Home | History | Annotate | Line # | Download | only in time
theory.html revision 1.18
      1 <!DOCTYPE html>
      2 <html lang="en">
      3 <head>
      4   <title>Theory and pragmatics of the tz code and data</title>
      5   <meta charset="UTF-8">
      6   <style>
      7     pre {margin-left: 2em; white-space: pre-wrap;}
      8   </style>
      9 </head>
     10 
     11 <body>
     12 <h1>Theory and pragmatics of the <code><abbr>tz</abbr></code> code and data</h1>
     13   <h3>Outline</h3>
     14   <nav>
     15     <ul>
     16       <li><a href="#scope">Scope of the <code><abbr>tz</abbr></code>
     17 	  database</a></li>
     18       <li><a href="#naming">Timezone identifiers</a></li>
     19       <li><a href="#abbreviations">Time zone abbreviations</a></li>
     20       <li><a href="#accuracy">Accuracy of the <code><abbr>tz</abbr></code>
     21 	  database</a></li>
     22       <li><a href="#functions">Time and date functions</a></li>
     23       <li><a href="#stability">Interface stability</a></li>
     24       <li><a href="#leapsec">Leap seconds</a></li>
     25       <li><a href="#calendar">Calendrical issues</a></li>
     26       <li><a href="#planets">Time and time zones off earth</a></li>
     27     </ul>
     28   </nav>
     29 
     30 <section>
     31   <h2 id="scope">Scope of the <code><abbr>tz</abbr></code> database</h2>
     32 <p>
     33 The <a
     34 href="https://www.iana.org/time-zones"><code><abbr>tz</abbr></code>
     35 database</a> attempts to record the history and predicted future of
     36 civil time scales.
     37 It organizes <a href="tz-link.html">time zone and daylight saving time
     38 data</a> by partitioning the world into <a
     39 href="https://en.wikipedia.org/wiki/List_of_tz_database_time_zones"><dfn>timezones</dfn></a>
     40 whose clocks all agree about timestamps that occur after the <a
     41 href="https://en.wikipedia.org/wiki/Unix_time">POSIX Epoch</a>
     42 (1970-01-01 00:00:00 <a
     43 href="https://en.wikipedia.org/wiki/Coordinated_Universal_Time"><abbr
     44 title="Coordinated Universal Time">UTC</abbr></a>).
     45 Although 1970 is a somewhat-arbitrary cutoff, there are significant
     46 challenges to moving the cutoff earlier even by a decade or two, due
     47 to the wide variety of local practices before computer timekeeping
     48 became prevalent.
     49 Most timezones correspond to a notable location and the database
     50 records all known clock transitions for that location;
     51 some timezones correspond instead to a fixed <abbr>UTC</abbr> offset.
     52 </p>
     53 
     54 <p>
     55 Each timezone typically corresponds to a geographical region that is
     56 smaller than a traditional time zone, because clocks in a timezone
     57 all agree after 1970 whereas a traditional time zone merely
     58 specifies current standard time. For example, applications that deal
     59 with current and future timestamps in the traditional North
     60 American mountain time zone can choose from the timezones
     61 <code>America/Denver</code> which observes US-style daylight saving
     62 time (<abbr>DST</abbr>),
     63 and <code>America/Phoenix</code> which does not observe <abbr>DST</abbr>.
     64 Applications that also deal with past timestamps in the mountain time
     65 zone can choose from over a dozen timezones, such as
     66 <code>America/Boise</code>, <code>America/Edmonton</code>, and
     67 <code>America/Hermosillo</code>, each of which currently uses mountain
     68 time but differs from other timezones for some timestamps after 1970.
     69 </p>
     70 
     71 <p>
     72 Clock transitions before 1970 are recorded for location-based timezones,
     73 because most systems support timestamps before 1970 and could
     74 misbehave if data entries were omitted for pre-1970 transitions.
     75 However, the database is not designed for and does not suffice for
     76 applications requiring accurate handling of all past times everywhere,
     77 as it would take far too much effort and guesswork to record all
     78 details of pre-1970 civil timekeeping.
     79 Although some information outside the scope of the database is
     80 collected in a file <code>backzone</code> that is distributed along
     81 with the database proper, this file is less reliable and does not
     82 necessarily follow database guidelines.
     83 </p>
     84 
     85 <p>
     86 As described below, reference source code for using the
     87 <code><abbr>tz</abbr></code> database is also available.
     88 The <code><abbr>tz</abbr></code> code is upwards compatible with <a
     89 href="https://en.wikipedia.org/wiki/POSIX">POSIX</a>, an international
     90 standard for <a
     91 href="https://en.wikipedia.org/wiki/Unix">UNIX</a>-like systems.
     92 As of this writing, the current edition of POSIX is: <a
     93 href="https://pubs.opengroup.org/onlinepubs/9699919799/"> The Open
     94 Group Base Specifications Issue 7</a>, IEEE Std 1003.1-2017, 2018
     95 Edition.
     96 Because the database's scope encompasses real-world changes to civil
     97 timekeeping, its model for describing time is more complex than the
     98 standard and daylight saving times supported by POSIX.
     99 A <code><abbr>tz</abbr></code> timezone corresponds to a ruleset that can
    100 have more than two changes per year, these changes need not merely
    101 flip back and forth between two alternatives, and the rules themselves
    102 can change at times.
    103 Whether and when a timezone changes its clock,
    104 and even the timezone's notional base offset from <abbr>UTC</abbr>,
    105 are variable.
    106 It does not always make sense to talk about a timezone's
    107 "base offset", which is not necessarily a single number.
    108 </p>
    109 
    110 </section>
    111 
    112 <section>
    113   <h2 id="naming">Timezone identifiers</h2>
    114 <p>
    115 Each timezone has a name that uniquely identifies the timezone.
    116 Inexperienced users are not expected to select these names unaided.
    117 Distributors should provide documentation and/or a simple selection
    118 interface that explains each name via a map or via descriptive text like
    119 "Czech Republic" instead of the timezone name "<code>Europe/Prague</code>".
    120 If geolocation information is available, a selection interface can
    121 locate the user on a timezone map or prioritize names that are
    122 geographically close. For an example selection interface, see the
    123 <code>tzselect</code> program in the <code><abbr>tz</abbr></code> code.
    124 The <a href="https://cldr.unicode.org">Unicode Common Locale Data
    125 Repository</a> contains data that may be useful for other selection
    126 interfaces; it maps timezone names like <code>Europe/Prague</code> to
    127 locale-dependent strings like "Prague", "Praha", "", and "".
    128 </p>
    129 
    130 <p>
    131 The naming conventions attempt to strike a balance
    132 among the following goals:
    133 </p>
    134 
    135 <ul>
    136   <li>
    137     Uniquely identify every timezone where clocks have agreed since 1970.
    138     This is essential for the intended use: static clocks keeping local
    139     civil time.
    140   </li>
    141   <li>
    142     Indicate to experts where the timezone's clocks typically are.
    143   </li>
    144   <li>
    145     Be robust in the presence of political changes.
    146     For example, names are typically not tied to countries, to avoid
    147     incompatibilities when countries change their name (e.g.,
    148     Swaziland&rarr;Eswatini) or when locations change countries (e.g., Hong
    149     Kong from UK colony to China).
    150     There is no requirement that every country or national
    151     capital must have a timezone name.
    152   </li>
    153   <li>
    154     Be portable to a wide variety of implementations.
    155   </li>
    156   <li>
    157     Use a consistent naming conventions over the entire world.
    158   </li>
    159 </ul>
    160 
    161 <p>
    162 Names normally have the form
    163 <var>AREA</var><code>/</code><var>LOCATION</var>, where
    164 <var>AREA</var> is a continent or ocean, and
    165 <var>LOCATION</var> is a specific location within the area.
    166 North and South America share the same area, '<code>America</code>'.
    167 Typical names are '<code>Africa/Cairo</code>',
    168 '<code>America/New_York</code>', and '<code>Pacific/Honolulu</code>'.
    169 Some names are further qualified to help avoid confusion; for example,
    170 '<code>America/Indiana/Petersburg</code>' distinguishes Petersburg,
    171 Indiana from other Petersburgs in America.
    172 </p>
    173 
    174 <p>
    175 Here are the general guidelines used for
    176 choosing timezone names,
    177 in decreasing order of importance:
    178 </p>
    179 
    180 <ul>
    181   <li>
    182     Use only valid POSIX file name components (i.e., the parts of
    183     names other than '<code>/</code>').
    184     Do not use the file name components '<code>.</code>' and
    185     '<code>..</code>'.
    186     Within a file name component, use only <a
    187     href="https://en.wikipedia.org/wiki/ASCII">ASCII</a> letters,
    188     '<code>.</code>', '<code>-</code>' and '<code>_</code>'.
    189     Do not use digits, as that might create an ambiguity with <a
    190     href="https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03">POSIX
    191     <code>TZ</code> strings</a>.
    192     A file name component must not exceed 14 characters or start with
    193     '<code>-</code>'.
