Home | History | Annotate | Line # | Download | only in time
theory.html revision 1.13
      1 <!DOCTYPE html>
      2 <html lang="en">
      3 <head>
      4   <title>Theory and pragmatics of the tz code and data</title>
      5   <meta charset="UTF-8">
      6   <style>
      7     pre {margin-left: 2em; white-space: pre-wrap;}
      8   </style>
      9 </head>
     10 
     11 <body>
     12 <h1>Theory and pragmatics of the <code><abbr>tz</abbr></code> code and data</h1>
     13   <h3>Outline</h3>
     14   <nav>
     15     <ul>
     16       <li><a href="#scope">Scope of the <code><abbr>tz</abbr></code>
     17 	  database</a></li>
     18       <li><a href="#naming">Timezone identifiers</a></li>
     19       <li><a href="#abbreviations">Time zone abbreviations</a></li>
     20       <li><a href="#accuracy">Accuracy of the <code><abbr>tz</abbr></code>
     21 	  database</a></li>
     22       <li><a href="#functions">Time and date functions</a></li>
     23       <li><a href="#stability">Interface stability</a></li>
     24       <li><a href="#leapsec">Leap seconds</a></li>
     25       <li><a href="#calendar">Calendrical issues</a></li>
     26       <li><a href="#planets">Time and time zones on other planets</a></li>
     27     </ul>
     28   </nav>
     29 
     30 <section>
     31   <h2 id="scope">Scope of the <code><abbr>tz</abbr></code> database</h2>
     32 <p>
     33 The <a
     34 href="https://www.iana.org/time-zones"><code><abbr>tz</abbr></code>
     35 database</a> attempts to record the history and predicted future of
     36 civil time scales.
     37 It organizes <a href="tz-link.html">time zone and daylight saving time
     38 data</a> by partitioning the world into <a
     39 href="https://en.wikipedia.org/wiki/List_of_tz_database_time_zones"><dfn>timezones</dfn></a>
     40 whose clocks all agree about timestamps that occur after the <a
     41 href="https://en.wikipedia.org/wiki/Unix_time">POSIX Epoch</a>
     42 (1970-01-01 00:00:00 <a
     43 href="https://en.wikipedia.org/wiki/Coordinated_Universal_Time"><abbr
     44 title="Coordinated Universal Time">UTC</abbr></a>).
     45 Although 1970 is a somewhat-arbitrary cutoff, there are significant
     46 challenges to moving the cutoff earlier even by a decade or two, due
     47 to the wide variety of local practices before computer timekeeping
     48 became prevalent.
     49 Most timezones correspond to a notable location and the database
     50 records all known clock transitions for that location;
     51 some timezones correspond instead to a fixed <abbr>UTC</abbr> offset.
     52 </p>
     53 
     54 <p>
     55 Each timezone typically corresponds to a geographical region that is
     56 smaller than a traditional time zone, because clocks in a timezone
     57 all agree after 1970 whereas a traditional time zone merely
     58 specifies current standard time. For example, applications that deal
     59 with current and future timestamps in the traditional North
     60 American mountain time zone can choose from the timezones
     61 <code>America/Denver</code> which observes US-style daylight saving
     62 time (<abbr>DST</abbr>),
     63 <code>America/Mazatlan</code> which observes Mexican-style <abbr>DST</abbr>,
     64 and <code>America/Phoenix</code> which does not observe <abbr>DST</abbr>.
     65 Applications that also deal with past timestamps in the mountain time
     66 zone can choose from over a dozen timezones, such as
     67 <code>America/Boise</code>, <code>America/Edmonton</code>, and
     68 <code>America/Hermosillo</code>, each of which currently uses mountain
     69 time but differs from other timezones for some timestamps after 1970.
     70 </p>
     71 
     72 <p>
     73 Clock transitions before 1970 are recorded for location-based timezones,
     74 because most systems support timestamps before 1970 and could
     75 misbehave if data entries were omitted for pre-1970 transitions.
     76 However, the database is not designed for and does not suffice for
     77 applications requiring accurate handling of all past times everywhere,
     78 as it would take far too much effort and guesswork to record all
     79 details of pre-1970 civil timekeeping.
     80 Although some information outside the scope of the database is
     81 collected in a file <code>backzone</code> that is distributed along
     82 with the database proper, this file is less reliable and does not
     83 necessarily follow database guidelines.
     84 </p>
     85 
     86 <p>
     87 As described below, reference source code for using the
     88 <code><abbr>tz</abbr></code> database is also available.
     89 The <code><abbr>tz</abbr></code> code is upwards compatible with <a
     90 href="https://en.wikipedia.org/wiki/POSIX">POSIX</a>, an international
     91 standard for <a
     92 href="https://en.wikipedia.org/wiki/Unix">UNIX</a>-like systems.
     93 As of this writing, the current edition of POSIX is: <a
     94 href="https://pubs.opengroup.org/onlinepubs/9699919799/"> The Open
     95 Group Base Specifications Issue 7</a>, IEEE Std 1003.1-2017, 2018
     96 Edition.
     97 Because the database's scope encompasses real-world changes to civil
     98 timekeeping, its model for describing time is more complex than the
     99 standard and daylight saving times supported by POSIX.
    100 A <code><abbr>tz</abbr></code> timezone corresponds to a ruleset that can
    101 have more than two changes per year, these changes need not merely
    102 flip back and forth between two alternatives, and the rules themselves
    103 can change at times.
    104 Whether and when a timezone changes its clock,
    105 and even the timezone's notional base offset from <abbr>UTC</abbr>,
    106 are variable.
    107 It does not always make sense to talk about a timezone's
    108 "base offset", which is not necessarily a single number.
    109 </p>
    110 
    111 </section>
    112 
    113 <section>
    114   <h2 id="naming">Timezone identifiers</h2>
    115 <p>
    116 Each timezone has a name that uniquely identifies the timezone.
    117 Inexperienced users are not expected to select these names unaided.
    118 Distributors should provide documentation and/or a simple selection
    119 interface that explains each name via a map or via descriptive text like
    120 "Czech Republic" instead of the timezone name "<code>Europe/Prague</code>".
    121 If geolocation information is available, a selection interface can
    122 locate the user on a timezone map or prioritize names that are
    123 geographically close. For an example selection interface, see the
    124 <code>tzselect</code> program in the <code><abbr>tz</abbr></code> code.
    125 The <a href="http://cldr.unicode.org">Unicode Common Locale Data
    126 Repository</a> contains data that may be useful for other selection
    127 interfaces; it maps timezone names like <code>Europe/Prague</code> to
    128 locale-dependent strings like "Prague", "Praha", "", and "".
    129 </p>
    130 
    131 <p>
    132 The naming conventions attempt to strike a balance
    133 among the following goals:
    134 </p>
    135 
    136 <ul>
    137   <li>
    138     Uniquely identify every timezone where clocks have agreed since 1970.
    139     This is essential for the intended use: static clocks keeping local
    140     civil time.
    141   </li>
    142   <li>
    143     Indicate to experts where the timezone's clocks typically are.
    144   </li>
    145   <li>
    146     Be robust in the presence of political changes.
    147     For example, names are typically not tied to countries, to avoid
    148     incompatibilities when countries change their name (e.g.,
    149     Swaziland&rarr;Eswatini) or when locations change countries (e.g., Hong
    150     Kong from UK colony to China).
    151     There is no requirement that every country or national
    152     capital must have a timezone name.
    153   </li>
    154   <li>
    155     Be portable to a wide variety of implementations.
    156   </li>
    157   <li>
    158     Use a consistent naming conventions over the entire world.
    159   </li>
    160 </ul>
    161 
    162 <p>
    163 Names normally have the form
    164 <var>AREA</var><code>/</code><var>LOCATION</var>, where
    165 <var>AREA</var> is a continent or ocean, and
    166 <var>LOCATION</var> is a specific location within the area.
    167 North and South America share the same area, '<code>America</code>'.
    168 Typical names are '<code>Africa/Cairo</code>',
    169 '<code>America/New_York</code>', and '<code>Pacific/Honolulu</code>'.
    170 Some names are further qualified to help avoid confusion; for example,
    171 '<code>America/Indiana/Petersburg</code>' distinguishes Petersburg,
    172 Indiana from other Petersburgs in America.
    173 </p>
    174 
    175 <p>
    176 Here are the general guidelines used for
    177 choosing timezone names,
    178 in decreasing order of importance:
    179 </p>
    180 
    181 <ul>
    182   <li>
    183     Use only valid POSIX file name components (i.e., the parts of
    184     names other than '<code>/</code>').
    185     Do not use the file name components '<code>.</code>' and
    186     '<code>..</code>'.
    187     Within a file name component, use only <a
    188     href="https://en.wikipedia.org/wiki/ASCII">ASCII</a> letters,
    189     '<code>.</code>', '<code>-</code>' and '<code>_</code>'.
