Home | History | Annotate | Line # | Download | only in time
theory.html revision 1.12
      1 <!DOCTYPE html>
      2 <html lang="en">
      3 <head>
      4   <title>Theory and pragmatics of the tz code and data</title>
      5   <meta charset="UTF-8">
      6   <style>
      7     pre {margin-left: 2em; white-space: pre-wrap;}
      8   </style>
      9 </head>
     10 
     11 <body>
     12 <h1>Theory and pragmatics of the <code><abbr>tz</abbr></code> code and data</h1>
     13   <h3>Outline</h3>
     14   <nav>
     15     <ul>
     16       <li><a href="#scope">Scope of the <code><abbr>tz</abbr></code>
     17 	  database</a></li>
     18       <li><a href="#naming">Timezone identifiers</a></li>
     19       <li><a href="#abbreviations">Time zone abbreviations</a></li>
     20       <li><a href="#accuracy">Accuracy of the <code><abbr>tz</abbr></code>
     21 	  database</a></li>
     22       <li><a href="#functions">Time and date functions</a></li>
     23       <li><a href="#stability">Interface stability</a></li>
     24       <li><a href="#leapsec">Leap seconds</a></li>
     25       <li><a href="#calendar">Calendrical issues</a></li>
     26       <li><a href="#planets">Time and time zones on other planets</a></li>
     27     </ul>
     28   </nav>
     29 
     30 <section>
     31   <h2 id="scope">Scope of the <code><abbr>tz</abbr></code> database</h2>
     32 <p>
     33 The <a
     34 href="https://www.iana.org/time-zones"><code><abbr>tz</abbr></code>
     35 database</a> attempts to record the history and predicted future of
     36 civil time scales.
     37 It organizes <a href="tz-link.html">time zone and daylight saving time
     38 data</a> by partitioning the world into <a
     39 href="https://en.wikipedia.org/wiki/List_of_tz_database_time_zones"><dfn>timezones</dfn></a>
     40 whose clocks all agree about timestamps that occur after the <a
     41 href="https://en.wikipedia.org/wiki/Unix_time">POSIX Epoch</a>
     42 (1970-01-01 00:00:00 <a
     43 href="https://en.wikipedia.org/wiki/Coordinated_Universal_Time"><abbr
     44 title="Coordinated Universal Time">UTC</abbr></a>).
     45 Although 1970 is a somewhat-arbitrary cutoff, there are significant
     46 challenges to moving the cutoff earlier even by a decade or two, due
     47 to the wide variety of local practices before computer timekeeping
     48 became prevalent.
     49 Most timezones correspond to a notable location and the database
     50 records all known clock transitions for that location;
     51 some timezones correspond instead to a fixed <abbr>UTC</abbr> offset.
     52 </p>
     53 
     54 <p>
     55 Each timezone typically corresponds to a geographical region that is
     56 smaller than a traditional time zone, because clocks in a timezone
     57 all agree after 1970 whereas a traditional time zone merely
     58 specifies current standard time. For example, applications that deal
     59 with current and future timestamps in the traditional North
     60 American mountain time zone can choose from the timezones
     61 <code>America/Denver</code> which observes US-style daylight saving
     62 time (<abbr>DST</abbr>),
     63 <code>America/Mazatlan</code> which observes Mexican-style <abbr>DST</abbr>,
     64 and <code>America/Phoenix</code> which does not observe <abbr>DST</abbr>.
     65 Applications that also deal with past timestamps in the mountain time
     66 zone can choose from over a dozen timezones, such as
     67 <code>America/Boise</code>, <code>America/Edmonton</code>, and
     68 <code>America/Hermosillo</code>, each of which currently uses mountain
     69 time but differs from other timezones for some timestamps after 1970.
     70 </p>
     71 
     72 <p>
     73 Clock transitions before 1970 are recorded for location-based timezones,
     74 because most systems support timestamps before 1970 and could
     75 misbehave if data entries were omitted for pre-1970 transitions.
     76 However, the database is not designed for and does not suffice for
     77 applications requiring accurate handling of all past times everywhere,
     78 as it would take far too much effort and guesswork to record all
     79 details of pre-1970 civil timekeeping.
     80 Although some information outside the scope of the database is
     81 collected in a file <code>backzone</code> that is distributed along
     82 with the database proper, this file is less reliable and does not
     83 necessarily follow database guidelines.
     84 </p>
     85 
     86 <p>
     87 As described below, reference source code for using the
     88 <code><abbr>tz</abbr></code> database is also available.
     89 The <code><abbr>tz</abbr></code> code is upwards compatible with <a
     90 href="https://en.wikipedia.org/wiki/POSIX">POSIX</a>, an international
     91 standard for <a
     92 href="https://en.wikipedia.org/wiki/Unix">UNIX</a>-like systems.
     93 As of this writing, the current edition of POSIX is: <a
     94 href="https://pubs.opengroup.org/onlinepubs/9699919799/"> The Open
     95 Group Base Specifications Issue 7</a>, IEEE Std 1003.1-2017, 2018
     96 Edition.
     97 Because the database's scope encompasses real-world changes to civil
     98 timekeeping, its model for describing time is more complex than the
     99 standard and daylight saving times supported by POSIX.
    100 A <code><abbr>tz</abbr></code> timezone corresponds to a ruleset that can
    101 have more than two changes per year, these changes need not merely
    102 flip back and forth between two alternatives, and the rules themselves
    103 can change at times.
    104 Whether and when a timezone changes its clock,
    105 and even the timezone's notional base offset from <abbr>UTC</abbr>,
    106 are variable.
    107 It does not always make sense to talk about a timezone's
    108 "base offset", which is not necessarily a single number.
    109 </p>
    110 
    111 </section>
    112 
    113 <section>
    114   <h2 id="naming">Timezone identifiers</h2>
    115 <p>
    116 Each timezone has a name that uniquely identifies the timezone.
    117 Inexperienced users are not expected to select these names unaided.
    118 Distributors should provide documentation and/or a simple selection
    119 interface that explains each name via a map or via descriptive text like
    120 "Czech Republic" instead of the timezone name "<code>Europe/Prague</code>".
    121 If geolocation information is available, a selection interface can
    122 locate the user on a timezone map or prioritize names that are
    123 geographically close. For an example selection interface, see the
    124 <code>tzselect</code> program in the <code><abbr>tz</abbr></code> code.
    125 The <a href="http://cldr.unicode.org">Unicode Common Locale Data
    126 Repository</a> contains data that may be useful for other selection
    127 interfaces; it maps timezone names like <code>Europe/Prague</code> to
    128 locale-dependent strings like "Prague", "Praha", "", and "".
    129 </p>
    130 
    131 <p>
    132 The naming conventions attempt to strike a balance
    133 among the following goals:
    134 </p>
    135 
    136 <ul>
    137   <li>
    138     Uniquely identify every timezone where clocks have agreed since 1970.
    139     This is essential for the intended use: static clocks keeping local
    140     civil time.
    141   </li>
    142   <li>
    143     Indicate to experts where the timezone's clocks typically are.
    144   </li>
    145   <li>
    146     Be robust in the presence of political changes.
    147     For example, names are typically not tied to countries, to avoid
    148     incompatibilities when countries change their name (e.g.,
    149     Swaziland&rarr;Eswatini) or when locations change countries (e.g., Hong
    150     Kong from UK colony to China).
    151     There is no requirement that every country or national
    152     capital must have a timezone name.
    153   </li>
    154   <li>
    155     Be portable to a wide variety of implementations.
    156   </li>
    157   <li>
    158     Use a consistent naming conventions over the entire world.
    159   </li>
    160 </ul>
    161 
    162 <p>
    163 Names normally have the form
    164 <var>AREA</var><code>/</code><var>LOCATION</var>, where
    165 <var>AREA</var> is a continent or ocean, and
    166 <var>LOCATION</var> is a specific location within the area.
    167 North and South America share the same area, '<code>America</code>'.
    168 Typical names are '<code>Africa/Cairo</code>',
    169 '<code>America/New_York</code>', and '<code>Pacific/Honolulu</code>'.
    170 Some names are further qualified to help avoid confusion; for example,
    171 '<code>America/Indiana/Petersburg</code>' distinguishes Petersburg,
    172 Indiana from other Petersburgs in America.
    173 </p>
    174 
    175 <p>
    176 Here are the general guidelines used for
    177 choosing timezone names,
    178 in decreasing order of importance:
    179 </p>
    180 
    181 <ul>
    182   <li>
    183     Use only valid POSIX file name components (i.e., the parts of
    184     names other than '<code>/</code>').
    185     Do not use the file name components '<code>.</code>' and
    186     '<code>..</code>'.