    194     E.g., prefer <code>America/Noronha</code> to
    195     <code>America/Fernando_de_Noronha</code>.
    196     Exceptions: see the discussion of legacy names below.
    197   </li>
    198   <li>
    199     A name must not be empty, or contain '<code>//</code>', or
    200     start or end with '<code>/</code>'.
    201   </li>
    202   <li>
    203     Do not use names that differ only in case.
    204     Although the reference implementation is case-sensitive, some
    205     other implementations are not, and they would mishandle names
    206     differing only in case.
    207   </li>
    208   <li>
    209     If one name <var>A</var> is an initial prefix of another
    210     name <var>AB</var> (ignoring case), then <var>B</var> must not
    211     start with '<code>/</code>', as a regular file cannot have the
    212     same name as a directory in POSIX.
    213     For example, <code>America/New_York</code> precludes
    214     <code>America/New_York/Bronx</code>.
    215   </li>
    216   <li>
    217     Uninhabited regions like the North Pole and Bouvet Island
    218     do not need locations, since local time is not defined there.
    219   </li>
    220   <li>
    221     If all the clocks in a timezone have agreed since 1970,
    222     do not bother to include more than one timezone
    223     even if some of the clocks disagreed before 1970.
    224     Otherwise these tables would become annoyingly large.
    225   </li>
    226   <li>
    227     If boundaries between regions are fluid, such as during a war or
    228     insurrection, do not bother to create a new timezone merely
    229     because of yet another boundary change. This helps prevent table
    230     bloat and simplifies maintenance.
    231   </li>
    232   <li>
    233     If a name is ambiguous, use a less ambiguous alternative;
    234     e.g., many cities are named San Jos and Georgetown, so
    235     prefer <code>America/Costa_Rica</code> to
    236     <code>America/San_Jose</code> and <code>America/Guyana</code>
    237     to <code>America/Georgetown</code>.
    238   </li>
    239   <li>
    240     Keep locations compact.
    241     Use cities or small islands, not countries or regions, so that any
    242     future changes do not split individual locations into different
    243     timezones.
    244     E.g., prefer <code>Europe/Paris</code> to <code>Europe/France</code>,
    245     since
    246     <a href="https://en.wikipedia.org/wiki/Time_in_France#History">France
    247     has had multiple time zones</a>.
    248   </li>
    249   <li>
    250     Use mainstream English spelling, e.g., prefer
    251     <code>Europe/Rome</code> to <code>Europa/Roma</code>, and
    252     prefer <code>Europe/Athens</code> to the Greek
    253     <code>/</code> or the Romanized
    254     <code>Evrpi/Athna</code>.
    255     The POSIX file name restrictions encourage this guideline.
    256   </li>
    257   <li>
    258     Use the most populous among locations in a region,
    259     e.g., prefer <code>Asia/Shanghai</code> to
    260     <code>Asia/Beijing</code>.
    261     Among locations with similar populations, pick the best-known
    262     location, e.g., prefer <code>Europe/Rome</code> to
    263     <code>Europe/Milan</code>.
    264   </li>
    265   <li>
    266     Use the singular form, e.g., prefer <code>Atlantic/Canary</code> to
    267     <code>Atlantic/Canaries</code>.
    268   </li>
    269   <li>
    270     Omit common suffixes like '<code>_Islands</code>' and
    271     '<code>_City</code>', unless that would lead to ambiguity.
    272     E.g., prefer <code>America/Cayman</code> to
    273     <code>America/Cayman_Islands</code> and
    274     <code>America/Guatemala</code> to
    275     <code>America/Guatemala_City</code>, but prefer
    276     <code>America/Mexico_City</code> to
    277     <code>America/Mexico</code>
    278     because <a href="https://en.wikipedia.org/wiki/Time_in_Mexico">the
    279     country of Mexico has several time zones</a>.
    280   </li>
    281   <li>
    282     Use '<code>_</code>' to represent a space.
    283   </li>
    284   <li>
    285     Omit '<code>.</code>' from abbreviations in names.
    286     E.g., prefer <code>Atlantic/St_Helena</code> to
    287     <code>Atlantic/St._Helena</code>.
    288   </li>
    289   <li>
    290     Do not change established names if they only marginally violate
    291     the above guidelines.
    292     For example, do not change the existing name <code>Europe/Rome</code> to
    293     <code>Europe/Milan</code> merely because Milan's population has grown
    294     to be somewhat greater than Rome's.
    295   </li>
    296   <li>
    297     If a name is changed, put its old spelling in the
    298     '<code>backward</code>' file as a link to the new spelling.
    299     This means old spellings will continue to work.
    300     Ordinarily a name change should occur only in the rare case when
    301     a location's consensus English-language spelling changes; for example,
    302     in 2008 <code>Asia/Calcutta</code> was renamed to <code>Asia/Kolkata</code>
    303     due to long-time widespread use of the new city name instead of the old.
    304   </li>
    305 </ul>
    306 
    307 <p>
    308 Guidelines have evolved with time, and names following old versions of
    309 these guidelines might not follow the current version. When guidelines
    310 have changed, old names continue to be supported. Guideline changes
    311 have included the following:
    312 </p>
    313 
    314 <ul>
    315 <li>
    316 Older versions of this package used a different naming scheme.
    317 See the file '<code>backward</code>' for most of these older names
    318 (e.g., '<code>US/Eastern</code>' instead of '<code>America/New_York</code>').
    319 The other old-fashioned names still supported are
    320 '<code>WET</code>', '<code>CET</code>', '<code>MET</code>', and
    321 '<code>EET</code>' (see the file '<code>europe</code>').
    322 </li>
    323 
    324 <li>
    325 Older versions of this package defined legacy names that are
    326 incompatible with the first guideline of location names, but which are
    327 still supported.
    328 These legacy names are mostly defined in the file
    329 '<code>etcetera</code>'.
    330 Also, the file '<code>backward</code>' defines the legacy names
    331 '<code>Etc/GMT0</code>', '<code>Etc/GMT-0</code>', '<code>Etc/GMT+0</code>',
    332 '<code>GMT0</code>', '<code>GMT-0</code>' and '<code>GMT+0</code>',
    333 and the file '<code>northamerica</code>' defines the legacy names
    334 '<code>EST5EDT</code>', '<code>CST6CDT</code>',
    335 '<code>MST7MDT</code>', and '<code>PST8PDT</code>'.
    336 </li>
    337 
    338 <li>
    339 Older versions of these guidelines said that
    340 there should typically be at least one name for each <a
    341 href="https://en.wikipedia.org/wiki/ISO_3166-1"><abbr
    342 title="International Organization for Standardization">ISO</abbr>
    343 3166-1</a> officially assigned two-letter code for an inhabited
    344 country or territory.
    345 This old guideline has been dropped, as it was not needed to handle
    346 timestamps correctly and it increased maintenance burden.
    347 </li>
    348 </ul>
    349 
    350 <p>
    351 The file <code>zone1970.tab</code> lists geographical locations used
    352 to name timezones.
    353 It is intended to be an exhaustive list of names for geographic
    354 regions as described above; this is a subset of the timezones in the data.
    355 Although a <code>zone1970.tab</code> location's
    356 <a href="https://en.wikipedia.org/wiki/Longitude">longitude</a>
    357 corresponds to
    358 its <a href="https://en.wikipedia.org/wiki/Local_mean_time">local mean
    359 time (<abbr>LMT</abbr>)</a> offset with one hour for every 15&deg;
    360 east longitude, this relationship is not exact.
    361 The backward-compatibility file <code>zone.tab</code> is similar
    362 but conforms to the older-version guidelines related to <abbr>ISO</abbr> 3166-1;
    363 it lists only one country code per entry and unlike <code>zone1970.tab</code>
    364 it can list names defined in <code>backward</code>.
    365 </p>
    366 
    367 <p>
    368 The database defines each timezone name to be a zone, or a link to a zone.
    369 The source file <code>backward</code> defines links for backward
    370 compatibility; it does not define zones.
    371 Although <code>backward</code> was originally designed to be optional,
    372 nowadays distributions typically use it
    373 and no great weight should be attached to whether a link
    374 is defined in <code>backward</code> or in some other file.
    375 The source file <code>etcetera</code> defines names that may be useful
    376 on platforms that do not support POSIX-style <code>TZ</code> strings;
    377 no other source file other than <code>backward</code>
    378 contains links to its zones.
    379 One of <code>etcetera</code>'s names is <code>Etc/UTC</code>,
    380 used by functions like <code>gmtime</code> to obtain leap
    381 second information on platforms that support leap seconds.
    382 Another <code>etcetera</code> name, <code>GMT</code>,
    383 is used by older code releases.
    384 </p>
    385 </section>
    386 
    387 <section>
    388   <h2 id="abbreviations">Time zone abbreviations</h2>
    389 <p>
    390 When this package is installed, it generates time zone abbreviations
    391 like '<code>EST</code>' to be compatible with human tradition and POSIX.
