Home | History | Annotate | Line # | Download | only in time
theory.html revision 1.11
      1 <!DOCTYPE html>
      2 <html lang="en">
      3 <head>
      4   <title>Theory and pragmatics of the tz code and data</title>
      5   <meta charset="UTF-8">
      6   <style>
      7     pre {margin-left: 2em; white-space: pre-wrap;}
      8   </style>
      9 </head>
     10 
     11 <body>
     12 <h1>Theory and pragmatics of the <code><abbr>tz</abbr></code> code and data</h1>
     13   <h3>Outline</h3>
     14   <nav>
     15     <ul>
     16       <li><a href="#scope">Scope of the <code><abbr>tz</abbr></code>
     17 	  database</a></li>
     18       <li><a href="#naming">Timezone identifiers</a></li>
     19       <li><a href="#abbreviations">Time zone abbreviations</a></li>
     20       <li><a href="#accuracy">Accuracy of the <code><abbr>tz</abbr></code>
     21 	  database</a></li>
     22       <li><a href="#functions">Time and date functions</a></li>
     23       <li><a href="#stability">Interface stability</a></li>
     24       <li><a href="#leapsec">Leap seconds</a></li>
     25       <li><a href="#calendar">Calendrical issues</a></li>
     26       <li><a href="#planets">Time and time zones on other planets</a></li>
     27     </ul>
     28   </nav>
     29 
     30 <section>
     31   <h2 id="scope">Scope of the <code><abbr>tz</abbr></code> database</h2>
     32 <p>
     33 The <a
     34 href="https://www.iana.org/time-zones"><code><abbr>tz</abbr></code>
     35 database</a> attempts to record the history and predicted future of
     36 civil time scales.
     37 It organizes <a href="tz-link.html">time zone and daylight saving time
     38 data</a> by partitioning the world into <a
     39 href="https://en.wikipedia.org/wiki/List_of_tz_database_time_zones"><dfn>timezones</dfn></a>
     40 whose clocks all agree about timestamps that occur after the <a
     41 href="https://en.wikipedia.org/wiki/Unix_time">POSIX Epoch</a>
     42 (1970-01-01 00:00:00 <a
     43 href="https://en.wikipedia.org/wiki/Coordinated_Universal_Time"><abbr
     44 title="Coordinated Universal Time">UTC</abbr></a>).
     45 The database labels each timezone with a notable location and
     46 records all known clock transitions for that location.
     47 Although 1970 is a somewhat-arbitrary cutoff, there are significant
     48 challenges to moving the cutoff earlier even by a decade or two, due
     49 to the wide variety of local practices before computer timekeeping
     50 became prevalent.
     51 </p>
     52 
     53 <p>
     54 Each timezone typically corresponds to a geographical region that is
     55 smaller than a traditional time zone, because clocks in a timezone
     56 all agree after 1970 whereas a traditional time zone merely
     57 specifies current standard time. For example, applications that deal
     58 with current and future timestamps in the traditional North
     59 American mountain time zone can choose from the timezones
     60 <code>America/Denver</code> which observes US-style daylight saving
     61 time, <code>America/Mazatlan</code> which observes Mexican-style DST,
     62 and <code>America/Phoenix</code> which does not observe DST.
     63 Applications that also deal with past timestamps in the mountain time
     64 zone can choose from over a dozen timezones, such as
     65 <code>America/Boise</code>, <code>America/Edmonton</code>, and
     66 <code>America/Hermosillo</code>, each of which currently uses mountain
     67 time but differs from other timezones for some timestamps after 1970.
     68 </p>
     69 
     70 <p>
     71 Clock transitions before 1970 are recorded for each timezone,
     72 because most systems support timestamps before 1970 and could
     73 misbehave if data entries were omitted for pre-1970 transitions.
     74 However, the database is not designed for and does not suffice for
     75 applications requiring accurate handling of all past times everywhere,
     76 as it would take far too much effort and guesswork to record all
     77 details of pre-1970 civil timekeeping.
     78 Although some information outside the scope of the database is
     79 collected in a file <code>backzone</code> that is distributed along
     80 with the database proper, this file is less reliable and does not
     81 necessarily follow database guidelines.
     82 </p>
     83 
     84 <p>
     85 As described below, reference source code for using the
     86 <code><abbr>tz</abbr></code> database is also available.
     87 The <code><abbr>tz</abbr></code> code is upwards compatible with <a
     88 href="https://en.wikipedia.org/wiki/POSIX">POSIX</a>, an international
     89 standard for <a
     90 href="https://en.wikipedia.org/wiki/Unix">UNIX</a>-like systems.
     91 As of this writing, the current edition of POSIX is: <a
     92 href="https://pubs.opengroup.org/onlinepubs/9699919799/"> The Open
     93 Group Base Specifications Issue 7</a>, IEEE Std 1003.1-2017, 2018
     94 Edition.
     95 Because the database's scope encompasses real-world changes to civil
     96 timekeeping, its model for describing time is more complex than the
     97 standard and daylight saving times supported by POSIX.
     98 A <code><abbr>tz</abbr></code> timezone corresponds to a ruleset that can
     99 have more than two changes per year, these changes need not merely
    100 flip back and forth between two alternatives, and the rules themselves
    101 can change at times.
    102 Whether and when a timezone changes its clock,
    103 and even the timezone's notional base offset from <abbr>UTC</abbr>,
    104 are variable.
    105 It does not always make sense to talk about a timezone's
    106 "base offset", which is not necessarily a single number.
    107 </p>
    108 
    109 </section>
    110 
    111 <section>
    112   <h2 id="naming">Timezone identifiers</h2>
    113 <p>
    114 Each timezone has a name that uniquely identifies the timezone.
    115 Inexperienced users are not expected to select these names unaided.
    116 Distributors should provide documentation and/or a simple selection
    117 interface that explains each name via a map or via descriptive text like
    118 "Czech Republic" instead of the timezone name "<code>Europe/Prague</code>".
    119 If geolocation information is available, a selection interface can
    120 locate the user on a timezone map or prioritize names that are
    121 geographically close. For an example selection interface, see the
    122 <code>tzselect</code> program in the <code><abbr>tz</abbr></code> code.
    123 The <a href="http://cldr.unicode.org">Unicode Common Locale Data
    124 Repository</a> contains data that may be useful for other selection
    125 interfaces; it maps timezone names like <code>Europe/Prague</code> to
    126 locale-dependent strings like "Prague", "Praha", "", and "".
    127 </p>
    128 
    129 <p>
    130 The naming conventions attempt to strike a balance
    131 among the following goals:
    132 </p>
    133 
    134 <ul>
    135   <li>
    136     Uniquely identify every timezone where clocks have agreed since 1970.
    137     This is essential for the intended use: static clocks keeping local
    138     civil time.
    139   </li>
    140   <li>
    141     Indicate to experts where the timezone's clocks typically are.
    142   </li>
    143   <li>
    144     Be robust in the presence of political changes.
    145     For example, names are typically not tied to countries, to avoid
    146     incompatibilities when countries change their name (e.g.,
    147     Swaziland&rarr;Eswatini) or when locations change countries (e.g., Hong
    148     Kong from UK colony to China).
    149     There is no requirement that every country or national
    150     capital must have a timezone name.
    151   </li>
    152   <li>
    153     Be portable to a wide variety of implementations.
    154   </li>
    155   <li>
    156     Use a consistent naming conventions over the entire world.
    157   </li>
    158 </ul>
    159 
    160 <p>
    161 Names normally have the form
    162 <var>AREA</var><code>/</code><var>LOCATION</var>, where
    163 <var>AREA</var> is a continent or ocean, and
    164 <var>LOCATION</var> is a specific location within the area.
    165 North and South America share the same area, '<code>America</code>'.
    166 Typical names are '<code>Africa/Cairo</code>',
    167 '<code>America/New_York</code>', and '<code>Pacific/Honolulu</code>'.
    168 Some names are further qualified to help avoid confusion; for example,
    169 '<code>America/Indiana/Petersburg</code>' distinguishes Petersburg,
    170 Indiana from other Petersburgs in America.
    171 </p>
    172 
    173 <p>
    174 Here are the general guidelines used for
    175 choosing timezone names,
    176 in decreasing order of importance:
    177 </p>
    178 
    179 <ul>
    180   <li>
    181     Use only valid POSIX file name components (i.e., the parts of
    182     names other than '<code>/</code>').
    183     Do not use the file name components '<code>.</code>' and
    184     '<code>..</code>'.
    185     Within a file name component, use only <a
    186     href="https://en.wikipedia.org/wiki/ASCII">ASCII</a> letters,
    187     '<code>.</code>', '<code>-</code>' and '<code>_</code>'.