    190     Do not use digits, as that might create an ambiguity with <a
    191     href="https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03">POSIX
    192     <code>TZ</code> strings</a>.
    193     A file name component must not exceed 14 characters or start with
    194     '<code>-</code>'.
    195     E.g., prefer <code>America/Noronha</code> to
    196     <code>America/Fernando_de_Noronha</code>.
    197     Exceptions: see the discussion of legacy names below.
    198   </li>
    199   <li>
    200     A name must not be empty, or contain '<code>//</code>', or
    201     start or end with '<code>/</code>'.
    202   </li>
    203   <li>
    204     Do not use names that differ only in case.
    205     Although the reference implementation is case-sensitive, some
    206     other implementations are not, and they would mishandle names
    207     differing only in case.
    208   </li>
    209   <li>
    210     If one name <var>A</var> is an initial prefix of another
    211     name <var>AB</var> (ignoring case), then <var>B</var> must not
    212     start with '<code>/</code>', as a regular file cannot have the
    213     same name as a directory in POSIX.
    214     For example, <code>America/New_York</code> precludes
    215     <code>America/New_York/Bronx</code>.
    216   </li>
    217   <li>
    218     Uninhabited regions like the North Pole and Bouvet Island
    219     do not need locations, since local time is not defined there.
    220   </li>
    221   <li>
    222     If all the clocks in a timezone have agreed since 1970,
    223     do not bother to include more than one timezone
    224     even if some of the clocks disagreed before 1970.
    225     Otherwise these tables would become annoyingly large.
    226   </li>
    227   <li>
    228     If boundaries between regions are fluid, such as during a war or
    229     insurrection, do not bother to create a new timezone merely
    230     because of yet another boundary change. This helps prevent table
    231     bloat and simplifies maintenance.
    232   </li>
    233   <li>
    234     If a name is ambiguous, use a less ambiguous alternative;
    235     e.g., many cities are named San Jos and Georgetown, so
    236     prefer <code>America/Costa_Rica</code> to
    237     <code>America/San_Jose</code> and <code>America/Guyana</code>
    238     to <code>America/Georgetown</code>.
    239   </li>
    240   <li>
    241     Keep locations compact.
    242     Use cities or small islands, not countries or regions, so that any
    243     future changes do not split individual locations into different
    244     timezones.
    245     E.g., prefer <code>Europe/Paris</code> to <code>Europe/France</code>,
    246     since
    247     <a href="https://en.wikipedia.org/wiki/Time_in_France#History">France
    248     has had multiple time zones</a>.
    249   </li>
    250   <li>
    251     Use mainstream English spelling, e.g., prefer
    252     <code>Europe/Rome</code> to <code>Europa/Roma</code>, and
    253     prefer <code>Europe/Athens</code> to the Greek
    254     <code>/</code> or the Romanized
    255     <code>Evrpi/Athna</code>.
    256     The POSIX file name restrictions encourage this guideline.
    257   </li>
    258   <li>
    259     Use the most populous among locations in a region,
    260     e.g., prefer <code>Asia/Shanghai</code> to
    261     <code>Asia/Beijing</code>.
    262     Among locations with similar populations, pick the best-known
    263     location, e.g., prefer <code>Europe/Rome</code> to
    264     <code>Europe/Milan</code>.
    265   </li>
    266   <li>
    267     Use the singular form, e.g., prefer <code>Atlantic/Canary</code> to
    268     <code>Atlantic/Canaries</code>.
    269   </li>
    270   <li>
    271     Omit common suffixes like '<code>_Islands</code>' and
    272     '<code>_City</code>', unless that would lead to ambiguity.
    273     E.g., prefer <code>America/Cayman</code> to
    274     <code>America/Cayman_Islands</code> and
    275     <code>America/Guatemala</code> to
    276     <code>America/Guatemala_City</code>, but prefer
    277     <code>America/Mexico_City</code> to
    278     <code>America/Mexico</code>
    279     because <a href="https://en.wikipedia.org/wiki/Time_in_Mexico">the
    280     country of Mexico has several time zones</a>.
    281   </li>
    282   <li>
    283     Use '<code>_</code>' to represent a space.
    284   </li>
    285   <li>
    286     Omit '<code>.</code>' from abbreviations in names.
    287     E.g., prefer <code>Atlantic/St_Helena</code> to
    288     <code>Atlantic/St._Helena</code>.
    289   </li>
    290   <li>
    291     Do not change established names if they only marginally violate
    292     the above guidelines.
    293     For example, do not change the existing name <code>Europe/Rome</code> to
    294     <code>Europe/Milan</code> merely because Milan's population has grown
    295     to be somewhat greater than Rome's.
    296   </li>
    297   <li>
    298     If a name is changed, put its old spelling in the
    299     '<code>backward</code>' file as a link to the new spelling.
    300     This means old spellings will continue to work.
    301     Ordinarily a name change should occur only in the rare case when
    302     a location's consensus English-language spelling changes; for example,
    303     in 2008 <code>Asia/Calcutta</code> was renamed to <code>Asia/Kolkata</code>
    304     due to long-time widespread use of the new city name instead of the old.
    305   </li>
    306 </ul>
    307 
    308 <p>
    309 Guidelines have evolved with time, and names following old versions of
    310 these guidelines might not follow the current version. When guidelines
    311 have changed, old names continue to be supported. Guideline changes
    312 have included the following:
    313 </p>
    314 
    315 <ul>
    316 <li>
    317 Older versions of this package used a different naming scheme.
    318 See the file '<code>backward</code>' for most of these older names
    319 (e.g., '<code>US/Eastern</code>' instead of '<code>America/New_York</code>').
    320 The other old-fashioned names still supported are
    321 '<code>WET</code>', '<code>CET</code>', '<code>MET</code>', and
    322 '<code>EET</code>' (see the file '<code>europe</code>').
    323 </li>
    324 
    325 <li>
    326 Older versions of this package defined legacy names that are
    327 incompatible with the first guideline of location names, but which are
    328 still supported.
    329 These legacy names are mostly defined in the file
    330 '<code>etcetera</code>'.
    331 Also, the file '<code>backward</code>' defines the legacy names
    332 '<code>GMT0</code>', '<code>GMT-0</code>' and '<code>GMT+0</code>',
    333 and the file '<code>northamerica</code>' defines the legacy names
    334 '<code>EST5EDT</code>', '<code>CST6CDT</code>',
    335 '<code>MST7MDT</code>', and '<code>PST8PDT</code>'.
    336 </li>
    337 
    338 <li>
    339 Older versions of these guidelines said that
    340 there should typically be at least one name for each <a
    341 href="https://en.wikipedia.org/wiki/ISO_3166-1"><abbr
    342 title="International Organization for Standardization">ISO</abbr>
    343 3166-1</a> officially assigned two-letter code for an inhabited
    344 country or territory.
    345 This old guideline has been dropped, as it was not needed to handle
    346 timestamps correctly and it increased maintenance burden.
    347 </li>
    348 </ul>
    349 
    350 <p>
    351 The file <code>zone1970.tab</code> lists geographical locations used
    352 to name timezones.
    353 It is intended to be an exhaustive list of names for geographic
    354 regions as described above; this is a subset of the timezones in the data.
    355 Although a <code>zone1970.tab</code> location's
    356 <a href="https://en.wikipedia.org/wiki/Longitude">longitude</a>
    357 corresponds to
    358 its <a href="https://en.wikipedia.org/wiki/Local_mean_time">local mean
    359 time (<abbr>LMT</abbr>)</a> offset with one hour for every 15&deg;
    360 east longitude, this relationship is not exact.
    361 The backward-compatibility file <code>zone.tab</code> is similar
    362 but conforms to the older-version guidelines related to <abbr>ISO</abbr> 3166-1;
    363 it lists only one country code per entry and unlike <code>zone1970.tab</code>
    364 it can list names defined in <code>backward</code>.
    365 </p>
    366 
    367 <p>
    368 The database defines each timezone name to be a zone, or a link to a zone.
    369 The source file <code>backward</code> defines links for backward
    370 compatibility; it does not define zones.
    371 Although <code>backward</code> was originally designed to be optional,
    372 nowadays distributions typically use it
    373 and no great weight should be attached to whether a link
    374 is defined in <code>backward</code> or in some other file.
    375 The source file <code>etcetera</code> defines names that may be useful
    376 on platforms that do not support POSIX-style <code>TZ</code> strings;
    377 no other source file other than <code>backward</code>
    378 contains links to its zones.
    379 One of <code>etcetera</code>'s names is <code>GMT</code>,
    380 used by functions like <code>gmtime</code> to obtain leap
    381 second information on platforms that support leap seconds.