    392 Here are the general guidelines used for choosing time zone abbreviations,
    393 in decreasing order of importance:
    394 </p>
    395 
    396 <ul>
    397   <li>
    398     Use three to six characters that are ASCII alphanumerics or
    399     '<code>+</code>' or '<code>-</code>'.
    400     Previous editions of this database also used characters like
    401     space and '<code>?</code>', but these characters have a
    402     special meaning to the
    403     <a href="https://en.wikipedia.org/wiki/Unix_shell">UNIX shell</a>
    404     and cause commands like
    405     '<code><a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#set">set</a>
    406     `<a href="https://pubs.opengroup.org/onlinepubs/9699919799/utilities/date.html">date</a>`</code>'
    407     to have unexpected effects.
    408     Previous editions of this guideline required upper-case letters, but the
    409     Congressman who introduced
    410     <a href="https://en.wikipedia.org/wiki/Chamorro_Time_Zone">Chamorro
    411     Standard Time</a> preferred "ChST", so lower-case letters are now
    412     allowed.
    413     Also, POSIX from 2001 on relaxed the rule to allow '<code>-</code>',
    414     '<code>+</code>', and alphanumeric characters from the portable
    415     character set in the current locale.
    416     In practice ASCII alphanumerics and '<code>+</code>' and
    417     '<code>-</code>' are safe in all locales.
    418 
    419     <p>
    420     In other words, in the C locale the POSIX extended regular
    421     expression <code>[-+[:alnum:]]{3,6}</code> should match the
    422     abbreviation.
    423     This guarantees that all abbreviations could have been specified by a
    424     POSIX <code>TZ</code> string.
    425     </p>
    426   </li>
    427   <li>
    428     Use abbreviations that are in common use among English-speakers,
    429     e.g., 'EST' for Eastern Standard Time in North America.
    430     We assume that applications translate them to other languages
    431     as part of the normal localization process; for example,
    432     a French application might translate 'EST' to 'HNE'.
    433 
    434     <p>
    435     <small>These abbreviations (for standard/daylight/etc. time) are:
    436       ACST/ACDT Australian Central,
    437       AST/ADT/APT/AWT/ADDT Atlantic,
    438       AEST/AEDT Australian Eastern,
    439       AHST/AHDT Alaska-Hawaii,
    440       AKST/AKDT Alaska,
    441       AWST/AWDT Australian Western,
    442       BST/BDT Bering,
    443       CAT/CAST Central Africa,
    444       CET/CEST/CEMT Central European,
    445       ChST Chamorro,
    446       CST/CDT/CWT/CPT Central [North America],
    447       CST/CDT China,
    448       GMT/BST/IST/BDST Greenwich,
    449       EAT East Africa,
    450       EST/EDT/EWT/EPT Eastern [North America],
    451       EET/EEST Eastern European,
    452       GST/GDT Guam,
    453       HST/HDT/HWT/HPT Hawaii,
    454       HKT/HKST/HKWT Hong Kong,
    455       IST India,
    456       IST/GMT Irish,
    457       IST/IDT/IDDT Israel,
    458       JST/JDT Japan,
    459       KST/KDT Korea,
    460       MET/MEST Middle European (a backward-compatibility alias for
    461 	Central European),
    462       MSK/MSD Moscow,
    463       MST/MDT/MWT/MPT Mountain,
    464       NST/NDT/NWT/NPT/NDDT Newfoundland,
    465       NST/NDT/NWT/NPT Nome,
    466       NZMT/NZST New Zealand through 1945,
    467       NZST/NZDT New Zealand 1946&ndash;present,
    468       PKT/PKST Pakistan,
    469       PST/PDT/PWT/PPT Pacific,
    470       PST/PDT Philippine,
    471       SAST South Africa,
    472       SST Samoa,
    473       UTC Universal,
    474       WAT/WAST West Africa,
    475       WET/WEST/WEMT Western European,
    476       WIB Waktu Indonesia Barat,
    477       WIT Waktu Indonesia Timur,
    478       WITA Waktu Indonesia Tengah,
    479       YST/YDT/YWT/YPT/YDDT Yukon</small>.
    480     </p>
    481   </li>
    482   <li>
    483     <p>
    484     For times taken from a city's longitude, use the
    485     traditional <var>x</var>MT notation.
    486     The only abbreviation like this in current use is '<abbr>GMT</abbr>'.
    487     The others are for timestamps before 1960,
    488     except that Monrovia Mean Time persisted until 1972.
    489     Typically, numeric abbreviations (e.g., '<code>-</code>004430' for
    490     MMT) would cause trouble here, as the numeric strings would exceed
    491     the POSIX length limit.
    492     </p>
    493 
    494     <p>
    495     <small>These abbreviations are:
    496       AMT Asuncin, Athens;
    497       BMT Baghdad, Bangkok, Batavia, Bermuda, Bern, Bogot,
    498         Brussels, Bucharest;
    499       CMT Calamarca, Caracas, Chisinau, Coln, Crdoba;
    500       DMT Dublin/Dunsink;
    501       EMT Easter;
    502       FFMT Fort-de-France;
    503       FMT Funchal;
    504       GMT Greenwich;
    505       HMT Havana, Helsinki, Horta, Howrah;
    506       IMT Irkutsk, Istanbul;
    507       JMT Jerusalem;
    508       KMT Kaunas, Kyiv, Kingston;
    509       LMT Lima, Lisbon, local;
    510       MMT Macassar, Madras, Mal, Managua, Minsk, Monrovia, Montevideo,
    511 	Moratuwa, Moscow;
    512       PLMT Ph Lin;
    513       PMT Paramaribo, Paris, Perm, Pontianak, Prague;
    514       PMMT Port Moresby;
    515       PPMT Port-au-Prince;
    516       QMT Quito;
    517       RMT Rangoon, Riga, Rome;
    518       SDMT Santo Domingo;
    519       SJMT San Jos;
    520       SMT Santiago, Simferopol, Singapore, Stanley;
    521       TBMT Tbilisi;
    522       TMT Tallinn, Tehran;
    523       WMT Warsaw.</small>
    524     </p>
    525 
    526     <p>
    527     <small>A few abbreviations also follow the pattern that
    528     <abbr>GMT</abbr>/<abbr>BST</abbr> established for time in the UK.
    529     They are:
    530       BMT/BST for Bermuda 1890&ndash;1930,
    531       CMT/BST for Calamarca Mean Time and Bolivian Summer Time
    532 	1890&ndash;1932,
    533       DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time
    534 	1880&ndash;1916,
    535       MMT/MST/MDST for Moscow 1880&ndash;1919, and
    536       RMT/LST for Riga Mean Time and Latvian Summer time 1880&ndash;1926.
    537     </small>
    538     </p>
    539   </li>
    540   <li>
    541     Use '<abbr>LMT</abbr>' for local mean time of locations before the
    542     introduction of standard time; see "<a href="#scope">Scope of the
    543     <code><abbr>tz</abbr></code> database</a>".
    544   </li>
    545   <li>
    546     If there is no common English abbreviation, use numeric offsets like
    547     <code>-</code>05 and <code>+</code>0530 that are generated
    548     by <code>zic</code>'s <code>%z</code> notation.
    549   </li>
    550   <li>
    551     Use current abbreviations for older timestamps to avoid confusion.
    552     For example, in 1910 a common English abbreviation for time
    553     in central Europe was 'MEZ' (short for both "Middle European
    554     Zone" and for "Mitteleuropische Zeit" in German).
    555     Nowadays 'CET' ("Central European Time") is more common in
    556     English, and the database uses 'CET' even for circa-1910
    557     timestamps as this is less confusing for modern users and avoids
    558     the need for determining when 'CET' supplanted 'MEZ' in common
    559     usage.
    560   </li>
    561   <li>
    562     Use a consistent style in a timezone's history.
    563     For example, if a history tends to use numeric
    564     abbreviations and a particular entry could go either way, use a
    565     numeric abbreviation.
    566   </li>
    567   <li>
    568     Use
    569     <a href="https://en.wikipedia.org/wiki/Universal_Time">Universal Time</a>
    570     (<abbr>UT</abbr>) (with time zone abbreviation '<code>-</code>00') for
    571     locations while uninhabited.
    572     The leading '<code>-</code>' is a flag that the <abbr>UT</abbr> offset is in
    573     some sense undefined; this notation is derived
    574     from <a href="https://datatracker.ietf.org/doc/html/rfc3339">Internet
    575     <abbr title="Request For Comments">RFC</abbr> 3339</a>.
    576   </li>
    577 </ul>
    578 
    579 <p>
    580 Application writers should note that these abbreviations are ambiguous
    581 in practice: e.g., 'CST' means one thing in China and something else
    582 in North America, and 'IST' can refer to time in India, Ireland or
    583 Israel.
    584 To avoid ambiguity, use numeric <abbr>UT</abbr> offsets like
    585 '<code>-</code>0600' instead of time zone abbreviations like 'CST'.