    188     Do not use digits, as that might create an ambiguity with <a
    189     href="https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03">POSIX
    190     <code>TZ</code> strings</a>.
    191     A file name component must not exceed 14 characters or start with
    192     '<code>-</code>'.
    193     E.g., prefer <code>Asia/Brunei</code> to
    194     <code>Asia/Bandar_Seri_Begawan</code>.
    195     Exceptions: see the discussion of legacy names below.
    196   </li>
    197   <li>
    198     A name must not be empty, or contain '<code>//</code>', or
    199     start or end with '<code>/</code>'.
    200   </li>
    201   <li>
    202     Do not use names that differ only in case.
    203     Although the reference implementation is case-sensitive, some
    204     other implementations are not, and they would mishandle names
    205     differing only in case.
    206   </li>
    207   <li>
    208     If one name <var>A</var> is an initial prefix of another
    209     name <var>AB</var> (ignoring case), then <var>B</var> must not
    210     start with '<code>/</code>', as a regular file cannot have the
    211     same name as a directory in POSIX.
    212     For example, <code>America/New_York</code> precludes
    213     <code>America/New_York/Bronx</code>.
    214   </li>
    215   <li>
    216     Uninhabited regions like the North Pole and Bouvet Island
    217     do not need locations, since local time is not defined there.
    218   </li>
    219   <li>
    220     If all the clocks in a timezone have agreed since 1970,
    221     do not bother to include more than one timezone
    222     even if some of the clocks disagreed before 1970.
    223     Otherwise these tables would become annoyingly large.
    224   </li>
    225   <li>
    226     If boundaries between regions are fluid, such as during a war or
    227     insurrection, do not bother to create a new timezone merely
    228     because of yet another boundary change. This helps prevent table
    229     bloat and simplifies maintenance.
    230   </li>
    231   <li>
    232     If a name is ambiguous, use a less ambiguous alternative;
    233     e.g., many cities are named San Jos and Georgetown, so
    234     prefer <code>America/Costa_Rica</code> to
    235     <code>America/San_Jose</code> and <code>America/Guyana</code>
    236     to <code>America/Georgetown</code>.
    237   </li>
    238   <li>
    239     Keep locations compact.
    240     Use cities or small islands, not countries or regions, so that any
    241     future changes do not split individual locations into different
    242     timezones.
    243     E.g., prefer <code>Europe/Paris</code> to <code>Europe/France</code>,
    244     since
    245     <a href="https://en.wikipedia.org/wiki/Time_in_France#History">France
    246     has had multiple time zones</a>.
    247   </li>
    248   <li>
    249     Use mainstream English spelling, e.g., prefer
    250     <code>Europe/Rome</code> to <code>Europa/Roma</code>, and
    251     prefer <code>Europe/Athens</code> to the Greek
    252     <code>/</code> or the Romanized
    253     <code>Evrpi/Athna</code>.
    254     The POSIX file name restrictions encourage this guideline.
    255   </li>
    256   <li>
    257     Use the most populous among locations in a region,
    258     e.g., prefer <code>Asia/Shanghai</code> to
    259     <code>Asia/Beijing</code>.
    260     Among locations with similar populations, pick the best-known
    261     location, e.g., prefer <code>Europe/Rome</code> to
    262     <code>Europe/Milan</code>.
    263   </li>
    264   <li>
    265     Use the singular form, e.g., prefer <code>Atlantic/Canary</code> to
    266     <code>Atlantic/Canaries</code>.
    267   </li>
    268   <li>
    269     Omit common suffixes like '<code>_Islands</code>' and
    270     '<code>_City</code>', unless that would lead to ambiguity.
    271     E.g., prefer <code>America/Cayman</code> to
    272     <code>America/Cayman_Islands</code> and
    273     <code>America/Guatemala</code> to
    274     <code>America/Guatemala_City</code>, but prefer
    275     <code>America/Mexico_City</code> to
    276     <code>America/Mexico</code>
    277     because <a href="https://en.wikipedia.org/wiki/Time_in_Mexico">the
    278     country of Mexico has several time zones</a>.
    279   </li>
    280   <li>
    281     Use '<code>_</code>' to represent a space.
    282   </li>
    283   <li>
    284     Omit '<code>.</code>' from abbreviations in names.
    285     E.g., prefer <code>Atlantic/St_Helena</code> to
    286     <code>Atlantic/St._Helena</code>.
    287   </li>
    288   <li>
    289     Do not change established names if they only marginally violate
    290     the above guidelines.
    291     For example, do not change the existing name <code>Europe/Rome</code> to
    292     <code>Europe/Milan</code> merely because Milan's population has grown
    293     to be somewhat greater than Rome's.
    294   </li>
    295   <li>
    296     If a name is changed, put its old spelling in the
    297     '<code>backward</code>' file.
    298     This means old spellings will continue to work.
    299     Ordinarily a name change should occur only in the rare case when
    300     a location's consensus English-language spelling changes; for example,
    301     in 2008 <code>Asia/Calcutta</code> was renamed to <code>Asia/Kolkata</code>
    302     due to long-time widespread use of the new city name instead of the old.
    303   </li>
    304 </ul>
    305 
    306 <p>
    307 Guidelines have evolved with time, and names following old versions of
    308 these guidelines might not follow the current version. When guidelines
    309 have changed, old names continue to be supported. Guideline changes
    310 have included the following:
    311 </p>
    312 
    313 <ul>
    314 <li>
    315 Older versions of this package used a different naming scheme.
    316 See the file '<code>backward</code>' for most of these older names
    317 (e.g., '<code>US/Eastern</code>' instead of '<code>America/New_York</code>').
    318 The other old-fashioned names still supported are
    319 '<code>WET</code>', '<code>CET</code>', '<code>MET</code>', and
    320 '<code>EET</code>' (see the file '<code>europe</code>').
    321 </li>
    322 
    323 <li>
    324 Older versions of this package defined legacy names that are
    325 incompatible with the first guideline of location names, but which are
    326 still supported.
    327 These legacy names are mostly defined in the file
    328 '<code>etcetera</code>'.
    329 Also, the file '<code>backward</code>' defines the legacy names
    330 '<code>GMT0</code>', '<code>GMT-0</code>' and '<code>GMT+0</code>',
    331 and the file '<code>northamerica</code>' defines the legacy names
    332 '<code>EST5EDT</code>', '<code>CST6CDT</code>',
    333 '<code>MST7MDT</code>', and '<code>PST8PDT</code>'.
    334 </li>
    335 
    336 <li>
    337 Older versions of these guidelines said that
    338 there should typically be at least one name for each <a
    339 href="https://en.wikipedia.org/wiki/ISO_3166-1"><abbr
    340 title="International Organization for Standardization">ISO</abbr>
    341 3166-1</a> officially assigned two-letter code for an inhabited
    342 country or territory.
    343 This old guideline has been dropped, as it was not needed to handle
    344 timestamps correctly and it increased maintenance burden.
    345 </li>
    346 </ul>
    347 
    348 <p>
    349 The file '<code>zone1970.tab</code>' lists geographical locations used
    350 to name timezones.
    351 It is intended to be an exhaustive list of names for geographic
    352 regions as described above; this is a subset of the timezones in the data.
    353 Although a '<code>zone1970.tab</code>' location's
    354 <a href="https://en.wikipedia.org/wiki/Longitude">longitude</a>
    355 corresponds to
    356 its <a href="https://en.wikipedia.org/wiki/Local_mean_time">local mean
    357 time (<abbr>LMT</abbr>)</a> offset with one hour for every 15&deg;
    358 east longitude, this relationship is not exact.
    359 </p>
    360 
    361 <p>
    362 Excluding '<code>backward</code>' should not affect the other data.
    363 If '<code>backward</code>' is excluded, excluding
    364 '<code>etcetera</code>' should not affect the remaining data.
    365 </p>
    366 </section>
    367 
    368 <section>
    369   <h2 id="abbreviations">Time zone abbreviations</h2>
    370 <p>
    371 When this package is installed, it generates time zone abbreviations
    372 like '<code>EST</code>' to be compatible with human tradition and POSIX.
    373 Here are the general guidelines used for choosing time zone abbreviations,
    374 in decreasing order of importance:
    375 </p>
    376 
    377 <ul>
    378   <li>
    379     Use three to six characters that are ASCII alphanumerics or
    380     '<code>+</code>' or '<code>-</code>'.
    381     Previous editions of this database also used characters like
    382     space and '<code>?</code>', but these characters have a
    383     special meaning to the
    384     <a href="https://en.wikipedia.org/wiki/Unix_shell">UNIX shell</a>
    385     and cause commands like
    386     '<code><a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set">set</a>
    387     `<a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/date.html">date</a>`</code>'
    388     to have unexpected effects.