    382 </p>
    383 </section>
    384 
    385 <section>
    386   <h2 id="abbreviations">Time zone abbreviations</h2>
    387 <p>
    388 When this package is installed, it generates time zone abbreviations
    389 like '<code>EST</code>' to be compatible with human tradition and POSIX.
    390 Here are the general guidelines used for choosing time zone abbreviations,
    391 in decreasing order of importance:
    392 </p>
    393 
    394 <ul>
    395   <li>
    396     Use three to six characters that are ASCII alphanumerics or
    397     '<code>+</code>' or '<code>-</code>'.
    398     Previous editions of this database also used characters like
    399     space and '<code>?</code>', but these characters have a
    400     special meaning to the
    401     <a href="https://en.wikipedia.org/wiki/Unix_shell">UNIX shell</a>
    402     and cause commands like
    403     '<code><a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set">set</a>
    404     `<a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/date.html">date</a>`</code>'
    405     to have unexpected effects.
    406     Previous editions of this guideline required upper-case letters, but the
    407     Congressman who introduced
    408     <a href="https://en.wikipedia.org/wiki/Chamorro_Time_Zone">Chamorro
    409     Standard Time</a> preferred "ChST", so lower-case letters are now
    410     allowed.
    411     Also, POSIX from 2001 on relaxed the rule to allow '<code>-</code>',
    412     '<code>+</code>', and alphanumeric characters from the portable
    413     character set in the current locale.
    414     In practice ASCII alphanumerics and '<code>+</code>' and
    415     '<code>-</code>' are safe in all locales.
    416 
    417     <p>
    418     In other words, in the C locale the POSIX extended regular
    419     expression <code>[-+[:alnum:]]{3,6}</code> should match the
    420     abbreviation.
    421     This guarantees that all abbreviations could have been specified by a
    422     POSIX <code>TZ</code> string.
    423     </p>
    424   </li>
    425   <li>
    426     Use abbreviations that are in common use among English-speakers,
    427     e.g., 'EST' for Eastern Standard Time in North America.
    428     We assume that applications translate them to other languages
    429     as part of the normal localization process; for example,
    430     a French application might translate 'EST' to 'HNE'.
    431 
    432     <p>
    433     <small>These abbreviations (for standard/daylight/etc. time) are:
    434       ACST/ACDT Australian Central,
    435       AST/ADT/APT/AWT/ADDT Atlantic,
    436       AEST/AEDT Australian Eastern,
    437       AHST/AHDT Alaska-Hawaii,
    438       AKST/AKDT Alaska,
    439       AWST/AWDT Australian Western,
    440       BST/BDT Bering,
    441       CAT/CAST Central Africa,
    442       CET/CEST/CEMT Central European,
    443       ChST Chamorro,
    444       CST/CDT/CWT/CPT/CDDT Central [North America],
    445       CST/CDT China,
    446       GMT/BST/IST/BDST Greenwich,
    447       EAT East Africa,
    448       EST/EDT/EWT/EPT/EDDT Eastern [North America],
    449       EET/EEST Eastern European,
    450       GST/GDT Guam,
    451       HST/HDT/HWT/HPT Hawaii,
    452       HKT/HKST/HKWT Hong Kong,
    453       IST India,
    454       IST/GMT Irish,
    455       IST/IDT/IDDT Israel,
    456       JST/JDT Japan,
    457       KST/KDT Korea,
    458       MET/MEST Middle European (a backward-compatibility alias for
    459 	Central European),
    460       MSK/MSD Moscow,
    461       MST/MDT/MWT/MPT/MDDT Mountain,
    462       NST/NDT/NWT/NPT/NDDT Newfoundland,
    463       NST/NDT/NWT/NPT Nome,
    464       NZMT/NZST New Zealand through 1945,
    465       NZST/NZDT New Zealand 1946&ndash;present,
    466       PKT/PKST Pakistan,
    467       PST/PDT/PWT/PPT/PDDT Pacific,
    468       PST/PDT Philippine,
    469       SAST South Africa,
    470       SST Samoa,
    471       WAT/WAST West Africa,
    472       WET/WEST/WEMT Western European,
    473       WIB Waktu Indonesia Barat,
    474       WIT Waktu Indonesia Timur,
    475       WITA Waktu Indonesia Tengah,
    476       YST/YDT/YWT/YPT/YDDT Yukon</small>.
    477     </p>
    478   </li>
    479   <li>
    480     <p>
    481     For times taken from a city's longitude, use the
    482     traditional <var>x</var>MT notation.
    483     The only abbreviation like this in current use is '<abbr>GMT</abbr>'.
    484     The others are for timestamps before 1960,
    485     except that Monrovia Mean Time persisted until 1972.
    486     Typically, numeric abbreviations (e.g., '<code>-</code>004430' for
    487     MMT) would cause trouble here, as the numeric strings would exceed
    488     the POSIX length limit.
    489     </p>
    490 
    491     <p>
    492     <small>These abbreviations are:
    493       AMT Asuncin, Athens;
    494       BMT Baghdad, Bangkok, Batavia, Bermuda, Bern, Bogot, Bridgetown,
    495         Brussels, Bucharest;
    496       CMT Calamarca, Caracas, Chisinau, Coln, Crdoba;
    497       DMT Dublin/Dunsink;
    498       EMT Easter;
    499       FFMT Fort-de-France;
    500       FMT Funchal;
    501       GMT Greenwich;
    502       HMT Havana, Helsinki, Horta, Howrah;
    503       IMT Irkutsk, Istanbul;
    504       JMT Jerusalem;
    505       KMT Kaunas, Kiev, Kingston;
    506       LMT Lima, Lisbon, local, Luanda;
    507       MMT Macassar, Madras, Mal, Managua, Minsk, Monrovia, Montevideo,
    508 	Moratuwa, Moscow;
    509       PLMT Ph Lin;
    510       PMT Paramaribo, Paris, Perm, Pontianak, Prague;
    511       PMMT Port Moresby;
    512       QMT Quito;
    513       RMT Rangoon, Riga, Rome;
    514       SDMT Santo Domingo;
    515       SJMT San Jos;
    516       SMT Santiago, Simferopol, Singapore, Stanley;
    517       TBMT Tbilisi;
    518       TMT Tallinn, Tehran;
    519       WMT Warsaw;
    520       ZMT Zomba.</small>
    521     </p>
    522 
    523     <p>
    524     <small>A few abbreviations also follow the pattern that
    525     <abbr>GMT</abbr>/<abbr>BST</abbr> established for time in the UK.
    526     They are:
    527       BMT/BST for Bermuda 1890&ndash;1930,
    528       CMT/BST for Calamarca Mean Time and Bolivian Summer Time
    529 	1890&ndash;1932,
    530       DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time
    531 	1880&ndash;1916,
    532       MMT/MST/MDST for Moscow 1880&ndash;1919, and
    533       RMT/LST for Riga Mean Time and Latvian Summer time 1880&ndash;1926.
    534     </small>
    535     </p>
    536   </li>
    537   <li>
    538     Use '<abbr>LMT</abbr>' for local mean time of locations before the
    539     introduction of standard time; see "<a href="#scope">Scope of the
    540     <code><abbr>tz</abbr></code> database</a>".
    541   </li>
    542   <li>
    543     If there is no common English abbreviation, use numeric offsets like
    544     <code>-</code>05 and <code>+</code>0530 that are generated
    545     by <code>zic</code>'s <code>%z</code> notation.
    546   </li>
    547   <li>
    548     Use current abbreviations for older timestamps to avoid confusion.
    549     For example, in 1910 a common English abbreviation for time
    550     in central Europe was 'MEZ' (short for both "Middle European
    551     Zone" and for "Mitteleuropische Zeit" in German).
    552     Nowadays 'CET' ("Central European Time") is more common in
    553     English, and the database uses 'CET' even for circa-1910
    554     timestamps as this is less confusing for modern users and avoids
    555     the need for determining when 'CET' supplanted 'MEZ' in common
    556     usage.
    557   </li>
    558   <li>
    559     Use a consistent style in a timezone's history.
    560     For example, if a history tends to use numeric
    561     abbreviations and a particular entry could go either way, use a
    562     numeric abbreviation.
    563   </li>
    564   <li>
    565     Use
    566     <a href="https://en.wikipedia.org/wiki/Universal_Time">Universal Time</a>
    567     (<abbr>UT</abbr>) (with time zone abbreviation '<code>-</code>00') for
    568     locations while uninhabited.
    569     The leading '<code>-</code>' is a flag that the <abbr>UT</abbr> offset is in
    570     some sense undefined; this notation is derived
    571     from <a href="https://tools.ietf.org/html/rfc3339">Internet
    572     <abbr title="Request For Comments">RFC</abbr> 3339</a>.