    187     Within a file name component, use only <a
    188     href="https://en.wikipedia.org/wiki/ASCII">ASCII</a> letters,
    189     '<code>.</code>', '<code>-</code>' and '<code>_</code>'.
    190     Do not use digits, as that might create an ambiguity with <a
    191     href="https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03">POSIX
    192     <code>TZ</code> strings</a>.
    193     A file name component must not exceed 14 characters or start with
    194     '<code>-</code>'.
    195     E.g., prefer <code>America/Noronha</code> to
    196     <code>America/Fernando_de_Noronha</code>.
    197     Exceptions: see the discussion of legacy names below.
    198   </li>
    199   <li>
    200     A name must not be empty, or contain '<code>//</code>', or
    201     start or end with '<code>/</code>'.
    202   </li>
    203   <li>
    204     Do not use names that differ only in case.
    205     Although the reference implementation is case-sensitive, some
    206     other implementations are not, and they would mishandle names
    207     differing only in case.
    208   </li>
    209   <li>
    210     If one name <var>A</var> is an initial prefix of another
    211     name <var>AB</var> (ignoring case), then <var>B</var> must not
    212     start with '<code>/</code>', as a regular file cannot have the
    213     same name as a directory in POSIX.
    214     For example, <code>America/New_York</code> precludes
    215     <code>America/New_York/Bronx</code>.
    216   </li>
    217   <li>
    218     Uninhabited regions like the North Pole and Bouvet Island
    219     do not need locations, since local time is not defined there.
    220   </li>
    221   <li>
    222     If all the clocks in a timezone have agreed since 1970,
    223     do not bother to include more than one timezone
    224     even if some of the clocks disagreed before 1970.
    225     Otherwise these tables would become annoyingly large.
    226   </li>
    227   <li>
    228     If boundaries between regions are fluid, such as during a war or
    229     insurrection, do not bother to create a new timezone merely
    230     because of yet another boundary change. This helps prevent table
    231     bloat and simplifies maintenance.
    232   </li>
    233   <li>
    234     If a name is ambiguous, use a less ambiguous alternative;
    235     e.g., many cities are named San Jos and Georgetown, so
    236     prefer <code>America/Costa_Rica</code> to
    237     <code>America/San_Jose</code> and <code>America/Guyana</code>
    238     to <code>America/Georgetown</code>.
    239   </li>
    240   <li>
    241     Keep locations compact.
    242     Use cities or small islands, not countries or regions, so that any
    243     future changes do not split individual locations into different
    244     timezones.
    245     E.g., prefer <code>Europe/Paris</code> to <code>Europe/France</code>,
    246     since
    247     <a href="https://en.wikipedia.org/wiki/Time_in_France#History">France
    248     has had multiple time zones</a>.
    249   </li>
    250   <li>
    251     Use mainstream English spelling, e.g., prefer
    252     <code>Europe/Rome</code> to <code>Europa/Roma</code>, and
    253     prefer <code>Europe/Athens</code> to the Greek
    254     <code>/</code> or the Romanized
    255     <code>Evrpi/Athna</code>.
    256     The POSIX file name restrictions encourage this guideline.
    257   </li>
    258   <li>
    259     Use the most populous among locations in a region,
    260     e.g., prefer <code>Asia/Shanghai</code> to
    261     <code>Asia/Beijing</code>.
    262     Among locations with similar populations, pick the best-known
    263     location, e.g., prefer <code>Europe/Rome</code> to
    264     <code>Europe/Milan</code>.
    265   </li>
    266   <li>
    267     Use the singular form, e.g., prefer <code>Atlantic/Canary</code> to
    268     <code>Atlantic/Canaries</code>.
    269   </li>
    270   <li>
    271     Omit common suffixes like '<code>_Islands</code>' and
    272     '<code>_City</code>', unless that would lead to ambiguity.
    273     E.g., prefer <code>America/Cayman</code> to
    274     <code>America/Cayman_Islands</code> and
    275     <code>America/Guatemala</code> to
    276     <code>America/Guatemala_City</code>, but prefer
    277     <code>America/Mexico_City</code> to
    278     <code>America/Mexico</code>
    279     because <a href="https://en.wikipedia.org/wiki/Time_in_Mexico">the
    280     country of Mexico has several time zones</a>.
    281   </li>
    282   <li>
    283     Use '<code>_</code>' to represent a space.
    284   </li>
    285   <li>
    286     Omit '<code>.</code>' from abbreviations in names.
    287     E.g., prefer <code>Atlantic/St_Helena</code> to
    288     <code>Atlantic/St._Helena</code>.
    289   </li>
    290   <li>
    291     Do not change established names if they only marginally violate
    292     the above guidelines.
    293     For example, do not change the existing name <code>Europe/Rome</code> to
    294     <code>Europe/Milan</code> merely because Milan's population has grown
    295     to be somewhat greater than Rome's.
    296   </li>
    297   <li>
    298     If a name is changed, put its old spelling in the
    299     '<code>backward</code>' file.
    300     This means old spellings will continue to work.
    301     Ordinarily a name change should occur only in the rare case when
    302     a location's consensus English-language spelling changes; for example,
    303     in 2008 <code>Asia/Calcutta</code> was renamed to <code>Asia/Kolkata</code>
    304     due to long-time widespread use of the new city name instead of the old.
    305   </li>
    306 </ul>
    307 
    308 <p>
    309 Guidelines have evolved with time, and names following old versions of
    310 these guidelines might not follow the current version. When guidelines
    311 have changed, old names continue to be supported. Guideline changes
    312 have included the following:
    313 </p>
    314 
    315 <ul>
    316 <li>
    317 Older versions of this package used a different naming scheme.
    318 See the file '<code>backward</code>' for most of these older names
    319 (e.g., '<code>US/Eastern</code>' instead of '<code>America/New_York</code>').
    320 The other old-fashioned names still supported are
    321 '<code>WET</code>', '<code>CET</code>', '<code>MET</code>', and
    322 '<code>EET</code>' (see the file '<code>europe</code>').
    323 </li>
    324 
    325 <li>
    326 Older versions of this package defined legacy names that are
    327 incompatible with the first guideline of location names, but which are
    328 still supported.
    329 These legacy names are mostly defined in the file
    330 '<code>etcetera</code>'.
    331 Also, the file '<code>backward</code>' defines the legacy names
    332 '<code>GMT0</code>', '<code>GMT-0</code>' and '<code>GMT+0</code>',
    333 and the file '<code>northamerica</code>' defines the legacy names
    334 '<code>EST5EDT</code>', '<code>CST6CDT</code>',
    335 '<code>MST7MDT</code>', and '<code>PST8PDT</code>'.
    336 </li>
    337 
    338 <li>
    339 Older versions of these guidelines said that
    340 there should typically be at least one name for each <a
    341 href="https://en.wikipedia.org/wiki/ISO_3166-1"><abbr
    342 title="International Organization for Standardization">ISO</abbr>
    343 3166-1</a> officially assigned two-letter code for an inhabited
    344 country or territory.
    345 This old guideline has been dropped, as it was not needed to handle
    346 timestamps correctly and it increased maintenance burden.
    347 </li>
    348 </ul>
    349 
    350 <p>
    351 The file '<code>zone1970.tab</code>' lists geographical locations used
    352 to name timezones.
    353 It is intended to be an exhaustive list of names for geographic
    354 regions as described above; this is a subset of the timezones in the data.
    355 Although a '<code>zone1970.tab</code>' location's
    356 <a href="https://en.wikipedia.org/wiki/Longitude">longitude</a>
    357 corresponds to
    358 its <a href="https://en.wikipedia.org/wiki/Local_mean_time">local mean
    359 time (<abbr>LMT</abbr>)</a> offset with one hour for every 15&deg;
    360 east longitude, this relationship is not exact.
    361 </p>
    362 
    363 <p>
    364 Excluding '<code>backward</code>' should not affect the other data.
    365 If '<code>backward</code>' is excluded, excluding
    366 '<code>etcetera</code>' should not affect the remaining data.
    367 </p>
    368 </section>
    369 
    370 <section>
    371   <h2 id="abbreviations">Time zone abbreviations</h2>
    372 <p>
    373 When this package is installed, it generates time zone abbreviations
    374 like '<code>EST</code>' to be compatible with human tradition and POSIX.
    375 Here are the general guidelines used for choosing time zone abbreviations,
    376 in decreasing order of importance:
    377 </p>
    378 
    379 <ul>
    380   <li>
    381     Use three to six characters that are ASCII alphanumerics or
    382     '<code>+</code>' or '<code>-</code>'.