    586 </p>
    587 </section>
    588 
    589 <section>
    590   <h2 id="accuracy">Accuracy of the <code><abbr>tz</abbr></code> database</h2>
    591 <p>
    592 The <code><abbr>tz</abbr></code> database is not authoritative, and it
    593 surely has errors.
    594 Corrections are welcome and encouraged; see the file <code>CONTRIBUTING</code>.
    595 Users requiring authoritative data should consult national standards
    596 bodies and the references cited in the database's comments.
    597 </p>
    598 
    599 <p>
    600 Errors in the <code><abbr>tz</abbr></code> database arise from many sources:
    601 </p>
    602 
    603 <ul>
    604   <li>
    605     The <code><abbr>tz</abbr></code> database predicts future
    606     timestamps, and current predictions
    607     will be incorrect after future governments change the rules.
    608     For example, if today someone schedules a meeting for 13:00 next
    609     October 1, Casablanca time, and tomorrow Morocco changes its
    610     daylight saving rules, software can mess up after the rule change
    611     if it blithely relies on conversions made before the change.
    612   </li>
    613   <li>
    614     The pre-1970 entries in this database cover only a tiny sliver of how
    615     clocks actually behaved; the vast majority of the necessary
    616     information was lost or never recorded.
    617     Thousands more timezones would be needed if
    618     the <code><abbr>tz</abbr></code> database's scope were extended to
    619     cover even just the known or guessed history of standard time; for
    620     example, the current single entry for France would need to split
    621     into dozens of entries, perhaps hundreds.
    622     And in most of the world even this approach would be misleading
    623     due to widespread disagreement or indifference about what times
    624     should be observed.
    625     In her 2015 book
    626     <cite><a
    627     href="https://www.hup.harvard.edu/catalog.php?isbn=9780674286146">The
    628     Global Transformation of Time, 1870&ndash;1950</a></cite>,
    629     Vanessa Ogle writes
    630     "Outside of Europe and North America there was no system of time
    631     zones at all, often not even a stable landscape of mean times,
    632     prior to the middle decades of the twentieth century".
    633     See: Timothy Shenk, <a
    634 href="https://www.dissentmagazine.org/blog/booked-a-global-history-of-time-vanessa-ogle">Booked:
    635       A Global History of Time</a>. <cite>Dissent</cite> 2015-12-17.
    636   </li>
    637   <li>
    638     Most of the pre-1970 data entries come from unreliable sources, often
    639     astrology books that lack citations and whose compilers evidently
    640     invented entries when the true facts were unknown, without
    641     reporting which entries were known and which were invented.
    642     These books often contradict each other or give implausible entries,
    643     and on the rare occasions when they are checked they are
    644     typically found to be incorrect.
    645   </li>
    646   <li>
    647     For the UK the <code><abbr>tz</abbr></code> database relies on
    648     years of first-class work done by
    649     Joseph Myers and others; see
    650     "<a href="https://www.polyomino.org.uk/british-time/">History of
    651     legal time in Britain</a>".
    652     Other countries are not done nearly as well.
    653   </li>
    654   <li>
    655     Sometimes, different people in the same city maintain clocks
    656     that differ significantly.
    657     Historically, railway time was used by railroad companies (which
    658     did not always
    659     agree with each other), church-clock time was used for birth
    660     certificates, etc.
    661     More recently, competing political groups might disagree about
    662     clock settings. Often this is merely common practice, but
    663     sometimes it is set by law.
    664     For example, from 1891 to 1911 the <abbr>UT</abbr> offset in France
    665     was legally <abbr>UT</abbr> +00:09:21 outside train stations and
    666     <abbr>UT</abbr> +00:04:21 inside. Other examples include
    667     Chillicothe in 1920, Palm Springs in 1946/7, and Jerusalem and
    668     rmqi to this day.
    669   </li>
    670   <li>
    671     Although a named location in the <code><abbr>tz</abbr></code>
    672     database stands for the containing region, its pre-1970 data
    673     entries are often accurate for only a small subset of that region.
    674     For example, <code>Europe/London</code> stands for the United
    675     Kingdom, but its pre-1847 times are valid only for locations that
    676     have London's exact meridian, and its 1847 transition
    677     to <abbr>GMT</abbr> is known to be valid only for the L&amp;NW and
    678     the Caledonian railways.
    679   </li>
    680   <li>
    681     The <code><abbr>tz</abbr></code> database does not record the
    682     earliest time for which a timezone's
    683     data entries are thereafter valid for every location in the region.
    684     For example, <code>Europe/London</code> is valid for all locations
    685     in its region after <abbr>GMT</abbr> was made the standard time,
    686     but the date of standardization (1880-08-02) is not in the
    687     <code><abbr>tz</abbr></code> database, other than in commentary.
    688     For many timezones the earliest time of
    689     validity is unknown.
    690   </li>
    691   <li>
    692     The <code><abbr>tz</abbr></code> database does not record a
    693     region's boundaries, and in many cases the boundaries are not known.
    694     For example, the timezone
    695     <code>America/Kentucky/Louisville</code> represents a region
    696     around the city of Louisville, the boundaries of which are
    697     unclear.
    698   </li>
    699   <li>
    700     Changes that are modeled as instantaneous transitions in the
    701     <code><abbr>tz</abbr></code>
    702     database were often spread out over hours, days, or even decades.
    703   </li>
    704   <li>
    705     Even if the time is specified by law, locations sometimes
    706     deliberately flout the law.
    707   </li>
    708   <li>
    709     Early timekeeping practices, even assuming perfect clocks, were
    710     often not specified to the accuracy that the
    711     <code><abbr>tz</abbr></code> database requires.
    712   </li>
    713   <li>
    714     The <code><abbr>tz</abbr></code> database cannot represent stopped clocks.
    715     However, on 1911-03-11 at 00:00, some public-facing French clocks
    716     were changed by stopping them for a few minutes to effect a transition.
    717     The <code><abbr>tz</abbr></code> database models this via a
    718     backward transition; the relevant French legislation does not
    719     specify exactly how the transition was to occur.
    720   </li>
    721   <li>
    722     Sometimes historical timekeeping was specified more precisely
    723     than what the <code><abbr>tz</abbr></code> code can handle.
    724     For example, from 1880 to 1916 clocks in Ireland observed Dublin Mean
    725     Time (estimated to be <abbr>UT</abbr>
    726     &minus;00:25:21.1); although the <code><abbr>tz</abbr></code>
    727     source data can represent the .1 second, TZif files and the code cannot.
    728     In practice these old specifications were rarely if ever
    729     implemented to subsecond precision.
    730   </li>
    731   <li>
    732     Even when all the timestamp transitions recorded by the
    733     <code><abbr>tz</abbr></code> database are correct, the
    734     <code><abbr>tz</abbr></code> rules that generate them may not
    735     faithfully reflect the historical rules.
    736     For example, from 1922 until World War II the UK moved clocks
    737     forward the day following the third Saturday in April unless that
    738     was Easter, in which case it moved clocks forward the previous
    739     Sunday.
    740     Because the <code><abbr>tz</abbr></code> database has no
    741     way to specify Easter, these exceptional years are entered as
    742     separate <code><abbr>tz</abbr> Rule</code> lines, even though the
    743     legal rules did not change.
    744     When transitions are known but the historical rules behind them are not,
    745     the database contains <code>Zone</code> and <code>Rule</code>
    746     entries that are intended to represent only the generated
    747     transitions, not any underlying historical rules; however, this
    748     intent is recorded at best only in commentary.
    749   </li>
    750   <li>
    751     The <code><abbr>tz</abbr></code> database models time
    752     using the <a
    753     href="https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">proleptic
    754     Gregorian calendar</a> with days containing 24 equal-length hours
    755     numbered 00 through 23, except when clock transitions occur.
    756     Pre-standard time is modeled as local mean time.
    757     However, historically many people used other calendars and other timescales.
    758     For example, the Roman Empire used
    759     the <a href="https://en.wikipedia.org/wiki/Julian_calendar">Julian
    760     calendar</a>,
    761     and <a href="https://en.wikipedia.org/wiki/Roman_timekeeping">Roman
    762     timekeeping</a> had twelve varying-length daytime hours with a
    763     non-hour-based system at night.
    764     And even today, some local practices diverge from the Gregorian
    765     calendar with 24-hour days. These divergences range from
    766     relatively minor, such as Japanese bars giving times like "24:30" for the
    767     wee hours of the morning, to more-significant differences such as <a
    768     href="https://www.pri.org/stories/2015-01-30/if-you-have-meeting-ethiopia-you-better-double-check-time">the
    769     east African practice of starting the day at dawn</a>, renumbering
    770     the Western 06:00 to be 12:00. These practices are largely outside
    771     the scope of the <code><abbr>tz</abbr></code> code and data, which
    772     provide only limited support for date and time localization
    773     such as that required by POSIX.
    774     If <abbr>DST</abbr> is not used a different time zone
    775     can often do the trick; for example, in Kenya a <code>TZ</code> setting
    776     like <code>&lt;-03&gt;3</code> or <code>America/Cayenne</code> starts
    777     the day six hours later than <code>Africa/Nairobi</code> does.