    573   </li>
    574 </ul>
    575 
    576 <p>
    577 Application writers should note that these abbreviations are ambiguous
    578 in practice: e.g., 'CST' means one thing in China and something else
    579 in North America, and 'IST' can refer to time in India, Ireland or
    580 Israel.
    581 To avoid ambiguity, use numeric <abbr>UT</abbr> offsets like
    582 '<code>-</code>0600' instead of time zone abbreviations like 'CST'.
    583 </p>
    584 </section>
    585 
    586 <section>
    587   <h2 id="accuracy">Accuracy of the <code><abbr>tz</abbr></code> database</h2>
    588 <p>
    589 The <code><abbr>tz</abbr></code> database is not authoritative, and it
    590 surely has errors.
    591 Corrections are welcome and encouraged; see the file <code>CONTRIBUTING</code>.
    592 Users requiring authoritative data should consult national standards
    593 bodies and the references cited in the database's comments.
    594 </p>
    595 
    596 <p>
    597 Errors in the <code><abbr>tz</abbr></code> database arise from many sources:
    598 </p>
    599 
    600 <ul>
    601   <li>
    602     The <code><abbr>tz</abbr></code> database predicts future
    603     timestamps, and current predictions
    604     will be incorrect after future governments change the rules.
    605     For example, if today someone schedules a meeting for 13:00 next
    606     October 1, Casablanca time, and tomorrow Morocco changes its
    607     daylight saving rules, software can mess up after the rule change
    608     if it blithely relies on conversions made before the change.
    609   </li>
    610   <li>
    611     The pre-1970 entries in this database cover only a tiny sliver of how
    612     clocks actually behaved; the vast majority of the necessary
    613     information was lost or never recorded.
    614     Thousands more timezones would be needed if
    615     the <code><abbr>tz</abbr></code> database's scope were extended to
    616     cover even just the known or guessed history of standard time; for
    617     example, the current single entry for France would need to split
    618     into dozens of entries, perhaps hundreds.
    619     And in most of the world even this approach would be misleading
    620     due to widespread disagreement or indifference about what times
    621     should be observed.
    622     In her 2015 book
    623     <cite><a
    624     href="http://www.hup.harvard.edu/catalog.php?isbn=9780674286146">The
    625     Global Transformation of Time, 1870&ndash;1950</a></cite>,
    626     Vanessa Ogle writes
    627     "Outside of Europe and North America there was no system of time
    628     zones at all, often not even a stable landscape of mean times,
    629     prior to the middle decades of the twentieth century".
    630     See: Timothy Shenk, <a
    631 href="https://www.dissentmagazine.org/blog/booked-a-global-history-of-time-vanessa-ogle">Booked:
    632       A Global History of Time</a>. <cite>Dissent</cite> 2015-12-17.
    633   </li>
    634   <li>
    635     Most of the pre-1970 data entries come from unreliable sources, often
    636     astrology books that lack citations and whose compilers evidently
    637     invented entries when the true facts were unknown, without
    638     reporting which entries were known and which were invented.
    639     These books often contradict each other or give implausible entries,
    640     and on the rare occasions when they are checked they are
    641     typically found to be incorrect.
    642   </li>
    643   <li>
    644     For the UK the <code><abbr>tz</abbr></code> database relies on
    645     years of first-class work done by
    646     Joseph Myers and others; see
    647     "<a href="https://www.polyomino.org.uk/british-time/">History of
    648     legal time in Britain</a>".
    649     Other countries are not done nearly as well.
    650   </li>
    651   <li>
    652     Sometimes, different people in the same city maintain clocks
    653     that differ significantly.
    654     Historically, railway time was used by railroad companies (which
    655     did not always
    656     agree with each other), church-clock time was used for birth
    657     certificates, etc.
    658     More recently, competing political groups might disagree about
    659     clock settings. Often this is merely common practice, but
    660     sometimes it is set by law.
    661     For example, from 1891 to 1911 the <abbr>UT</abbr> offset in France
    662     was legally <abbr>UT</abbr> +00:09:21 outside train stations and
    663     <abbr>UT</abbr> +00:04:21 inside. Other examples include
    664     Chillicothe in 1920, Palm Springs in 1946/7, and Jerusalem and
    665     rmqi to this day.
    666   </li>
    667   <li>
    668     Although a named location in the <code><abbr>tz</abbr></code>
    669     database stands for the containing region, its pre-1970 data
    670     entries are often accurate for only a small subset of that region.
    671     For example, <code>Europe/London</code> stands for the United
    672     Kingdom, but its pre-1847 times are valid only for locations that
    673     have London's exact meridian, and its 1847 transition
    674     to <abbr>GMT</abbr> is known to be valid only for the L&amp;NW and
    675     the Caledonian railways.
    676   </li>
    677   <li>
    678     The <code><abbr>tz</abbr></code> database does not record the
    679     earliest time for which a timezone's
    680     data entries are thereafter valid for every location in the region.
    681     For example, <code>Europe/London</code> is valid for all locations
    682     in its region after <abbr>GMT</abbr> was made the standard time,
    683     but the date of standardization (1880-08-02) is not in the
    684     <code><abbr>tz</abbr></code> database, other than in commentary.
    685     For many timezones the earliest time of
    686     validity is unknown.
    687   </li>
    688   <li>
    689     The <code><abbr>tz</abbr></code> database does not record a
    690     region's boundaries, and in many cases the boundaries are not known.
    691     For example, the timezone
    692     <code>America/Kentucky/Louisville</code> represents a region
    693     around the city of Louisville, the boundaries of which are
    694     unclear.
    695   </li>
    696   <li>
    697     Changes that are modeled as instantaneous transitions in the
    698     <code><abbr>tz</abbr></code>
    699     database were often spread out over hours, days, or even decades.
    700   </li>
    701   <li>
    702     Even if the time is specified by law, locations sometimes
    703     deliberately flout the law.
    704   </li>
    705   <li>
    706     Early timekeeping practices, even assuming perfect clocks, were
    707     often not specified to the accuracy that the
    708     <code><abbr>tz</abbr></code> database requires.
    709   </li>
    710   <li>
    711     The <code><abbr>tz</abbr></code> database cannot represent stopped clocks.
    712     However, on 1911-03-11 at 00:00, some public-facing French clocks
    713     were changed by stopping them for a few minutes to effect a transition.
    714     The <code><abbr>tz</abbr></code> database models this via a
    715     backward transition; the relevant French legislation does not
    716     specify exactly how the transition was to occur.
    717   </li>
    718   <li>
    719     Sometimes historical timekeeping was specified more precisely
    720     than what the <code><abbr>tz</abbr></code> code can handle.
    721     For example, from 1880 to 1916 clocks in Ireland observed Dublin Mean
    722     Time (estimated to be <abbr>UT</abbr>
    723     &minus;00:25:21.1), but the <code><abbr>tz</abbr></code>
    724     code cannot represent the fractional second.
    725     In practice these old specifications were rarely if ever
    726     implemented to subsecond precision.
    727   </li>
    728   <li>
    729     Even when all the timestamp transitions recorded by the
    730     <code><abbr>tz</abbr></code> database are correct, the
    731     <code><abbr>tz</abbr></code> rules that generate them may not
    732     faithfully reflect the historical rules.
    733     For example, from 1922 until World War II the UK moved clocks
    734     forward the day following the third Saturday in April unless that
    735     was Easter, in which case it moved clocks forward the previous
    736     Sunday.
    737     Because the <code><abbr>tz</abbr></code> database has no
    738     way to specify Easter, these exceptional years are entered as
    739     separate <code><abbr>tz</abbr> Rule</code> lines, even though the
    740     legal rules did not change.
    741     When transitions are known but the historical rules behind them are not,
    742     the database contains <code>Zone</code> and <code>Rule</code>
    743     entries that are intended to represent only the generated
    744     transitions, not any underlying historical rules; however, this
    745     intent is recorded at best only in commentary.
    746   </li>
    747   <li>
    748     The <code><abbr>tz</abbr></code> database models time
    749     using the <a
    750     href="https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">proleptic
    751     Gregorian calendar</a> with days containing 24 equal-length hours
    752     numbered 00 through 23, except when clock transitions occur.
    753     Pre-standard time is modeled as local mean time.
    754     However, historically many people used other calendars and other timescales.
    755     For example, the Roman Empire used
    756     the <a href="https://en.wikipedia.org/wiki/Julian_calendar">Julian
    757     calendar</a>,
    758     and <a href="https://en.wikipedia.org/wiki/Roman_timekeeping">Roman
    759     timekeeping</a> had twelve varying-length daytime hours with a
    760     non-hour-based system at night.