    383     Previous editions of this database also used characters like
    384     space and '<code>?</code>', but these characters have a
    385     special meaning to the
    386     <a href="https://en.wikipedia.org/wiki/Unix_shell">UNIX shell</a>
    387     and cause commands like
    388     '<code><a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set">set</a>
    389     `<a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/date.html">date</a>`</code>'
    390     to have unexpected effects.
    391     Previous editions of this guideline required upper-case letters, but the
    392     Congressman who introduced
    393     <a href="https://en.wikipedia.org/wiki/Chamorro_Time_Zone">Chamorro
    394     Standard Time</a> preferred "ChST", so lower-case letters are now
    395     allowed.
    396     Also, POSIX from 2001 on relaxed the rule to allow '<code>-</code>',
    397     '<code>+</code>', and alphanumeric characters from the portable
    398     character set in the current locale.
    399     In practice ASCII alphanumerics and '<code>+</code>' and
    400     '<code>-</code>' are safe in all locales.
    401 
    402     <p>
    403     In other words, in the C locale the POSIX extended regular
    404     expression <code>[-+[:alnum:]]{3,6}</code> should match the
    405     abbreviation.
    406     This guarantees that all abbreviations could have been specified by a
    407     POSIX <code>TZ</code> string.
    408     </p>
    409   </li>
    410   <li>
    411     Use abbreviations that are in common use among English-speakers,
    412     e.g., 'EST' for Eastern Standard Time in North America.
    413     We assume that applications translate them to other languages
    414     as part of the normal localization process; for example,
    415     a French application might translate 'EST' to 'HNE'.
    416 
    417     <p>
    418     <small>These abbreviations (for standard/daylight/etc. time) are:
    419       ACST/ACDT Australian Central,
    420       AST/ADT/APT/AWT/ADDT Atlantic,
    421       AEST/AEDT Australian Eastern,
    422       AHST/AHDT Alaska-Hawaii,
    423       AKST/AKDT Alaska,
    424       AWST/AWDT Australian Western,
    425       BST/BDT Bering,
    426       CAT/CAST Central Africa,
    427       CET/CEST/CEMT Central European,
    428       ChST Chamorro,
    429       CST/CDT/CWT/CPT/CDDT Central [North America],
    430       CST/CDT China,
    431       GMT/BST/IST/BDST Greenwich,
    432       EAT East Africa,
    433       EST/EDT/EWT/EPT/EDDT Eastern [North America],
    434       EET/EEST Eastern European,
    435       GST/GDT Guam,
    436       HST/HDT/HWT/HPT Hawaii,
    437       HKT/HKST/HKWT Hong Kong,
    438       IST India,
    439       IST/GMT Irish,
    440       IST/IDT/IDDT Israel,
    441       JST/JDT Japan,
    442       KST/KDT Korea,
    443       MET/MEST Middle European (a backward-compatibility alias for
    444 	Central European),
    445       MSK/MSD Moscow,
    446       MST/MDT/MWT/MPT/MDDT Mountain,
    447       NST/NDT/NWT/NPT/NDDT Newfoundland,
    448       NST/NDT/NWT/NPT Nome,
    449       NZMT/NZST New Zealand through 1945,
    450       NZST/NZDT New Zealand 1946&ndash;present,
    451       PKT/PKST Pakistan,
    452       PST/PDT/PWT/PPT/PDDT Pacific,
    453       PST/PDT Philippine,
    454       SAST South Africa,
    455       SST Samoa,
    456       WAT/WAST West Africa,
    457       WET/WEST/WEMT Western European,
    458       WIB Waktu Indonesia Barat,
    459       WIT Waktu Indonesia Timur,
    460       WITA Waktu Indonesia Tengah,
    461       YST/YDT/YWT/YPT/YDDT Yukon</small>.
    462     </p>
    463   </li>
    464   <li>
    465     <p>
    466     For times taken from a city's longitude, use the
    467     traditional <var>x</var>MT notation.
    468     The only abbreviation like this in current use is '<abbr>GMT</abbr>'.
    469     The others are for timestamps before 1960,
    470     except that Monrovia Mean Time persisted until 1972.
    471     Typically, numeric abbreviations (e.g., '<code>-</code>004430' for
    472     MMT) would cause trouble here, as the numeric strings would exceed
    473     the POSIX length limit.
    474     </p>
    475 
    476     <p>
    477     <small>These abbreviations are:
    478       AMT Asuncin, Athens;
    479       BMT Baghdad, Bangkok, Batavia, Bermuda, Bern, Bogot, Bridgetown,
    480         Brussels, Bucharest;
    481       CMT Calamarca, Caracas, Chisinau, Coln, Crdoba;
    482       DMT Dublin/Dunsink;
    483       EMT Easter;
    484       FFMT Fort-de-France;
    485       FMT Funchal;
    486       GMT Greenwich;
    487       HMT Havana, Helsinki, Horta, Howrah;
    488       IMT Irkutsk, Istanbul;
    489       JMT Jerusalem;
    490       KMT Kaunas, Kiev, Kingston;
    491       LMT Lima, Lisbon, local, Luanda;
    492       MMT Macassar, Madras, Mal, Managua, Minsk, Monrovia, Montevideo,
    493 	Moratuwa, Moscow;
    494       PLMT Ph Lin;
    495       PMT Paramaribo, Paris, Perm, Pontianak, Prague;
    496       PMMT Port Moresby;
    497       QMT Quito;
    498       RMT Rangoon, Riga, Rome;
    499       SDMT Santo Domingo;
    500       SJMT San Jos;
    501       SMT Santiago, Simferopol, Singapore, Stanley;
    502       TBMT Tbilisi;
    503       TMT Tallinn, Tehran;
    504       WMT Warsaw;
    505       ZMT Zomba.</small>
    506     </p>
    507 
    508     <p>
    509     <small>A few abbreviations also follow the pattern that
    510     <abbr>GMT</abbr>/<abbr>BST</abbr> established for time in the UK.
    511     They are:
    512       BMT/BST for Bermuda 1890&ndash;1930,
    513       CMT/BST for Calamarca Mean Time and Bolivian Summer Time
    514 	1890&ndash;1932,
    515       DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time
    516 	1880&ndash;1916,
    517       MMT/MST/MDST for Moscow 1880&ndash;1919, and
    518       RMT/LST for Riga Mean Time and Latvian Summer time 1880&ndash;1926.
    519     </small>
    520     </p>
    521   </li>
    522   <li>
    523     Use '<abbr>LMT</abbr>' for local mean time of locations before the
    524     introduction of standard time; see "<a href="#scope">Scope of the
    525     <code><abbr>tz</abbr></code> database</a>".
    526   </li>
    527   <li>
    528     If there is no common English abbreviation, use numeric offsets like
    529     <code>-</code>05 and <code>+</code>0530 that are generated
    530     by <code>zic</code>'s <code>%z</code> notation.
    531   </li>
    532   <li>
    533     Use current abbreviations for older timestamps to avoid confusion.
    534     For example, in 1910 a common English abbreviation for time
    535     in central Europe was 'MEZ' (short for both "Middle European
    536     Zone" and for "Mitteleuropische Zeit" in German).
    537     Nowadays 'CET' ("Central European Time") is more common in
    538     English, and the database uses 'CET' even for circa-1910
    539     timestamps as this is less confusing for modern users and avoids
    540     the need for determining when 'CET' supplanted 'MEZ' in common
    541     usage.
    542   </li>
    543   <li>
    544     Use a consistent style in a timezone's history.
    545     For example, if a history tends to use numeric
    546     abbreviations and a particular entry could go either way, use a
    547     numeric abbreviation.
    548   </li>
    549   <li>
    550     Use
    551     <a href="https://en.wikipedia.org/wiki/Universal_Time">Universal Time</a>
    552     (<abbr>UT</abbr>) (with time zone abbreviation '<code>-</code>00') for
    553     locations while uninhabited.
    554     The leading '<code>-</code>' is a flag that the <abbr>UT</abbr> offset is in
    555     some sense undefined; this notation is derived
    556     from <a href="https://tools.ietf.org/html/rfc3339">Internet
    557     <abbr title="Request For Comments">RFC</abbr> 3339</a>.
    558   </li>
    559 </ul>
    560 
    561 <p>
    562 Application writers should note that these abbreviations are ambiguous
    563 in practice: e.g., 'CST' means one thing in China and something else
    564 in North America, and 'IST' can refer to time in India, Ireland or
    565 Israel.
    566 To avoid ambiguity, use numeric <abbr>UT</abbr> offsets like
    567 '<code>-</code>0600' instead of time zone abbreviations like 'CST'.
