notes.html">Technical
   1422       Notes on Mars Solar Time as Adopted by the Mars24 Sunclock</a>"
   1423     (2020-03-08).
   1424   </li>
   1425   <li>
   1426     Zara Mirmalek,
   1427     <em><a href="https://mitpress.mit.edu/books/making-time-mars">Making
   1428 	Time on Mars</a></em>, MIT Press (March 2020), ISBN 978-0262043854.
   1429   </li>
   1430   <li>
   1431     Jia-Rui Chong,
   1432     "<a href="https://www.latimes.com/archives/la-xpm-2004-jan-14-sci-marstime14-story.html">Workdays
   1433     Fit for a Martian</a>", <cite>Los Angeles Times</cite>
   1434     (2004-01-14), pp A1, A20&ndash;A21.
   1435   </li>
   1436   <li>
   1437     Tom Chmielewski,
   1438     "<a href="https://www.theatlantic.com/technology/archive/2015/02/jet-lag-is-worse-on-mars/386033/">Jet
   1439     Lag Is Worse on Mars</a>", <cite>The Atlantic</cite> (2015-02-26)
   1440   </li>
   1441   <li>
   1442     Matt Williams,
   1443     "<a href="https://www.universetoday.com/37481/days-of-the-planets/">How
   1444     long is a day on the other planets of the solar system?</a>"
   1445     (2016-01-20).
   1446   </li>
   1447 </ul>
   1448 </section>
   1449 
   1450 <footer>
   1451   <hr>
   1452   This file is in the public domain, so clarified as of 2009-05-17 by
   1453   Arthur David Olson.
   1454 </footer>
   1455 </body>
   1456 </html>
   1457