    761     And even today, some local practices diverge from the Gregorian
    762     calendar with 24-hour days. These divergences range from
    763     relatively minor, such as Japanese bars giving times like "24:30" for the
    764     wee hours of the morning, to more-significant differences such as <a
    765     href="https://www.pri.org/stories/2015-01-30/if-you-have-meeting-ethiopia-you-better-double-check-time">the
    766     east African practice of starting the day at dawn</a>, renumbering
    767     the Western 06:00 to be 12:00. These practices are largely outside
    768     the scope of the <code><abbr>tz</abbr></code> code and data, which
    769     provide only limited support for date and time localization
    770     such as that required by POSIX.
    771     If <abbr>DST</abbr> is not used a different time zone
    772     can often do the trick; for example, in Kenya a <code>TZ</code> setting
    773     like <code>&lt;-03&gt;3</code> or <code>America/Cayenne</code> starts
    774     the day six hours later than <code>Africa/Nairobi</code> does.
    775   </li>
    776   <li>
    777     Early clocks were less reliable, and data entries do not represent
    778     clock error.
    779   </li>
    780   <li>
    781     The <code><abbr>tz</abbr></code> database assumes Universal Time
    782     (<abbr>UT</abbr>) as an origin, even though <abbr>UT</abbr> is not
    783     standardized for older timestamps.
    784     In the <code><abbr>tz</abbr></code> database commentary,
    785     <abbr>UT</abbr> denotes a family of time standards that includes
    786     Coordinated Universal Time (<abbr>UTC</abbr>) along with other
    787     variants such as <abbr>UT1</abbr> and <abbr>GMT</abbr>,
    788     with days starting at midnight.
    789     Although <abbr>UT</abbr> equals <abbr>UTC</abbr> for modern
    790     timestamps, <abbr>UTC</abbr> was not defined until 1960, so
    791     commentary uses the more-general abbreviation <abbr>UT</abbr> for
    792     timestamps that might predate 1960.
    793     Since <abbr>UT</abbr>, <abbr>UT1</abbr>, etc. disagree slightly,
    794     and since pre-1972 <abbr>UTC</abbr> seconds varied in length,
    795     interpretation of older timestamps can be problematic when
    796     subsecond accuracy is needed.
    797   </li>
    798   <li>
    799     Civil time was not based on atomic time before 1972, and we do not
    800     know the history of
    801     <a href="https://en.wikipedia.org/wiki/Earth's_rotation">earth's
    802     rotation</a> accurately enough to map <a
    803     href="https://en.wikipedia.org/wiki/International_System_of_Units"><abbr
    804     title="International System of Units">SI</abbr></a> seconds to
    805     historical <a href="https://en.wikipedia.org/wiki/Solar_time">solar time</a>
    806     to more than about one-hour accuracy.
    807     See: Stephenson FR, Morrison LV, Hohenkerk CY.
    808     <a href="https://dx.doi.org/10.1098/rspa.2016.0404">Measurement of
    809     the Earth's rotation: 720 BC to AD 2015</a>.
    810     <cite>Proc Royal Soc A</cite>. 2016 Dec 7;472:20160404.
    811     Also see: Espenak F. <a
    812     href="https://eclipse.gsfc.nasa.gov/SEhelp/uncertainty2004.html">Uncertainty
    813     in Delta T (T)</a>.
    814   </li>
    815   <li>
    816     The relationship between POSIX time (that is, <abbr>UTC</abbr> but
    817     ignoring <a href="https://en.wikipedia.org/wiki/Leap_second">leap
    818     seconds</a>) and <abbr>UTC</abbr> is not agreed upon after 1972.
    819     Although the POSIX
    820     clock officially stops during an inserted leap second, at least one
    821     proposed standard has it jumping back a second instead; and in
    822     practice POSIX clocks more typically either progress glacially during
    823     a leap second, or are slightly slowed while near a leap second.
    824   </li>
    825   <li>
    826     The <code><abbr>tz</abbr></code> database does not represent how
    827     uncertain its information is.
    828     Ideally it would contain information about when data entries are
    829     incomplete or dicey.
    830     Partial temporal knowledge is a field of active research, though,
    831     and it is not clear how to apply it here.
    832   </li>
    833 </ul>
    834 
    835 <p>
    836 In short, many, perhaps most, of the <code><abbr>tz</abbr></code>
    837 database's pre-1970 and future timestamps are either wrong or
    838 misleading.
    839 Any attempt to pass the
    840 <code><abbr>tz</abbr></code> database off as the definition of time
    841 should be unacceptable to anybody who cares about the facts.
    842 In particular, the <code><abbr>tz</abbr></code> database's
    843 <abbr>LMT</abbr> offsets should not be considered meaningful, and
    844 should not prompt creation of timezones
    845 merely because two locations
    846 differ in <abbr>LMT</abbr> or transitioned to standard time at
    847 different dates.
    848 </p>
    849 </section>
    850 
    851 <section>
    852   <h2 id="functions">Time and date functions</h2>
    853 <p>
    854 The <code><abbr>tz</abbr></code> code contains time and date functions
    855 that are upwards compatible with those of POSIX.
    856 Code compatible with this package is already
    857 <a href="tz-link.html#tzdb">part of many platforms</a>, where the
    858 primary use of this package is to update obsolete time-related files.
    859 To do this, you may need to compile the time zone compiler
    860 '<code>zic</code>' supplied with this package instead of using the
    861 system '<code>zic</code>', since the format of <code>zic</code>'s
    862 input is occasionally extended, and a platform may still be shipping
    863 an older <code>zic</code>.
    864 </p>
    865 
    866 <h3 id="POSIX">POSIX properties and limitations</h3>
    867 <ul>
    868   <li>
    869     <p>
    870     In POSIX, time display in a process is controlled by the
    871     environment variable <code>TZ</code>.
    872     Unfortunately, the POSIX
    873     <code>TZ</code> string takes a form that is hard to describe and
    874     is error-prone in practice.
    875     Also, POSIX <code>TZ</code> strings cannot deal with daylight
    876     saving time rules not based on the Gregorian calendar (as in
    877     Iran), or with situations where more than two time zone
    878     abbreviations or <abbr>UT</abbr> offsets are used in an area.
    879     </p>
    880 
    881     <p>
    882     The POSIX <code>TZ</code> string takes the following form:
    883     </p>
    884 
    885     <p>
    886     <var>stdoffset</var>[<var>dst</var>[<var>offset</var>][<code>,</code><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]]]
    887     </p>
    888 
    889     <p>
    890     where:
    891     </p>
    892 
    893     <dl>
    894       <dt><var>std</var> and <var>dst</var></dt><dd>
    895 	are 3 or more characters specifying the standard
    896 	and daylight saving time (<abbr>DST</abbr>) zone abbreviations.
    897 	Starting with POSIX.1-2001, <var>std</var> and <var>dst</var>
    898 	may also be in a quoted form like '<code>&lt;+09&gt;</code>';
    899 	this allows "<code>+</code>" and "<code>-</code>" in the names.
    900       </dd>
    901       <dt><var>offset</var></dt><dd>
    902 	is of the form
    903 	'<code>[&plusmn;]<var>hh</var>:[<var>mm</var>[:<var>ss</var>]]</code>'
    904 	and specifies the offset west of <abbr>UT</abbr>.
    905 	'<var>hh</var>' may be a single digit;
    906 	0&le;<var>hh</var>&le;24.
    907 	The default <abbr>DST</abbr> offset is one hour ahead of
    908 	standard time.
    909       </dd>
    910       <dt><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]</dt><dd>
    911 	specifies the beginning and end of <abbr>DST</abbr>.
    912 	If this is absent, the system supplies its own ruleset
    913 	for <abbr>DST</abbr>, and its rules can differ from year to year;
    914 	typically <abbr>US</abbr> <abbr>DST</abbr> rules are used.
    915       </dd>
    916       <dt><var>time</var></dt><dd>
    917 	takes the form
    918 	'<var>hh</var><code>:</code>[<var>mm</var>[<code>:</code><var>ss</var>]]'
    919 	and defaults to 02:00.
    920 	This is the same format as the offset, except that a
    921 	leading '<code>+</code>' or '<code>-</code>' is not allowed.
    922       </dd>
    923       <dt><var>date</var></dt><dd>
    924 	takes one of the following forms:
    925 	<dl>
    926 	  <dt>J<var>n</var> (1&le;<var>n</var>&le;365)</dt><dd>
    927 	    origin-1 day number not counting February 29
    928 	  </dd>
    929 	  <dt><var>n</var> (0&le;<var>n</var>&le;365)</dt><dd>
    930 	    origin-0 day number counting February 29 if present
    931 	  </dd>
    932 	  <dt><code>M</code><var>m</var><code>.</code><var>n</var><code>.</code><var>d</var>
    933 	    (0[Sunday]&le;<var>d</var>&le;6[Saturday], 1&le;<var>n</var>&le;5,
    934 	    1&le;<var>m</var>&le;12)</dt><dd>
    935 	    for the <var>d</var>th day of week <var>n</var> of
    936 	    month <var>m</var> of the year, where week 1 is the first
    937 	    week in which day <var>d</var> appears, and
    938 	    '<code>5</code>' stands for the last week in which
    939 	    day <var>d</var> appears (which may be either the 4th or
    940 	    5th week).