    568 </p>
    569 </section>
    570 
    571 <section>
    572   <h2 id="accuracy">Accuracy of the <code><abbr>tz</abbr></code> database</h2>
    573 <p>
    574 The <code><abbr>tz</abbr></code> database is not authoritative, and it
    575 surely has errors.
    576 Corrections are welcome and encouraged; see the file <code>CONTRIBUTING</code>.
    577 Users requiring authoritative data should consult national standards
    578 bodies and the references cited in the database's comments.
    579 </p>
    580 
    581 <p>
    582 Errors in the <code><abbr>tz</abbr></code> database arise from many sources:
    583 </p>
    584 
    585 <ul>
    586   <li>
    587     The <code><abbr>tz</abbr></code> database predicts future
    588     timestamps, and current predictions
    589     will be incorrect after future governments change the rules.
    590     For example, if today someone schedules a meeting for 13:00 next
    591     October 1, Casablanca time, and tomorrow Morocco changes its
    592     daylight saving rules, software can mess up after the rule change
    593     if it blithely relies on conversions made before the change.
    594   </li>
    595   <li>
    596     The pre-1970 entries in this database cover only a tiny sliver of how
    597     clocks actually behaved; the vast majority of the necessary
    598     information was lost or never recorded.
    599     Thousands more timezones would be needed if
    600     the <code><abbr>tz</abbr></code> database's scope were extended to
    601     cover even just the known or guessed history of standard time; for
    602     example, the current single entry for France would need to split
    603     into dozens of entries, perhaps hundreds.
    604     And in most of the world even this approach would be misleading
    605     due to widespread disagreement or indifference about what times
    606     should be observed.
    607     In her 2015 book
    608     <cite><a
    609     href="http://www.hup.harvard.edu/catalog.php?isbn=9780674286146">The
    610     Global Transformation of Time, 1870&ndash;1950</a></cite>,
    611     Vanessa Ogle writes
    612     "Outside of Europe and North America there was no system of time
    613     zones at all, often not even a stable landscape of mean times,
    614     prior to the middle decades of the twentieth century".
    615     See: Timothy Shenk, <a
    616 href="https://www.dissentmagazine.org/blog/booked-a-global-history-of-time-vanessa-ogle">Booked:
    617       A Global History of Time</a>. <cite>Dissent</cite> 2015-12-17.
    618   </li>
    619   <li>
    620     Most of the pre-1970 data entries come from unreliable sources, often
    621     astrology books that lack citations and whose compilers evidently
    622     invented entries when the true facts were unknown, without
    623     reporting which entries were known and which were invented.
    624     These books often contradict each other or give implausible entries,
    625     and on the rare occasions when they are checked they are
    626     typically found to be incorrect.
    627   </li>
    628   <li>
    629     For the UK the <code><abbr>tz</abbr></code> database relies on
    630     years of first-class work done by
    631     Joseph Myers and others; see
    632     "<a href="https://www.polyomino.org.uk/british-time/">History of
    633     legal time in Britain</a>".
    634     Other countries are not done nearly as well.
    635   </li>
    636   <li>
    637     Sometimes, different people in the same city maintain clocks
    638     that differ significantly.
    639     Historically, railway time was used by railroad companies (which
    640     did not always
    641     agree with each other), church-clock time was used for birth
    642     certificates, etc.
    643     More recently, competing political groups might disagree about
    644     clock settings. Often this is merely common practice, but
    645     sometimes it is set by law.
    646     For example, from 1891 to 1911 the <abbr>UT</abbr> offset in France
    647     was legally <abbr>UT</abbr> +00:09:21 outside train stations and
    648     <abbr>UT</abbr> +00:04:21 inside. Other examples include
    649     Chillicothe in 1920, Palm Springs in 1946/7, and Jerusalem and
    650     rmqi to this day.
    651   </li>
    652   <li>
    653     Although a named location in the <code><abbr>tz</abbr></code>
    654     database stands for the containing region, its pre-1970 data
    655     entries are often accurate for only a small subset of that region.
    656     For example, <code>Europe/London</code> stands for the United
    657     Kingdom, but its pre-1847 times are valid only for locations that
    658     have London's exact meridian, and its 1847 transition
    659     to <abbr>GMT</abbr> is known to be valid only for the L&amp;NW and
    660     the Caledonian railways.
    661   </li>
    662   <li>
    663     The <code><abbr>tz</abbr></code> database does not record the
    664     earliest time for which a timezone's
    665     data entries are thereafter valid for every location in the region.
    666     For example, <code>Europe/London</code> is valid for all locations
    667     in its region after <abbr>GMT</abbr> was made the standard time,
    668     but the date of standardization (1880-08-02) is not in the
    669     <code><abbr>tz</abbr></code> database, other than in commentary.
    670     For many timezones the earliest time of
    671     validity is unknown.
    672   </li>
    673   <li>
    674     The <code><abbr>tz</abbr></code> database does not record a
    675     region's boundaries, and in many cases the boundaries are not known.
    676     For example, the timezone
    677     <code>America/Kentucky/Louisville</code> represents a region
    678     around the city of Louisville, the boundaries of which are
    679     unclear.
    680   </li>
    681   <li>
    682     Changes that are modeled as instantaneous transitions in the
    683     <code><abbr>tz</abbr></code>
    684     database were often spread out over hours, days, or even decades.
    685   </li>
    686   <li>
    687     Even if the time is specified by law, locations sometimes
    688     deliberately flout the law.
    689   </li>
    690   <li>
    691     Early timekeeping practices, even assuming perfect clocks, were
    692     often not specified to the accuracy that the
    693     <code><abbr>tz</abbr></code> database requires.
    694   </li>
    695   <li>
    696     The <code><abbr>tz</abbr></code> database cannot represent stopped clocks.
    697     However, on 1911-03-11 at 00:00, some public-facing French clocks
    698     were changed by stopping them for a few minutes to effect a transition.
    699     The <code><abbr>tz</abbr></code> database models this via a
    700     backward transition; the relevant French legislation does not
    701     specify exactly how the transition was to occur.
    702   </li>
    703   <li>
    704     Sometimes historical timekeeping was specified more precisely
    705     than what the <code><abbr>tz</abbr></code> code can handle.
    706     For example, from 1880 to 1916 clocks in Ireland observed Dublin Mean
    707     Time (estimated to be <abbr>UT</abbr>
    708     &minus;00:25:21.1), but the <code><abbr>tz</abbr></code>
    709     code cannot represent the fractional second.
    710     In practice these old specifications were rarely if ever
    711     implemented to subsecond precision.
    712   </li>
    713   <li>
    714     Even when all the timestamp transitions recorded by the
    715     <code><abbr>tz</abbr></code> database are correct, the
    716     <code><abbr>tz</abbr></code> rules that generate them may not
    717     faithfully reflect the historical rules.
    718     For example, from 1922 until World War II the UK moved clocks
    719     forward the day following the third Saturday in April unless that
    720     was Easter, in which case it moved clocks forward the previous
    721     Sunday.
    722     Because the <code><abbr>tz</abbr></code> database has no
    723     way to specify Easter, these exceptional years are entered as
    724     separate <code><abbr>tz</abbr> Rule</code> lines, even though the
    725     legal rules did not change.
    726     When transitions are known but the historical rules behind them are not,
    727     the database contains <code>Zone</code> and <code>Rule</code>
    728     entries that are intended to represent only the generated
    729     transitions, not any underlying historical rules; however, this
    730     intent is recorded at best only in commentary.
    731   </li>
    732   <li>
    733     The <code><abbr>tz</abbr></code> database models time
    734     using the <a
    735     href="https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">proleptic
    736     Gregorian calendar</a> with days containing 24 equal-length hours
    737     numbered 00 through 23, except when clock transitions occur.
    738     Pre-standard time is modeled as local mean time.
    739     However, historically many people used other calendars and other timescales.
    740     For example, the Roman Empire used
    741     the <a href="https://en.wikipedia.org/wiki/Julian_calendar">Julian
    742     calendar</a>,
    743     and <a href="https://en.wikipedia.org/wiki/Roman_timekeeping">Roman
    744     timekeeping</a> had twelve varying-length daytime hours with a
    745     non-hour-based system at night.
    746     And even today, some local practices diverge from the Gregorian
    747     calendar with 24-hour days. These divergences range from
    748     relatively minor, such as Japanese bars giving times like "24:30" for the
    749     wee hours of the morning, to more-significant differences such as <a
    750     href="https://www.pri.org/stories/2015-01-30/if-you-have-meeting-ethiopia-you-better-double-check-time">the
    751     east African practice of starting the day at dawn</a>, renumbering
    752     the Western 06:00 to be 12:00. These practices are largely outside
    753     the scope of the <code><abbr>tz</abbr></code> code and data, which
    754     provide only limited support for date and time localization
    755     such as that required by POSIX.