    389     Previous editions of this guideline required upper-case letters, but the
    390     Congressman who introduced
    391     <a href="https://en.wikipedia.org/wiki/Chamorro_Time_Zone">Chamorro
    392     Standard Time</a> preferred "ChST", so lower-case letters are now
    393     allowed.
    394     Also, POSIX from 2001 on relaxed the rule to allow '<code>-</code>',
    395     '<code>+</code>', and alphanumeric characters from the portable
    396     character set in the current locale.
    397     In practice ASCII alphanumerics and '<code>+</code>' and
    398     '<code>-</code>' are safe in all locales.
    399 
    400     <p>
    401     In other words, in the C locale the POSIX extended regular
    402     expression <code>[-+[:alnum:]]{3,6}</code> should match the
    403     abbreviation.
    404     This guarantees that all abbreviations could have been specified by a
    405     POSIX <code>TZ</code> string.
    406     </p>
    407   </li>
    408   <li>
    409     Use abbreviations that are in common use among English-speakers,
    410     e.g., 'EST' for Eastern Standard Time in North America.
    411     We assume that applications translate them to other languages
    412     as part of the normal localization process; for example,
    413     a French application might translate 'EST' to 'HNE'.
    414 
    415     <p>
    416     <small>These abbreviations (for standard/daylight/etc. time) are:
    417       ACST/ACDT Australian Central,
    418       AST/ADT/APT/AWT/ADDT Atlantic,
    419       AEST/AEDT Australian Eastern,
    420       AHST/AHDT Alaska-Hawaii,
    421       AKST/AKDT Alaska,
    422       AWST/AWDT Australian Western,
    423       BST/BDT Bering,
    424       CAT/CAST Central Africa,
    425       CET/CEST/CEMT Central European,
    426       ChST Chamorro,
    427       CST/CDT/CWT/CPT/CDDT Central [North America],
    428       CST/CDT China,
    429       GMT/BST/IST/BDST Greenwich,
    430       EAT East Africa,
    431       EST/EDT/EWT/EPT/EDDT Eastern [North America],
    432       EET/EEST Eastern European,
    433       GST/GDT Guam,
    434       HST/HDT/HWT/HPT Hawaii,
    435       HKT/HKST/HKWT Hong Kong,
    436       IST India,
    437       IST/GMT Irish,
    438       IST/IDT/IDDT Israel,
    439       JST/JDT Japan,
    440       KST/KDT Korea,
    441       MET/MEST Middle European (a backward-compatibility alias for
    442 	Central European),
    443       MSK/MSD Moscow,
    444       MST/MDT/MWT/MPT/MDDT Mountain,
    445       NST/NDT/NWT/NPT/NDDT Newfoundland,
    446       NST/NDT/NWT/NPT Nome,
    447       NZMT/NZST New Zealand through 1945,
    448       NZST/NZDT New Zealand 1946&ndash;present,
    449       PKT/PKST Pakistan,
    450       PST/PDT/PWT/PPT/PDDT Pacific,
    451       PST/PDT Philippine,
    452       SAST South Africa,
    453       SST Samoa,
    454       WAT/WAST West Africa,
    455       WET/WEST/WEMT Western European,
    456       WIB Waktu Indonesia Barat,
    457       WIT Waktu Indonesia Timur,
    458       WITA Waktu Indonesia Tengah,
    459       YST/YDT/YWT/YPT/YDDT Yukon</small>.
    460     </p>
    461   </li>
    462   <li>
    463     <p>
    464     For times taken from a city's longitude, use the
    465     traditional <var>x</var>MT notation.
    466     The only abbreviation like this in current use is '<abbr>GMT</abbr>'.
    467     The others are for timestamps before 1960,
    468     except that Monrovia Mean Time persisted until 1972.
    469     Typically, numeric abbreviations (e.g., '<code>-</code>004430' for
    470     MMT) would cause trouble here, as the numeric strings would exceed
    471     the POSIX length limit.
    472     </p>
    473 
    474     <p>
    475     <small>These abbreviations are:
    476       AMT Amsterdam, Asuncin, Athens;
    477       BMT Baghdad, Bangkok, Batavia, Bermuda, Bern, Bogot, Bridgetown,
    478         Brussels, Bucharest;
    479       CMT Calamarca, Caracas, Chisinau, Coln, Copenhagen, Crdoba;
    480       DMT Dublin/Dunsink;
    481       EMT Easter;
    482       FFMT Fort-de-France;
    483       FMT Funchal;
    484       GMT Greenwich;
    485       HMT Havana, Helsinki, Horta, Howrah;
    486       IMT Irkutsk, Istanbul;
    487       JMT Jerusalem;
    488       KMT Kaunas, Kiev, Kingston;
    489       LMT Lima, Lisbon, local, Luanda;
    490       MMT Macassar, Madras, Mal, Managua, Minsk, Monrovia, Montevideo,
    491 	Moratuwa, Moscow;
    492       PLMT Ph Lin;
    493       PMT Paramaribo, Paris, Perm, Pontianak, Prague;
    494       PMMT Port Moresby;
    495       QMT Quito;
    496       RMT Rangoon, Riga, Rome;
    497       SDMT Santo Domingo;
    498       SJMT San Jos;
    499       SMT Santiago, Simferopol, Singapore, Stanley;
    500       TBMT Tbilisi;
    501       TMT Tallinn, Tehran;
    502       WMT Warsaw</small>.
    503     </p>
    504 
    505     <p>
    506     <small>A few abbreviations also follow the pattern that
    507     <abbr>GMT</abbr>/<abbr>BST</abbr> established for time in the UK.
    508     They are:
    509       BMT/BST for Bermuda 1890&ndash;1930,
    510       CMT/BST for Calamarca Mean Time and Bolivian Summer Time
    511 	1890&ndash;1932,
    512       DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time
    513 	1880&ndash;1916,
    514       MMT/MST/MDST for Moscow 1880&ndash;1919, and
    515       RMT/LST for Riga Mean Time and Latvian Summer time 1880&ndash;1926.
    516     An extra-special case is SET for Swedish Time (<em>svensk
    517     normaltid</em>) 1879&ndash;1899, 3&deg; west of the Stockholm
    518     Observatory.</small>
    519     </p>
    520   </li>
    521   <li>
    522     Use '<abbr>LMT</abbr>' for local mean time of locations before the
    523     introduction of standard time; see "<a href="#scope">Scope of the
    524     <code><abbr>tz</abbr></code> database</a>".
    525   </li>
    526   <li>
    527     If there is no common English abbreviation, use numeric offsets like
    528     <code>-</code>05 and <code>+</code>0530 that are generated
    529     by <code>zic</code>'s <code>%z</code> notation.
    530   </li>
    531   <li>
    532     Use current abbreviations for older timestamps to avoid confusion.
    533     For example, in 1910 a common English abbreviation for time
    534     in central Europe was 'MEZ' (short for both "Middle European
    535     Zone" and for "Mitteleuropische Zeit" in German).
    536     Nowadays 'CET' ("Central European Time") is more common in
    537     English, and the database uses 'CET' even for circa-1910
    538     timestamps as this is less confusing for modern users and avoids
    539     the need for determining when 'CET' supplanted 'MEZ' in common
    540     usage.
    541   </li>
    542   <li>
    543     Use a consistent style in a timezone's history.
    544     For example, if a history tends to use numeric
    545     abbreviations and a particular entry could go either way, use a
    546     numeric abbreviation.
    547   </li>
    548   <li>
    549     Use
    550     <a href="https://en.wikipedia.org/wiki/Universal_Time">Universal Time</a>
    551     (<abbr>UT</abbr>) (with time zone abbreviation '<code>-</code>00') for
    552     locations while uninhabited.
    553     The leading '<code>-</code>' is a flag that the <abbr>UT</abbr> offset is in
    554     some sense undefined; this notation is derived
    555     from <a href="https://tools.ietf.org/html/rfc3339">Internet
    556     <abbr title="Request For Comments">RFC</abbr> 3339</a>.
    557   </li>
    558 </ul>
    559 
    560 <p>
    561 Application writers should note that these abbreviations are ambiguous
    562 in practice: e.g., 'CST' means one thing in China and something else
    563 in North America, and 'IST' can refer to time in India, Ireland or
    564 Israel.
    565 To avoid ambiguity, use numeric <abbr>UT</abbr> offsets like
    566 '<code>-</code>0600' instead of time zone abbreviations like 'CST'.
    567 </p>
    568 </section>
    569 
    570 <section>
    571   <h2 id="accuracy">Accuracy of the <code><abbr>tz</abbr></code> database</h2>
    572 <p>
    573 The <code><abbr>tz</abbr></code> database is not authoritative, and it
    574 surely has errors.