    941 	    Typically, this is the only useful form; the <var>n</var>
    942 	    and <code>J</code><var>n</var> forms are rarely used.
    943 	  </dd>
    944 	</dl>
    945       </dd>
    946     </dl>
    947 
    948     <p>
    949     Here is an example POSIX <code>TZ</code> string for New
    950     Zealand after 2007.
    951     It says that standard time (<abbr>NZST</abbr>) is 12 hours ahead
    952     of <abbr>UT</abbr>, and that daylight saving time
    953     (<abbr>NZDT</abbr>) is observed from September's last Sunday at
    954     02:00 until April's first Sunday at 03:00:
    955     </p>
    956 
    957     <pre><code>TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'</code></pre>
    958 
    959     <p>
    960     This POSIX <code>TZ</code> string is hard to remember, and
    961     mishandles some timestamps before 2008.
    962     With this package you can use this instead:
    963     </p>
    964 
    965     <pre><code>TZ='Pacific/Auckland'</code></pre>
    966   </li>
    967   <li>
    968     POSIX does not define the <abbr>DST</abbr> transitions
    969     for <code>TZ</code> values like
    970     "<code>EST5EDT</code>".
    971     Traditionally the current <abbr>US</abbr> <abbr>DST</abbr> rules
    972     were used to interpret such values, but this meant that the
    973     <abbr>US</abbr> <abbr>DST</abbr> rules were compiled into each
    974     program that did time conversion. This meant that when
    975     <abbr>US</abbr> time conversion rules changed (as in the United
    976     States in 1987), all programs that did time conversion had to be
    977     recompiled to ensure proper results.
    978   </li>
    979   <li>
    980     The <code>TZ</code> environment variable is process-global, which
    981     makes it hard to write efficient, thread-safe applications that
    982     need access to multiple timezones.
    983   </li>
    984   <li>
    985     In POSIX, there is no tamper-proof way for a process to learn the
    986     system's best idea of local (wall clock) time.
    987     This is important for applications that an administrator wants
    988     used only at certain times &ndash; without regard to whether the
    989     user has fiddled the
    990     <code>TZ</code> environment variable.
    991     While an administrator can "do everything in <abbr>UT</abbr>" to
    992     get around the problem, doing so is inconvenient and precludes
    993     handling daylight saving time shifts &ndash; as might be required to
    994     limit phone calls to off-peak hours.
    995   </li>
    996   <li>
    997     POSIX provides no convenient and efficient way to determine
    998     the <abbr>UT</abbr> offset and time zone abbreviation of arbitrary
    999     timestamps, particularly for timezones
   1000     that do not fit into the POSIX model.
   1001   </li>
   1002   <li>
   1003     POSIX requires that <code>time_t</code> clock counts exclude leap
   1004     seconds.
   1005   </li>
   1006   <li>
   1007     The <code><abbr>tz</abbr></code> code attempts to support all the
   1008     <code>time_t</code> implementations allowed by POSIX.
   1009     The <code>time_t</code> type represents a nonnegative count of seconds
   1010     since 1970-01-01 00:00:00 <abbr>UTC</abbr>, ignoring leap seconds.
   1011     In practice, <code>time_t</code> is usually a signed 64- or 32-bit
   1012     integer; 32-bit signed <code>time_t</code> values stop working after
   1013     2038-01-19 03:14:07 <abbr>UTC</abbr>, so new implementations these
   1014     days typically use a signed 64-bit integer.
   1015     Unsigned 32-bit integers are used on one or two platforms, and 36-bit
   1016     and 40-bit integers are also used occasionally.
   1017     Although earlier POSIX versions allowed <code>time_t</code> to be a
   1018     floating-point type, this was not supported by any practical system,
   1019     and POSIX.1-2013 and the <code><abbr>tz</abbr></code> code both
   1020     require <code>time_t</code> to be an integer type.
   1021   </li>
   1022 </ul>
   1023 
   1024 <h3 id="POSIX-extensions">Extensions to POSIX in the
   1025 <code><abbr>tz</abbr></code> code</h3>
   1026 <ul>
   1027   <li>
   1028     <p>
   1029     The <code>TZ</code> environment variable is used in generating
   1030     the name of a file from which time-related information is read
   1031     (or is interpreted  la POSIX); <code>TZ</code> is no longer
   1032     constrained to be a string containing abbreviations
   1033     and numeric data as described <a href="#POSIX">above</a>.
   1034     The file's format is <dfn><abbr>TZif</abbr></dfn>,
   1035     a timezone information format that contains binary data; see
   1036     <a href="https://tools.ietf.org/html/8536">Internet
   1037     <abbr>RFC</abbr> 8536</a>.
   1038     The daylight saving time rules to be used for a
   1039     particular timezone are encoded in the
   1040     <abbr>TZif</abbr> file; the format of the file allows <abbr>US</abbr>,
   1041     Australian, and other rules to be encoded, and
   1042     allows for situations where more than two time zone
   1043     abbreviations are used.
   1044     </p>
   1045     <p>
   1046     It was recognized that allowing the <code>TZ</code> environment
   1047     variable to take on values such as '<code>America/New_York</code>'
   1048     might cause "old" programs (that expect <code>TZ</code> to have a
   1049     certain form) to operate incorrectly; consideration was given to using
   1050     some other environment variable (for example, <code>TIMEZONE</code>)
   1051     to hold the string used to generate the <abbr>TZif</abbr> file's name.
   1052     In the end, however, it was decided to continue using
   1053     <code>TZ</code>: it is widely used for time zone purposes;
   1054     separately maintaining both <code>TZ</code>
   1055     and <code>TIMEZONE</code> seemed a nuisance; and systems where
   1056     "new" forms of <code>TZ</code> might cause problems can simply
   1057     use legacy <code>TZ</code> values such as "<code>EST5EDT</code>" which
   1058     can be used by "new" programs as well as by "old" programs that
   1059     assume pre-POSIX <code>TZ</code> values.
   1060     </p>
   1061   </li>
   1062   <li>
   1063     The code supports platforms with a <abbr>UT</abbr> offset member
   1064     in <code>struct tm</code>, e.g., <code>tm_gmtoff</code>.
   1065   </li>
   1066   <li>
   1067     The code supports platforms with a time zone abbreviation member in
   1068     <code>struct tm</code>, e.g., <code>tm_zone</code>.
   1069   </li>
   1070   <li>
   1071     Functions <code>tzalloc</code>, <code>tzfree</code>,
   1072     <code>localtime_rz</code>, and <code>mktime_z</code> for
   1073     more-efficient thread-safe applications that need to use multiple
   1074     timezones.
   1075     The <code>tzalloc</code> and <code>tzfree</code> functions
   1076     allocate and free objects of type <code>timezone_t</code>,
   1077     and <code>localtime_rz</code> and <code>mktime_z</code> are
   1078     like <code>localtime_r</code> and <code>mktime</code> with an
   1079     extra <code>timezone_t</code> argument.
   1080     The functions were inspired by <a href="https://netbsd.org/">NetBSD</a>.
   1081   </li>
   1082   <li>
   1083     Negative <code>time_t</code> values are supported, on systems
   1084     where <code>time_t</code> is signed.
   1085   </li>
   1086   <li>
   1087     These functions can account for leap seconds;
   1088     see <a href="#leapsec">Leap seconds</a> below.
   1089   </li>
   1090 </ul>
   1091 
   1092 <h3 id="vestigial">POSIX features no longer needed</h3>
   1093 <p>
   1094 POSIX and <a href="https://en.wikipedia.org/wiki/ISO_C"><abbr>ISO</abbr> C</a>
   1095 define some <a href="https://en.wikipedia.org/wiki/API"><abbr
   1096 title="application programming interface">API</abbr>s</a> that are vestigial:
   1097 they are not needed, and are relics of a too-simple model that does
   1098 not suffice to handle many real-world timestamps.
   1099 Although the <code><abbr>tz</abbr></code> code supports these
   1100 vestigial <abbr>API</abbr>s for backwards compatibility, they should
   1101 be avoided in portable applications.
   1102 The vestigial <abbr>API</abbr>s are:
   1103 </p>
   1104 <ul>
   1105   <li>
   1106     The POSIX <code>tzname</code> variable does not suffice and is no
   1107     longer needed.
   1108     To get a timestamp's time zone abbreviation, consult
   1109     the <code>tm_zone</code> member if available; otherwise,
   1110     use <code>strftime</code>'s <code>"%Z"</code> conversion
   1111     specification.