    756     If <abbr>DST</abbr> is not used a different time zone
    757     can often do the trick; for example, in Kenya a <code>TZ</code> setting
    758     like <code>&lt;-03&gt;3</code> or <code>America/Cayenne</code> starts
    759     the day six hours later than <code>Africa/Nairobi</code> does.
    760   </li>
    761   <li>
    762     Early clocks were less reliable, and data entries do not represent
    763     clock error.
    764   </li>
    765   <li>
    766     The <code><abbr>tz</abbr></code> database assumes Universal Time
    767     (<abbr>UT</abbr>) as an origin, even though <abbr>UT</abbr> is not
    768     standardized for older timestamps.
    769     In the <code><abbr>tz</abbr></code> database commentary,
    770     <abbr>UT</abbr> denotes a family of time standards that includes
    771     Coordinated Universal Time (<abbr>UTC</abbr>) along with other
    772     variants such as <abbr>UT1</abbr> and <abbr>GMT</abbr>,
    773     with days starting at midnight.
    774     Although <abbr>UT</abbr> equals <abbr>UTC</abbr> for modern
    775     timestamps, <abbr>UTC</abbr> was not defined until 1960, so
    776     commentary uses the more-general abbreviation <abbr>UT</abbr> for
    777     timestamps that might predate 1960.
    778     Since <abbr>UT</abbr>, <abbr>UT1</abbr>, etc. disagree slightly,
    779     and since pre-1972 <abbr>UTC</abbr> seconds varied in length,
    780     interpretation of older timestamps can be problematic when
    781     subsecond accuracy is needed.
    782   </li>
    783   <li>
    784     Civil time was not based on atomic time before 1972, and we do not
    785     know the history of
    786     <a href="https://en.wikipedia.org/wiki/Earth's_rotation">earth's
    787     rotation</a> accurately enough to map <a
    788     href="https://en.wikipedia.org/wiki/International_System_of_Units"><abbr
    789     title="International System of Units">SI</abbr></a> seconds to
    790     historical <a href="https://en.wikipedia.org/wiki/Solar_time">solar time</a>
    791     to more than about one-hour accuracy.
    792     See: Stephenson FR, Morrison LV, Hohenkerk CY.
    793     <a href="https://dx.doi.org/10.1098/rspa.2016.0404">Measurement of
    794     the Earth's rotation: 720 BC to AD 2015</a>.
    795     <cite>Proc Royal Soc A</cite>. 2016 Dec 7;472:20160404.
    796     Also see: Espenak F. <a
    797     href="https://eclipse.gsfc.nasa.gov/SEhelp/uncertainty2004.html">Uncertainty
    798     in Delta T (T)</a>.
    799   </li>
    800   <li>
    801     The relationship between POSIX time (that is, <abbr>UTC</abbr> but
    802     ignoring <a href="https://en.wikipedia.org/wiki/Leap_second">leap
    803     seconds</a>) and <abbr>UTC</abbr> is not agreed upon after 1972.
    804     Although the POSIX
    805     clock officially stops during an inserted leap second, at least one
    806     proposed standard has it jumping back a second instead; and in
    807     practice POSIX clocks more typically either progress glacially during
    808     a leap second, or are slightly slowed while near a leap second.
    809   </li>
    810   <li>
    811     The <code><abbr>tz</abbr></code> database does not represent how
    812     uncertain its information is.
    813     Ideally it would contain information about when data entries are
    814     incomplete or dicey.
    815     Partial temporal knowledge is a field of active research, though,
    816     and it is not clear how to apply it here.
    817   </li>
    818 </ul>
    819 
    820 <p>
    821 In short, many, perhaps most, of the <code><abbr>tz</abbr></code>
    822 database's pre-1970 and future timestamps are either wrong or
    823 misleading.
    824 Any attempt to pass the
    825 <code><abbr>tz</abbr></code> database off as the definition of time
    826 should be unacceptable to anybody who cares about the facts.
    827 In particular, the <code><abbr>tz</abbr></code> database's
    828 <abbr>LMT</abbr> offsets should not be considered meaningful, and
    829 should not prompt creation of timezones
    830 merely because two locations
    831 differ in <abbr>LMT</abbr> or transitioned to standard time at
    832 different dates.
    833 </p>
    834 </section>
    835 
    836 <section>
    837   <h2 id="functions">Time and date functions</h2>
    838 <p>
    839 The <code><abbr>tz</abbr></code> code contains time and date functions
    840 that are upwards compatible with those of POSIX.
    841 Code compatible with this package is already
    842 <a href="tz-link.html#tzdb">part of many platforms</a>, where the
    843 primary use of this package is to update obsolete time-related files.
    844 To do this, you may need to compile the time zone compiler
    845 '<code>zic</code>' supplied with this package instead of using the
    846 system '<code>zic</code>', since the format of <code>zic</code>'s
    847 input is occasionally extended, and a platform may still be shipping
    848 an older <code>zic</code>.
    849 </p>
    850 
    851 <h3 id="POSIX">POSIX properties and limitations</h3>
    852 <ul>
    853   <li>
    854     <p>
    855     In POSIX, time display in a process is controlled by the
    856     environment variable <code>TZ</code>.
    857     Unfortunately, the POSIX
    858     <code>TZ</code> string takes a form that is hard to describe and
    859     is error-prone in practice.
    860     Also, POSIX <code>TZ</code> strings cannot deal with daylight
    861     saving time rules not based on the Gregorian calendar (as in
    862     Iran), or with situations where more than two time zone
    863     abbreviations or <abbr>UT</abbr> offsets are used in an area.
    864     </p>
    865 
    866     <p>
    867     The POSIX <code>TZ</code> string takes the following form:
    868     </p>
    869 
    870     <p>
    871     <var>stdoffset</var>[<var>dst</var>[<var>offset</var>][<code>,</code><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]]]
    872     </p>
    873 
    874     <p>
    875     where:
    876     </p>
    877 
    878     <dl>
    879       <dt><var>std</var> and <var>dst</var></dt><dd>
    880 	are 3 or more characters specifying the standard
    881 	and daylight saving time (<abbr>DST</abbr>) zone abbreviations.
    882 	Starting with POSIX.1-2001, <var>std</var> and <var>dst</var>
    883 	may also be in a quoted form like '<code>&lt;+09&gt;</code>';
    884 	this allows "<code>+</code>" and "<code>-</code>" in the names.
    885       </dd>
    886       <dt><var>offset</var></dt><dd>
    887 	is of the form
    888 	'<code>[&plusmn;]<var>hh</var>:[<var>mm</var>[:<var>ss</var>]]</code>'
    889 	and specifies the offset west of <abbr>UT</abbr>.
    890 	'<var>hh</var>' may be a single digit;
    891 	0&le;<var>hh</var>&le;24.
    892 	The default <abbr>DST</abbr> offset is one hour ahead of
    893 	standard time.
    894       </dd>
    895       <dt><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]</dt><dd>
    896 	specifies the beginning and end of <abbr>DST</abbr>.
    897 	If this is absent, the system supplies its own ruleset
    898 	for <abbr>DST</abbr>, and its rules can differ from year to year;
    899 	typically <abbr>US</abbr> <abbr>DST</abbr> rules are used.
    900       </dd>
    901       <dt><var>time</var></dt><dd>
    902 	takes the form
    903 	'<var>hh</var><code>:</code>[<var>mm</var>[<code>:</code><var>ss</var>]]'
    904 	and defaults to 02:00.
    905 	This is the same format as the offset, except that a
    906 	leading '<code>+</code>' or '<code>-</code>' is not allowed.
    907       </dd>
    908       <dt><var>date</var></dt><dd>
    909 	takes one of the following forms:
    910 	<dl>
    911 	  <dt>J<var>n</var> (1&le;<var>n</var>&le;365)</dt><dd>
    912 	    origin-1 day number not counting February 29
    913 	  </dd>
    914 	  <dt><var>n</var> (0&le;<var>n</var>&le;365)</dt><dd>
    915 	    origin-0 day number counting February 29 if present
    916 	  </dd>
    917 	  <dt><code>M</code><var>m</var><code>.</code><var>n</var><code>.</code><var>d</var>
    918 	    (0[Sunday]&le;<var>d</var>&le;6[Saturday], 1&le;<var>n</var>&le;5,
    919 	    1&le;<var>m</var>&le;12)</dt><dd>
    920 	    for the <var>d</var>th day of week <var>n</var> of
    921 	    month <var>m</var> of the year, where week 1 is the first
    922 	    week in which day <var>d</var> appears, and
    923 	    '<code>5</code>' stands for the last week in which
    924 	    day <var>d</var> appears (which may be either the 4th or
    925 	    5th week).