    778   </li>
    779   <li>
    780     Early clocks were less reliable, and data entries do not represent
    781     clock error.
    782   </li>
    783   <li>
    784     The <code><abbr>tz</abbr></code> database assumes Universal Time
    785     (<abbr>UT</abbr>) as an origin, even though <abbr>UT</abbr> is not
    786     standardized for older timestamps.
    787     In the <code><abbr>tz</abbr></code> database commentary,
    788     <abbr>UT</abbr> denotes a family of time standards that includes
    789     Coordinated Universal Time (<abbr>UTC</abbr>) along with other
    790     variants such as <abbr>UT1</abbr> and <abbr>GMT</abbr>,
    791     with days starting at midnight.
    792     Although <abbr>UT</abbr> equals <abbr>UTC</abbr> for modern
    793     timestamps, <abbr>UTC</abbr> was not defined until 1960, so
    794     commentary uses the more general abbreviation <abbr>UT</abbr> for
    795     timestamps that might predate 1960.
    796     Since <abbr>UT</abbr>, <abbr>UT1</abbr>, etc. disagree slightly,
    797     and since pre-1972 <abbr>UTC</abbr> seconds varied in length,
    798     interpretation of older timestamps can be problematic when
    799     subsecond accuracy is needed.
    800   </li>
    801   <li>
    802     Civil time was not based on atomic time before 1972, and we do not
    803     know the history of
    804     <a href="https://en.wikipedia.org/wiki/Earth's_rotation">earth's
    805     rotation</a> accurately enough to map <a
    806     href="https://en.wikipedia.org/wiki/International_System_of_Units"><abbr
    807     title="International System of Units">SI</abbr></a> seconds to
    808     historical <a href="https://en.wikipedia.org/wiki/Solar_time">solar time</a>
    809     to more than about one-hour accuracy.
    810     See: Stephenson FR, Morrison LV, Hohenkerk CY.
    811     <a href="https://dx.doi.org/10.1098/rspa.2016.0404">Measurement of
    812     the Earth's rotation: 720 BC to AD 2015</a>.
    813     <cite>Proc Royal Soc A</cite>. 2016;472:20160404.
    814     Also see: Espenak F. <a
    815     href="https://eclipse.gsfc.nasa.gov/SEhelp/uncertainty2004.html">Uncertainty
    816     in Delta T (T)</a>.
    817   </li>
    818   <li>
    819     The relationship between POSIX time (that is, <abbr>UTC</abbr> but
    820     ignoring <a href="https://en.wikipedia.org/wiki/Leap_second">leap
    821     seconds</a>) and <abbr>UTC</abbr> is not agreed upon.
    822     This affects time stamps during the leap second era (1972&ndash;2035).
    823     Although the POSIX
    824     clock officially stops during an inserted leap second, at least one
    825     proposed standard has it jumping back a second instead; and in
    826     practice POSIX clocks more typically either progress glacially during
    827     a leap second, or are slightly slowed while near a leap second.
    828   </li>
    829   <li>
    830     The <code><abbr>tz</abbr></code> database does not represent how
    831     uncertain its information is.
    832     Ideally it would contain information about when data entries are
    833     incomplete or dicey.
    834     Partial temporal knowledge is a field of active research, though,
    835     and it is not clear how to apply it here.
    836   </li>
    837 </ul>
    838 
    839 <p>
    840 In short, many, perhaps most, of the <code><abbr>tz</abbr></code>
    841 database's pre-1970 and future timestamps are either wrong or
    842 misleading.
    843 Any attempt to pass the
    844 <code><abbr>tz</abbr></code> database off as the definition of time
    845 should be unacceptable to anybody who cares about the facts.
    846 In particular, the <code><abbr>tz</abbr></code> database's
    847 <abbr>LMT</abbr> offsets should not be considered meaningful, and
    848 should not prompt creation of timezones
    849 merely because two locations
    850 differ in <abbr>LMT</abbr> or transitioned to standard time at
    851 different dates.
    852 </p>
    853 </section>
    854 
    855 <section>
    856   <h2 id="functions">Time and date functions</h2>
    857 <p>
    858 The <code><abbr>tz</abbr></code> code contains time and date functions
    859 that are upwards compatible with those of POSIX.
    860 Code compatible with this package is already
    861 <a href="tz-link.html#tzdb">part of many platforms</a>, where the
    862 primary use of this package is to update obsolete time-related files.
    863 To do this, you may need to compile the time zone compiler
    864 '<code>zic</code>' supplied with this package instead of using the
    865 system '<code>zic</code>', since the format of <code>zic</code>'s
    866 input is occasionally extended, and a platform may still be shipping
    867 an older <code>zic</code>.
    868 </p>
    869 
    870 <h3 id="POSIX">POSIX properties and limitations</h3>
    871 <ul>
    872   <li>
    873     <p>
    874     In POSIX, time display in a process is controlled by the
    875     environment variable <code>TZ</code>.
    876     Unfortunately, the POSIX
    877     <code>TZ</code> string takes a form that is hard to describe and
    878     is error-prone in practice.
    879     Also, POSIX <code>TZ</code> strings cannot deal with daylight
    880     saving time rules not based on the Gregorian calendar (as in
    881     Morocco), or with situations where more than two time zone
    882     abbreviations or <abbr>UT</abbr> offsets are used in an area.
    883     </p>
    884 
    885     <p>
    886     The POSIX <code>TZ</code> string takes the following form:
    887     </p>
    888 
    889     <p>
    890     <var>stdoffset</var>[<var>dst</var>[<var>offset</var>][<code>,</code><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]]]
    891     </p>
    892 
    893     <p>
    894     where:
    895     </p>
    896 
    897     <dl>
    898       <dt><var>std</var> and <var>dst</var></dt><dd>
    899 	are 3 or more characters specifying the standard
    900 	and daylight saving time (<abbr>DST</abbr>) zone abbreviations.
    901 	Starting with POSIX.1-2001, <var>std</var> and <var>dst</var>
    902 	may also be in a quoted form like '<code>&lt;+09&gt;</code>';
    903 	this allows "<code>+</code>" and "<code>-</code>" in the names.
    904       </dd>
    905       <dt><var>offset</var></dt><dd>
    906 	is of the form
    907 	'<code>[&plusmn;]<var>hh</var>:[<var>mm</var>[:<var>ss</var>]]</code>'
    908 	and specifies the offset west of <abbr>UT</abbr>.
    909 	'<var>hh</var>' may be a single digit;
    910 	0&le;<var>hh</var>&le;24.
    911 	The default <abbr>DST</abbr> offset is one hour ahead of
    912 	standard time.
    913       </dd>
    914       <dt><var>date</var>[<code>/</code><var>time</var>]<code>,</code><var>date</var>[<code>/</code><var>time</var>]</dt><dd>
    915 	specifies the beginning and end of <abbr>DST</abbr>.
    916 	If this is absent, the system supplies its own ruleset
    917 	for <abbr>DST</abbr>, typically	current <abbr>US</abbr>
    918 	<abbr>DST</abbr> rules.
    919       </dd>
    920       <dt><var>time</var></dt><dd>
    921 	takes the form
    922 	'<var>hh</var><code>:</code>[<var>mm</var>[<code>:</code><var>ss</var>]]'
    923 	and defaults to 02:00.
    924 	This is the same format as the offset, except that a
    925 	leading '<code>+</code>' or '<code>-</code>' is not allowed.
    926       </dd>
    927       <dt><var>date</var></dt><dd>
    928 	takes one of the following forms:
    929 	<dl>
    930 	  <dt>J<var>n</var> (1&le;<var>n</var>&le;365)</dt><dd>
    931 	    origin-1 day number not counting February 29
    932 	  </dd>
    933 	  <dt><var>n</var> (0&le;<var>n</var>&le;365)</dt><dd>
    934 	    origin-0 day number counting February 29 if present
    935 	  </dd>
    936 	  <dt><code>M</code><var>m</var><code>.</code><var>n</var><code>.</code><var>d</var>
    937 	    (0[Sunday]&le;<var>d</var>&le;6[Saturday], 1&le;<var>n</var>&le;5,
    938 	    1&le;<var>m</var>&le;12)</dt><dd>
    939 	    for the <var>d</var>th day of week <var>n</var> of
    940 	    month <var>m</var> of the year, where week 1 is the first
    941 	    week in which day <var>d</var> appears, and
    942 	    '<code>5</code>' stands for the last week in which
    943 	    day <var>d</var> appears (which may be either the 4th or
    944 	    5th week).
    945 	    Typically, this is the only useful form; the <var>n</var>
    946 	    and <code>J</code><var>n</var> forms are rarely used.