    575 Corrections are welcome and encouraged; see the file <code>CONTRIBUTING</code>.
    576 Users requiring authoritative data should consult national standards
    577 bodies and the references cited in the database's comments.
    578 </p>
    579 
    580 <p>
    581 Errors in the <code><abbr>tz</abbr></code> database arise from many sources:
    582 </p>
    583 
    584 <ul>
    585   <li>
    586     The <code><abbr>tz</abbr></code> database predicts future
    587     timestamps, and current predictions
    588     will be incorrect after future governments change the rules.
    589     For example, if today someone schedules a meeting for 13:00 next
    590     October 1, Casablanca time, and tomorrow Morocco changes its
    591     daylight saving rules, software can mess up after the rule change
    592     if it blithely relies on conversions made before the change.
    593   </li>
    594   <li>
    595     The pre-1970 entries in this database cover only a tiny sliver of how
    596     clocks actually behaved; the vast majority of the necessary
    597     information was lost or never recorded.
    598     Thousands more timezones would be needed if
    599     the <code><abbr>tz</abbr></code> database's scope were extended to
    600     cover even just the known or guessed history of standard time; for
    601     example, the current single entry for France would need to split
    602     into dozens of entries, perhaps hundreds.
    603     And in most of the world even this approach would be misleading
    604     due to widespread disagreement or indifference about what times
    605     should be observed.
    606     In her 2015 book
    607     <cite><a
    608     href="http://www.hup.harvard.edu/catalog.php?isbn=9780674286146">The
    609     Global Transformation of Time, 1870&ndash;1950</a></cite>,
    610     Vanessa Ogle writes
    611     "Outside of Europe and North America there was no system of time
    612     zones at all, often not even a stable landscape of mean times,
    613     prior to the middle decades of the twentieth century".
    614     See: Timothy Shenk, <a
    615 href="https://www.dissentmagazine.org/blog/booked-a-global-history-of-time-vanessa-ogle">Booked:
    616       A Global History of Time</a>. <cite>Dissent</cite> 2015-12-17.
    617   </li>
    618   <li>
    619     Most of the pre-1970 data entries come from unreliable sources, often
    620     astrology books that lack citations and whose compilers evidently
    621     invented entries when the true facts were unknown, without
    622     reporting which entries were known and which were invented.
    623     These books often contradict each other or give implausible entries,
    624     and on the rare occasions when they are checked they are
    625     typically found to be incorrect.
    626   </li>
    627   <li>
    628     For the UK the <code><abbr>tz</abbr></code> database relies on
    629     years of first-class work done by
    630     Joseph Myers and others; see
    631     "<a href="https://www.polyomino.org.uk/british-time/">History of
    632     legal time in Britain</a>".
    633     Other countries are not done nearly as well.
    634   </li>
    635   <li>
    636     Sometimes, different people in the same city maintain clocks
    637     that differ significantly.
    638     Historically, railway time was used by railroad companies (which
    639     did not always
    640     agree with each other), church-clock time was used for birth
    641     certificates, etc.
    642     More recently, competing political groups might disagree about
    643     clock settings. Often this is merely common practice, but
    644     sometimes it is set by law.
    645     For example, from 1891 to 1911 the <abbr>UT</abbr> offset in France
    646     was legally <abbr>UT</abbr> +00:09:21 outside train stations and
    647     <abbr>UT</abbr> +00:04:21 inside. Other examples include
    648     Chillicothe in 1920, Palm Springs in 1946/7, and Jerusalem and
    649     rmqi to this day.
    650   </li>
    651   <li>
    652     Although a named location in the <code><abbr>tz</abbr></code>
    653     database stands for the containing region, its pre-1970 data
    654     entries are often accurate for only a small subset of that region.
    655     For example, <code>Europe/London</code> stands for the United
    656     Kingdom, but its pre-1847 times are valid only for locations that
    657     have London's exact meridian, and its 1847 transition
    658     to <abbr>GMT</abbr> is known to be valid only for the L&amp;NW and
    659     the Caledonian railways.
    660   </li>
    661   <li>
    662     The <code><abbr>tz</abbr></code> database does not record the
    663     earliest time for which a timezone's
    664     data entries are thereafter valid for every location in the region.
    665     For example, <code>Europe/London</code> is valid for all locations
    666     in its region after <abbr>GMT</abbr> was made the standard time,
    667     but the date of standardization (1880-08-02) is not in the
    668     <code><abbr>tz</abbr></code> database, other than in commentary.
    669     For many timezones the earliest time of
    670     validity is unknown.
    671   </li>
    672   <li>
    673     The <code><abbr>tz</abbr></code> database does not record a
    674     region's boundaries, and in many cases the boundaries are not known.
    675     For example, the timezone
    676     <code>America/Kentucky/Louisville</code> represents a region
    677     around the city of Louisville, the boundaries of which are
    678     unclear.
    679   </li>
    680   <li>
    681     Changes that are modeled as instantaneous transitions in the
    682     <code><abbr>tz</abbr></code>
    683     database were often spread out over hours, days, or even decades.
    684   </li>
    685   <li>
    686     Even if the time is specified by law, locations sometimes
    687     deliberately flout the law.
    688   </li>
    689   <li>
    690     Early timekeeping practices, even assuming perfect clocks, were
    691     often not specified to the accuracy that the
    692     <code><abbr>tz</abbr></code> database requires.
    693   </li>
    694   <li>
    695     The <code><abbr>tz</abbr></code> database cannot represent stopped clocks.
    696     However, on 1911-03-11 at 00:00, some public-facing French clocks
    697     were changed by stopping them for a few minutes to effect a transition.
    698     The <code><abbr>tz</abbr></code> database models this via a
    699     backward transition; the relevant French legislation does not
    700     specify exactly how the transition was to occur.
    701   </li>
    702   <li>
    703     Sometimes historical timekeeping was specified more precisely
    704     than what the <code><abbr>tz</abbr></code> code can handle.
    705     For example, from 1909 to 1937 <a
    706     href="https://www.staff.science.uu.nl/~gent0113/wettijd/wettijd.htm"
    707     hreflang="nl">Netherlands clocks</a> were legally Amsterdam Mean
    708     Time (estimated to be <abbr>UT</abbr>
    709     +00:19:32.13), but the <code><abbr>tz</abbr></code>
    710     code cannot represent the fractional second.
    711     In practice these old specifications were rarely if ever
    712     implemented to subsecond precision.
    713   </li>
    714   <li>
    715     Even when all the timestamp transitions recorded by the
    716     <code><abbr>tz</abbr></code> database are correct, the
    717     <code><abbr>tz</abbr></code> rules that generate them may not
    718     faithfully reflect the historical rules.
    719     For example, from 1922 until World War II the UK moved clocks
    720     forward the day following the third Saturday in April unless that
    721     was Easter, in which case it moved clocks forward the previous
    722     Sunday.
    723     Because the <code><abbr>tz</abbr></code> database has no
    724     way to specify Easter, these exceptional years are entered as
    725     separate <code><abbr>tz</abbr> Rule</code> lines, even though the
    726     legal rules did not change.
    727     When transitions are known but the historical rules behind them are not,
    728     the database contains <code>Zone</code> and <code>Rule</code>
    729     entries that are intended to represent only the generated
    730     transitions, not any underlying historical rules; however, this
    731     intent is recorded at best only in commentary.
    732   </li>
    733   <li>
    734     The <code><abbr>tz</abbr></code> database models time
    735     using the <a
    736     href="https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">proleptic
    737     Gregorian calendar</a> with days containing 24 equal-length hours
    738     numbered 00 through 23, except when clock transitions occur.
    739     Pre-standard time is modeled as local mean time.
    740     However, historically many people used other calendars and other timescales.
    741     For example, the Roman Empire used
    742     the <a href="https://en.wikipedia.org/wiki/Julian_calendar">Julian
    743     calendar</a>,
    744     and <a href="https://en.wikipedia.org/wiki/Roman_timekeeping">Roman
    745     timekeeping</a> had twelve varying-length daytime hours with a
    746     non-hour-based system at night.
    747     And even today, some local practices diverge from the Gregorian
    748     calendar with 24-hour days. These divergences range from
    749     relatively minor, such as Japanese bars giving times like "24:30" for the
    750     wee hours of the morning, to more-significant differences such as <a
    751     href="https://www.pri.org/stories/2015-01-30/if-you-have-meeting-ethiopia-you-better-double-check-time">the
    752     east African practice of starting the day at dawn</a>, renumbering
    753     the Western 06:00 to be 12:00. These practices are largely outside
    754     the scope of the <code><abbr>tz</abbr></code> code and data, which
    755     provide only limited support for date and time localization
    756     such as that required by POSIX. If DST is not used a different time zone
    757     can often do the trick; for example, in Kenya a <code>TZ</code> setting
    758     like <code>&lt;-03&gt;3</code> or <code>America/Cayenne</code> starts
    759     the day six hours later than <code>Africa/Nairobi</code> does.