    926 	    Typically, this is the only useful form; the <var>n</var>
    927 	    and <code>J</code><var>n</var> forms are rarely used.
    928 	  </dd>
    929 	</dl>
    930       </dd>
    931     </dl>
    932 
    933     <p>
    934     Here is an example POSIX <code>TZ</code> string for New
    935     Zealand after 2007.
    936     It says that standard time (<abbr>NZST</abbr>) is 12 hours ahead
    937     of <abbr>UT</abbr>, and that daylight saving time
    938     (<abbr>NZDT</abbr>) is observed from September's last Sunday at
    939     02:00 until April's first Sunday at 03:00:
    940     </p>
    941 
    942     <pre><code>TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'</code></pre>
    943 
    944     <p>
    945     This POSIX <code>TZ</code> string is hard to remember, and
    946     mishandles some timestamps before 2008.
    947     With this package you can use this instead:
    948     </p>
    949 
    950     <pre><code>TZ='Pacific/Auckland'</code></pre>
    951   </li>
    952   <li>
    953     POSIX does not define the <abbr>DST</abbr> transitions
    954     for <code>TZ</code> values like
    955     "<code>EST5EDT</code>".
    956     Traditionally the current <abbr>US</abbr> <abbr>DST</abbr> rules
    957     were used to interpret such values, but this meant that the
    958     <abbr>US</abbr> <abbr>DST</abbr> rules were compiled into each
    959     program that did time conversion. This meant that when
    960     <abbr>US</abbr> time conversion rules changed (as in the United
    961     States in 1987), all programs that did time conversion had to be
    962     recompiled to ensure proper results.
    963   </li>
    964   <li>
    965     The <code>TZ</code> environment variable is process-global, which
    966     makes it hard to write efficient, thread-safe applications that
    967     need access to multiple timezones.
    968   </li>
    969   <li>
    970     In POSIX, there is no tamper-proof way for a process to learn the
    971     system's best idea of local (wall clock) time.
    972     This is important for applications that an administrator wants
    973     used only at certain times &ndash; without regard to whether the
    974     user has fiddled the
    975     <code>TZ</code> environment variable.
    976     While an administrator can "do everything in <abbr>UT</abbr>" to
    977     get around the problem, doing so is inconvenient and precludes
    978     handling daylight saving time shifts &ndash; as might be required to
    979     limit phone calls to off-peak hours.
    980   </li>
    981   <li>
    982     POSIX provides no convenient and efficient way to determine
    983     the <abbr>UT</abbr> offset and time zone abbreviation of arbitrary
    984     timestamps, particularly for timezones
    985     that do not fit into the POSIX model.
    986   </li>
    987   <li>
    988     POSIX requires that <code>time_t</code> clock counts exclude leap
    989     seconds.
    990   </li>
    991   <li>
    992     The <code><abbr>tz</abbr></code> code attempts to support all the
    993     <code>time_t</code> implementations allowed by POSIX.
    994     The <code>time_t</code> type represents a nonnegative count of seconds
    995     since 1970-01-01 00:00:00 <abbr>UTC</abbr>, ignoring leap seconds.
    996     In practice, <code>time_t</code> is usually a signed 64- or 32-bit
    997     integer; 32-bit signed <code>time_t</code> values stop working after
    998     2038-01-19 03:14:07 <abbr>UTC</abbr>, so new implementations these
    999     days typically use a signed 64-bit integer.
   1000     Unsigned 32-bit integers are used on one or two platforms, and 36-bit
   1001     and 40-bit integers are also used occasionally.
   1002     Although earlier POSIX versions allowed <code>time_t</code> to be a
   1003     floating-point type, this was not supported by any practical system,
   1004     and POSIX.1-2013 and the <code><abbr>tz</abbr></code> code both
   1005     require <code>time_t</code> to be an integer type.
   1006   </li>
   1007 </ul>
   1008 
   1009 <h3 id="POSIX-extensions">Extensions to POSIX in the
   1010 <code><abbr>tz</abbr></code> code</h3>
   1011 <ul>
   1012   <li>
   1013     <p>
   1014     The <code>TZ</code> environment variable is used in generating
   1015     the name of a file from which time-related information is read
   1016     (or is interpreted  la POSIX); <code>TZ</code> is no longer
   1017     constrained to be a string containing abbreviations
   1018     and numeric data as described <a href="#POSIX">above</a>.
   1019     The file's format is <dfn><abbr>TZif</abbr></dfn>,
   1020     a timezone information format that contains binary data; see
   1021     <a href="https://tools.ietf.org/html/8536">Internet
   1022     <abbr>RFC</abbr> 8536</a>.
   1023     The daylight saving time rules to be used for a
   1024     particular timezone are encoded in the
   1025     <abbr>TZif</abbr> file; the format of the file allows <abbr>US</abbr>,
   1026     Australian, and other rules to be encoded, and
   1027     allows for situations where more than two time zone
   1028     abbreviations are used.
   1029     </p>
   1030     <p>
   1031     It was recognized that allowing the <code>TZ</code> environment
   1032     variable to take on values such as '<code>America/New_York</code>'
   1033     might cause "old" programs (that expect <code>TZ</code> to have a
   1034     certain form) to operate incorrectly; consideration was given to using
   1035     some other environment variable (for example, <code>TIMEZONE</code>)
   1036     to hold the string used to generate the <abbr>TZif</abbr> file's name.
   1037     In the end, however, it was decided to continue using
   1038     <code>TZ</code>: it is widely used for time zone purposes;
   1039     separately maintaining both <code>TZ</code>
   1040     and <code>TIMEZONE</code> seemed a nuisance; and systems where
   1041     "new" forms of <code>TZ</code> might cause problems can simply
   1042     use legacy <code>TZ</code> values such as "<code>EST5EDT</code>" which
   1043     can be used by "new" programs as well as by "old" programs that
   1044     assume pre-POSIX <code>TZ</code> values.
   1045     </p>
   1046   </li>
   1047   <li>
   1048     The code supports platforms with a <abbr>UT</abbr> offset member
   1049     in <code>struct tm</code>, e.g., <code>tm_gmtoff</code>.
   1050   </li>
   1051   <li>
   1052     The code supports platforms with a time zone abbreviation member in
   1053     <code>struct tm</code>, e.g., <code>tm_zone</code>.
   1054   </li>
   1055   <li>
   1056     Functions <code>tzalloc</code>, <code>tzfree</code>,
   1057     <code>localtime_rz</code>, and <code>mktime_z</code> for
   1058     more-efficient thread-safe applications that need to use multiple
   1059     timezones.
   1060     The <code>tzalloc</code> and <code>tzfree</code> functions
   1061     allocate and free objects of type <code>timezone_t</code>,
   1062     and <code>localtime_rz</code> and <code>mktime_z</code> are
   1063     like <code>localtime_r</code> and <code>mktime</code> with an
   1064     extra <code>timezone_t</code> argument.
   1065     The functions were inspired by <a href="https://netbsd.org/">NetBSD</a>.
   1066   </li>
   1067   <li>
   1068     Negative <code>time_t</code> values are supported, on systems
   1069     where <code>time_t</code> is signed.
   1070   </li>
   1071   <li>
   1072     These functions can account for leap seconds;
   1073     see <a href="#leapsec">Leap seconds</a> below.
   1074   </li>
   1075 </ul>
   1076 
   1077 <h3 id="vestigial">POSIX features no longer needed</h3>
   1078 <p>
   1079 POSIX and <a href="https://en.wikipedia.org/wiki/ISO_C"><abbr>ISO</abbr> C</a>
   1080 define some <a href="https://en.wikipedia.org/wiki/API"><abbr
   1081 title="application programming interface">API</abbr>s</a> that are vestigial:
   1082 they are not needed, and are relics of a too-simple model that does
   1083 not suffice to handle many real-world timestamps.
   1084 Although the <code><abbr>tz</abbr></code> code supports these
   1085 vestigial <abbr>API</abbr>s for backwards compatibility, they should
   1086 be avoided in portable applications.
   1087 The vestigial <abbr>API</abbr>s are:
   1088 </p>
   1089 <ul>
   1090   <li>
   1091     The POSIX <code>tzname</code> variable does not suffice and is no
   1092     longer needed.
   1093     To get a timestamp's time zone abbreviation, consult
   1094     the <code>tm_zone</code> member if available; otherwise,
   1095     use <code>strftime</code>'s <code>"%Z"</code> conversion
   1096     specification.
   1097   </li>
   1098   <li>
   1099     The POSIX <code>daylight</code> and <code>timezone</code>
   1100     variables do not suffice and are no longer needed.