    947 	  </dd>
    948 	</dl>
    949       </dd>
    950     </dl>
    951 
    952     <p>
    953     Here is an example POSIX <code>TZ</code> string for New
    954     Zealand after 2007.
    955     It says that standard time (<abbr>NZST</abbr>) is 12 hours ahead
    956     of <abbr>UT</abbr>, and that daylight saving time
    957     (<abbr>NZDT</abbr>) is observed from September's last Sunday at
    958     02:00 until April's first Sunday at 03:00:
    959     </p>
    960 
    961     <pre><code>TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'</code></pre>
    962 
    963     <p>
    964     This POSIX <code>TZ</code> string is hard to remember, and
    965     mishandles some timestamps before 2008.
    966     With this package you can use this instead:
    967     </p>
    968 
    969     <pre><code>TZ='Pacific/Auckland'</code></pre>
    970   </li>
    971   <li>
    972     POSIX does not define the <abbr>DST</abbr> transitions
    973     for <code>TZ</code> values like
    974     "<code>EST5EDT</code>".
    975     Traditionally the current <abbr>US</abbr> <abbr>DST</abbr> rules
    976     were used to interpret such values, but this meant that the
    977     <abbr>US</abbr> <abbr>DST</abbr> rules were compiled into each
    978     time conversion package, and when
    979     <abbr>US</abbr> time conversion rules changed (as in the United
    980     States in 1987 and again in 2007), all packages that
    981     interpreted <code>TZ</code> values had to be updated
    982     to ensure proper results.
    983   </li>
    984   <li>
    985     The <code>TZ</code> environment variable is process-global, which
    986     makes it hard to write efficient, thread-safe applications that
    987     need access to multiple timezones.
    988   </li>
    989   <li>
    990     In POSIX, there is no tamper-proof way for a process to learn the
    991     system's best idea of local (wall clock) time.
    992     This is important for applications that an administrator wants
    993     used only at certain times &ndash; without regard to whether the
    994     user has fiddled the
    995     <code>TZ</code> environment variable.
    996     While an administrator can "do everything in <abbr>UT</abbr>" to
    997     get around the problem, doing so is inconvenient and precludes
    998     handling daylight saving time shifts &ndash; as might be required to
    999     limit phone calls to off-peak hours.
   1000   </li>
   1001   <li>
   1002     POSIX provides no convenient and efficient way to determine
   1003     the <abbr>UT</abbr> offset and time zone abbreviation of arbitrary
   1004     timestamps, particularly for timezones
   1005     that do not fit into the POSIX model.
   1006   </li>
   1007   <li>
   1008     POSIX requires that <code>time_t</code> clock counts exclude leap
   1009     seconds.
   1010   </li>
   1011   <li>
   1012     The <code><abbr>tz</abbr></code> code attempts to support all the
   1013     <code>time_t</code> implementations allowed by POSIX.
   1014     The <code>time_t</code> type represents a nonnegative count of seconds
   1015     since 1970-01-01 00:00:00 <abbr>UTC</abbr>, ignoring leap seconds.
   1016     In practice, <code>time_t</code> is usually a signed 64- or 32-bit
   1017     integer; 32-bit signed <code>time_t</code> values stop working after
   1018     2038-01-19 03:14:07 <abbr>UTC</abbr>, so new implementations these
   1019     days typically use a signed 64-bit integer.
   1020     Unsigned 32-bit integers are used on one or two platforms, and 36-bit
   1021     and 40-bit integers are also used occasionally.
   1022     Although earlier POSIX versions allowed <code>time_t</code> to be a
   1023     floating-point type, this was not supported by any practical system,
   1024     and POSIX.1-2013 and the <code><abbr>tz</abbr></code> code both
   1025     require <code>time_t</code> to be an integer type.
   1026   </li>
   1027 </ul>
   1028 
   1029 <h3 id="POSIX-extensions">Extensions to POSIX in the
   1030 <code><abbr>tz</abbr></code> code</h3>
   1031 <ul>
   1032   <li>
   1033     <p>
   1034     The <code>TZ</code> environment variable is used in generating
   1035     the name of a file from which time-related information is read
   1036     (or is interpreted  la POSIX); <code>TZ</code> is no longer
   1037     constrained to be a string containing abbreviations
   1038     and numeric data as described <a href="#POSIX">above</a>.
   1039     The file's format is <dfn><abbr>TZif</abbr></dfn>,
   1040     a timezone information format that contains binary data; see
   1041     <a href="https://datatracker.ietf.org/doc/html/8536">Internet
   1042     <abbr>RFC</abbr> 8536</a>.
   1043     The daylight saving time rules to be used for a
   1044     particular timezone are encoded in the
   1045     <abbr>TZif</abbr> file; the format of the file allows <abbr>US</abbr>,
   1046     Australian, and other rules to be encoded, and
   1047     allows for situations where more than two time zone
   1048     abbreviations are used.
   1049     </p>
   1050     <p>
   1051     It was recognized that allowing the <code>TZ</code> environment
   1052     variable to take on values such as '<code>America/New_York</code>'
   1053     might cause "old" programs (that expect <code>TZ</code> to have a
   1054     certain form) to operate incorrectly; consideration was given to using
   1055     some other environment variable (for example, <code>TIMEZONE</code>)
   1056     to hold the string used to generate the <abbr>TZif</abbr> file's name.
   1057     In the end, however, it was decided to continue using
   1058     <code>TZ</code>: it is widely used for time zone purposes;
   1059     separately maintaining both <code>TZ</code>
   1060     and <code>TIMEZONE</code> seemed a nuisance; and systems where
   1061     "new" forms of <code>TZ</code> might cause problems can simply
   1062     use legacy <code>TZ</code> values such as "<code>EST5EDT</code>" which
   1063     can be used by "new" programs as well as by "old" programs that
   1064     assume pre-POSIX <code>TZ</code> values.
   1065     </p>
   1066   </li>
   1067   <li>
   1068     The code supports platforms with a <abbr>UT</abbr> offset member
   1069     in <code>struct tm</code>, e.g., <code>tm_gmtoff</code>,
   1070     or with a time zone abbreviation member in
   1071     <code>struct tm</code>, e.g., <code>tm_zone</code>. As noted
   1072     in <a href="https://austingroupbugs.net/view.php?id=1533">Austin
   1073     Group defect 1533</a>, a future version of POSIX is planned to
   1074     require <code>tm_gmtoff</code> and <code>tm_zone</code>.
   1075   </li>
   1076   <li>
   1077     Functions <code>tzalloc</code>, <code>tzfree</code>,
   1078     <code>localtime_rz</code>, and <code>mktime_z</code> for
   1079     more-efficient thread-safe applications that need to use multiple
   1080     timezones.
   1081     The <code>tzalloc</code> and <code>tzfree</code> functions
   1082     allocate and free objects of type <code>timezone_t</code>,
   1083     and <code>localtime_rz</code> and <code>mktime_z</code> are
   1084     like <code>localtime_r</code> and <code>mktime</code> with an
   1085     extra <code>timezone_t</code> argument.
   1086     The functions were inspired by <a href="https://netbsd.org/">NetBSD</a>.
   1087   </li>
   1088   <li>
   1089     Negative <code>time_t</code> values are supported, on systems
   1090     where <code>time_t</code> is signed.
   1091   </li>
   1092   <li>
   1093     These functions can account for leap seconds;
   1094     see <a href="#leapsec">Leap seconds</a> below.
   1095   </li>
   1096 </ul>
   1097 
   1098 <h3 id="vestigial">POSIX features no longer needed</h3>
   1099 <p>
   1100 POSIX and <a href="https://en.wikipedia.org/wiki/ISO_C"><abbr>ISO</abbr> C</a>
   1101 define some <a href="https://en.wikipedia.org/wiki/API"><abbr
   1102 title="application programming interface">API</abbr>s</a> that are vestigial:
   1103 they are not needed, and are relics of a too-simple model that does
   1104 not suffice to handle many real-world timestamps.
   1105 Although the <code><abbr>tz</abbr></code> code supports these
   1106 vestigial <abbr>API</abbr>s for backwards compatibility, they should
   1107 be avoided in portable applications.
   1108 The vestigial <abbr>API</abbr>s are:
   1109 </p>
   1110 <ul>
   1111   <li>
   1112     The POSIX <code>tzname</code> variable does not suffice and is no
   1113     longer needed.
   1114     To get a timestamp's time zone abbreviation, consult
   1115     the <code>tm_zone</code> member if available; otherwise,
   1116     use <code>strftime</code>'s <code>"%Z"</code> conversion
   1117     specification.
   1118   </li>
   1119   <li>
   1120     The POSIX <code>daylight</code> and <code>timezone</code>
   1121     variables do not suffice and are no longer needed.
   1122     To get a timestamp's <abbr>UT</abbr> offset, consult
   1123     the <code>tm_gmtoff</code> member if available; otherwise,
   1124     subtract values returned by <code>localtime</code>
   1125     and <code>gmtime</code> using the rules of the Gregorian calendar,
   1126     or use <code>strftime</code>'s <code>"%z"</code> conversion
   1127     specification if a string like <code>"+0900"</code> suffices.
   1128   </li>
   1129   <li>
   1130     The <code>tm_isdst</code> member is almost never needed and most of
   1131     its uses should be discouraged in favor of the abovementioned
   1132     <abbr>API</abbr>s.