    760   </li>
    761   <li>
    762     Early clocks were less reliable, and data entries do not represent
    763     clock error.
    764   </li>
    765   <li>
    766     The <code><abbr>tz</abbr></code> database assumes Universal Time
    767     (<abbr>UT</abbr>) as an origin, even though <abbr>UT</abbr> is not
    768     standardized for older timestamps.
    769     In the <code><abbr>tz</abbr></code> database commentary,
    770     <abbr>UT</abbr> denotes a family of time standards that includes
    771     Coordinated Universal Time (<abbr>UTC</abbr>) along with other
    772     variants such as <abbr>UT1</abbr> and <abbr>GMT</abbr>,
    773     with days starting at midnight.
    774     Although <abbr>UT</abbr> equals <abbr>UTC</abbr> for modern
    775     timestamps, <abbr>UTC</abbr> was not defined until 1960, so
    776     commentary uses the more-general abbreviation <abbr>UT</abbr> for
    777     timestamps that might predate 1960.
    778     Since <abbr>UT</abbr>, <abbr>UT1</abbr>, etc. disagree slightly,
    779     and since pre-1972 <abbr>UTC</abbr> seconds varied in length,
    780     interpretation of older timestamps can be problematic when
    781     subsecond accuracy is needed.
    782   </li>
    783   <li>
    784     Civil time was not based on atomic time before 1972, and we do not
    785     know the history of
    786     <a href="https://en.wikipedia.org/wiki/Earth's_rotation">earth's
    787     rotation</a> accurately enough to map <a
    788     href="https://en.wikipedia.org/wiki/International_System_of_Units"><abbr
    789     title="International System of Units">SI</abbr></a> seconds to
    790     historical <a href="https://en.wikipedia.org/wiki/Solar_time">solar time</a>
    791     to more than about one-hour accuracy.
    792     See: Stephenson FR, Morrison LV, Hohenkerk CY.
    793     <a href="https://dx.doi.org/10.1098/rspa.2016.0404">Measurement of
    794     the Earth's rotation: 720 BC to AD 2015</a>.
    795     <cite>Proc Royal Soc A</cite>. 2016 Dec 7;472:20160404.
    796     Also see: Espenak F. <a
    797     href="https://eclipse.gsfc.nasa.gov/SEhelp/uncertainty2004.html">Uncertainty
    798     in Delta T (T)</a>.
    799   </li>
    800   <li>
    801     The relationship between POSIX time (that is, <abbr>UTC</abbr> but
    802     ignoring <a href="https://en.wikipedia.org/wiki/Leap_second">leap
    803     seconds</a>) and <abbr>UTC</abbr> is not agreed upon after 1972.
    804     Although the POSIX
    805     clock officially stops during an inserted leap second, at least one
    806     proposed standard has it jumping back a second instead; and in
    807     practice POSIX clocks more typically either progress glacially during
    808     a leap second, or are slightly slowed while near a leap second.
    809   </li>
    810   <li>
    811     The <code><abbr>tz</abbr></code> database does not represent how
    812     uncertain its information is.
    813     Ideally it would contain information about when data entries are
    814     incomplete or dicey.
    815     Partial temporal knowledge is a field of active research, though,
    816     and it is not clear how to apply it here.
    817   </li>
    818 </ul>
    819 
    820 <p>
    821 In short, many, perhaps most, of the <code><abbr>tz</abbr></code>
    822 database's pre-1970 and future timestamps are either wrong or
    823 misleading.
    824 Any attempt to pass the
    825 <code><abbr>tz</abbr></code> database off as the definition of time
    826 should be unacceptable to anybody who cares about the facts.
    827 In particular, the <code><abbr>tz</abbr></code> database's
    828 <abbr>LMT</abbr> offsets should not be considered meaningful, and
    829 should not prompt creation of timezones
    830 merely because two locations
    831 differ in <abbr>LMT</abbr> or transitioned to standard time at
    832 different dates.
    833 </p>
    834 </section>
    835 
    836 <section>
    837   <h2 id="functions">Time and date functions</h2>
    838 <p>
    839 The <code><abbr>tz</abbr></code> code contains time and date functions
    840 that are upwards compatible with those of POSIX.
    841 Code compatible with this package is already
    842 <a href="tz-link.html#tzdb">part of many platforms</a>, where the
    843 primary use of this package is to update obsolete time-related files.
    844 To do this, you may need to compile the time zone compiler
    845 '<code>zic</code>' supplied with this package instead of using the
    846 system '<code>zic</code>', since the format of <code>zic</code>'s
    847 input is occasionally extended, and a platform may still be shipping
    848 an older <code>zic</code>.
    849 </p>
    850 
    851 <h3 id="POSIX">POSIX properties and limitations</h3>
    852 <ul>
    853   <li>
    854     <p>
    855     In POSIX, time display in a process is controlled by the
    856     environment variable <code>TZ</code>.
    857     Unfortunately, the POSIX
    858     <code>TZ</code> string takes a form that is hard to describe and
    859     is error-prone in practice.
    860     Also, POSIX <code>TZ</code> strings cannot deal with daylight
    861     saving time rules not based on the Gregorian calendar (as in
    862     Iran), or with situations where more than two time zone
    863     abbreviations or <abbr>UT</abbr> offsets are used in an area.
    864     </p>
    865 
    866     <p>
    867     The POSIX <code>TZ</code> string takes the following form:
    868     </p>
    869 
    870     <p>
    871     <var>stdoffset</var>[<var>dst</var>[<var>offset</var>][<code>,</code><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]]]
    872     </p>
    873 
    874     <p>
    875     where:
    876     </p>
    877 
    878     <dl>
    879       <dt><var>std</var> and <var>dst</var></dt><dd>
    880 	are 3 or more characters specifying the standard
    881 	and daylight saving time (<abbr>DST</abbr>) zone abbreviations.
    882 	Starting with POSIX.1-2001, <var>std</var> and <var>dst</var>
    883 	may also be in a quoted form like '<code>&lt;+09&gt;</code>';
    884 	this allows "<code>+</code>" and "<code>-</code>" in the names.
    885       </dd>
    886       <dt><var>offset</var></dt><dd>
    887 	is of the form
    888 	'<code>[&plusmn;]<var>hh</var>:[<var>mm</var>[:<var>ss</var>]]</code>'
    889 	and specifies the offset west of <abbr>UT</abbr>.
    890 	'<var>hh</var>' may be a single digit;
    891 	0&le;<var>hh</var>&le;24.
    892 	The default <abbr>DST</abbr> offset is one hour ahead of
    893 	standard time.
    894       </dd>
    895       <dt><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]</dt><dd>
    896 	specifies the beginning and end of <abbr>DST</abbr>.
    897 	If this is absent, the system supplies its own ruleset
    898 	for <abbr>DST</abbr>, and its rules can differ from year to year;
    899 	typically <abbr>US</abbr> <abbr>DST</abbr> rules are used.
    900       </dd>
    901       <dt><var>time</var></dt><dd>
    902 	takes the form
    903 	'<var>hh</var><code>:</code>[<var>mm</var>[<code>:</code><var>ss</var>]]'
    904 	and defaults to 02:00.
    905 	This is the same format as the offset, except that a
    906 	leading '<code>+</code>' or '<code>-</code>' is not allowed.
    907       </dd>
    908       <dt><var>date</var></dt><dd>
    909 	takes one of the following forms:
    910 	<dl>
    911 	  <dt>J<var>n</var> (1&le;<var>n</var>&le;365)</dt><dd>
    912 	    origin-1 day number not counting February 29
    913 	  </dd>
    914 	  <dt><var>n</var> (0&le;<var>n</var>&le;365)</dt><dd>
    915 	    origin-0 day number counting February 29 if present
    916 	  </dd>
    917 	  <dt><code>M</code><var>m</var><code>.</code><var>n</var><code>.</code><var>d</var>
    918 	    (0[Sunday]&le;<var>d</var>&le;6[Saturday], 1&le;<var>n</var>&le;5,
    919 	    1&le;<var>m</var>&le;12)</dt><dd>
    920 	    for the <var>d</var>th day of week <var>n</var> of
    921 	    month <var>m</var> of the year, where week 1 is the first
    922 	    week in which day <var>d</var> appears, and
    923 	    '<code>5</code>' stands for the last week in which
    924 	    day <var>d</var> appears (which may be either the 4th or
    925 	    5th week).