   1101     To get a timestamp's <abbr>UT</abbr> offset, consult
   1102     the <code>tm_gmtoff</code> member if available; otherwise,
   1103     subtract values returned by <code>localtime</code>
   1104     and <code>gmtime</code> using the rules of the Gregorian calendar,
   1105     or use <code>strftime</code>'s <code>"%z"</code> conversion
   1106     specification if a string like <code>"+0900"</code> suffices.
   1107   </li>
   1108   <li>
   1109     The <code>tm_isdst</code> member is almost never needed and most of
   1110     its uses should be discouraged in favor of the abovementioned
   1111     <abbr>API</abbr>s.
   1112     Although it can still be used in arguments to
   1113     <code>mktime</code> to disambiguate timestamps near
   1114     a <abbr>DST</abbr> transition when the clock jumps back, this
   1115     disambiguation does not work when standard time itself jumps back,
   1116     which can occur when a location changes to a time zone with a
   1117     lesser <abbr>UT</abbr> offset.
   1118   </li>
   1119 </ul>
   1120 
   1121 <h3 id="other-portability">Other portability notes</h3>
   1122 <ul>
   1123   <li>
   1124     The <a href="https://en.wikipedia.org/wiki/Version_7_Unix">7th Edition
   1125     UNIX</a> <code>timezone</code> function is not present in this
   1126     package; it is impossible to reliably map <code>timezone</code>'s
   1127     arguments (a "minutes west of <abbr>GMT</abbr>" value and a
   1128     "daylight saving time in effect" flag) to a time zone
   1129     abbreviation, and we refuse to guess.
   1130     Programs that in the past used the <code>timezone</code> function
   1131     may now examine <code>localtime(&amp;clock)-&gt;tm_zone</code>
   1132     (if <code>TM_ZONE</code> is defined) or
   1133     <code>tzname[localtime(&amp;clock)-&gt;tm_isdst]</code>
   1134     (if <code>HAVE_TZNAME</code> is nonzero) to learn the correct time
   1135     zone abbreviation to use.
   1136   </li>
   1137   <li>
   1138     The <a
   1139     href="https://en.wikipedia.org/wiki/History_of_the_Berkeley_Software_Distribution#4.2BSD"><abbr>4.2BSD</abbr></a>
   1140     <code>gettimeofday</code> function is not
   1141     used in this package.
   1142     This formerly let users obtain the current <abbr>UTC</abbr> offset
   1143     and <abbr>DST</abbr> flag, but this functionality was removed in
   1144     later versions of <abbr>BSD</abbr>.
   1145   </li>
   1146   <li>
   1147     In <abbr>SVR2</abbr>, time conversion fails for near-minimum or
   1148     near-maximum <code>time_t</code> values when doing conversions
   1149     for places that do not use <abbr>UT</abbr>.
   1150     This package takes care to do these conversions correctly.
   1151     A comment in the source code tells how to get compatibly wrong
   1152     results.
   1153   </li>
   1154   <li>
   1155     The functions that are conditionally compiled
   1156     if <code>STD_INSPIRED</code> is defined should, at this point, be
   1157     looked on primarily as food for thought.
   1158     They are not in any sense "standard compatible" &ndash; some are
   1159     not, in fact, specified in <em>any</em> standard.
   1160     They do, however, represent responses of various authors to
   1161     standardization proposals.
   1162   </li>
   1163   <li>
   1164     Other time conversion proposals, in particular those supported by the
   1165     <a href="https://howardhinnant.github.io/date/tz.html">Time Zone
   1166     Database Parser</a>, offer a wider selection of functions
   1167     that provide capabilities beyond those provided here.
   1168     The absence of such functions from this package is not meant to
   1169     discourage the development, standardization, or use of such
   1170     functions.
   1171     Rather, their absence reflects the decision to make this package
   1172     contain valid extensions to POSIX, to ensure its broad
   1173     acceptability.
   1174     If more powerful time conversion functions can be standardized, so
   1175     much the better.
   1176   </li>
   1177 </ul>
   1178 </section>
   1179 
   1180 <section>
   1181   <h2 id="stability">Interface stability</h2>
   1182 <p>
   1183 The <code><abbr>tz</abbr></code> code and data supply the following interfaces:
   1184 </p>
   1185 
   1186 <ul>
   1187   <li>
   1188     A set of timezone names as per
   1189       "<a href="#naming">Timezone identifiers</a>" above.
   1190   </li>
   1191   <li>
   1192     Library functions described in "<a href="#functions">Time and date
   1193       functions</a>" above.
   1194   </li>
   1195   <li>
   1196     The programs <code>tzselect</code>, <code>zdump</code>,
   1197     and <code>zic</code>, documented in their man pages.
   1198   </li>
   1199   <li>
   1200     The format of <code>zic</code> input files, documented in
   1201     the <code>zic</code> man page.
   1202   </li>
   1203   <li>
   1204     The format of <code>zic</code> output files, documented in
   1205     the <code>tzfile</code> man page.
   1206   </li>
   1207   <li>
   1208     The format of zone table files, documented in <code>zone1970.tab</code>.
   1209   </li>
   1210   <li>
   1211     The format of the country code file, documented in <code>iso3166.tab</code>.
   1212   </li>
   1213   <li>
   1214     The version number of the code and data, as the first line of
   1215     the text file '<code>version</code>' in each release.
   1216   </li>
   1217 </ul>
   1218 
   1219 <p>
   1220 Interface changes in a release attempt to preserve compatibility with
   1221 recent releases.
   1222 For example, <code><abbr>tz</abbr></code> data files typically do not
   1223 rely on recently-added <code>zic</code> features, so that users can
   1224 run older <code>zic</code> versions to process newer data files.
   1225 <a href="tz-link.html#download">Downloading
   1226 the <code><abbr>tz</abbr></code> database</a> describes how releases
   1227 are tagged and distributed.
   1228 </p>
   1229 
   1230 <p>
   1231 Interfaces not listed above are less stable.
   1232 For example, users should not rely on particular <abbr>UT</abbr>
   1233 offsets or abbreviations for timestamps, as data entries are often
   1234 based on guesswork and these guesses may be corrected or improved.
   1235 </p>
   1236 
   1237 <p>
   1238 Timezone boundaries are not part of the stable interface.
   1239 For example, even though the <samp>Asia/Bangkok</samp> timezone
   1240 currently includes Chang Mai, Hanoi, and Phnom Penh, this is not part
   1241 of the stable interface and the timezone can split at any time.
   1242 If a calendar application records a future event in some location other
   1243 than Bangkok by putting "<samp>Asia/Bangkok</samp>" in the event's record,
   1244 the application should be robust in the presence of timezone splits
   1245 between now and the future time.
   1246 </p>
   1247 </section>
   1248 
   1249 <section>
   1250   <h2 id="leapsec">Leap seconds</h2>
   1251 <p>
   1252 The <code><abbr>tz</abbr></code> code and data can account for leap seconds,
   1253 thanks to code contributed by Bradley White.
   1254 However, the leap second support of this package is rarely used directly
   1255 because POSIX requires leap seconds to be excluded and many
   1256 software packages would mishandle leap seconds if they were present.
   1257 Instead, leap seconds are more commonly handled by occasionally adjusting
   1258 the operating system kernel clock as described in
   1259 <a href="tz-link.html#precision">Precision timekeeping</a>,
   1260 and this package by default installs a <samp>leapseconds</samp> file
   1261 commonly used by
   1262 <a href="http://www.ntp.org"><abbr title="Network Time Protocol">NTP</abbr></a>
   1263 software that adjusts the kernel clock.
   1264 However, kernel-clock twiddling approximates UTC only roughly,
   1265 and systems needing more-precise UTC can use this package's leap
   1266 second support directly.
   1267 </p>
   1268 
   1269 <p>
   1270 The directly-supported mechanism assumes that <code>time_t</code>
   1271 counts of seconds since the POSIX epoch normally include leap seconds,
   1272 as opposed to POSIX <code>time_t</code> counts which exclude leap seconds.
   1273 This modified timescale is converted to <abbr>UTC</abbr>
   1274 at the same point that time zone and <abbr>DST</abbr>
   1275 adjustments are applied &ndash;
   1276 namely, at calls to <code>localtime</code> and analogous functions &ndash;
   1277 and the process is driven by leap second information
   1278 stored in alternate versions of the <abbr>TZif</abbr> files.
   1279 Because a leap second adjustment may be needed even
   1280 if no time zone correction is desired,
   1281 calls to <code>gmtime</code>-like functions
   1282 also need to consult a <abbr>TZif</abbr> file,
   1283 conventionally named <samp><abbr>GMT</abbr></samp>,
   1284 to see whether leap second corrections are needed.