   1133     Although it can still be used in arguments to
   1134     <code>mktime</code> to disambiguate timestamps near
   1135     a <abbr>DST</abbr> transition when the clock jumps back on
   1136     platforms lacking <code>tm_gmtoff</code>, this
   1137     disambiguation does not work when standard time itself jumps back,
   1138     which can occur when a location changes to a time zone with a
   1139     lesser <abbr>UT</abbr> offset.
   1140   </li>
   1141 </ul>
   1142 
   1143 <h3 id="other-portability">Other portability notes</h3>
   1144 <ul>
   1145   <li>
   1146     The <a href="https://en.wikipedia.org/wiki/Version_7_Unix">7th Edition
   1147     UNIX</a> <code>timezone</code> function is not present in this
   1148     package; it is impossible to reliably map <code>timezone</code>'s
   1149     arguments (a "minutes west of <abbr>GMT</abbr>" value and a
   1150     "daylight saving time in effect" flag) to a time zone
   1151     abbreviation, and we refuse to guess.
   1152     Programs that in the past used the <code>timezone</code> function
   1153     may now examine <code>localtime(&amp;clock)-&gt;tm_zone</code>
   1154     (if <code>TM_ZONE</code> is defined) or
   1155     <code>tzname[localtime(&amp;clock)-&gt;tm_isdst]</code>
   1156     (if <code>HAVE_TZNAME</code> is nonzero) to learn the correct time
   1157     zone abbreviation to use.
   1158   </li>
   1159   <li>
   1160     The <a
   1161     href="https://en.wikipedia.org/wiki/History_of_the_Berkeley_Software_Distribution#4.2BSD"><abbr>4.2BSD</abbr></a>
   1162     <code>gettimeofday</code> function is not
   1163     used in this package.
   1164     This formerly let users obtain the current <abbr>UTC</abbr> offset
   1165     and <abbr>DST</abbr> flag, but this functionality was removed in
   1166     later versions of <abbr>BSD</abbr>.
   1167   </li>
   1168   <li>
   1169     In <abbr>SVR2</abbr>, time conversion fails for near-minimum or
   1170     near-maximum <code>time_t</code> values when doing conversions
   1171     for places that do not use <abbr>UT</abbr>.
   1172     This package takes care to do these conversions correctly.
   1173     A comment in the source code tells how to get compatibly wrong
   1174     results.
   1175   </li>
   1176   <li>
   1177     The functions that are conditionally compiled
   1178     if <code>STD_INSPIRED</code> is nonzero should, at this point, be
   1179     looked on primarily as food for thought.
   1180     They are not in any sense "standard compatible" &ndash; some are
   1181     not, in fact, specified in <em>any</em> standard.
   1182     They do, however, represent responses of various authors to
   1183     standardization proposals.
   1184   </li>
   1185   <li>
   1186     Other time conversion proposals, in particular those supported by the
   1187     <a href="https://howardhinnant.github.io/date/tz.html">Time Zone
   1188     Database Parser</a>, offer a wider selection of functions
   1189     that provide capabilities beyond those provided here.
   1190     The absence of such functions from this package is not meant to
   1191     discourage the development, standardization, or use of such
   1192     functions.
   1193     Rather, their absence reflects the decision to make this package
   1194     contain valid extensions to POSIX, to ensure its broad
   1195     acceptability.
   1196     If more powerful time conversion functions can be standardized, so
   1197     much the better.
   1198   </li>
   1199 </ul>
   1200 </section>
   1201 
   1202 <section>
   1203   <h2 id="stability">Interface stability</h2>
   1204 <p>
   1205 The <code><abbr>tz</abbr></code> code and data supply the following interfaces:
   1206 </p>
   1207 
   1208 <ul>
   1209   <li>
   1210     A set of timezone names as per
   1211       "<a href="#naming">Timezone identifiers</a>" above.
   1212   </li>
   1213   <li>
   1214     Library functions described in "<a href="#functions">Time and date
   1215       functions</a>" above.
   1216   </li>
   1217   <li>
   1218     The programs <code>tzselect</code>, <code>zdump</code>,
   1219     and <code>zic</code>, documented in their man pages.
   1220   </li>
   1221   <li>
   1222     The format of <code>zic</code> input files, documented in
   1223     the <code>zic</code> man page.
   1224   </li>
   1225   <li>
   1226     The format of <code>zic</code> output files, documented in
   1227     the <code>tzfile</code> man page.
   1228   </li>
   1229   <li>
   1230     The format of zone table files, documented in <code>zone1970.tab</code>.
   1231   </li>
   1232   <li>
   1233     The format of the country code file, documented in <code>iso3166.tab</code>.
   1234   </li>
   1235   <li>
   1236     The version number of the code and data, as the first line of
   1237     the text file '<code>version</code>' in each release.
   1238   </li>
   1239 </ul>
   1240 
   1241 <p>
   1242 Interface changes in a release attempt to preserve compatibility with
   1243 recent releases.
   1244 For example, <code><abbr>tz</abbr></code> data files typically do not
   1245 rely on recently added <code>zic</code> features, so that users can
   1246 run older <code>zic</code> versions to process newer data files.
   1247 <a href="tz-link.html#download">Downloading
   1248 the <code><abbr>tz</abbr></code> database</a> describes how releases
   1249 are tagged and distributed.
   1250 </p>
   1251 
   1252 <p>
   1253 Interfaces not listed above are less stable.
   1254 For example, users should not rely on particular <abbr>UT</abbr>
   1255 offsets or abbreviations for timestamps, as data entries are often
   1256 based on guesswork and these guesses may be corrected or improved.
   1257 </p>
   1258 
   1259 <p>
   1260 Timezone boundaries are not part of the stable interface.
   1261 For example, even though the <samp>Asia/Bangkok</samp> timezone
   1262 currently includes Chang Mai, Hanoi, and Phnom Penh, this is not part
   1263 of the stable interface and the timezone can split at any time.
   1264 If a calendar application records a future event in some location other
   1265 than Bangkok by putting "<samp>Asia/Bangkok</samp>" in the event's record,
   1266 the application should be robust in the presence of timezone splits
   1267 between now and the future time.
   1268 </p>
   1269 </section>
   1270 
   1271 <section>
   1272   <h2 id="leapsec">Leap seconds</h2>
   1273 <p>
   1274 Leap seconds were introduced in 1972 to accommodate the
   1275 difference between atomic time and the less regular rotation of the earth.
   1276 Unfortunately they caused so many problems with civil
   1277 timekeeping that they
   1278 are <a href="https://www.bipm.org/en/cgpm-2022/resolution-4">planned
   1279 to be discontinued by 2035</a>, with some as-yet-undetermined
   1280 mechanism replacing them, perhaps after the year 2135.
   1281 Despite their impending obsolescence, a record of leap seconds is still
   1282 needed to resolve timestamps from 1972 through 2035.
   1283 </p>
   1284 
   1285 <p>
   1286 The <code><abbr>tz</abbr></code> code and data can account for leap seconds,
   1287 thanks to code contributed by Bradley White.
   1288 However, the leap second support of this package is rarely used directly
   1289 because POSIX requires leap seconds to be excluded and many
   1290 software packages would mishandle leap seconds if they were present.
   1291 Instead, leap seconds are more commonly handled by occasionally adjusting
   1292 the operating system kernel clock as described in
   1293 <a href="tz-link.html#precision">Precision timekeeping</a>,
   1294 and this package by default installs a <samp>leapseconds</samp> file
   1295 commonly used by
   1296 <a href="https://www.ntp.org"><abbr title="Network Time Protocol">NTP</abbr></a>
   1297 software that adjusts the kernel clock.
   1298 However, kernel-clock twiddling approximates UTC only roughly,
   1299 and systems needing more precise UTC can use this package's leap
   1300 second support directly.
   1301 </p>
   1302 
   1303 <p>
   1304 The directly supported mechanism assumes that <code>time_t</code>
   1305 counts of seconds since the POSIX epoch normally include leap seconds,
   1306 as opposed to POSIX <code>time_t</code> counts which exclude leap seconds.
   1307 This modified timescale is converted to <abbr>UTC</abbr>
   1308 at the same point that time zone and <abbr>DST</abbr>
   1309 adjustments are applied &ndash;
   1310 namely, at calls to <code>localtime</code> and analogous functions &ndash;
   1311 and the process is driven by leap second information
   1312 stored in alternate versions of the <abbr>TZif</abbr> files.
   1313 Because a leap second adjustment may be needed even
   1314 if no time zone correction is desired,
   1315 calls to <code>gmtime</code>-like functions
   1316 also need to consult a <abbr>TZif</abbr> file,
   1317 conventionally named <samp><abbr>Etc/UTC</abbr></samp>
   1318 (<samp><abbr>GMT</abbr></samp> in previous versions),
   1319 to see whether leap second corrections are needed.