   1112   </li>
   1113   <li>
   1114     The POSIX <code>daylight</code> and <code>timezone</code>
   1115     variables do not suffice and are no longer needed.
   1116     To get a timestamp's <abbr>UT</abbr> offset, consult
   1117     the <code>tm_gmtoff</code> member if available; otherwise,
   1118     subtract values returned by <code>localtime</code>
   1119     and <code>gmtime</code> using the rules of the Gregorian calendar,
   1120     or use <code>strftime</code>'s <code>"%z"</code> conversion
   1121     specification if a string like <code>"+0900"</code> suffices.
   1122   </li>
   1123   <li>
   1124     The <code>tm_isdst</code> member is almost never needed and most of
   1125     its uses should be discouraged in favor of the abovementioned
   1126     <abbr>API</abbr>s.
   1127     Although it can still be used in arguments to
   1128     <code>mktime</code> to disambiguate timestamps near
   1129     a <abbr>DST</abbr> transition when the clock jumps back, this
   1130     disambiguation does not work when standard time itself jumps back,
   1131     which can occur when a location changes to a time zone with a
   1132     lesser <abbr>UT</abbr> offset.
   1133   </li>
   1134 </ul>
   1135 
   1136 <h3 id="other-portability">Other portability notes</h3>
   1137 <ul>
   1138   <li>
   1139     The <a href="https://en.wikipedia.org/wiki/Version_7_Unix">7th Edition
   1140     UNIX</a> <code>timezone</code> function is not present in this
   1141     package; it is impossible to reliably map <code>timezone</code>'s
   1142     arguments (a "minutes west of <abbr>GMT</abbr>" value and a
   1143     "daylight saving time in effect" flag) to a time zone
   1144     abbreviation, and we refuse to guess.
   1145     Programs that in the past used the <code>timezone</code> function
   1146     may now examine <code>localtime(&amp;clock)-&gt;tm_zone</code>
   1147     (if <code>TM_ZONE</code> is defined) or
   1148     <code>tzname[localtime(&amp;clock)-&gt;tm_isdst]</code>
   1149     (if <code>HAVE_TZNAME</code> is nonzero) to learn the correct time
   1150     zone abbreviation to use.
   1151   </li>
   1152   <li>
   1153     The <a
   1154     href="https://en.wikipedia.org/wiki/History_of_the_Berkeley_Software_Distribution#4.2BSD"><abbr>4.2BSD</abbr></a>
   1155     <code>gettimeofday</code> function is not
   1156     used in this package.
   1157     This formerly let users obtain the current <abbr>UTC</abbr> offset
   1158     and <abbr>DST</abbr> flag, but this functionality was removed in
   1159     later versions of <abbr>BSD</abbr>.
   1160   </li>
   1161   <li>
   1162     In <abbr>SVR2</abbr>, time conversion fails for near-minimum or
   1163     near-maximum <code>time_t</code> values when doing conversions
   1164     for places that do not use <abbr>UT</abbr>.
   1165     This package takes care to do these conversions correctly.
   1166     A comment in the source code tells how to get compatibly wrong
   1167     results.
   1168   </li>
   1169   <li>
   1170     The functions that are conditionally compiled
   1171     if <code>STD_INSPIRED</code> is defined should, at this point, be
   1172     looked on primarily as food for thought.
   1173     They are not in any sense "standard compatible" &ndash; some are
   1174     not, in fact, specified in <em>any</em> standard.
   1175     They do, however, represent responses of various authors to
   1176     standardization proposals.
   1177   </li>
   1178   <li>
   1179     Other time conversion proposals, in particular those supported by the
   1180     <a href="https://howardhinnant.github.io/date/tz.html">Time Zone
   1181     Database Parser</a>, offer a wider selection of functions
   1182     that provide capabilities beyond those provided here.
   1183     The absence of such functions from this package is not meant to
   1184     discourage the development, standardization, or use of such
   1185     functions.
   1186     Rather, their absence reflects the decision to make this package
   1187     contain valid extensions to POSIX, to ensure its broad
   1188     acceptability.
   1189     If more powerful time conversion functions can be standardized, so
   1190     much the better.
   1191   </li>
   1192 </ul>
   1193 </section>
   1194 
   1195 <section>
   1196   <h2 id="stability">Interface stability</h2>
   1197 <p>
   1198 The <code><abbr>tz</abbr></code> code and data supply the following interfaces:
   1199 </p>
   1200 
   1201 <ul>
   1202   <li>
   1203     A set of timezone names as per
   1204       "<a href="#naming">Timezone identifiers</a>" above.
   1205   </li>
   1206   <li>
   1207     Library functions described in "<a href="#functions">Time and date
   1208       functions</a>" above.
   1209   </li>
   1210   <li>
   1211     The programs <code>tzselect</code>, <code>zdump</code>,
   1212     and <code>zic</code>, documented in their man pages.
   1213   </li>
   1214   <li>
   1215     The format of <code>zic</code> input files, documented in
   1216     the <code>zic</code> man page.
   1217   </li>
   1218   <li>
   1219     The format of <code>zic</code> output files, documented in
   1220     the <code>tzfile</code> man page.
   1221   </li>
   1222   <li>
   1223     The format of zone table files, documented in <code>zone1970.tab</code>.
   1224   </li>
   1225   <li>
   1226     The format of the country code file, documented in <code>iso3166.tab</code>.
   1227   </li>
   1228   <li>
   1229     The version number of the code and data, as the first line of
   1230     the text file '<code>version</code>' in each release.
   1231   </li>
   1232 </ul>
   1233 
   1234 <p>
   1235 Interface changes in a release attempt to preserve compatibility with
   1236 recent releases.
   1237 For example, <code><abbr>tz</abbr></code> data files typically do not
   1238 rely on recently-added <code>zic</code> features, so that users can
   1239 run older <code>zic</code> versions to process newer data files.
   1240 <a href="tz-link.html#download">Downloading
   1241 the <code><abbr>tz</abbr></code> database</a> describes how releases
   1242 are tagged and distributed.
   1243 </p>
   1244 
   1245 <p>
   1246 Interfaces not listed above are less stable.
   1247 For example, users should not rely on particular <abbr>UT</abbr>
   1248 offsets or abbreviations for timestamps, as data entries are often
   1249 based on guesswork and these guesses may be corrected or improved.
   1250 </p>
   1251 
   1252 <p>
   1253 Timezone boundaries are not part of the stable interface.
   1254 For example, even though the <samp>Asia/Bangkok</samp> timezone
   1255 currently includes Chang Mai, Hanoi, and Phnom Penh, this is not part
   1256 of the stable interface and the timezone can split at any time.
   1257 If a calendar application records a future event in some location other
   1258 than Bangkok by putting "<samp>Asia/Bangkok</samp>" in the event's record,
   1259 the application should be robust in the presence of timezone splits
   1260 between now and the future time.
   1261 </p>
   1262 </section>
   1263 
   1264 <section>
   1265   <h2 id="leapsec">Leap seconds</h2>
   1266 <p>
   1267 The <code><abbr>tz</abbr></code> code and data can account for leap seconds,
   1268 thanks to code contributed by Bradley White.
   1269 However, the leap second support of this package is rarely used directly
   1270 because POSIX requires leap seconds to be excluded and many
   1271 software packages would mishandle leap seconds if they were present.
   1272 Instead, leap seconds are more commonly handled by occasionally adjusting
   1273 the operating system kernel clock as described in
   1274 <a href="tz-link.html#precision">Precision timekeeping</a>,
   1275 and this package by default installs a <samp>leapseconds</samp> file
   1276 commonly used by
   1277 <a href="http://www.ntp.org"><abbr title="Network Time Protocol">NTP</abbr></a>
   1278 software that adjusts the kernel clock.
   1279 However, kernel-clock twiddling approximates UTC only roughly,
   1280 and systems needing more-precise UTC can use this package's leap
   1281 second support directly.
   1282 </p>
   1283 
   1284 <p>
   1285 The directly-supported mechanism assumes that <code>time_t</code>
   1286 counts of seconds since the POSIX epoch normally include leap seconds,
   1287 as opposed to POSIX <code>time_t</code> counts which exclude leap seconds.
   1288 This modified timescale is converted to <abbr>UTC</abbr>
   1289 at the same point that time zone and <abbr>DST</abbr>
   1290 adjustments are applied &ndash;
   1291 namely, at calls to <code>localtime</code> and analogous functions &ndash;
   1292 and the process is driven by leap second information
   1293 stored in alternate versions of the <abbr>TZif</abbr> files.
   1294 Because a leap second adjustment may be needed even
   1295 if no time zone correction is desired,
   1296 calls to <code>gmtime</code>-like functions
   1297 also need to consult a <abbr>TZif</abbr> file,
   1298 conventionally named <samp><abbr>GMT</abbr></samp>,
   1299 to see whether leap second corrections are needed.