    926 	    Typically, this is the only useful form; the <var>n</var>
    927 	    and <code>J</code><var>n</var> forms are rarely used.
    928 	  </dd>
    929 	</dl>
    930       </dd>
    931     </dl>
    932 
    933     <p>
    934     Here is an example POSIX <code>TZ</code> string for New
    935     Zealand after 2007.
    936     It says that standard time (<abbr>NZST</abbr>) is 12 hours ahead
    937     of <abbr>UT</abbr>, and that daylight saving time
    938     (<abbr>NZDT</abbr>) is observed from September's last Sunday at
    939     02:00 until April's first Sunday at 03:00:
    940     </p>
    941 
    942     <pre><code>TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'</code></pre>
    943 
    944     <p>
    945     This POSIX <code>TZ</code> string is hard to remember, and
    946     mishandles some timestamps before 2008.
    947     With this package you can use this instead:
    948     </p>
    949 
    950     <pre><code>TZ='Pacific/Auckland'</code></pre>
    951   </li>
    952   <li>
    953     POSIX does not define the <abbr>DST</abbr> transitions
    954     for <code>TZ</code> values like
    955     "<code>EST5EDT</code>".
    956     Traditionally the current <abbr>US</abbr> <abbr>DST</abbr> rules
    957     were used to interpret such values, but this meant that the
    958     <abbr>US</abbr> <abbr>DST</abbr> rules were compiled into each
    959     program that did time conversion. This meant that when
    960     <abbr>US</abbr> time conversion rules changed (as in the United
    961     States in 1987), all programs that did time conversion had to be
    962     recompiled to ensure proper results.
    963   </li>
    964   <li>
    965     The <code>TZ</code> environment variable is process-global, which
    966     makes it hard to write efficient, thread-safe applications that
    967     need access to multiple timezones.
    968   </li>
    969   <li>
    970     In POSIX, there is no tamper-proof way for a process to learn the
    971     system's best idea of local (wall clock) time.
    972     This is important for applications that an administrator wants
    973     used only at certain times &ndash; without regard to whether the
    974     user has fiddled the
    975     <code>TZ</code> environment variable.
    976     While an administrator can "do everything in <abbr>UT</abbr>" to
    977     get around the problem, doing so is inconvenient and precludes
    978     handling daylight saving time shifts &ndash; as might be required to
    979     limit phone calls to off-peak hours.
    980   </li>
    981   <li>
    982     POSIX provides no convenient and efficient way to determine
    983     the <abbr>UT</abbr> offset and time zone abbreviation of arbitrary
    984     timestamps, particularly for timezones
    985     that do not fit into the POSIX model.
    986   </li>
    987   <li>
    988     POSIX requires that <code>time_t</code> clock counts exclude leap
    989     seconds.
    990   </li>
    991   <li>
    992     The <code><abbr>tz</abbr></code> code attempts to support all the
    993     <code>time_t</code> implementations allowed by POSIX.
    994     The <code>time_t</code> type represents a nonnegative count of seconds
    995     since 1970-01-01 00:00:00 <abbr>UTC</abbr>, ignoring leap seconds.
    996     In practice, <code>time_t</code> is usually a signed 64- or 32-bit
    997     integer; 32-bit signed <code>time_t</code> values stop working after
    998     2038-01-19 03:14:07 <abbr>UTC</abbr>, so new implementations these
    999     days typically use a signed 64-bit integer.
   1000     Unsigned 32-bit integers are used on one or two platforms, and 36-bit
   1001     and 40-bit integers are also used occasionally.
   1002     Although earlier POSIX versions allowed <code>time_t</code> to be a
   1003     floating-point type, this was not supported by any practical system,
   1004     and POSIX.1-2013 and the <code><abbr>tz</abbr></code> code both
   1005     require <code>time_t</code> to be an integer type.
   1006   </li>
   1007 </ul>
   1008 
   1009 <h3 id="POSIX-extensions">Extensions to POSIX in the
   1010 <code><abbr>tz</abbr></code> code</h3>
   1011 <ul>
   1012   <li>
   1013     <p>
   1014     The <code>TZ</code> environment variable is used in generating
   1015     the name of a file from which time-related information is read
   1016     (or is interpreted  la POSIX); <code>TZ</code> is no longer
   1017     constrained to be a string containing abbreviations
   1018     and numeric data as described <a href="#POSIX">above</a>.
   1019     The file's format is <dfn><abbr>TZif</abbr></dfn>,
   1020     a timezone information format that contains binary data; see
   1021     <a href="https://tools.ietf.org/html/8536">Internet
   1022     <abbr>RFC</abbr> 8536</a>.
   1023     The daylight saving time rules to be used for a
   1024     particular timezone are encoded in the
   1025     <abbr>TZif</abbr> file; the format of the file allows <abbr>US</abbr>,
   1026     Australian, and other rules to be encoded, and
   1027     allows for situations where more than two time zone
   1028     abbreviations are used.
   1029     </p>
   1030     <p>
   1031     It was recognized that allowing the <code>TZ</code> environment
   1032     variable to take on values such as '<code>America/New_York</code>'
   1033     might cause "old" programs (that expect <code>TZ</code> to have a
   1034     certain form) to operate incorrectly; consideration was given to using
   1035     some other environment variable (for example, <code>TIMEZONE</code>)
   1036     to hold the string used to generate the <abbr>TZif</abbr> file's name.
   1037     In the end, however, it was decided to continue using
   1038     <code>TZ</code>: it is widely used for time zone purposes;
   1039     separately maintaining both <code>TZ</code>
   1040     and <code>TIMEZONE</code> seemed a nuisance; and systems where
   1041     "new" forms of <code>TZ</code> might cause problems can simply
   1042     use legacy <code>TZ</code> values such as "<code>EST5EDT</code>" which
   1043     can be used by "new" programs as well as by "old" programs that
   1044     assume pre-POSIX <code>TZ</code> values.
   1045     </p>
   1046   </li>
   1047   <li>
   1048     The code supports platforms with a <abbr>UT</abbr> offset member
   1049     in <code>struct tm</code>, e.g., <code>tm_gmtoff</code>.
   1050   </li>
   1051   <li>
   1052     The code supports platforms with a time zone abbreviation member in
   1053     <code>struct tm</code>, e.g., <code>tm_zone</code>.
   1054   </li>
   1055   <li>
   1056     Functions <code>tzalloc</code>, <code>tzfree</code>,
   1057     <code>localtime_rz</code>, and <code>mktime_z</code> for
   1058     more-efficient thread-safe applications that need to use multiple
   1059     timezones.
   1060     The <code>tzalloc</code> and <code>tzfree</code> functions
   1061     allocate and free objects of type <code>timezone_t</code>,
   1062     and <code>localtime_rz</code> and <code>mktime_z</code> are
   1063     like <code>localtime_r</code> and <code>mktime</code> with an
   1064     extra <code>timezone_t</code> argument.
   1065     The functions were inspired by <a href="https://netbsd.org/">NetBSD</a>.
   1066   </li>
   1067   <li>
   1068     Negative <code>time_t</code> values are supported, on systems
   1069     where <code>time_t</code> is signed.
   1070   </li>
   1071   <li>
   1072     These functions can account for leap seconds;
   1073     see <a href="#leapsec">Leap seconds</a> below.
   1074   </li>
   1075 </ul>
   1076 
   1077 <h3 id="vestigial">POSIX features no longer needed</h3>
   1078 <p>
   1079 POSIX and <a href="https://en.wikipedia.org/wiki/ISO_C"><abbr>ISO</abbr> C</a>
   1080 define some <a href="https://en.wikipedia.org/wiki/API"><abbr
   1081 title="application programming interface">API</abbr>s</a> that are vestigial:
   1082 they are not needed, and are relics of a too-simple model that does
   1083 not suffice to handle many real-world timestamps.
   1084 Although the <code><abbr>tz</abbr></code> code supports these
   1085 vestigial <abbr>API</abbr>s for backwards compatibility, they should
   1086 be avoided in portable applications.
   1087 The vestigial <abbr>API</abbr>s are:
   1088 </p>
   1089 <ul>
   1090   <li>
   1091     The POSIX <code>tzname</code> variable does not suffice and is no
   1092     longer needed.
   1093     To get a timestamp's time zone abbreviation, consult
   1094     the <code>tm_zone</code> member if available; otherwise,
   1095     use <code>strftime</code>'s <code>"%Z"</code> conversion
   1096     specification.
   1097   </li>
   1098   <li>
   1099     The POSIX <code>daylight</code> and <code>timezone</code>
   1100     variables do not suffice and are no longer needed.