   1320 To convert an application's <code>time_t</code> timestamps to or from
   1321 POSIX <code>time_t</code> timestamps (for use when, say,
   1322 embedding or interpreting timestamps in portable
   1323 <a href="https://en.wikipedia.org/wiki/Tar_(computing)"><code>tar</code></a>
   1324 files),
   1325 the application can call the utility functions
   1326 <code>time2posix</code> and <code>posix2time</code>
   1327 included with this package.
   1328 </p>
   1329 
   1330 <p>
   1331 If the POSIX-compatible <abbr>TZif</abbr> file set is installed
   1332 in a directory whose basename is <samp>zoneinfo</samp>, the
   1333 leap-second-aware file set is by default installed in a separate
   1334 directory <samp>zoneinfo-leaps</samp>.
   1335 Although each process can have its own time zone by setting
   1336 its <code>TZ</code> environment variable, there is no support for some
   1337 processes being leap-second aware while other processes are
   1338 POSIX-compatible; the leap-second choice is system-wide.
   1339 So if you configure your kernel to count leap seconds, you should also
   1340 discard <samp>zoneinfo</samp> and rename <samp>zoneinfo-leaps</samp>
   1341 to <samp>zoneinfo</samp>.
   1342 Alternatively, you can install just one set of <abbr>TZif</abbr> files
   1343 in the first place; see the <code>REDO</code> variable in this package's
   1344 <a href="https://en.wikipedia.org/wiki/Makefile">makefile</a>.
   1345 </p>
   1346 </section>
   1347 
   1348 <section>
   1349   <h2 id="calendar">Calendrical issues</h2>
   1350 <p>
   1351 Calendrical issues are a bit out of scope for a time zone database,
   1352 but they indicate the sort of problems that we would run into if we
   1353 extended the time zone database further into the past.
   1354 An excellent resource in this area is Edward M. Reingold
   1355 and Nachum Dershowitz, <cite><a
   1356 href="https://www.cambridge.org/fr/academic/subjects/computer-science/computing-general-interest/calendrical-calculations-ultimate-edition-4th-edition">Calendrical
   1357 Calculations: The Ultimate Edition</a></cite>, Cambridge University Press (2018).
   1358 Other information and sources are given in the file '<code>calendars</code>'
   1359 in the <code><abbr>tz</abbr></code> distribution.
   1360 They sometimes disagree.
   1361 </p>
   1362 </section>
   1363 
   1364 <section>
   1365   <h2 id="planets">Time and time zones off Earth</h2>
   1366 <p>
   1367 The European Space Agency is <a
   1368 href='https://www.esa.int/Applications/Navigation/Telling_time_on_the_Moon'>considering</a>
   1369 the establishment of a reference timescale for the Moon, which has
   1370 days roughly equivalent to 29.5 Earth days, and where relativistic
   1371 effects cause clocks to tick slightly faster than on Earth.
   1372 </p>
   1373 
   1374 <p>
   1375 Some people's work schedules have used
   1376 <a href="https://en.wikipedia.org/wiki/Timekeeping_on_Mars">Mars time</a>.
   1377 Jet Propulsion Laboratory (JPL) coordinators kept Mars time on
   1378 and off during the
   1379 <a href="https://en.wikipedia.org/wiki/Mars_Pathfinder">Mars
   1380 Pathfinder</a> mission (1997).
   1381 Some of their family members also adapted to Mars time.
   1382 Dozens of special Mars watches were built for JPL workers who kept
   1383 Mars time during the
   1384 <a href="https://en.wikipedia.org/wiki/Mars_Exploration_Rover">Mars
   1385 Exploration Rovers (MER)</a> mission (2004&ndash;2018).
   1386 These timepieces looked like normal Seikos and Citizens but were adjusted
   1387 to use Mars seconds rather than terrestrial seconds, although
   1388 unfortunately the adjusted watches were unreliable and appear to have
   1389 had only limited use.
   1390 </p>
   1391 
   1392 <p>
   1393 A Mars solar day is called a "sol" and has a mean period equal to
   1394 about 24 hours 39 minutes 35.244 seconds in terrestrial time.
   1395 It is divided into a conventional 24-hour clock, so each Mars second
   1396 equals about 1.02749125 terrestrial seconds.
   1397 (One MER worker noted, "If I am working Mars hours, and Mars hours are
   1398 2.5% more than Earth hours, shouldn't I get an extra 2.5% pay raise?")
   1399 </p>
   1400 
   1401 <p>
   1402 The <a href="https://en.wikipedia.org/wiki/Prime_meridian">prime
   1403 meridian</a> of Mars goes through the center of the crater
   1404 <a href="https://en.wikipedia.org/wiki/Airy-0">Airy-0</a>, named in
   1405 honor of the British astronomer who built the Greenwich telescope that
   1406 defines Earth's prime meridian.
   1407 Mean solar time on the Mars prime meridian is
   1408 called Mars Coordinated Time (<abbr>MTC</abbr>).
   1409 </p>
   1410 
   1411 <p>
   1412 Each landed mission on Mars has adopted a different reference for
   1413 solar timekeeping, so there is no real standard for Mars time zones.
   1414 For example, the MER mission defined two time zones "Local
   1415 Solar Time A" and "Local Solar Time B" for its two missions, each zone
   1416 designed so that its time equals local true solar time at
   1417 approximately the middle of the nominal mission.
   1418 The A and B zones differ enough so that an MER worker assigned to
   1419 the A zone might suffer "Mars lag" when switching to work in the B zone.
   1420 Such a "time zone" is not particularly suited for any application
   1421 other than the mission itself.
   1422 </p>
   1423 
   1424 <p>
   1425 Many calendars have been proposed for Mars, but none have achieved
   1426 wide acceptance.
   1427 Astronomers often use Mars Sol Date (<abbr>MSD</abbr>) which is a
   1428 sequential count of Mars solar days elapsed since about 1873-12-29
   1429 12:00 <abbr>GMT</abbr>.
   1430 </p>
   1431 
   1432 <p>
   1433 In our solar system, Mars is the planet with time and calendar most
   1434 like Earth's.
   1435 On other planets, Sun-based time and calendars would work quite
   1436 differently.
   1437 For example, although Mercury's
   1438 <a href="https://en.wikipedia.org/wiki/Rotation_period">sidereal
   1439 rotation period</a> is 58.646 Earth days, Mercury revolves around the
   1440 Sun so rapidly that an observer on Mercury's equator would see a
   1441 sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a
   1442 Mercury day.
   1443 Venus is more complicated, partly because its rotation is slightly
   1444 <a href="https://en.wikipedia.org/wiki/Retrograde_motion">retrograde</a>:
   1445 its year is 1.92 of its days.
   1446 Gas giants like Jupiter are trickier still, as their polar and
   1447 equatorial regions rotate at different rates, so that the length of a
   1448 day depends on latitude.
   1449 This effect is most pronounced on Neptune, where the day is about 12
   1450 hours at the poles and 18 hours at the equator.
   1451 </p>
   1452 
   1453 <p>
   1454 Although the <code><abbr>tz</abbr></code> database does not support
   1455 time on other planets, it is documented here in the hopes that support
   1456 will be added eventually.
   1457 </p>
   1458 
   1459 <p>
   1460 Sources for time on other planets:
   1461 </p>
   1462 
   1463 <ul>
   1464   <li>
   1465     Michael Allison and Robert Schmunk,
   1466     "<a href="https://www.giss.nasa.gov/tools/mars24/help/notes.html">Technical
   1467       Notes on Mars Solar Time as Adopted by the Mars24 Sunclock</a>"
   1468     (2020-03-08).
   1469   </li>
   1470   <li>
   1471     Zara Mirmalek,
   1472     <em><a href="https://mitpress.mit.edu/books/making-time-mars">Making
   1473 	Time on Mars</a></em>, MIT Press (March 2020), ISBN 978-0262043854.
   1474   </li>
   1475   <li>
   1476     Jia-Rui Chong,
   1477     "<a href="https://www.latimes.com/archives/la-xpm-2004-jan-14-sci-marstime14-story.html">Workdays
   1478     Fit for a Martian</a>", <cite>Los Angeles Times</cite>
   1479     (2004-01-14), pp A1, A20&ndash;A21.
   1480   </li>
   1481   <li>
   1482     Tom Chmielewski,
   1483     "<a href="https://www.theatlantic.com/technology/archive/2015/02/jet-lag-is-worse-on-mars/386033/">Jet
   1484     Lag Is Worse on Mars</a>", <cite>The Atlantic</cite> (2015-02-26)
   1485   </li>
   1486   <li>
   1487     Matt Williams,
   1488     "<a href="https://www.universetoday.com/37481/days-of-the-planets/">How
   1489     long is a day on the other planets of the solar system?</a>"
   1490     (2016-01-20).
   1491   </li>
   1492 </ul>
   1493 </section>
   1494 
   1495 <footer>
   1496   <hr>
   1497   This file is in the public domain, so clarified as of 2009-05-17 by
   1498   Arthur David Olson.
   1499 </footer>
   1500 </body>
   1501 </html>
   1502