   1300 To convert an application's <code>time_t</code> timestamps to or from
   1301 POSIX <code>time_t</code> timestamps (for use when, say,
   1302 embedding or interpreting timestamps in portable
   1303 <a href="https://en.wikipedia.org/wiki/Tar_(computing)"><code>tar</code></a>
   1304 files),
   1305 the application can call the utility functions
   1306 <code>time2posix</code> and <code>posix2time</code>
   1307 included with this package.
   1308 </p>
   1309 
   1310 <p>
   1311 If the POSIX-compatible <abbr>TZif</abbr> file set is installed
   1312 in a directory whose basename is <samp>zoneinfo</samp>, the
   1313 leap-second-aware file set is by default installed in a separate
   1314 directory <samp>zoneinfo-leaps</samp>.
   1315 Although each process can have its own time zone by setting
   1316 its <code>TZ</code> environment variable, there is no support for some
   1317 processes being leap-second aware while other processes are
   1318 POSIX-compatible; the leap-second choice is system-wide.
   1319 So if you configure your kernel to count leap seconds, you should also
   1320 discard <samp>zoneinfo</samp> and rename <samp>zoneinfo-leaps</samp>
   1321 to <samp>zoneinfo</samp>.
   1322 Alternatively, you can install just one set of <abbr>TZif</abbr> files
   1323 in the first place; see the <code>REDO</code> variable in this package's
   1324 <a href="https://en.wikipedia.org/wiki/Makefile">makefile</a>.
   1325 </p>
   1326 </section>
   1327 
   1328 <section>
   1329   <h2 id="calendar">Calendrical issues</h2>
   1330 <p>
   1331 Calendrical issues are a bit out of scope for a time zone database,
   1332 but they indicate the sort of problems that we would run into if we
   1333 extended the time zone database further into the past.
   1334 An excellent resource in this area is Edward M. Reingold
   1335 and Nachum Dershowitz, <cite><a
   1336 href="https://www.cambridge.org/fr/academic/subjects/computer-science/computing-general-interest/calendrical-calculations-ultimate-edition-4th-edition">Calendrical
   1337 Calculations: The Ultimate Edition</a></cite>, Cambridge University Press (2018).
   1338 Other information and sources are given in the file '<code>calendars</code>'
   1339 in the <code><abbr>tz</abbr></code> distribution.
   1340 They sometimes disagree.
   1341 </p>
   1342 </section>
   1343 
   1344 <section>
   1345   <h2 id="planets">Time and time zones on other planets</h2>
   1346 <p>
   1347 Some people's work schedules have used
   1348 <a href="https://en.wikipedia.org/wiki/Timekeeping_on_Mars">Mars time</a>.
   1349 Jet Propulsion Laboratory (JPL) coordinators kept Mars time on
   1350 and off during the
   1351 <a href="https://en.wikipedia.org/wiki/Mars_Pathfinder">Mars
   1352 Pathfinder</a> mission (1997).
   1353 Some of their family members also adapted to Mars time.
   1354 Dozens of special Mars watches were built for JPL workers who kept
   1355 Mars time during the
   1356 <a href="https://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars
   1357 Exploration Rovers (MER)</a> mission (2004&ndash;2018).
   1358 These timepieces looked like normal Seikos and Citizens but were adjusted
   1359 to use Mars seconds rather than terrestrial seconds, although
   1360 unfortunately the adjusted watches were unreliable and appear to have
   1361 had only limited use.
   1362 </p>
   1363 
   1364 <p>
   1365 A Mars solar day is called a "sol" and has a mean period equal to
   1366 about 24 hours 39 minutes 35.244 seconds in terrestrial time.
   1367 It is divided into a conventional 24-hour clock, so each Mars second
   1368 equals about 1.02749125 terrestrial seconds.
   1369 (One MER worker noted, "If I am working Mars hours, and Mars hours are
   1370 2.5% more than Earth hours, shouldn't I get an extra 2.5% pay raise?")
   1371 </p>
   1372 
   1373 <p>
   1374 The <a href="https://en.wikipedia.org/wiki/Prime_meridian">prime
   1375 meridian</a> of Mars goes through the center of the crater
   1376 <a href="https://en.wikipedia.org/wiki/Airy-0">Airy-0</a>, named in
   1377 honor of the British astronomer who built the Greenwich telescope that
   1378 defines Earth's prime meridian.
   1379 Mean solar time on the Mars prime meridian is
   1380 called Mars Coordinated Time (<abbr>MTC</abbr>).
   1381 </p>
   1382 
   1383 <p>
   1384 Each landed mission on Mars has adopted a different reference for
   1385 solar timekeeping, so there is no real standard for Mars time zones.
   1386 For example, the MER mission defined two time zones "Local
   1387 Solar Time A" and "Local Solar Time B" for its two missions, each zone
   1388 designed so that its time equals local true solar time at
   1389 approximately the middle of the nominal mission.
   1390 The A and B zones differ enough so that an MER worker assigned to
   1391 the A zone might suffer "Mars lag" when switching to work in the B zone.
   1392 Such a "time zone" is not particularly suited for any application
   1393 other than the mission itself.
   1394 </p>
   1395 
   1396 <p>
   1397 Many calendars have been proposed for Mars, but none have achieved
   1398 wide acceptance.
   1399 Astronomers often use Mars Sol Date (<abbr>MSD</abbr>) which is a
   1400 sequential count of Mars solar days elapsed since about 1873-12-29
   1401 12:00 <abbr>GMT</abbr>.
   1402 </p>
   1403 
   1404 <p>
   1405 In our solar system, Mars is the planet with time and calendar most
   1406 like Earth's.
   1407 On other planets, Sun-based time and calendars would work quite
   1408 differently.
   1409 For example, although Mercury's
   1410 <a href="https://en.wikipedia.org/wiki/Rotation_period">sidereal
   1411 rotation period</a> is 58.646 Earth days, Mercury revolves around the
   1412 Sun so rapidly that an observer on Mercury's equator would see a
   1413 sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a
   1414 Mercury day.
   1415 Venus is more complicated, partly because its rotation is slightly
   1416 <a href="https://en.wikipedia.org/wiki/Retrograde_motion">retrograde</a>:
   1417 its year is 1.92 of its days.
   1418 Gas giants like Jupiter are trickier still, as their polar and
   1419 equatorial regions rotate at different rates, so that the length of a
   1420 day depends on latitude.
   1421 This effect is most pronounced on Neptune, where the day is about 12
   1422 hours at the poles and 18 hours at the equator.
   1423 </p>
   1424 
   1425 <p>
   1426 Although the <code><abbr>tz</abbr></code> database does not support
   1427 time on other planets, it is documented here in the hopes that support
   1428 will be added eventually.
   1429 </p>
   1430 
   1431 <p>
   1432 Sources for time on other planets:
   1433 </p>
   1434 
   1435 <ul>
   1436   <li>
   1437     Michael Allison and Robert Schmunk,
   1438     "<a href="https://www.giss.nasa.gov/tools/mars24/help/notes.html">Technical
   1439       Notes on Mars Solar Time as Adopted by the Mars24 Sunclock</a>"
   1440     (2020-03-08).
   1441   </li>
   1442   <li>
   1443     Zara Mirmalek,
   1444     <em><a href="https://mitpress.mit.edu/books/making-time-mars">Making
   1445 	Time on Mars</a></em>, MIT Press (March 2020), ISBN 978-0262043854.
   1446   </li>
   1447   <li>
   1448     Jia-Rui Chong,
   1449     "<a href="https://www.latimes.com/archives/la-xpm-2004-jan-14-sci-marstime14-story.html">Workdays
   1450     Fit for a Martian</a>", <cite>Los Angeles Times</cite>
   1451     (2004-01-14), pp A1, A20&ndash;A21.
   1452   </li>
   1453   <li>
   1454     Tom Chmielewski,
   1455     "<a href="https://www.theatlantic.com/technology/archive/2015/02/jet-lag-is-worse-on-mars/386033/">Jet
   1456     Lag Is Worse on Mars</a>", <cite>The Atlantic</cite> (2015-02-26)
   1457   </li>
   1458   <li>
   1459     Matt Williams,
   1460     "<a href="https://www.universetoday.com/37481/days-of-the-planets/">How
   1461     long is a day on the other planets of the solar system?</a>"
   1462     (2016-01-20).
   1463   </li>
   1464 </ul>
   1465 </section>
   1466 
   1467 <footer>
   1468   <hr>
   1469   This file is in the public domain, so clarified as of 2009-05-17 by
   1470   Arthur David Olson.
   1471 </footer>
   1472 </body>
   1473 </html>
   1474