   1101     To get a timestamp's <abbr>UT</abbr> offset, consult
   1102     the <code>tm_gmtoff</code> member if available; otherwise,
   1103     subtract values returned by <code>localtime</code>
   1104     and <code>gmtime</code> using the rules of the Gregorian calendar,
   1105     or use <code>strftime</code>'s <code>"%z"</code> conversion
   1106     specification if a string like <code>"+0900"</code> suffices.
   1107   </li>
   1108   <li>
   1109     The <code>tm_isdst</code> member is almost never needed and most of
   1110     its uses should be discouraged in favor of the abovementioned
   1111     <abbr>API</abbr>s.
   1112     Although it can still be used in arguments to
   1113     <code>mktime</code> to disambiguate timestamps near
   1114     a <abbr>DST</abbr> transition when the clock jumps back, this
   1115     disambiguation does not work when standard time itself jumps back,
   1116     which can occur when a location changes to a time zone with a
   1117     lesser <abbr>UT</abbr> offset.
   1118   </li>
   1119 </ul>
   1120 
   1121 <h3 id="other-portability">Other portability notes</h3>
   1122 <ul>
   1123   <li>
   1124     The <a href="https://en.wikipedia.org/wiki/Version_7_Unix">7th Edition
   1125     UNIX</a> <code>timezone</code> function is not present in this
   1126     package; it is impossible to reliably map <code>timezone</code>'s
   1127     arguments (a "minutes west of <abbr>GMT</abbr>" value and a
   1128     "daylight saving time in effect" flag) to a time zone
   1129     abbreviation, and we refuse to guess.
   1130     Programs that in the past used the <code>timezone</code> function
   1131     may now examine <code>localtime(&amp;clock)-&gt;tm_zone</code>
   1132     (if <code>TM_ZONE</code> is defined) or
   1133     <code>tzname[localtime(&amp;clock)-&gt;tm_isdst]</code>
   1134     (if <code>HAVE_TZNAME</code> is nonzero) to learn the correct time
   1135     zone abbreviation to use.
   1136   </li>
   1137   <li>
   1138     The <a
   1139     href="https://en.wikipedia.org/wiki/History_of_the_Berkeley_Software_Distribution#4.2BSD"><abbr>4.2BSD</abbr></a>
   1140     <code>gettimeofday</code> function is not
   1141     used in this package.
   1142     This formerly let users obtain the current <abbr>UTC</abbr> offset
   1143     and <abbr>DST</abbr> flag, but this functionality was removed in
   1144     later versions of <abbr>BSD</abbr>.
   1145   </li>
   1146   <li>
   1147     In <abbr>SVR2</abbr>, time conversion fails for near-minimum or
   1148     near-maximum <code>time_t</code> values when doing conversions
   1149     for places that do not use <abbr>UT</abbr>.
   1150     This package takes care to do these conversions correctly.
   1151     A comment in the source code tells how to get compatibly wrong
   1152     results.
   1153   </li>
   1154   <li>
   1155     The functions that are conditionally compiled
   1156     if <code>STD_INSPIRED</code> is defined should, at this point, be
   1157     looked on primarily as food for thought.
   1158     They are not in any sense "standard compatible" &ndash; some are
   1159     not, in fact, specified in <em>any</em> standard.
   1160     They do, however, represent responses of various authors to
   1161     standardization proposals.
   1162   </li>
   1163   <li>
   1164     Other time conversion proposals, in particular those supported by the
   1165     <a href="https://howardhinnant.github.io/date/tz.html">Time Zone
   1166     Database Parser</a>, offer a wider selection of functions
   1167     that provide capabilities beyond those provided here.
   1168     The absence of such functions from this package is not meant to
   1169     discourage the development, standardization, or use of such
   1170     functions.
   1171     Rather, their absence reflects the decision to make this package
   1172     contain valid extensions to POSIX, to ensure its broad
   1173     acceptability.
   1174     If more powerful time conversion functions can be standardized, so
   1175     much the better.
   1176   </li>
   1177 </ul>
   1178 </section>
   1179 
   1180 <section>
   1181   <h2 id="stability">Interface stability</h2>
   1182 <p>
   1183 The <code><abbr>tz</abbr></code> code and data supply the following interfaces:
   1184 </p>
   1185 
   1186 <ul>
   1187   <li>
   1188     A set of timezone names as per
   1189       "<a href="#naming">Timezone identifiers</a>" above.
   1190   </li>
   1191   <li>
   1192     Library functions described in "<a href="#functions">Time and date
   1193       functions</a>" above.
   1194   </li>
   1195   <li>
   1196     The programs <code>tzselect</code>, <code>zdump</code>,
   1197     and <code>zic</code>, documented in their man pages.
   1198   </li>
   1199   <li>
   1200     The format of <code>zic</code> input files, documented in
   1201     the <code>zic</code> man page.
   1202   </li>
   1203   <li>
   1204     The format of <code>zic</code> output files, documented in
   1205     the <code>tzfile</code> man page.
   1206   </li>
   1207   <li>
   1208     The format of zone table files, documented in <code>zone1970.tab</code>.
   1209   </li>
   1210   <li>
   1211     The format of the country code file, documented in <code>iso3166.tab</code>.
   1212   </li>
   1213   <li>
   1214     The version number of the code and data, as the first line of
   1215     the text file '<code>version</code>' in each release.
   1216   </li>
   1217 </ul>
   1218 
   1219 <p>
   1220 Interface changes in a release attempt to preserve compatibility with
   1221 recent releases.
   1222 For example, <code><abbr>tz</abbr></code> data files typically do not
   1223 rely on recently-added <code>zic</code> features, so that users can
   1224 run older <code>zic</code> versions to process newer data files.
   1225 <a href="tz-link.html#download">Downloading
   1226 the <code><abbr>tz</abbr></code> database</a> describes how releases
   1227 are tagged and distributed.
   1228 </p>
   1229 
   1230 <p>
   1231 Interfaces not listed above are less stable.
   1232 For example, users should not rely on particular <abbr>UT</abbr>
   1233 offsets or abbreviations for timestamps, as data entries are often
   1234 based on guesswork and these guesses may be corrected or improved.
   1235 </p>
   1236 
   1237 <p>
   1238 Timezone boundaries are not part of the stable interface.
   1239 For example, even though the <samp>Asia/Bangkok</samp> timezone
   1240 currently includes Chang Mai, Hanoi, and Phnom Penh, this is not part
   1241 of the stable interface and the timezone can split at any time.
   1242 If a calendar application records a future event in some location other
   1243 than Bangkok by putting "<samp>Asia/Bangkok</samp>" in the event's record,
   1244 the application should be robust in the presence of timezone splits
   1245 between now and the future time.
   1246 </p>
   1247 </section>
   1248 
   1249 <section>
   1250   <h2 id="leapsec">Leap seconds</h2>
   1251 <p>
   1252 The <code><abbr>tz</abbr></code> code and data can account for leap seconds,
   1253 thanks to code contributed by Bradley White.
   1254 However, the leap second support of this package is rarely used directly
   1255 because POSIX requires leap seconds to be excluded and many
   1256 software packages would mishandle leap seconds if they were present.
   1257 Instead, leap seconds are more commonly handled by occasionally adjusting
   1258 the operating system kernel clock as described in
   1259 <a href="tz-link.html#precision">Precision timekeeping</a>,
   1260 and this package by default installs a <samp>leapseconds</samp> file
   1261 commonly used by
   1262 <a href="http://www.ntp.org"><abbr title="Network Time Protocol">NTP</abbr></a>
   1263 software that adjusts the kernel clock.
   1264 However, kernel-clock twiddling approximates UTC only roughly,
   1265 and systems needing more-precise UTC can use this package's leap
   1266 second support directly.
   1267 </p>
   1268 
   1269 <p>
   1270 The directly-supported mechanism assumes that <code>time_t</code>
   1271 counts of seconds since the POSIX epoch normally include leap seconds,
   1272 as opposed to POSIX <code>time_t</code> counts which exclude leap seconds.
   1273 This modified timescale is converted to <abbr>UTC</abbr>
   1274 at the same point that time zone and DST adjustments are applied &ndash;
   1275 namely, at calls to <code>localtime</code> and analogous functions &ndash;
   1276 and the process is driven by leap second information
   1277 stored in alternate versions of the <abbr>TZif</abbr> files.
   1278 Because a leap second adjustment may be needed even
   1279 if no time zone correction is desired,
   1280 calls to <code>gmtime</code>-like functions
   1281 also need to consult a <abbr>TZif</abbr> file,
   1282 conventionally named <samp><abbr>GMT</abbr></samp>,
   1283 to see whether leap second corrections are needed.