   1285 To convert an application's <code>time_t</code> timestamps to or from
   1286 POSIX <code>time_t</code> timestamps (for use when, say,
   1287 embedding or interpreting timestamps in portable
   1288 <a href="https://en.wikipedia.org/wiki/Tar_(computing)"><code>tar</code></a>
   1289 files),
   1290 the application can call the utility functions
   1291 <code>time2posix</code> and <code>posix2time</code>
   1292 included with this package.
   1293 </p>
   1294 
   1295 <p>
   1296 If the POSIX-compatible <abbr>TZif</abbr> file set is installed
   1297 in a directory whose basename is <samp>zoneinfo</samp>, the
   1298 leap-second-aware file set is by default installed in a separate
   1299 directory <samp>zoneinfo-leaps</samp>.
   1300 Although each process can have its own time zone by setting
   1301 its <code>TZ</code> environment variable, there is no support for some
   1302 processes being leap-second aware while other processes are
   1303 POSIX-compatible; the leap-second choice is system-wide.
   1304 So if you configure your kernel to count leap seconds, you should also
   1305 discard <samp>zoneinfo</samp> and rename <samp>zoneinfo-leaps</samp>
   1306 to <samp>zoneinfo</samp>.
   1307 Alternatively, you can install just one set of <abbr>TZif</abbr> files
   1308 in the first place; see the <code>REDO</code> variable in this package's
   1309 <a href="https://en.wikipedia.org/wiki/Makefile">makefile</a>.
   1310 </p>
   1311 </section>
   1312 
   1313 <section>
   1314   <h2 id="calendar">Calendrical issues</h2>
   1315 <p>
   1316 Calendrical issues are a bit out of scope for a time zone database,
   1317 but they indicate the sort of problems that we would run into if we
   1318 extended the time zone database further into the past.
   1319 An excellent resource in this area is Edward M. Reingold
   1320 and Nachum Dershowitz, <cite><a
   1321 href="https://www.cambridge.org/fr/academic/subjects/computer-science/computing-general-interest/calendrical-calculations-ultimate-edition-4th-edition">Calendrical
   1322 Calculations: The Ultimate Edition</a></cite>, Cambridge University Press (2018).
   1323 Other information and sources are given in the file '<code>calendars</code>'
   1324 in the <code><abbr>tz</abbr></code> distribution.
   1325 They sometimes disagree.
   1326 </p>
   1327 </section>
   1328 
   1329 <section>
   1330   <h2 id="planets">Time and time zones on other planets</h2>
   1331 <p>
   1332 Some people's work schedules have used
   1333 <a href="https://en.wikipedia.org/wiki/Timekeeping_on_Mars">Mars time</a>.
   1334 Jet Propulsion Laboratory (JPL) coordinators kept Mars time on
   1335 and off during the
   1336 <a href="https://en.wikipedia.org/wiki/Mars_Pathfinder">Mars
   1337 Pathfinder</a> mission (1997).
   1338 Some of their family members also adapted to Mars time.
   1339 Dozens of special Mars watches were built for JPL workers who kept
   1340 Mars time during the
   1341 <a href="https://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars
   1342 Exploration Rovers (MER)</a> mission (2004&ndash;2018).
   1343 These timepieces looked like normal Seikos and Citizens but were adjusted
   1344 to use Mars seconds rather than terrestrial seconds, although
   1345 unfortunately the adjusted watches were unreliable and appear to have
   1346 had only limited use.
   1347 </p>
   1348 
   1349 <p>
   1350 A Mars solar day is called a "sol" and has a mean period equal to
   1351 about 24 hours 39 minutes 35.244 seconds in terrestrial time.
   1352 It is divided into a conventional 24-hour clock, so each Mars second
   1353 equals about 1.02749125 terrestrial seconds.
   1354 (One MER worker noted, "If I am working Mars hours, and Mars hours are
   1355 2.5% more than Earth hours, shouldn't I get an extra 2.5% pay raise?")
   1356 </p>
   1357 
   1358 <p>
   1359 The <a href="https://en.wikipedia.org/wiki/Prime_meridian">prime
   1360 meridian</a> of Mars goes through the center of the crater
   1361 <a href="https://en.wikipedia.org/wiki/Airy-0">Airy-0</a>, named in
   1362 honor of the British astronomer who built the Greenwich telescope that
   1363 defines Earth's prime meridian.
   1364 Mean solar time on the Mars prime meridian is
   1365 called Mars Coordinated Time (<abbr>MTC</abbr>).
   1366 </p>
   1367 
   1368 <p>
   1369 Each landed mission on Mars has adopted a different reference for
   1370 solar timekeeping, so there is no real standard for Mars time zones.
   1371 For example, the MER mission defined two time zones "Local
   1372 Solar Time A" and "Local Solar Time B" for its two missions, each zone
   1373 designed so that its time equals local true solar time at
   1374 approximately the middle of the nominal mission.
   1375 The A and B zones differ enough so that an MER worker assigned to
   1376 the A zone might suffer "Mars lag" when switching to work in the B zone.
   1377 Such a "time zone" is not particularly suited for any application
   1378 other than the mission itself.
   1379 </p>
   1380 
   1381 <p>
   1382 Many calendars have been proposed for Mars, but none have achieved
   1383 wide acceptance.
   1384 Astronomers often use Mars Sol Date (<abbr>MSD</abbr>) which is a
   1385 sequential count of Mars solar days elapsed since about 1873-12-29
   1386 12:00 <abbr>GMT</abbr>.
   1387 </p>
   1388 
   1389 <p>
   1390 In our solar system, Mars is the planet with time and calendar most
   1391 like Earth's.
   1392 On other planets, Sun-based time and calendars would work quite
   1393 differently.
   1394 For example, although Mercury's
   1395 <a href="https://en.wikipedia.org/wiki/Rotation_period">sidereal
   1396 rotation period</a> is 58.646 Earth days, Mercury revolves around the
   1397 Sun so rapidly that an observer on Mercury's equator would see a
   1398 sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a
   1399 Mercury day.
   1400 Venus is more complicated, partly because its rotation is slightly
   1401 <a href="https://en.wikipedia.org/wiki/Retrograde_motion">retrograde</a>:
   1402 its year is 1.92 of its days.
   1403 Gas giants like Jupiter are trickier still, as their polar and
   1404 equatorial regions rotate at different rates, so that the length of a
   1405 day depends on latitude.
   1406 This effect is most pronounced on Neptune, where the day is about 12
   1407 hours at the poles and 18 hours at the equator.
   1408 </p>
   1409 
   1410 <p>
   1411 Although the <code><abbr>tz</abbr></code> database does not support
   1412 time on other planets, it is documented here in the hopes that support
   1413 will be added eventually.
   1414 </p>
   1415 
   1416 <p>
   1417 Sources for time on other planets:
   1418 </p>
   1419 
   1420 <ul>
   1421   <li>
   1422     Michael Allison and Robert Schmunk,
   1423     "<a href="https://www.giss.nasa.gov/tools/mars24/help/notes.html">Technical
   1424       Notes on Mars Solar Time as Adopted by the Mars24 Sunclock</a>"
   1425     (2020-03-08).
   1426   </li>
   1427   <li>
   1428     Zara Mirmalek,
   1429     <em><a href="https://mitpress.mit.edu/books/making-time-mars">Making
   1430 	Time on Mars</a></em>, MIT Press (March 2020), ISBN 978-0262043854.
   1431   </li>
   1432   <li>
   1433     Jia-Rui Chong,
   1434     "<a href="https://www.latimes.com/archives/la-xpm-2004-jan-14-sci-marstime14-story.html">Workdays
   1435     Fit for a Martian</a>", <cite>Los Angeles Times</cite>
   1436     (2004-01-14), pp A1, A20&ndash;A21.
   1437   </li>
   1438   <li>
   1439     Tom Chmielewski,
   1440     "<a href="https://www.theatlantic.com/technology/archive/2015/02/jet-lag-is-worse-on-mars/386033/">Jet
   1441     Lag Is Worse on Mars</a>", <cite>The Atlantic</cite> (2015-02-26)
   1442   </li>
   1443   <li>
   1444     Matt Williams,
   1445     "<a href="https://www.universetoday.com/37481/days-of-the-planets/">How
   1446     long is a day on the other planets of the solar system?</a>"
   1447     (2016-01-20).
   1448   </li>
   1449 </ul>
   1450 </section>
   1451 
   1452 <footer>
   1453   <hr>
   1454   This file is in the public domain, so clarified as of 2009-05-17 by
   1455   Arthur David Olson.
   1456 </footer>
   1457 </body>
   1458 </html>
   1459