   1284 To convert an application's <code>time_t</code> timestamps to or from
   1285 POSIX <code>time_t</code> timestamps (for use when, say,
   1286 embedding or interpreting timestamps in portable
   1287 <a href="https://en.wikipedia.org/wiki/Tar_(computing)"><code>tar</code></a>
   1288 files),
   1289 the application can call the utility functions
   1290 <code>time2posix</code> and <code>posix2time</code>
   1291 included with this package.
   1292 </p>
   1293 
   1294 <p>
   1295 If the POSIX-compatible <abbr>TZif</abbr> file set is installed
   1296 in a directory whose basename is <samp>zoneinfo</samp>, the
   1297 leap-second-aware file set is by default installed in a separate
   1298 directory <samp>zoneinfo-leaps</samp>.
   1299 Although each process can have its own time zone by setting
   1300 its <code>TZ</code> environment variable, there is no support for some
   1301 processes being leap-second aware while other processes are
   1302 POSIX-compatible; the leap-second choice is system-wide.
   1303 So if you configure your kernel to count leap seconds, you should also
   1304 discard <samp>zoneinfo</samp> and rename <samp>zoneinfo-leaps</samp>
   1305 to <samp>zoneinfo</samp>.
   1306 Alternatively, you can install just one set of <abbr>TZif</abbr> files
   1307 in the first place; see the <code>REDO</code> variable in this package's
   1308 <a href="https://en.wikipedia.org/wiki/Makefile">makefile</a>.
   1309 </p>
   1310 </section>
   1311 
   1312 <section>
   1313   <h2 id="calendar">Calendrical issues</h2>
   1314 <p>
   1315 Calendrical issues are a bit out of scope for a time zone database,
   1316 but they indicate the sort of problems that we would run into if we
   1317 extended the time zone database further into the past.
   1318 An excellent resource in this area is Edward M. Reingold
   1319 and Nachum Dershowitz, <cite><a
   1320 href="https://www.cambridge.org/fr/academic/subjects/computer-science/computing-general-interest/calendrical-calculations-ultimate-edition-4th-edition">Calendrical
   1321 Calculations: The Ultimate Edition</a></cite>, Cambridge University Press (2018).
   1322 Other information and sources are given in the file '<code>calendars</code>'
   1323 in the <code><abbr>tz</abbr></code> distribution.
   1324 They sometimes disagree.
   1325 </p>
   1326 </section>
   1327 
   1328 <section>
   1329   <h2 id="planets">Time and time zones on other planets</h2>
   1330 <p>
   1331 Some people's work schedules have used
   1332 <a href="https://en.wikipedia.org/wiki/Timekeeping_on_Mars">Mars time</a>.
   1333 Jet Propulsion Laboratory (JPL) coordinators kept Mars time on
   1334 and off during the
   1335 <a href="https://en.wikipedia.org/wiki/Mars_Pathfinder">Mars
   1336 Pathfinder</a> mission (1997).
   1337 Some of their family members also adapted to Mars time.
   1338 Dozens of special Mars watches were built for JPL workers who kept
   1339 Mars time during the
   1340 <a href="https://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars
   1341 Exploration Rovers (MER)</a> mission (2004&ndash;2018).
   1342 These timepieces looked like normal Seikos and Citizens but were adjusted
   1343 to use Mars seconds rather than terrestrial seconds, although
   1344 unfortunately the adjusted watches were unreliable and appear to have
   1345 had only limited use.
   1346 </p>
   1347 
   1348 <p>
   1349 A Mars solar day is called a "sol" and has a mean period equal to
   1350 about 24 hours 39 minutes 35.244 seconds in terrestrial time.
   1351 It is divided into a conventional 24-hour clock, so each Mars second
   1352 equals about 1.02749125 terrestrial seconds.
   1353 (One MER worker noted, "If I am working Mars hours, and Mars hours are
   1354 2.5% more than Earth hours, shouldn't I get an extra 2.5% pay raise?")
   1355 </p>
   1356 
   1357 <p>
   1358 The <a href="https://en.wikipedia.org/wiki/Prime_meridian">prime
   1359 meridian</a> of Mars goes through the center of the crater
   1360 <a href="https://en.wikipedia.org/wiki/Airy-0">Airy-0</a>, named in
   1361 honor of the British astronomer who built the Greenwich telescope that
   1362 defines Earth's prime meridian.
   1363 Mean solar time on the Mars prime meridian is
   1364 called Mars Coordinated Time (<abbr>MTC</abbr>).
   1365 </p>
   1366 
   1367 <p>
   1368 Each landed mission on Mars has adopted a different reference for
   1369 solar timekeeping, so there is no real standard for Mars time zones.
   1370 For example, the MER mission defined two time zones "Local
   1371 Solar Time A" and "Local Solar Time B" for its two missions, each zone
   1372 designed so that its time equals local true solar time at
   1373 approximately the middle of the nominal mission.
   1374 The A and B zones differ enough so that an MER worker assigned to
   1375 the A zone might suffer "Mars lag" when switching to work in the B zone.
   1376 Such a "time zone" is not particularly suited for any application
   1377 other than the mission itself.
   1378 </p>
   1379 
   1380 <p>
   1381 Many calendars have been proposed for Mars, but none have achieved
   1382 wide acceptance.
   1383 Astronomers often use Mars Sol Date (<abbr>MSD</abbr>) which is a
   1384 sequential count of Mars solar days elapsed since about 1873-12-29
   1385 12:00 <abbr>GMT</abbr>.
   1386 </p>
   1387 
   1388 <p>
   1389 In our solar system, Mars is the planet with time and calendar most
   1390 like Earth's.
   1391 On other planets, Sun-based time and calendars would work quite
   1392 differently.
   1393 For example, although Mercury's
   1394 <a href="https://en.wikipedia.org/wiki/Rotation_period">sidereal
   1395 rotation period</a> is 58.646 Earth days, Mercury revolves around the
   1396 Sun so rapidly that an observer on Mercury's equator would see a
   1397 sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a
   1398 Mercury day.
   1399 Venus is more complicated, partly because its rotation is slightly
   1400 <a href="https://en.wikipedia.org/wiki/Retrograde_motion">retrograde</a>:
   1401 its year is 1.92 of its days.
   1402 Gas giants like Jupiter are trickier still, as their polar and
   1403 equatorial regions rotate at different rates, so that the length of a
   1404 day depends on latitude.
   1405 This effect is most pronounced on Neptune, where the day is about 12
   1406 hours at the poles and 18 hours at the equator.
   1407 </p>
   1408 
   1409 <p>
   1410 Although the <code><abbr>tz</abbr></code> database does not support
   1411 time on other planets, it is documented here in the hopes that support
   1412 will be added eventually.
   1413 </p>
   1414 
   1415 <p>
   1416 Sources for time on other planets:
   1417 </p>
   1418 
   1419 <ul>
   1420   <li>
   1421     Michael Allison and Robert Schmunk,
   1422     "<a href="https://www.giss.nasa.gov/tools/mars24/help/notes.html">Technical
   1423       Notes on Mars Solar Time as Adopted by the Mars24 Sunclock</a>"
   1424     (2020-03-08).
   1425   </li>
   1426   <li>
   1427     Zara Mirmalek,
   1428     <em><a href="https://mitpress.mit.edu/books/making-time-mars">Making
   1429 	Time on Mars</a></em>, MIT Press (March 2020), ISBN 978-0262043854.
   1430   </li>
   1431   <li>
   1432     Jia-Rui Chong,
   1433     "<a href="https://www.latimes.com/archives/la-xpm-2004-jan-14-sci-marstime14-story.html">Workdays
   1434     Fit for a Martian</a>", <cite>Los Angeles Times</cite>
   1435     (2004-01-14), pp A1, A20&ndash;A21.
   1436   </li>
   1437   <li>
   1438     Tom Chmielewski,
   1439     "<a href="https://www.theatlantic.com/technology/archive/2015/02/jet-lag-is-worse-on-mars/386033/">Jet
   1440     Lag Is Worse on Mars</a>", <cite>The Atlantic</cite> (2015-02-26)
   1441   </li>
   1442   <li>
   1443     Matt Williams,
   1444     "<a href="https://www.universetoday.com/37481/days-of-the-planets/">How
   1445     long is a day on the other planets of the solar system?</a>"
   1446     (2016-01-20).
   1447   </li>
   1448 </ul>
   1449 </section>
   1450 
   1451 <footer>
   1452   <hr>
   1453   This file is in the public domain, so clarified as of 2009-05-17 by
   1454   Arthur David Olson.
   1455 </footer>
   1456 </body>
   1457 </html>
   1458